Θεωρία Γράφων Αλγόριθμοι BFS, Prim, Dijkstra, Bellman-Ford
|
|
- Καλλικράτης Αντωνόπουλος
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Θεωρία ράφων λγόριθμοι BFS, Prim, Dijkstra, Bellman-Ford
2 Θεωρία γράφων Υπογράφοι και spanning trees Ένας γράφος G =(V,E ) είναι υπογράφος (subgraph) ενός γράφου G=(V,E) αν V ' V και E' E Ένας υπογράφος G =(V,E ) ενός γράφου G=(V,E) ονομάζεται spanning tree του G εάν ο G είναι δένδρο και περιλαμβάνει όλους τους κόμβους του G
3 Θεωρία γράφων Υπογράφοι και spanning trees Συμπεραίνουμε λοιπόν ότι ένα spanning tree G προκύπτει από ένα γράφο G εάν αφαιρέσουμε ακμές από τον G έτσι ώστε να εκλείψουν τυχόν κύκλοι αλλά ο γράφος να παραμείνει συνδεδεμένος ενικά, ένας γράφος μπορεί να συσχετίζεται με περισσότερα από ένα spanning trees
4 Θεωρία γράφων Υπογράφοι και spanning trees Το πρόβλημα της εύρεσης ενός spanning tree για ένα γράφο G έχει μελετηθεί εκτενώς Μια από τις γνωστότερες προσεγγίσεις στο πρόβλημα αυτό είναι o αλγόριθμος breadth first search (BFS) οοποίος: πισκέπτεται όλους τους κόμβους και τις ακμές του αρχικού γράφου G Καθορίζει εάν ο G είναι συνδεδεμένος
5 Spanning trees λγόριθμος BFS φαιρεί όλες τις ακμές του γράφου που δημιουργούν τυχόν κύκλους Πιο συγκεκριμένα, έστω γράφος G=(V,E) e E θεωρούνται ότι είναι στην κατάσταση ρχικά, όλοι οι κόμβοι u V και όλες οι ακμές U (unexplored) Έστω ότι ο αλγόριθμος BFS(G,s) ξεκινάει από τον κόμβο s V
6 Spanning trees λγόριθμος BFS Ο αλγόριθμος χρησιμοποιεί ένα μηχανισμό συσχετισμού ετικετών: Συσχετίζει την ετικέτα D (discovery) με κάθε ακμή του γράφου την οποία επισκέπτεται για πρώτη φορά Συσχετίζει την ετικέτα V (visited) με κάθε κόμβο του γράφου τον οποίο επισκέπτεται για πρώτη φορά
7 BFS(G,s) L 0 <s> setlabel(s, V ) i 0 while ( L i <> ) L i + <> for all v in L i for all e in Edges(v) <body> i i + <body>: if (label(e) = U ) w leads(e,v) if (label(w) = U ) setlabel(e, D ) setlabel(w, V ) L i + L i +^<w> else setlabel(e, C )
8 Spanning trees λγόριθμος BFS Όπου: ια κάθε κόμβο v, η συνάρτησηedges(v) επιστρέφει το σύνολο των ακμών οι οποίες εκκινούν από τον v ια κάθε ακμή ή κόμβο x, η συνάρτηση label(x) επιστρέφει την τρέχουσα ετικέτα του x ια κάθε ακμή ή κόμβο x, η συνάρτηση setlabel(x, L ) προσάπτει την ετικέτα L στον x ια κάθε ακμή e και κόμβο v, ησυνάρτηση leads(e,v) επιστρέφει τον κόμβο στον οποίο καταλήγει η ακμή e εκκινώντας από τον κόμβο v ΗλίσταL i εμπεριέχει τους κόμβους του επιπέδου i
9 Spanning trees λγόριθμος BFS (Παράδειγμα) Visited Discovered Crossed L 0 αρχικό στάδιο
10 Spanning trees λγόριθμος BFS (Παράδειγμα) Visited Discovered Crossed L L L
11 Spanning trees λγόριθμος BFS (Παράδειγμα) Visited Discovered Crossed L L
12 Spanning trees λγόριθμος BFS (Παράδειγμα) Visited Discovered Crossed L
13 Spanning trees λγόριθμος BFS (Παράδειγμα) Visited Discovered Crossed L L
14 Spanning trees λγόριθμος BFS (Παράδειγμα) Visited Discovered Crossed
15 Spanning trees λγόριθμος BFS O BFS εντοπίζει την απόσταση του συντομότερου μονοπατιού από δεδομένο κόμβο εκκίνησης κ ε προς οποιοδήποτε άλλο κόμβο κ Το συντομότερο μονοπάτι ορίζεται ως ο ελάχιστος αριθμός ακμών που πρέπει να διανύσουμε για να καταλήξουμε από τον κ ε στον κ Κάθε επίπεδο L i ενός spanning tree περιλαμβάνει εκείνους και μόνο εκείνους τους κόμβους που η απόσταση τους από τη ρίζα είναι ακριβώς i ακμές
16 Spanning trees λγόριθμος του Prim ντοπίζει το ελάχιστο spanning tree για ένα γράφο G=(V,E) με συσχετισμένους συντελεστές βάρους To ελάχιστο spanning tree είναι εκείνο που έχει το ελάχιστο συνολικό μήκος ακμών ρχικά, όλοι οι κόμβοι u V και όλες οι ακμές e E θεωρούνται ότι είναι στην κατάσταση U (unexplored) Έστω ότι ο αλγόριθμος Prim(G,s) ξεκινάει από τον κόμβο s V
17 Prim(G,s) L {s} setlabel(s, V ) while (L V) dist for all v in L for all e in Edges(v) <body> setlabel(e C, D ) setlabel(next, V ) L L U<next> <body>: if (label(e) = U ) w leads(e,v) if (label(w) = U ) if (weight(e) < dist ) dist weight(e) e C e next w
18 Spanning trees λγόριθμος Prim (Παράδειγμα) αρχικό στάδιο Visited Chosen L={} L={A} L={A}
19 Spanning trees λγόριθμος Prim (Παράδειγμα) L={A,} L={A,} L={A,,E} Visited Chosen
20 Spanning trees λγόριθμος Prim (Παράδειγμα) L={A,,,B} L={A,,E} L={A,,E,B} Visited Chosen
21 Spanning trees λγόριθμος Prim (Παράδειγμα) L={A,,,B,} L={A,,,B,} L={A,,E,,,} Visited Chosen
22 Καθορισμός λάχιστου Μονοπατιού Ένα δίκτυο μεταγωγής πακέτων δεδομένων αποτελεί ένα διγράφο Κόμβοι οι πόροι του δικτύου (συμπεριλαμβανομένων των δρομολογητών) κμές οι τηλεπικοινωνιακές γραμμές που διασυνδέουν τους κόμβους ς υποθέσουμε ότι ο κόμβος επιθυμεί να αποστείλει πακέτα δεδομένων στον κόμβο
23 Καθορισμός λάχιστου Μονοπατιού Ένα πρόβλημα που πρέπει να επιλυθεί είναι ο καθορισμός του δρομολογίου το οποίο θα ακολουθήσουν τα πακέτα κατά τη μετάβαση τους από τον στον Όπως είναι προφανές το συντομότερο δρομολόγιο από τον στον είναι και το επιθυμητό
24 Καθορισμός λάχιστου Μονοπατιού Ο καθορισμός του συντομότερου μονοπατιού βασίζεται σε κάποιο κριτήριο ελάχιστου κόστους το οποίο μπορεί να συσχετίζεται με παράγοντες όπως: Χωρητικότητα τηλεπικοινωνιακών γραμμών Τρέχων τηλεπικοινωνιακός φόρτος γραμμών Οικονομικό κόστος χρήσης τηλεπικοινωνιακών γραμμών
25 Καθορισμός λάχιστου Μονοπατιού Κάθε τηλεπικοινωνιακή ζεύξη λοιπόν ανάμεσα σε δύο πόρους ενός δικτύου συσχετίζεται με μία τιμή η οποία και περιγράφει το κόστος επικοινωνίας μέσω της ζεύξης αυτής Η τιμή αυτή αποτελεί το συντελεστή βάρους της αντίστοιχης ακμής που αναπαριστά την τηλεπικοινωνιακή ζεύξη
26 Καθορισμός λάχιστου Μονοπατιού Ως κόστος ενός μονοπατιού ορίζεται το άθροισμα των τιμών αυτών για όλες τις ζεύξεις από τις οποίες διέρχεται Οι περισσότεροι αλγόριθμοι εύρεσης μονοπατιού ελάχιστου κόστους βασίζονται σε δύο κυρίως αλγορίθμους: Τον αλγόριθμο του Dijkstra Τον αλγόριθμο Bellman-Ford
27 λγόριθμος του Dijkstra Έστω γράφος G=(V,E) με συνδεδεμένους συντελεστές βάρους ρχικά, ο αλγόριθμος εντοπίζει τον κοντινότερο απευθείας συνδεδεμένο κόμβο κ στο ριζικό κόμβο εκκίνησης s Ο κόμβος κ έχει πλέον ανακαλυφθεί ν συνεχεία, εντοπίζει τον κοντινότερο στον s κόμβο κ τέτοιον ώστε Ο κ δεν έχει ήδη ανακαλυφθεί
28 λγόριθμος του Dijkstra Ο κ είναι απευθείας συνδεδεμένος είτε με τον s είτε με κάποιο κόμβο που έχει ήδη ανακαλυφθεί υτό συνεχίζεται μέχρι να ανακαλυφθούν όλοι οι κόμβοι ρχικά όλοι οι κόμβοι v V οι οποίοι δεν είναι απευθείας συνδεδεμένοι με τον s θεωρούνται ότι έχουν άπειρη απόσταση από τον s
29 Dijkstra(G,s) <> L {s} setlabel(s,0) while (L V) dist for all v in L for all e in Edges(v) <body> setlabel(next, dist) E E^< e C > L L U{next} <body>: w leads(e,v) if (w L) d(s,w) label(v)+weight(e) if (dist d(s,w) ) dist d(s,w) e C e next w
30 λγόριθμος Dijkstra (Παράδειγμα) Visited Chosen αρχικό στάδιο L={} E=<> L={A} E=<> L={A} E=<> 0 0
31 λγόριθμος Dijkstra (Παράδειγμα) Visited Chosen L={A,} L={A,} L={A,,E} E=<(,)> E=<(,)> E=<(,), (,E)> 0 0 0
32 λγόριθμος Dijkstra (Παράδειγμα) Visited Chosen L={A,,E} E=<(,), (,E)> 0 L={A,,E,B} E=<(,), (,E), (A,B)> 0 L={A,,E,B} E=<(,), (,E), (A,B)> 0
33 λγόριθμος Dijkstra (Παράδειγμα) Visited Chosen L={A,,E,B,} E=<(,), (,E), (A,B),(,)> 0 5 L={A,,E,B,} E=<(,), (,E), (A,B),(,)> 0 5 L={A,,E,B,,} E=<(,), (,E), (A,B),(,),(,)> 0 5 7
34 λγόριθμος του Dijkstra Ο ιστότοπος rt/70/979s/laffra/dijkstraapplet.html περιέχει ένα applet ιδανικό για εξάσκηση και εξοικείωση με τον αλγόριθμο του Dijkstra
35 λγόριθμος Bellman-Ford Έστω γράφος G=(V,E) με συσχετισμένους συντελεστές βάρους ρχικά, ο αλγόριθμοςεντοπίζειτοελάχιστο μονοπάτιαπότοριζικόκόμβοεκκίνησηςs αποτελούμενο από μία ζεύξη ν συνεχεία, εντοπίζει το ελάχιστο μονοπάτιαπότοριζικόκόμβοεκκίνησηςs αποτελούμενο από δύο ζεύξεις
36 λγόριθμος Bellman-Ford ν συνεχεία, εντοπίζει το ελάχιστο μονοπάτιαπότοριζικόκόμβοεκκίνησηςs αποτελούμενο από τρεις ζεύξεις Συνεχίζει κατά τον τρόπο αυτό για n- φορές όπου n τοπλήθοςτωνκόμβωνστο σύνολο V ρχικά όλοι οι κόμβοι v θεωρούνται ότι έχουν άπειρη απόσταση από τον s
37 Bellman-Ford(G,s) L i (s)=0 (for all i [, V -]) path(s)=<> for each v V if (v s) path 0 (v) <> L 0 (v) for i to V - for each v V-{s} <body> <body>: L i (v) L i- (v) path i (v) path i- (v) for each u V-{v} if (L i- (u) + w(u,v)< L i (v)) L i (v) L i- (u)+w(u,v) path i (v) path i- (u)^<(u,v)>
38 λγόριθμος Bellman-Ford Όπου: ια κάθε κόμβο v, η συνάρτησηpath(v) επιστρέφει ένα μονοπάτι στον v ια κάθε κόμβο v, η συνάρτησηl i (v) επιστρέφει την ετικέτα του v στο γύρο i του αλγορίθμου ια κόμβους v,u, ησυνάρτησηw(u,v) επιστρέφει τo συντελεστή βάρους της ζεύξης μεταξύ των δύο κόμβωνήτηντιμή σεπερίπτωσηπουηζεύξη δεν υφίσταται
39 λγόριθμος Bellman-Ford (Παράδειγμα) 5 0 i=0 i= i= i=3
40 λγόριθμος Bellman-Ford (Παράδειγμα) i= i=
41 λγόριθμος Bellman-Ford Σημείωση: Ο παραπάνω αλγόριθμος δεν παίρνει υπόψη αρνητικούς συντελεστές βάρους και ως εκ τούτου αποτελεί υποπερίπτωση του αλγορίθμου Bellman-Ford
Δίκτυα Υπολογιστών ΙΙ (Ασκήσεις Πράξης)
TEI Σερρών Τμήμα Πληροφορικής και Επικοινωνιών Δίκτυα Υπολογιστών ΙΙ (Ασκήσεις Πράξης) Least Cost Algorithms Τομέας Τηλεπικοινωνιών και Δικτύων Δρ. Αναστάσιος Πολίτης Καθηγητής Εφαρμογών anpol@teiser.gr
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Δομές Δεδομένων. Ιωάννης Γ. Τόλλης Τμήμα Επιστήμης Υπολογιστών Πανεπιστήμιο Κρήτης
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Δομές Δεδομένων Ιωάννης Γ. Τόλλης Τμήμα Επιστήμης Υπολογιστών Πανεπιστήμιο Κρήτης Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού
Διδάσκων: Κωνσταντίνος Κώστα Διαφάνειες: Δημήτρης Ζεϊναλιπούρ
ιάλεξη : λάχιστα εννητορικά ένδρα Αλγόριθμος Prim Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: λάχιστα εννητορικά ένδρα () Minimum Spanning Trees Ο αλγόριθμος του Prim για εύρεση σε γράφους
Αλγόριθμοι και πολυπλοκότητα Οριζόντια διερεύνηση
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Αλγόριθμοι και πολυπλοκότητα Οριζόντια διερεύνηση Ιωάννης Τόλλης Τμήμα Επιστήμης Υπολογιστών Οριζόντια διερεύνηση readth irst Search readth-irst Search 1 Περιεχόμενα
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Δομές Δεδομένων. Ιωάννης Γ. Τόλλης Τμήμα Επιστήμης Υπολογιστών Πανεπιστήμιο Κρήτης
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Δομές Δεδομένων Ιωάννης Γ. Τόλλης Τμήμα Επιστήμης Υπολογιστών Πανεπιστήμιο Κρήτης Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Δομές Δεδομένων. Ιωάννης Γ. Τόλλης Τμήμα Επιστήμης Υπολογιστών Πανεπιστήμιο Κρήτης
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Δομές Δεδομένων Ιωάννης Γ. Τόλλης Τμήμα Επιστήμης Υπολογιστών Πανεπιστήμιο Κρήτης Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού
Διδάσκων: Παναγιώτης Ανδρέου
Διάλεξη 3: Ελάχιστα Γεννητορικά Δέντρα Ο λγόριθμος Prim Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Ελάχιστα Γεννητορικά Δένδρα (ΕΓΔ) Minimum Spanning Trees -Ο αλγόριθμος του Primγια εύρεση
Δομές Δεδομένων και Αλγόριθμοι
Δομές Δεδομένων και Αλγόριθμοι Χρήστος Γκόγκος ΤΕΙ Ηπείρου Χειμερινό Εξάμηνο 2014-2015 Παρουσίαση 18 Dijkstra s Shortest Path Algorithm 1 / 12 Ο αλγόριθμος εύρεσης της συντομότερης διαδρομής του Dijkstra
Διάλεξη 29: Γράφοι. Διδάσκων: Παναγιώτης Ανδρέου
Διάλεξη 9: Γράφοι Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Γράφοι - ορισμοί και υλοποίηση - Διάσχιση Γράφων Διδάσκων: Παναγιώτης νδρέου ΕΠΛ035 Δομές Δεδομένων και λγόριθμοι για Ηλ. Μηχ.
ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ
ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ Φροντιστήριο #: Εύρεση Ελαχίστων Μονοπατιών σε Γραφήματα που Περιλαμβάνουν και Αρνητικά Βάρη: Αλγόριθμος
Διδάσκων: Κωνσταντίνος Κώστα Διαφάνειες: Δημήτρης Ζεϊναλιπούρ
Διάλεξη 23: Βραχύτερα Μονοπάτια σε Γράφους Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Βραχύτερα Μονοπάτια σε γράφους Ο αλγόριθμος Dijkstra για εύρεση της βραχύτερης απόστασης Ο αλγόριθμος
Στοιχεία Θεωρίας Γράφων (Graph Theory)
Στοιχεία Θεωρίας Γράφων (Graph Theory) Ε Εξάμηνο, Τμήμα Πληροφορικής & Τεχνολογίας Υπολογιστών ΤΕΙ Λαμίας plam@inf.teilam.gr, Οι διαφάνειες βασίζονται στα βιβλία:. Αλγόριθμοι, Σχεδιασμός & Ανάλυση, η έκδοση,
Αλγόριθμοι και Δομές Δεδομένων (IΙ) (γράφοι και δένδρα)
Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 2016-17 Αλγόριθμοι και Δομές Δεδομένων (IΙ) (γράφοι και δένδρα) http://mixstef.github.io/courses/csintro/ Μ.Στεφανιδάκης Αφηρημένες
Κατανεμημένα Συστήματα Ι
Κατανεμημένα Συστήματα Ι Παναγιώτα Παναγοπούλου Χριστίνα Σπυροπούλου 8η Διάλεξη 8 Δεκεμβρίου 2016 1 Ασύγχρονη κατασκευή BFS δέντρου Στα σύγχρονα συστήματα ο αλγόριθμος της πλημμύρας είναι ένας απλός αλλά
Πρόβλημα του ελάχιστα εκτεταμένου δένδρου - Minimum spanning tree. Κηρυττόπουλος Κωνσταντίνος Επ. Καθηγητής ΕΜΠ
Πρόβλημα του ελάχιστα εκτεταμένου δένδρου - Minimum spanning tree Κηρυττόπουλος Κωνσταντίνος π. Καθηγητής ΜΠ Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. ια εκπαιδευτικό
(elementary graph algorithms)
(elementary graph algorithms) Παύλος Εφραιμίδης 1 περιεχόμενα γραφήματα αναπαραστάσεις οριζόντια διερεύνηση καθοδική διερεύνηση 2 ΓΡΑΦΉΜΑΤΑ 3 αναπαράσταση δύο καθιερωμένοι τρόποι: πίνακας γειτνίασης συλλογή
Διδάσκων: Κωνσταντίνος Κώστα Διαφάνειες: Δημήτρης Ζεϊναλιπούρ
Διάλεξη 9: Εισαγωγή στους Γράφους Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Γράφοι - ορισμοί και υλοποίηση Διάσχιση Γράφων Διδάσκων: Κωνσταντίνος Κώστα Διαφάνειες: Δημήτρης Ζεϊναλιπούρ
Διδάσκων: Παναγιώτης Ανδρέου
Διάλεξη 3: Βραχύτερα Μονοπάτια σε Γράφους Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Βραχύτερα Μονοπάτια σε γράφους -Ο αλγόριθμος ijkstraγια εύρεση της βραχύτερης απόστασης -Ο αλγόριθμος
Αυτόνομα Συστήματα (ΑΣ)
Δρομολόγηση ΙI Αυτόνομα Συστήματα (ΑΣ) Αυτόνομο σύστημα ονομάζουμε εκείνο που έχει τα εξής χαρακτηριστικά: Είναι ένα σύνολο δρομολογητών και δικτύων υπό τη διαχείριση ενός και μόνο οργανισμού Αποτελείται
Ελάχιστα Γεννητορικά ένδρα
λάχιστα Γεννητορικά ένδρα Στην ενότητα αυτή θα µελετηθούν τα εξής επιµέρους θέµατα: Ο αλγόριθµος του Prim και ο αλγόριθµος του Kruskal για εύρεση λάχιστων Γεννητορικών ένδρων ΠΛ 23 οµές εδοµένων και Αλγόριθµοι
Δομές Δεδομένων Ενότητα 6
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 6: Γράφοι Απόστολος Παπαδόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Βραχύτερα Μονοπάτια σε Γράφους (CLR, κεφάλαιο 25)
Βραχύτερα Μονοπάτια σε Γράφους (CLR, κεφάλαιο 25) Στην ενότητα αυτή θα µελετηθούν τα εξής επιµέρους θέµατα: Ο αλγόριθµος των BellmanFord Ο αλγόριθµος του Dijkstra ΕΠΛ 232 Αλγόριθµοι και Πολυπλοκότητα 61
Αλγόριθμοι Γραφημάτων
Αλγόριθμοι Γραφημάτων 1. Συντομότατα μονοπάτια 2. Αλγόριθμος Bellman-Ford 3. Αλγόριθμος Dijkstra 4. Floyd-Warshall Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη Single-Source Shortest Path Πρόβλημα:
Κατ οίκον Εργασία 5 Σκελετοί Λύσεων
Κατ οίκον Εργασία 5 Σκελετοί Λύσεων Άσκηση 1 (α) Ο αλγόριθµος χρησιµοποιεί τη διαδικασία DFS(v) η οποία, ως γνωστό, επισκέπτεται όλους τους κόµβους που είναι συνδεδεµένοι µε τον κόµβο v. Για να µετρήσουµε
Αλγόριθμοι Δρομολόγησης. Γ. Κορμέντζας
Αλγόριθμοι Δρομολόγησης Γ. Κορμέντζας Δρομολόγηση Περιεχόμενα Διαδικασίες δρομολόγησης Ροές Δικτύων - Αλγόριθμος Ford-Fulkerson Βασικοί Αλγόριθμοι Γράφων Σχεδιασμός γραμμών πολλαπλών σημείων Ελάχιστα δέντρα
Αφηρημένες Δομές Δεδομένων. Στοίβα (Stack) Υλοποίηση στοίβας
Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής ισαγωγή στην πιστήμη των Υπολογιστών 2015-16 λγόριθμοι και ομές εδομένων (IΙ) (γράφοι και δένδρα) http://di.ionio.gr/~mistral/tp/csintro/ Μ.Στεφανιδάκης φηρημένες
Graph Algorithms. Παρουσίαση στα πλαίσια του μαθήματος «Παράλληλοι Αλγόριθμοι» Καούρη Γεωργία Μήτσου Βάλια
Graph Algorithms Παρουσίαση στα πλαίσια του μαθήματος «Παράλληλοι Αλγόριθμοι» Καούρη Γεωργία Μήτσου Βάλια Περιεχόμενα Μεταβατικό Κλείσιμο Συνεκτικές συνιστώσες Συντομότερα μονοπάτια Breadth First Spanning
Διάλεξη 21: Γράφοι IV - Βραχύτερα Μονοπάτια σε Γράφους
Διάλεξη 2: Γράφοι IV - Βραχύτερα Μονοπάτια σε Γράφους Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Βραχύτερα Μονοπάτια σε γράφους - Ο αλγόριθμος Dijkstra για εύρεση της βραχύτερης απόστασης
(elementary graph algorithms)
(elementary graph algorithms) Παύλος Εφραιμίδης περιεχόμενα αναπαραστάσεις οριζόντια διερεύνηση καθοδική διερεύνηση αναπαράσταση δύο καθιερωμένοι τρόποι: πίνακας γειτνίασης συλλογή από καταλόγους γειτνίασης
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Δομές Δεδομένων. Ιωάννης Γ. Τόλλης Τμήμα Επιστήμης Υπολογιστών Πανεπιστήμιο Κρήτης
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Δομές Δεδομένων Ιωάννης Γ. Τόλλης Τμήμα Επιστήμης Υπολογιστών Πανεπιστήμιο Κρήτης Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού
Επίλυση Προβληµάτων µε Greedy Αλγόριθµους
Επίλυση Προβληµάτων µε Greedy Αλγόριθµους Περίληψη Επίλυση προβληµάτων χρησιµοποιώντας Greedy Αλγόριθµους Ελάχιστα Δέντρα Επικάλυψης Αλγόριθµος του Prim Αλγόριθµος του Kruskal Πρόβληµα Ελάχιστης Απόστασης
Εισαγωγή στην Επιστήμη των Υπολογιστών
Εισαγωγή στην Επιστήμη των Υπολογιστών 4 ο εξάμηνο ΣΗΜΜΥ 4 η ενότητα: Γράφοι: προβλήματα και αλγόριθμοι Επιμέλεια διαφανειών: Στάθης Ζάχος, Άρης Παγουρτζής, Δημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών
Αλγόριθμοι και Πολυπλοκότητα
7ο εξάμηνο Σ.Η.Μ.Μ.Υ. & Σ.Ε.Μ.Φ.Ε. http://www.corelab.ece.ntua.gr/courses/ 4η εβδομάδα: Εύρεση k-οστού Μικρότερου Στοιχείου, Master Theorem, Τεχνική Greedy: Knapsack, Minimum Spanning Tree, Shortest Paths
ΔΙΚΤΥΑ (13) Π. Φουληράς
ΔΙΚΤΥΑ (13) Π. Φουληράς Τεχνολογίες WAN και Δρομολόγηση LAN Επεκτείνεται μόνον σε ένα κτίριο ή ομάδα κτιρίων WAN (Wide Area Network) Επεκτείνονται σε μεγάλες περιοχές MAN Ενδιάμεσο ως προς το μέγεθος της
Λυσεις προβλημάτων τελικής φάσης Παγκύπριου Μαθητικού Διαγωνισμού Πληροφορικής 2007
Λυσεις προβλημάτων τελικής φάσης Παγκύπριου Μαθητικού Διαγωνισμού Πληροφορικής 2007 Πρόβλημα 1 Το πρώτο πρόβλημα λύνεται με τη μέθοδο του Δυναμικού Προγραμματισμού. Για να το λύσουμε με Δυναμικό Προγραμματισμό
Ενότητα 9 Ξένα Σύνολα που υποστηρίζουν τη λειτουργία της Ένωσης (Union-Find)
Ενότητα 9 Ξένα Σύνολα που υποστηρίζουν τη (Union-Find) ΗΥ240 - Παναγιώτα Φατούρου 1 Ξένα Σύνολα που υποστηρίζουν τη λειτουργία της Ένωσης Έστω ότι S 1,, S k είναι ξένα υποσύνολα ενός συνόλου U, δηλαδή
Κατ οίκον Εργασία 5 Σκελετοί Λύσεων
Κατ οίκον Εργασία 5 Σκελετοί Λύσεων Άσκηση 1 Χρησιμοποιούμε τις δομές: struct hashtable { struct node array[maxsize]; int maxsize; int size; struct node{ int data; int status; Στο πεδίο status σημειώνουμε
Δένδρα επικάλυψης ελάχιστου κόστους και το πρόβλημα του πλανόδιου πωλητή (Traveling Salesman Problem: TSP)
Δένδρα επικάλυψης ελάχιστου κόστους και το πρόβλημα του πλανόδιου πωλητή (Traveling Salesman Problem: TSP) Αλγόριθμος Prim Ξεκινάμε από ένα δένδρο Τ αποτελούμενο από ένα μόνο κόμβο. Στη συνέχεια, σε κάθε
Χρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ. Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ»
Χρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ» 2 ΔΥΝΑΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Προβλήματα ελάχιστης συνεκτικότητας δικτύου Το πρόβλημα της ελάχιστης
Σχεδιαση Αλγοριθμων -Τμημα Πληροφορικης ΑΠΘ - Κεφαλαιο 9ο
Σχεδίαση Αλγορίθμων Άπληστοι Αλγόριθμοι http://delab.csd.auth.gr/~gounaris/courses/ad 1 Άπληστοι αλγόριθμοι Προβλήματα βελτιστοποίησης ηςλύνονται με μια σειρά επιλογών που είναι: εφικτές τοπικά βέλτιστες
Γράφοι: κατευθυνόμενοι και μη
Γράφοι: κατευθυνόμενοι και μη (V,E ) (V,E ) Γράφος (ή γράφημα): ζεύγος (V,E), V ένα μη κενό σύνολο, Ε διμελής σχέση πάνω στο V Μη κατευθυνόμενος γράφος: σχέση Ε συμμετρική V: κορυφές (vertices), κόμβοι
Αλγόριθμοι και πολυπλοκότητα Τα συντομότερα μονοπάτια(shortest Paths)
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Αλγόριθμοι και πολυπλοκότητα Τα συντομότερα μονοπάτια(shortest Paths) Ιωάννης Τόλλης Τμήμα Επιστήμης Υπολογιστών Τα συντομότερα Μονοπάτια(Shortest Paths) A 2 7 2
Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Διακριτά Μαθηματικά. Ενότητα 3: Δένδρα
Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Διακριτά Μαθηματικά Ενότητα 3: Δένδρα Αν. Καθηγητής Κ. Στεργίου e-mail: kstergiou@uowm.gr Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Άδειες Χρήσης Το
Ελάχιστο Γεννητικό Δένδρο. Παράδειγμα - Αλγόριθμος Prim. Γιατί δουλεύουν αυτοί οι αλγόριθμοι;
Άπληστοι Αλγόριθμοι ΙΙI Αλγόριθμοι γραφημάτων Ελάχιστο Γεννητικό Δένδρο Παράδειγμα Κατασκευή δικτύων Οδικά, επικοινωνίας Έχουμε ένα συνεκτικό γράφημα (V,E) και ένας βάρος we σε κάθε ακμή e. Να βρεθεί υποσύνολο
Εισαγωγή στην Επιστήμη των Υπολογιστών
Εισαγωγή στην Επιστήμη των Υπολογιστών 4 ο εξάμηνο ΣΗΜΜΥ 5 η ενότητα: Γράφοι: προβλήματα και αλγόριθμοι Επιμέλεια διαφανειών: Στάθης Ζάχος, Άρης Παγουρτζής, Δημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών
Αλγόριθμοι Γραφημάτων
Αλγόριθμοι Γραφημάτων 1. Minimum Spanning Trees 2. Αλγόριθμος Prim 3. Αλγόριθμος Kruskal Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη Minimum Spanning Tree Πρόβλημα: Για δοσμένο συνεκτικό, μη προσανατολισμένο,
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Ενότητα 11: Minimum Spanning Trees Αλγόριθμος Prim Αλγόριθμος Kruskal Μαρία Σατρατζέμη Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΑΣΚΗΣΗ 4 Σωροί, Γράφοι
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 231: Δομές Δεδομένων και Αλγόριθμοι Εαρινό Εξάμηνο 2013 ΑΣΚΗΣΗ 4 Σωροί, Γράφοι Διδάσκων Καθηγητής: Παναγιώτης Ανδρέου Ημερομηνία Υποβολής: 05/04/2013 Ημερομηνία
Εισαγωγή στους Αλγόριθμους
Εισαγωγή στους Αλγόριθμους Εύη Παπαϊωάννου Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διαχείρισης Πολιτισμικού Περιβάλλοντος και Νέων Τεχνολογιών Σκοποί ενότητας Παρουσίαση και μελέτη αλγορίθμων
Ενότητα 5: Αλγόριθμοι γράφων και δικτύων
Εισαγωγή στην Επιστήμη των Υπολογιστών ο εξάμηνο ΣΗΜΜΥ Ενότητα : Αλγόριθμοι γράφων και δικτύων Επιμέλεια διαφανειών: Στάθης Ζάχος, Άρης Παγουρτζής, Δημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών
6η Διάλεξη Διάσχιση Γράφων και Δέντρων
ΘΕΩΡΙΑ ΓΡΑΦΩΝ 6 η Διάλεξη Διάσχιση Γράφων και Δέντρων Αλγόριθμος αναζήτησης σε Βαθος Αλγόριθμος αναζήτησης κατά Πλάτος Αλγόριθμοι για Δένδρα Εύρεση ελαχίστων Γεννητορικών (Επικαλύπτοντα) Δένδρων Διάσχιση
Ενότητα 9 Ξένα Σύνολα που υποστηρίζουν τη λειτουργία της Ένωσης (Union-Find)
Ενότητα 9 (Union-Find) ΗΥ240 - Παναγιώτα Φατούρου 1 Έστω ότι S 1,, S k είναι ξένα υποσύνολα ενός συνόλου U, δηλαδή ισχύει ότι S i S j =, για κάθε i,j µε i j και S 1 S k = U. Λειτουργίες q MakeSet(X): επιστρέφει
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Ενότητα 12: Αλγόριθμοι Γραφημάτων/Συντομότατα μονοπάτια/αλγόριθμος Bellman-Ford/Αλγόριθμος Dijkstra/Floyd-Warshall Μαρία Σατρατζέμη Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες
Εκτενείς Δομές Δεδομένων
Εκτενείς Δομές Δεδομένων Ειδικά Δυαδικά Δένδρα Δυαδικά Δένδρα Αναζήτησης Το αριστερό υποδένδρο κάθε κόμβου έχει τιμές μικρότερες από την τιμή του κόμβου. Το δεξιό υποδένδρο κάθε κόμβου έχει τιμές μεγαλύτερες
ιακριτά Μαθηµατικά και Μαθηµατική Λογική ΠΛΗ20 Ε ρ γ α σ ί α 4η Θεωρία Γραφηµάτων
ιακριτά Μαθηµατικά και Μαθηµατική Λογική ΠΛΗ20 Ε ρ γ α σ ί α 4η Θεωρία Γραφηµάτων Σκοπός της παρούσας εργασίας είναι η εξοικείωση µε τις σηµαντικότερες έννοιες και τους αλγορίθµους της Θεωρίας ένδρων.
Αλγόριθµοι Ροής σε Γράφους (CLR, κεφάλαιο 27)
Αλγόριθµοι Ροής σε Γράφους (CLR, κεφάλαιο 27) Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: ίκτυα ροής και το πρόβληµα της µέγιστης ροής Η µεθοδολογία Ford-Fulkerson Ο αλγόριθµος Edmonds-Karps ΕΠΛ 232
Διδάσκων: Κωνσταντίνος Κώστα Διαφάνειες: Δημήτρης Ζεϊναλιπούρ
ιάλεξη : λάχιστα εννητορικά ένδρα Αλγόριθμος Kruskal Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Ο αλγόριθμος του Kruskal για εύρεση σε γράφους Παράδειγμα κτέλεσης ιδάσκων: Κωνσταντίνος Κώστα
ΕΠΛ 232: Αλγόριθµοι και Πολυπλοκότητα. Κατ οίκον Εργασία 2A Σκελετοί Λύσεων
ΕΠΛ 232: λγόριθµοι και Πολυπλοκότητα Κατ οίκον Εργασία 2A Σκελετοί Λύσεων 1. ια τη σαφή διατύπωση του αλγόριθµου απαιτούνται τα εξής: ιατήρηση της ροής που κτίζεται από τον αλγόριθµο. ιατήρηση της περίσσειας
Εισαγωγή - ορολογία. Προώθηση (forwarding): Δρομολόγηση (routing):
Δρομολόγηση Ι Εισαγωγή - ορολογία Προώθηση (forwarding): Οι συσκευές διαδικτύωσης (γέφυρες, δρομολογητές, κ.τ.λ.) προωθούν πακέτα δεδομένων στα κατάλληλα μονοπάτια βάσει των πινάκων δρομολόγησης (routing
Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή
Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή raniah@hua.gr 1 Αναζήτηση Δοθέντος ενός προβλήματος με περιγραφή είτε στον χώρο καταστάσεων
Δομές Δεδομένων. Δημήτρης Μιχαήλ. Γραφήματα. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο
Δομές Δεδομένων Γραφήματα Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Γραφήματα Κατευθυνόμενο Γράφημα Ένα κατευθυνόμενο γράφημα G είναι ένα ζευγάρι (V, E) όπου V είναι ένα
Αλγόριθμοι Γραφημάτων
Αλγόριθμοι Γραφημάτων. Γραφήματα. Αναπαράσταση Γραφημάτων 3. Διερεύνηση σε Πρώτα σε Πλάτος (BFS) Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη Γράφημα Ορισμός: Ένα γράφημα G είναι το διατεταγμένο ζεύγος
Επίλυση προβλημάτων με αναζήτηση
Επίλυση προβλημάτων με αναζήτηση Περιεχόμενα Μέθοδοι (πράκτορες) επίλυσης προβλημάτων Προβλήματα και Λύσεις Προβλήματα παιχνίδια Προβλήματα του πραγματικού κόσμου Αναζήτηση λύσεων Δέντρο αναζήτησης Στρατηγικές
ΕΠΛ 231 Δοµές Δεδοµένων και Αλγόριθµοι 11-1
Γράφοι Στην ενότητα αυτή θα µελετηθούν τα εξής επιµέρους θέµατα: Γράφοι - ορισµοί και υλοποίηση Διάσχιση Γράφων Τοπολογική Ταξινόµηση ΕΠΛ 23 Δοµές Δεδοµένων και Αλγόριθµοι - Γράφοι Η πιο γενική µορφή δοµής
ΠΛΗ111. Ανοιξη 2005. Μάθηµα 10 ο. Γράφοι. Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης
ΠΛΗ111 οµηµένος Προγραµµατισµός Ανοιξη 2005 Μάθηµα 10 ο Γράφοι Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης Γράφοι Ορισµός Αφηρηµένος τύπος δεδοµένων Υλοποίηση Αναζήτηση έντρο
Αλγόριθμοι εύρεσης ελάχιστων γεννητικών δέντρων (MST)
Αλγόριθμοι εύρεσης ελάχιστων γεννητικών δέντρων (MST) Γεννητικό δέντρο (Spanning Tree) Ένα γεννητικό δέντρο για ένα γράφημα G είναι ένα υπογράφημα του G που είναι δέντρο (δηλ., είναι συνεκτικό και δεν
ΤΕΙ ΛΑΜΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑ ΥΠΟΛΟΓΙΣΤΩΝ
ÌïëëÜ Ì. Á μýô Á.Ì. : 5 moll@moll.r ΤΕΙ ΛΑΜΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑ ΥΠΟΛΟΓΙΣΤΩΝ ΜΑΘΗΜΑ : ΕΙΣΑΓΩΓΗ ΣΤΟ ΔΙΑΔΙΚΤΥΟ (ΕΡΓΑΣΤΗΡΙΟ) Ε ΕΞΑΜΗΝΟ ΕΙΣΗΓΗΤΕΣ: Χαϊδόγιαννος Χαράλαμπος ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ
ΔΙΑΣΧΙΣΗ ΓΡΑΦΗΜΑΤΩΝ 1
ΔΙΑΣΧΙΣΗ ΓΡΑΦΗΜΑΤΩΝ 1 Θέματα μελέτης Πρόβλημα αναζήτησης σε γραφήματα Αναζήτηση κατά βάθος (Depth-first search DFS) Αναζήτηση κατά πλάτος (Breadth-first search BFS) 2 Γράφημα (graph) Αναπαράσταση συνόλου
Σχεδίαση & Ανάλυση Αλγορίθμων
Σχεδίαση & Ανάλυση Αλγορίθμων Ενότητα 4.2 Διαδρομές σε Γραφήματα Σταύρος Δ. Νικολόπουλος Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Ιωαννίνων Webpage: www.cs.uoi.gr/~stavros Πρόβλημα Οδικό Δίκτυο
ΕΠΛ 231 οµές εδοµένων και Αλγόριθµοι Άννα Φιλίππου,
Γράφοι Στην ενότητα αυτή θα µελετηθούν τα εξής επιµέρους θέµατα: Γράφοι - ορισµοί και υλοποίηση Τοπολογική Ταξινόµηση ιάσχιση Γράφων ΕΠΛ 23 οµές εδοµένων και Αλγόριθµοι Άννα Φιλίππου, 26 - Γράφοι Ηπιο
Δροµολόγηση (Routing)
Δροµολόγηση (Routing) Περίληψη Flooding Η Αρχή του Βέλτιστου και Δυναµικός Προγραµµατισµός Dijkstra s Algorithm Αλγόριθµοi Δροµολόγησης Link State Distance Vector Δροµολόγηση σε Κινητά Δίκτυα Δροµολόγηση
1 Το πρόβλημα της συντομότερης διαδρομής
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΛΑΜΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΣΧΕΔΙΑΣΜΟΣ ΚΑΙ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 00 Ιστοσελίδα μαθήματος: http://eclass.teilam.gr/di88 6ο ΕΡΓΑΣΤΗΡΙΟ
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Ενότητα 10β: Αλγόριθμοι Γραφημάτων-Γραφήματα- Αναπαράσταση Γραφημάτων- Διερεύνηση Πρώτα σε Πλάτος (BFS) Μαρία Σατρατζέμη Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το
Αλγόριθµοι και Πολυπλοκότητα
Αλγόριθµοι και Πολυπλοκότητα Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Πανεπιστήµιο Αθηνών Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα 26 Ιουνίου 201 1 / Απληστοι (Greedy) Αλγόριθµοι
Δομές δεδομένων. Ενότητα 8: Ξένα Σύνολα που υποστηρίζουν τη λειτουργία της Ένωσης (Union-Find) Παναγιώτα Φατούρου Τμήμα Επιστήμης Υπολογιστών
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Δομές δεδομένων Ενότητα 8: Ξένα Σύνολα που υποστηρίζουν τη λειτουργία της Ένωσης (Union-Find) Παναγιώτα Φατούρου Τμήμα Επιστήμης Υπολογιστών Ενότητα 8 Ξένα Σύνολα
Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων ομές εδομένων
Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων 11. Γράφοι 2 ομές εδομένων 4 5 Χρήστος ουλκερίδης Τμήμα Ψηφιακών Συστημάτων 23/12/2016 Εισαγωγή Οι γράφοι
Αλγόριθμοι Eλάχιστα μονοπάτια
Αλγόριθμοι Eλάχιστα μονοπάτια Μάρθα Σιδέρη Προτεινόμενη βιβλιογραφία: S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani «Αλγόριθμοι» Κλειδάριθμος 009 Κεφάλαιο. http://www.cs.berkeley.edu/~vazirani/algorithms/chap.pdf
HY380 Αλγόριθμοι και πολυπλοκότητα Hard Problems
HY380 Αλγόριθμοι και πολυπλοκότητα Hard Problems Ημερομηνία Παράδοσης: 0/1/017 την ώρα του μαθήματος ή με email: mkarabin@csd.uoc.gr Γενικές Οδηγίες α) Επιτρέπεται η αναζήτηση στο Internet και στην βιβλιοθήκη
Αλγόριθµοι και Πολυπλοκότητα
Αλγόριθµοι και Πολυπλοκότητα Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Πανεπιστήµιο Αθηνών Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα Μαΐου 201 1 / Απληστοι (Greedy) Αλγόριθµοι
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ EPL035: ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΑΛΓΟΡΙΘΜΟΙ
ΠΝΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜ ΠΛΗΡΟΦΟΡΙΚΗΣ EPL035: ΔΟΜΣ ΔΔΟΜΝΩΝ ΚΙ ΛΓΟΡΙΘΜΟΙ ΗΜΡΟΜΗΝΙ: 14/11/2018 ΔΙΓΝΩΣΤΙΚΟ ΠΝΩ Σ ΔΝΔΡΙΚΣ ΔΟΜΣ ΚΙ ΓΡΦΟΥΣ Διάρκεια: 45 λεπτά Ονοματεπώνυμο:. ρ. Ταυτότητας:. ΒΘΜΟΛΟΓΙ ΣΚΗΣΗ ΒΘΜΟΣ
Αλγόριθμοι για Ασύρματα Δίκτυα. Θεωρία Γραφημάτων
Αλγόριθμοι για Ασύρματα Δίκτυα Θεωρία Γραφημάτων Ασύρματα Δίκτυα Ιδιότητες Χρησιμότητα Προκλήσεις Τεχνικές για την αντιμετώπιση των προκλήσεων αυτών Ασύρματες συσκευές υπάρχουν παντού γύρω μας Τι συμβαίνει
Θεωρία Υπολογισμού και Πολυπλοκότητα Μαθηματικό Υπόβαθρο
Θεωρία Υπολογισμού και Πολυπλοκότητα Μαθηματικό Υπόβαθρο Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Σύνολα Συναρτήσεις και Σχέσεις Γραφήματα Λέξεις και Γλώσσες Αποδείξεις ΕΠΛ 211 Θεωρία
Ελαφρύτατες διαδρομές
Ελαφρύτατες διαδρομές Ελαφρύτατες διαδρομές Κατευθυνόμενο γράφημα Συνάρτηση βάρους Ελαφρύτατη διαδρομή από το u στο v : διαδρομή με και ελάχιστο βάρος s 3 t 7 x 5 3 y z Βάρος ελαφρύτατης διαδρομής εάν
Μάθημα 21: Ουρές (Queues)
Queues Page 1 Μάθημα 21: Ουρές (Queues) Η ουρά (queue) είναι μια δομή δεδομένων. Η βασική λειτουργικότητα είναι η εισαγωγή στοιχείων στην πίσω θέση και η εξαγωγή-διαγραφή στοιχείων από την μπροστινή θέση.
Αλγόριθμοι Δρομολόγησης. Γ. Κορμέντζας
Αλγόριθμοι Δρομολόγησης Γ. Κορμέντζας Δρομολόγηση Περιεχόμενα Διαδικασίες δρομολόγησης Ροές Δικτύων - Αλγόριθμος Ford-Fulkerson Βασικοί Αλγόριθμοι Γράφων Σχεδιασμός γραμμών πολλαπλών σημείων Ελάχιστα δέντρα
Αλγόριθμοι και πολυπλοκότητα Depth-First Search
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Αλγόριθμοι και πολυπλοκότητα Depth-First Search Ιωάννης Τόλλης Τμήμα Επιστήμης Υπολογιστών Depth-First Search A B D E C Depth-First Search 1 Outline and Reading
Αλγόριθμοι και Πολυπλοκότητα
Αλγόριθμοι και Πολυπλοκότητα Ροή Δικτύου Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Μοντελοποίηση Δικτύων Μεταφοράς Τα γραφήματα χρησιμοποιούνται συχνά για την μοντελοποίηση
Επιχειρησιακή Έρευνα I
Επιχειρησιακή Έρευνα I Operations/Operational Research (OR) Κωστής Μαμάσης Παρασκευή 9: : Σημειώσεις των Α. Platis, K. Mamasis Περιεχόμενα EE & Εισαγωγή Μαθηματικός Προγραμματισμός - Γραμμικός Προγραμματισμός
Ενότητα 10 Γράφοι (ή Γραφήµατα)
Ενότητα 10 Γράφοι (ή γραφήµατα) ΗΥ240 - Παναγιώτα Φατούρου 1 Γράφοι (ή Γραφήµατα) Ένας γράφος αποτελείται από ένα σύνολο από σηµεία (που λέγονται κόµβοι) και ένα σύνολο από γραµµές (που λέγονται ακµές)
Εισαγωγή στη Θεωρία Γράφων
Πανεπιστήμιο Στερεάς Ελλάδας Τμήμα Πληροφορικής Εξάμηνο ΣΤ ΘΕΩΡΙΑ ΓΡΑΦΩΝ Εισαγωγή στη Θεωρία Γράφων Υλικό βασισμένο στις εξής πηγές: Βιβλίο «Μαθήματα Θεωρίας Γράφων», Γιάννη Μανωλόπουλου, Εκδόσεις Νέων
Διδάσκων: Κωνσταντίνος Κώστα
Διάλεξη Ε4: Επανάληψη Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Εισαγωγή σε δενδρικές δομές δεδομένων, Δυαδικά Δένδρα Αναζήτησης Ισοζυγισμένα Δένδρα & 2-3 Δένδρα Διδάσκων: Κωνσταντίνος
Τεχνητή Νοημοσύνη. 2η διάλεξη (2015-16) Ίων Ανδρουτσόπουλος. http://www.aueb.gr/users/ion/
Τεχνητή Νοημοσύνη 2η διάλεξη (2015-16) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται στα βιβλία: Τεχνητή Νοημοσύνη των Βλαχάβα κ.ά., 3η έκδοση, Β. Γκιούρδας
Τεχνητή Νοημοσύνη. 4η διάλεξη ( ) Ίων Ανδρουτσόπουλος.
Τεχνητή Νοημοσύνη 4η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται κυρίως στα βιβλία Τεχνητή Νοημοσύνη των Βλαχάβα κ.ά., 3η έκδοση, Β.
ΔΙΚΤΥΑ Η/Υ ΙΙ. Αρχές δρομολόγησης
ΔΙΚΤΥΑ Η/Υ ΙΙ Αρχές δρομολόγησης Γενικά Δρομολόγηση και κριτήριο ελάχιστου κόστους (least-cost criterion) ο αριθμός των αλμάτων (hops), η χωρητικότητα των ζεύξεων, ο τηλεπικοινωνιακός φόρτος των ζεύξεων
Θεωρία Γράφων - Εισαγωγή
Θεωρία Γράφων - Εισαγωγή Τοπολογιές απειονίσεις Τοπολογία Κλάδος των μαθηματιών που μελετά ανάμεσα σε άλλα τις ιδιότητες εείνες των γεωμετριών σχημάτων οι οποίες παραμένουν αναλλοίωτες ατά τις τοπολογιές
Εκτενείς Δομές Δεδομένων
Εκτενείς Δομές Δεδομένων Εισαγωγή Δομές που βασίζονται σε συγκρίσεις : Ισοζυγισμένα δέντρα εύρεσης ( δέντρα τα φύλλα των οποίων απέχουν της ίδιας τάξεως μεγέθους, απόσταση απο τη ρίζα) Υψοζυγισμένα δέντρα
ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ Δρομολόγηση στο Internet (II) Αλγόριθμοι Distance Vector (Bellman) Αλγόριθμοι Link State (Dijkstra)
ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ Δρομολόγηση στο Internet (II) Αλγόριθμοι Distance Vector (Bellman) Αλγόριθμοι Link State (Dijkstra) Β. Μάγκλαρης maglaris@netmode.ntua.gr www.netmode.ntua.gr 2/11/2015 Άδεια Χρήσης Το
Το Πρόβλημα του Περιοδεύοντος Πωλητή - The Travelling Salesman Problem
Το Πρόβλημα του Περιοδεύοντος Πωλητή - The Travelling Salesman Problem Έλενα Ρόκου Μεταδιδακτορική Ερευνήτρια ΕΜΠ Κηρυττόπουλος Κωνσταντίνος Επ. Καθηγητής ΕΜΠ Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Θεωρία Γραφημάτων Θεμελιώσεις-Αλγόριθμοι-Εφαρμογές
Θεωρία Γραφημάτων Θεμελιώσεις-Αλγόριθμοι-Εφαρμογές Ενότητα ΔΕΝΔΡΑ Σταύρος Δ. Νικολόπουλος 2017-18 www.cs.uoi.gr/~stavros Εισαγωγή Ένα γράφημα G είναι δένδρο αν: 1. Είναι συνδεδεμένο και δεν έχει κύκλους.
Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 2: Εφαρμογές Δικτυωτής Ανάλυσης (1 ο Μέρος)
Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 2: Εφαρμογές Δικτυωτής Ανάλυσης (1 ο Μέρος) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων