Διδάσκων: Κωνσταντίνος Κώστα Διαφάνειες: Δημήτρης Ζεϊναλιπούρ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Διδάσκων: Κωνσταντίνος Κώστα Διαφάνειες: Δημήτρης Ζεϊναλιπούρ"

Transcript

1 ιάλεξη : λάχιστα εννητορικά ένδρα Αλγόριθμος Kruskal Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Ο αλγόριθμος του Kruskal για εύρεση σε γράφους Παράδειγμα κτέλεσης ιδάσκων: Κωνσταντίνος Κώστα ιαφάνειες: ημήτρης εϊναλιπούρ ΠΛ 35 ομές εδομένων και Αλγόριθμοι για Ηλ. Μηχ. και Μηχ. Υπολ. -

2 Ο αλγόριθμος του Kruskal Ακόμα ένας άπληστος (greedy) αλγόριθμος που υπολογίζει το λάχιστο εννητορικό ένδρο (). νώ ο αλγόριθμος του Prim επεξεργάζεται μια-μια τις κορυφές, ο αλγόριθμος του Kruskal επεξεργάζεται μια-μια τις ακμές του γράφου. πίσης, ενώ σε κάθε βήμα του αλγόριθμου του Prim οι επιλεγμένες ακμές σχηματίζουν ένα δένδρο, στην περίπτωση του αλγόριθμου Kruskal, σχηματίζουν ένα δάσος (ένα σύνολο από δένδρα). Κεντρική ιδέα. Αρχικά το δάσος Τ είναι άδειο. πεξεργαζόμαστε μια-μια τις ακμές, σε αύξουσα σειρά βάρους. ν η εισαγωγή της e στο Τ δεν προκαλεί κύκλο, τότε προσθέτουμε την e στο Τ, δηλαδή Τ := Τ {e}. ΠΛ 35 ομές εδομένων και Αλγόριθμοι για Ηλ. Μηχ. και Μηχ. Υπολ. -

3 Παράδειγμα κτέλεσης Αρχική Κατάσταση ράφος G Μετά από επιλογή της πρώτης ακμής (Β,) 6 Β Β -E = - = Β- = - = Β- = 5 - = 6 Α-Β = 7 Α- = ΠΛ 35 ομές εδομένων και Αλγόριθμοι για Ηλ. Μηχ. και Μηχ. Υπολ. -3

4 Παράδειγμα κτέλεσης Μετά από επιλογή της δεύτερης ακμής (,) Μετά από επιλογή της τρίτης ακμής (Β,) 6 -E = - = Β- = - = Β- = 5 - = 6 Α-Β = 7 ΠΛ 35 ομές εδομένων και Αλγόριθμοι για Ηλ. Μηχ. και Μηχ. Υπολ. Α- = -4

5 Παράδειγμα κτέλεσης Μετά από επιλογή της τέταρτης ακμής (Β,) Μετά από επιλογή της πέμπτης ακμής (Α,Β) ράφος G 6 -E = - = Β- = - = Β- = 5 - = 6 Α-Β = 7 Α- = (Κύκλος) (Κύκλος) Τέλος -5

6 Αποδοτική ξάλειψη Κύκλων H ταξινόμηση των Άκμων είναι απλή, δηλαδή ταξινομούμε μια φορά όλες τις ακμές με κάποιο αλγόριθμο ταξινόμησης. Βασικό Πρόβλημα: Το πρόβλημα που απομένει είναι πως θα βρίσκουμε αποδοτικά εάν μια ακμή μπορεί να δημιουργήσει κύκλο Λύση Θα χρησιμοποιήσουμε ένα πίνακα [n] (TreeID) ο οποίος μας υποδεικνύει για κάθε κορυφή v σε πιο δένδρο ανήκει η v. Π.χ. εάν θέλω να προσθέσω μια ακμή (u,v) και u & v ανήκουν στο ίδιο δένδρο ([u]==τid[v]), τότε αυτή η ακμή θα δημιουργήσει κύκλο. πομένως δε θα προσθέσω την (u,v) u v To (u,v) θα δημιουργήσει κύκλο γιατί και τα δυο ανήκουν στο ίδιο (i.e., ) To (u,w) δεν θα δημιουργήσει κύκλο γιατί οι δυο κόμβο ανήκουν σε διαφορετικά ΤΙD (i.e., και ) w -6

7 Υλοποίηση του Αλγορίθμου Kruskal Kruskal(graph G(V,E)){ Tree = {}; // Το : Ένα σύνολο ακμών (αρχικά κενό) [ V ] = {} // Πίνακας που κρατά το TreeID του κάθε κόμβου Count = ; // Μετρητής που κρατά από πόσες κορυφές πέρασα sortedges(e); // Ταξινόμηση Άκμων σε χρόνο O( E.log E ) // ημιουργούμε ένα δάσος από δένδρα μεγέθους for (i=; i< V ; i++) // χρόνο Θ( V ) [i] = i; for (i=; i< E ; i++) { // χρόνο O( E ) // ανάκτηση επόμενης (μικρότερης) ακμής (u,v) = nextedge(); // χρόνο Θ() If ([u]!= [v]) { Tree = Tree {(u,v)}; // Αν ανήκουν σε διαφορετικά δένδρα // Προσθήκη Ακμής } } // Μετρούμε ποιος από τους u,v εμφανίζεται περισσότερο στο // και επιστρέφουμε τον μεγαλύτερο σαν TreeID x x = occurence(, u, v); // χρόνο O( V ) // Ανάθεση TreeID x σε όλους που έχουν [u] ή [v] count = merge([u],[v],x); } if (count == V ) break; Συνολικός χρόνος: O( E.log E + V + E * V ) -7 V

8 κτέλεση της Υλοποίησης Kruskal { -E =, - =, Β- =, - =, Β- = 5, - = 6, Α-Β = 7, Α- = }. Nextedge => (,E). []!= [E]? => YES, πομένως Tree = {} {(Β,)}; 3. Merge([],[E],); Nextedge => (,) 5. []!= [E]? => YES, πομένως Tree={(Β,)} {(,)}; 6. Merge([],[E],); 5 ΠΛ 35 ομές εδομένων και Αλγόριθμοι για Ηλ. Μηχ. και Μηχ. Υπολ. -8

9 κτέλεση της Υλοποίησης Kruskal 6 5 { -E =, - =, Β- =, - =, Β- = 5, - = 6, Α-Β = 7, Α- = } 7. Nextedge => (,) 8. []!= []? => YES,πομένως Tree = {(Β,),(,)} {(Β,)};. Merge([],[],);. Nextedge => (,). []!= []? => ΝΟ, πομένως δεν χρησιμοποιούμε το (,); ΠΛ 35 ομές εδομένων και Αλγόριθμοι για Ηλ. Μηχ. και Μηχ. Υπολ. -

10 κτέλεση της Υλοποίησης Kruskal 6 { -E =, - =, Β- =, - =, Β- = 5, - = 6, Α-Β = 7, Α- = }. Nextedge => (,) 3. []!=[]? => YES,πομένως Tree = {(Β,),(,), (Β,)} {(Β,)}; 4. Merge([],[],); 5. Nextedge => (,) 6. []!= []? => ΝΟ, πομένως δεν χρησιμοποιούμε το (,); 7. Nextedge => (Α,Β) 8. [Α]!= [Β]? => YES, πομένως Tree = {(Β,),(,), (Β,), (Β,)} {(Α,Β)}; δώ βρήκαμε V vertices, επομένως διακόπτουμε την αναζήτηση. TO είναι το Τree = {(Β,),(,), (Β,), (Β,),(Α,Β)}; ΠΛ 35 ομές εδομένων και Αλγόριθμοι για Ηλ. Μηχ. και Μηχ. Υπολ. -

Διδάσκων: Παναγιώτης Ανδρέου

Διδάσκων: Παναγιώτης Ανδρέου Διάλεξη 3: Ελάχιστα Γεννητορικά Δέντρα Ο λγόριθμος Kruskal Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: -Ο αλγόριθμος του Kruskalγια εύρεση ΕΓΔ σε γράφους - Παράδειγμα Εκτέλεσης Διδάσκων:

Διαβάστε περισσότερα

Διδάσκων: Κωνσταντίνος Κώστα Διαφάνειες: Δημήτρης Ζεϊναλιπούρ

Διδάσκων: Κωνσταντίνος Κώστα Διαφάνειες: Δημήτρης Ζεϊναλιπούρ ιάλεξη : λάχιστα εννητορικά ένδρα Αλγόριθμος Prim Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: λάχιστα εννητορικά ένδρα () Minimum Spanning Trees Ο αλγόριθμος του Prim για εύρεση σε γράφους

Διαβάστε περισσότερα

ηδάζθσλ: εµήηξεο Εετλαιηπνύξ

ηδάζθσλ: εµήηξεο Εετλαιηπνύξ ηάιεμε 4: ιάρηζηα ελλεηνξηθά έλδξα Αιγόξηζκνο Kruskal Σηελ ελόηεηα απηή ζα κειεηεζνύλ ηα εμήο επηκέξνπο ζέκαηα: Ο αλγόριθμος ηοσ Kruskal για εύρεζη ζε γράθοσς Παράδειγμα κηέλεζης ηδάζθσλ: εµήηξεο ετλαιηπνύξ

Διαβάστε περισσότερα

Ελάχιστα Γεννητορικά ένδρα

Ελάχιστα Γεννητορικά ένδρα λάχιστα Γεννητορικά ένδρα Στην ενότητα αυτή θα µελετηθούν τα εξής επιµέρους θέµατα: Ο αλγόριθµος του Prim και ο αλγόριθµος του Kruskal για εύρεση λάχιστων Γεννητορικών ένδρων ΠΛ 23 οµές εδοµένων και Αλγόριθµοι

Διαβάστε περισσότερα

Διδάσκων: Κωνσταντίνος Κώστα Διαφάνειες: Δημήτρης Ζεϊναλιπούρ

Διδάσκων: Κωνσταντίνος Κώστα Διαφάνειες: Δημήτρης Ζεϊναλιπούρ Διάλεξη 23: Βραχύτερα Μονοπάτια σε Γράφους Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Βραχύτερα Μονοπάτια σε γράφους Ο αλγόριθμος Dijkstra για εύρεση της βραχύτερης απόστασης Ο αλγόριθμος

Διαβάστε περισσότερα

Διδάσκων: Παναγιώτης Ανδρέου

Διδάσκων: Παναγιώτης Ανδρέου Διάλεξη 3: Βραχύτερα Μονοπάτια σε Γράφους Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Βραχύτερα Μονοπάτια σε γράφους -Ο αλγόριθμος ijkstraγια εύρεση της βραχύτερης απόστασης -Ο αλγόριθμος

Διαβάστε περισσότερα

Διδάσκων: Παναγιώτης Ανδρέου

Διδάσκων: Παναγιώτης Ανδρέου Διάλεξη 0: ΓράφοιIII -Ελάχιστα Γεννητορικά Δέντρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Ελάχιστα Γεννητορικά Δένδρα (ΕΓΔ) Minimum Spanning Trees -Ο αλγόριθμος του Primγια εύρεση ΕΓΔ

Διαβάστε περισσότερα

Διδάσκων: Παναγιώτης Ανδρέου

Διδάσκων: Παναγιώτης Ανδρέου Διάλεξη 3: Ελάχιστα Γεννητορικά Δέντρα Ο λγόριθμος Prim Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Ελάχιστα Γεννητορικά Δένδρα (ΕΓΔ) Minimum Spanning Trees -Ο αλγόριθμος του Primγια εύρεση

Διαβάστε περισσότερα

Ελάχιστο Γεννητικό Δένδρο. Παράδειγμα - Αλγόριθμος Prim. Γιατί δουλεύουν αυτοί οι αλγόριθμοι;

Ελάχιστο Γεννητικό Δένδρο. Παράδειγμα - Αλγόριθμος Prim. Γιατί δουλεύουν αυτοί οι αλγόριθμοι; Άπληστοι Αλγόριθμοι ΙΙI Αλγόριθμοι γραφημάτων Ελάχιστο Γεννητικό Δένδρο Παράδειγμα Κατασκευή δικτύων Οδικά, επικοινωνίας Έχουμε ένα συνεκτικό γράφημα (V,E) και ένας βάρος we σε κάθε ακμή e. Να βρεθεί υποσύνολο

Διαβάστε περισσότερα

Διάλεξη 22: Δυαδικά Δέντρα. Διδάσκων: Παναγιώτης Ανδρέου

Διάλεξη 22: Δυαδικά Δέντρα. Διδάσκων: Παναγιώτης Ανδρέου Διάλεξη 22: Δυαδικά Δέντρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Δυαδικά Δένδρα - Δυαδικά Δένδρα Αναζήτησης - Πράξεις Εισαγωγής, Εύρεσης Στοιχείου, Διαγραφής Μικρότερου Στοιχείου

Διαβάστε περισσότερα

Δένδρα επικάλ επικ υψης ελάχιστου στους

Δένδρα επικάλ επικ υψης ελάχιστου στους Δένδρα επικάλυψης ελάχιστου κόστους Αλγόριθμος Kruskal Αλγόριθμος Kruskal Ξεκινάμε από ένα δάσος από n δένδρα, κάθε ένα δένδρο εκφυλισμένο σε ένα μεμονωμένο κόμβο. Σε κάθε επανάληψη, προσθέτουμε τη πλευρά

Διαβάστε περισσότερα

Αλγόριθµοι και Πολυπλοκότητα

Αλγόριθµοι και Πολυπλοκότητα Αλγόριθµοι και Πολυπλοκότητα Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Πανεπιστήµιο Αθηνών Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα 26 Ιουνίου 201 1 / Απληστοι (Greedy) Αλγόριθµοι

Διαβάστε περισσότερα

Αλγόριθµοι και Πολυπλοκότητα

Αλγόριθµοι και Πολυπλοκότητα Αλγόριθµοι και Πολυπλοκότητα Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Πανεπιστήµιο Αθηνών Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα Μαΐου 201 1 / Απληστοι (Greedy) Αλγόριθµοι

Διαβάστε περισσότερα

Αλγόριθμοι εύρεσης ελάχιστων γεννητικών δέντρων (MST)

Αλγόριθμοι εύρεσης ελάχιστων γεννητικών δέντρων (MST) Αλγόριθμοι εύρεσης ελάχιστων γεννητικών δέντρων (MST) Γεννητικό δέντρο (Spanning Tree) Ένα γεννητικό δέντρο για ένα γράφημα G είναι ένα υπογράφημα του G που είναι δέντρο (δηλ., είναι συνεκτικό και δεν

Διαβάστε περισσότερα

Διδάσκων: Κωνσταντίνος Κώστα

Διδάσκων: Κωνσταντίνος Κώστα Διάλεξη Ε4: Επανάληψη Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Εισαγωγή σε δενδρικές δομές δεδομένων, Δυαδικά Δένδρα Αναζήτησης Ισοζυγισμένα Δένδρα & 2-3 Δένδρα Διδάσκων: Κωνσταντίνος

Διαβάστε περισσότερα

Αλγόριθμοι και Πολυπλοκότητα

Αλγόριθμοι και Πολυπλοκότητα 7ο εξάμηνο Σ.Η.Μ.Μ.Υ. & Σ.Ε.Μ.Φ.Ε. http://www.corelab.ece.ntua.gr/courses/ 4η εβδομάδα: Εύρεση k-οστού Μικρότερου Στοιχείου, Master Theorem, Τεχνική Greedy: Knapsack, Minimum Spanning Tree, Shortest Paths

Διαβάστε περισσότερα

Διάλεξη 21: Γράφοι IV - Βραχύτερα Μονοπάτια σε Γράφους

Διάλεξη 21: Γράφοι IV - Βραχύτερα Μονοπάτια σε Γράφους Διάλεξη 2: Γράφοι IV - Βραχύτερα Μονοπάτια σε Γράφους Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Βραχύτερα Μονοπάτια σε γράφους - Ο αλγόριθμος Dijkstra για εύρεση της βραχύτερης απόστασης

Διαβάστε περισσότερα

Διδάσκων: Κωνσταντίνος Κώστα Διαφάνειες: Δημήτρης Ζεϊναλιπούρ

Διδάσκων: Κωνσταντίνος Κώστα Διαφάνειες: Δημήτρης Ζεϊναλιπούρ Διάλεξη 20: Τοπολογική Ταξινόμηση Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Ολοκλήρωση Αλγορίθμων Διάσχισης Γράφων (Από Διάλεξη 19) Τοπολογική Ταξινόμηση Εφαρμογές, Παραδείγματα, Αλγόριθμοι

Διαβάστε περισσότερα

Θεωρία και Αλγόριθμοι Γράφων

Θεωρία και Αλγόριθμοι Γράφων ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα # 7: Ελάχιστα Ζευγνύοντα Δένδρα Ιωάννης Μανωλόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης reative

Διαβάστε περισσότερα

έντρα ιδάσκοντες:. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο

έντρα ιδάσκοντες:. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο έντρα ιδάσκοντες:. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο έντρα έντρο: πρότυπο ιεραρχικής δομής. Αναπαράσταση

Διαβάστε περισσότερα

Λυσεις προβλημάτων τελικής φάσης Παγκύπριου Μαθητικού Διαγωνισμού Πληροφορικής 2007

Λυσεις προβλημάτων τελικής φάσης Παγκύπριου Μαθητικού Διαγωνισμού Πληροφορικής 2007 Λυσεις προβλημάτων τελικής φάσης Παγκύπριου Μαθητικού Διαγωνισμού Πληροφορικής 2007 Πρόβλημα 1 Το πρώτο πρόβλημα λύνεται με τη μέθοδο του Δυναμικού Προγραμματισμού. Για να το λύσουμε με Δυναμικό Προγραμματισμό

Διαβάστε περισσότερα

Ειδικά θέματα Αλγορίθμων και Δομών Δεδομένων (ΠΛΕ073) Απαντήσεις 1 ου Σετ Ασκήσεων

Ειδικά θέματα Αλγορίθμων και Δομών Δεδομένων (ΠΛΕ073) Απαντήσεις 1 ου Σετ Ασκήσεων Ειδικά θέματα Αλγορίθμων και Δομών Δεδομένων (ΠΛΕ073) Απαντήσεις 1 ου Σετ Ασκήσεων Άσκηση 1 α) Η δομή σταθμισμένης ένωσης με συμπίεση διαδρομής μπορεί να τροποποιηθεί πολύ εύκολα ώστε να υποστηρίζει τις

Διαβάστε περισσότερα

ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών έντρα ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο έντρα έντρο: πρότυπο ιεραρχικής δομής.

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Ενότητα 11: Minimum Spanning Trees Αλγόριθμος Prim Αλγόριθμος Kruskal Μαρία Σατρατζέμη Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Εισαγωγή στους Αλγορίθμους Φροντιστήριο 8

Εισαγωγή στους Αλγορίθμους Φροντιστήριο 8 Εισαγωγή στους Αλγορίθμους Φροντιστήριο 8 Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Αλγόριθμοι Γραφημάτων

Αλγόριθμοι Γραφημάτων Αλγόριθμοι Γραφημάτων 1. Minimum Spanning Trees 2. Αλγόριθμος Prim 3. Αλγόριθμος Kruskal Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη Minimum Spanning Tree Πρόβλημα: Για δοσμένο συνεκτικό, μη προσανατολισμένο,

Διαβάστε περισσότερα

Εισαγωγή στους Αλγορίθμους Ενότητα 9η

Εισαγωγή στους Αλγορίθμους Ενότητα 9η Εισαγωγή στους Αλγορίθμους Ενότητα 9η Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Ελάχιστα Γεννητικά Δένδρα Ελάχιστο Γεννητικό

Διαβάστε περισσότερα

Διάλεξη 18: B-Δένδρα

Διάλεξη 18: B-Δένδρα Διάλεξη 18: B-Δένδρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Εισαγωγή & Ισοζυγισμένα Δένδρα 2-3 Δένδρα, Περιγραφή Πράξεων της Εισαγωγής και άλλες πράξεις Β-δένδρα Διδάσκων: Κωνσταντίνος

Διαβάστε περισσότερα

Εισαγωγή στην Επιστήμη των Υπολογιστών

Εισαγωγή στην Επιστήμη των Υπολογιστών Εισαγωγή στην Επιστήμη των Υπολογιστών 4 ο εξάμηνο ΣΗΜΜΥ 4 η ενότητα: Γράφοι: προβλήματα και αλγόριθμοι Επιμέλεια διαφανειών: Στάθης Ζάχος, Άρης Παγουρτζής, Δημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών

Διαβάστε περισσότερα

Επίλυση Προβληµάτων µε Greedy Αλγόριθµους

Επίλυση Προβληµάτων µε Greedy Αλγόριθµους Επίλυση Προβληµάτων µε Greedy Αλγόριθµους Περίληψη Επίλυση προβληµάτων χρησιµοποιώντας Greedy Αλγόριθµους Ελάχιστα Δέντρα Επικάλυψης Αλγόριθµος του Prim Αλγόριθµος του Kruskal Πρόβληµα Ελάχιστης Απόστασης

Διαβάστε περισσότερα

Εισαγωγή στην Επιστήμη των Υπολογιστών

Εισαγωγή στην Επιστήμη των Υπολογιστών Εισαγωγή στην Επιστήμη των Υπολογιστών 4 ο εξάμηνο ΣΗΜΜΥ 5 η ενότητα: Γράφοι: προβλήματα και αλγόριθμοι Επιμέλεια διαφανειών: Στάθης Ζάχος, Άρης Παγουρτζής, Δημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών

Διαβάστε περισσότερα

Εργαστήριο 2: Πίνακες

Εργαστήριο 2: Πίνακες Εργαστήριο 2: Πίνακες Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Επεξεργασία Πινάκων - Υλοποίηση της Δυαδικής Αναζήτησης σε πίνακες - Υλοποίηση της Ταξινόμησης με Επιλογής σε πίνακες ΕΠΛ035

Διαβάστε περισσότερα

Πρόβλημα του ελάχιστα εκτεταμένου δένδρου - Minimum spanning tree. Κηρυττόπουλος Κωνσταντίνος Επ. Καθηγητής ΕΜΠ

Πρόβλημα του ελάχιστα εκτεταμένου δένδρου - Minimum spanning tree. Κηρυττόπουλος Κωνσταντίνος Επ. Καθηγητής ΕΜΠ Πρόβλημα του ελάχιστα εκτεταμένου δένδρου - Minimum spanning tree Κηρυττόπουλος Κωνσταντίνος π. Καθηγητής ΜΠ Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. ια εκπαιδευτικό

Διαβάστε περισσότερα

Αλγόριθµοι και Πολυπλοκότητα

Αλγόριθµοι και Πολυπλοκότητα Αλγόριθµοι και Πολυπλοκότητα Ενότητα 3 Αλγόριθµοι Γραφηµάτων Prim-Kruskal Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Καθηγητής: Ν. Μ. Μισυρλής Αλγόριθµοι και Πολυπλοκότητα - Ενότητα 3 Prim-Kruskal

Διαβάστε περισσότερα

Σχεδιαση Αλγοριθμων -Τμημα Πληροφορικης ΑΠΘ - Κεφαλαιο 9ο

Σχεδιαση Αλγοριθμων -Τμημα Πληροφορικης ΑΠΘ - Κεφαλαιο 9ο Σχεδίαση Αλγορίθμων Άπληστοι Αλγόριθμοι http://delab.csd.auth.gr/~gounaris/courses/ad 1 Άπληστοι αλγόριθμοι Προβλήματα βελτιστοποίησης ηςλύνονται με μια σειρά επιλογών που είναι: εφικτές τοπικά βέλτιστες

Διαβάστε περισσότερα

Στοιχεία Θεωρίας Γράφων (Graph Theory)

Στοιχεία Θεωρίας Γράφων (Graph Theory) Στοιχεία Θεωρίας Γράφων (Graph Theory) Ε Εξάμηνο, Τμήμα Πληροφορικής & Τεχνολογίας Υπολογιστών ΤΕΙ Λαμίας plam@inf.teilam.gr, Οι διαφάνειες βασίζονται στα βιβλία:. Αλγόριθμοι, Σχεδιασμός & Ανάλυση, η έκδοση,

Διαβάστε περισσότερα

Διδάσκων: Κωνσταντίνος Κώστα Διαφάνειες: Δημήτρης Ζεϊναλιπούρ

Διδάσκων: Κωνσταντίνος Κώστα Διαφάνειες: Δημήτρης Ζεϊναλιπούρ Διάλεξη 9: Εισαγωγή στους Γράφους Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Γράφοι - ορισμοί και υλοποίηση Διάσχιση Γράφων Διδάσκων: Κωνσταντίνος Κώστα Διαφάνειες: Δημήτρης Ζεϊναλιπούρ

Διαβάστε περισσότερα

ΗΥ360 Αρχεία και Βάσεις εδοµένων

ΗΥ360 Αρχεία και Βάσεις εδοµένων ΗΥ360 Αρχεία και Βάσεις εδοµένων ιδάσκων:. Πλεξουσάκης Tutorial B-Trees, B+Trees Μπαριτάκης Παύλος 2018-2019 Ιδιότητες B-trees Χρήση για μείωση των προσπελάσεων στον δίσκο Επέκταση των Binary Search Trees

Διαβάστε περισσότερα

Κατ οίκον Εργασία 5 Σκελετοί Λύσεων

Κατ οίκον Εργασία 5 Σκελετοί Λύσεων Κατ οίκον Εργασία 5 Σκελετοί Λύσεων Άσκηση 1 Χρησιμοποιούμε τις δομές: struct hashtable { struct node array[maxsize]; int maxsize; int size; struct node{ int data; int status; Στο πεδίο status σημειώνουμε

Διαβάστε περισσότερα

Δένδρα επικάλυψης ελάχιστου κόστους και το πρόβλημα του πλανόδιου πωλητή (Traveling Salesman Problem: TSP)

Δένδρα επικάλυψης ελάχιστου κόστους και το πρόβλημα του πλανόδιου πωλητή (Traveling Salesman Problem: TSP) Δένδρα επικάλυψης ελάχιστου κόστους και το πρόβλημα του πλανόδιου πωλητή (Traveling Salesman Problem: TSP) Αλγόριθμος Prim Ξεκινάμε από ένα δένδρο Τ αποτελούμενο από ένα μόνο κόμβο. Στη συνέχεια, σε κάθε

Διαβάστε περισσότερα

Διδάσκων: Κωνσταντίνος Κώστα Διαφάνειες: Δημήτρης Ζεϊναλιπούρ

Διδάσκων: Κωνσταντίνος Κώστα Διαφάνειες: Δημήτρης Ζεϊναλιπούρ Διάλεξη 14: Αλγόριθμοι Ταξινόμησης Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Οι αλγόριθμοι ταξινόμησης 3) Mergesort Ταξινόμηση με Συγχώνευση 4) BucketSort Ταξινόμηση με Κάδους Διδάσκων:

Διαβάστε περισσότερα

Εισαγωγή στους Αλγορίθμους Φροντιστήριο 5

Εισαγωγή στους Αλγορίθμους Φροντιστήριο 5 Εισαγωγή στους Αλγορίθμους Φροντιστήριο 5 Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ 1 ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ Φροντιστήριο #2: Πολυωνυμικοί Αλγόριθμοι, Εισαγωγή στα Γραφήματα, Αναζήτηση κατά Βάθος, Τοπολογική Ταξινόμηση

Διαβάστε περισσότερα

ΘΕΜΑ 1: Αλγόριθμος Ford-Fulkerson

ΘΕΜΑ 1: Αλγόριθμος Ford-Fulkerson ΘΕΜΑ : Αλγόριθμος Ford-Fulkerson Α Να εξετάσετε αν ισχύει η συνθήκη συντήρησης της αρχικής ροής στο δίκτυο. Β Με χρήση του αλγορίθμου Ford-Fulkerson να βρεθεί η μέγιστη ροή που μπορεί να σταλεί από τον

Διαβάστε περισσότερα

Προσεγγιστικοί Αλγόριθμοι

Προσεγγιστικοί Αλγόριθμοι Πολλά NP-πλήρη προβλήματα έχουν μεγάλο πρακτικό ενδιαφέρον. http://xkcd.com/287/ Πολλά NP-πλήρη προβλήματα έχουν μεγάλο πρακτικό ενδιαφέρον. Πως μπορούμε να αντιμετωπίσουμε το γεγονός ότι είναι απίθανη(;)

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ Φροντιστήριο #: Εύρεση Ελαχίστων Μονοπατιών σε Γραφήματα που Περιλαμβάνουν και Αρνητικά Βάρη: Αλγόριθμος

Διαβάστε περισσότερα

Διδάσκων: Κωνσταντίνος Κώστα Διαφάνειες: Δημήτρης Ζεϊναλιπούρ ΕΠΛ 035 Δομές Δεδομένων και Αλγόριθμοι για Ηλ. Μηχ. και Μηχ. Υπολ.

Διδάσκων: Κωνσταντίνος Κώστα Διαφάνειες: Δημήτρης Ζεϊναλιπούρ ΕΠΛ 035 Δομές Δεδομένων και Αλγόριθμοι για Ηλ. Μηχ. και Μηχ. Υπολ. Διάλεξη 13: Αλγόριθμοι Ταξινόμησης Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Οι αλγόριθμοι ταξινόμησης SelectionSort, InsertionSort, Στις ερχόμενες διαλέξεις θα δούμε τους αλγόριθμους Mergesort,

Διαβάστε περισσότερα

3η Σειρά Γραπτών Ασκήσεων

3η Σειρά Γραπτών Ασκήσεων 1/48 3η Σειρά Γραπτών Ασκήσεων Αλγόριθμοι και Πολυπλοκότητα ΣΗΜΜΥ, Εθνικό Μετσόβιο Πολυτεχνείο 2/48 1 Άσκηση 1: Πομποί και Δέκτες 2 Άσκηση 2: Διακοπές στην Ικαρία 3 Άσκηση 3: Επιστροφή στη Γη 4 Άσκηση

Διαβάστε περισσότερα

Θεωρία Γραφημάτων Θεμελιώσεις-Αλγόριθμοι-Εφαρμογές

Θεωρία Γραφημάτων Θεμελιώσεις-Αλγόριθμοι-Εφαρμογές Θεωρία Γραφημάτων Θεμελιώσεις-Αλγόριθμοι-Εφαρμογές Ενότητα ΔΕΝΔΡΑ Σταύρος Δ. Νικολόπουλος 2017-18 www.cs.uoi.gr/~stavros Εισαγωγή Ένα γράφημα G είναι δένδρο αν: 1. Είναι συνδεδεμένο και δεν έχει κύκλους.

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 1 Για τις ερωτήσεις 1-4 θεωρήσατε τον ακόλουθο γράφο. Ποιές από τις παρακάτω προτάσεις αληθεύουν και ποιές όχι;

ΑΣΚΗΣΗ 1 Για τις ερωτήσεις 1-4 θεωρήσατε τον ακόλουθο γράφο. Ποιές από τις παρακάτω προτάσεις αληθεύουν και ποιές όχι; ΘΕΜΑΤΑ ΔΕΝΔΡΩΝ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ ΠΛΗ0 ΑΣΚΗΣΗ Για τις ερωτήσεις - θεωρήσατε τον ακόλουθο γράφο. Ποιές από τις παρακάτω προτάσεις αληθεύουν και ποιές όχι; Β Ε Α 6 Δ 5 9 8 0 Γ 7 Ζ Η. Σ/Λ Δυο από τα συνδετικά

Διαβάστε περισσότερα

Κατ οίκον Εργασία 4 Σκελετοί Λύσεων

Κατ οίκον Εργασία 4 Σκελετοί Λύσεων Κατ οίκον Εργασία Σκελετοί Λύσεων Άσκηση Αναδρομική διαδικασία Η αναδρομική διαδικασία RecIsheap παίρνει ως παραμέτρους τον πίνακα, το μέγεθός του καθώς και το στοιχείο το οποίο θα τύχει επεξεργασίας.

Διαβάστε περισσότερα

Διάλεξη 17: Δυαδικά Δέντρα. Διδάσκων: Κωνσταντίνος Κώστα Διαφάνειες: Δημήτρης Ζεϊναλιπούρ

Διάλεξη 17: Δυαδικά Δέντρα. Διδάσκων: Κωνσταντίνος Κώστα Διαφάνειες: Δημήτρης Ζεϊναλιπούρ Διάλεξη 7: Δυαδικά Δέντρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Δυαδικά Δένδρα Δυαδικά Δένδρα Αναζήτησης Πράξεις Εισαγωγής, Εύρεσης Στοιχείου, Διαγραφής Μικρότερου Στοιχείου Διδάσκων:

Διαβάστε περισσότερα

Ενότητα 9 Ξένα Σύνολα που υποστηρίζουν τη λειτουργία της Ένωσης (Union-Find)

Ενότητα 9 Ξένα Σύνολα που υποστηρίζουν τη λειτουργία της Ένωσης (Union-Find) Ενότητα 9 Ξένα Σύνολα που υποστηρίζουν τη (Union-Find) ΗΥ240 - Παναγιώτα Φατούρου 1 Ξένα Σύνολα που υποστηρίζουν τη λειτουργία της Ένωσης Έστω ότι S 1,, S k είναι ξένα υποσύνολα ενός συνόλου U, δηλαδή

Διαβάστε περισσότερα

ΗΥ240: οµές εδοµένων Χειµερινό Εξάµηνο Ακαδηµαϊκό Έτος Παναγιώτα Φατούρου. Προγραµµατιστική Εργασία 3 ο Μέρος

ΗΥ240: οµές εδοµένων Χειµερινό Εξάµηνο Ακαδηµαϊκό Έτος Παναγιώτα Φατούρου. Προγραµµατιστική Εργασία 3 ο Μέρος Πανεπιστήµιο Κρήτης, Τµήµα Επιστήµης Υπολογιστών 6 εκεµβρίου 2008 ΗΥ240: οµές εδοµένων Χειµερινό Εξάµηνο Ακαδηµαϊκό Έτος 2008-09 Παναγιώτα Φατούρου Προγραµµατιστική Εργασία 3 ο Μέρος Ηµεροµηνία Παράδοσης:

Διαβάστε περισσότερα

Διδάσκων: Παναγιώτης Ανδρέου

Διδάσκων: Παναγιώτης Ανδρέου Διάλεξη 23: Ισοζυγισμένα Δέντρα, AVL Δέντρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Ισοζυγισμένα Δέντρα - Υλοποίηση AVL-δέντρων - Εισαγωγή Κόμβων και Περιστροφές σε AVL δέντρα Διδάσκων:

Διαβάστε περισσότερα

3η Σειρά Γραπτών Ασκήσεων

3η Σειρά Γραπτών Ασκήσεων 1/55 3η Σειρά Γραπτών Ασκήσεων Αλγόριθμοι και Πολυπλοκότητα ΣΗΜΜΥ, Εθνικό Μετσόβιο Πολυτεχνείο 2/55 1 Άσκηση 1: Πομποί και Δέκτες 2 Άσκηση 2: Διακοπές στην Ικαρία 3 Άσκηση 3: Επιστροφή στη Γη 4 Άσκηση

Διαβάστε περισσότερα

Γέφυρες σε Δίκτυα. Μας δίνεται ένα δίκτυο (κατευθυνόμενο γράφημα) αφετηριακός κόμβος. Γέφυρα του (με αφετηρία τον ) :

Γέφυρες σε Δίκτυα. Μας δίνεται ένα δίκτυο (κατευθυνόμενο γράφημα) αφετηριακός κόμβος. Γέφυρα του (με αφετηρία τον ) : Μας δίνεται ένα δίκτυο (κατευθυνόμενο γράφημα) αφετηριακός κόμβος και Γέφυρα του (με αφετηρία τον ) : Ακμή που περιέχεται σε κάθε μονοπάτι από το στο s a b c d e f g h i j k l Μας δίνεται ένα δίκτυο (κατευθυνόμενο

Διαβάστε περισσότερα

Άσκηση 3 (ανακοινώθηκε στις 24 Απριλίου 2017, προθεσμία παράδοσης: 2 Ιουνίου 2017, 12 τα μεσάνυχτα).

Άσκηση 3 (ανακοινώθηκε στις 24 Απριλίου 2017, προθεσμία παράδοσης: 2 Ιουνίου 2017, 12 τα μεσάνυχτα). Κ08 Δομές Δεδομένων και Τεχνικές Προγραμματισμού Διδάσκων: Μανόλης Κουμπαράκης Εαρινό Εξάμηνο 2016-2017. Άσκηση 3 (ανακοινώθηκε στις 24 Απριλίου 2017, προθεσμία παράδοσης: 2 Ιουνίου 2017, 12 τα μεσάνυχτα).

Διαβάστε περισσότερα

ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ Φ Ρ Ο Ν Τ Ι Σ Τ Η Ρ Ι Ο 1 : ΤΑΞΙΝΟΜΗΣΗ Δ Ρ Ι Τ Σ Α Σ Η Λ Ι Α Σ Υ Π Ο Ψ Η Φ Ι Ο Σ Δ Ι Δ Α Κ Τ Ο Ρ Α Σ

ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ Φ Ρ Ο Ν Τ Ι Σ Τ Η Ρ Ι Ο 1 : ΤΑΞΙΝΟΜΗΣΗ Δ Ρ Ι Τ Σ Α Σ Η Λ Ι Α Σ Υ Π Ο Ψ Η Φ Ι Ο Σ Δ Ι Δ Α Κ Τ Ο Ρ Α Σ ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ Φ Ρ Ο Ν Τ Ι Σ Τ Η Ρ Ι Ο 1 : ΤΑΞΙΝΟΜΗΣΗ Δ Ρ Ι Τ Σ Α Σ Η Λ Ι Α Σ Υ Π Ο Ψ Η Φ Ι Ο Σ Δ Ι Δ Α Κ Τ Ο Ρ Α Σ ΤΟ ΠΡΟΒΛΗΜΑ ΤΗΣ ΤΑΞΙΝΟΜΗΣΗΣ Ορισμός ταξινόμησης 2 Κατηγορίες αλγορίθμων ταξινόμησης

Διαβάστε περισσότερα

Διερεύνηση γραφήματος

Διερεύνηση γραφήματος Διερεύνηση γραφήματος Διερεύνηση γραφήματος Ένας αλγόριθμος διερεύνησης γραφήματος επισκέπτεται τους κόμβους του γραφήματος με μια καθορισμένη στρατηγική, π.χ. κατά εύρος ή κατά βάθος. Καθοδική διερεύνηση

Διαβάστε περισσότερα

Διδάσκων: Κωνσταντίνος Κώστα Διαφάνειες: Δημήτρης Ζεϊναλιπούρ

Διδάσκων: Κωνσταντίνος Κώστα Διαφάνειες: Δημήτρης Ζεϊναλιπούρ Διάλεξη 25: Τεχνικές Κατακερματισμού II Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Διαχείριση Συγκρούσεων με Ανοικτή Διεύθυνση a) Linear Probing, b) Quadratic Probing c) Double Hashing Διατεταγμένος

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ Φροντιστήριο #7: Ελάχιστα Επικαλυπτικά Δένδρα, Αλγόριθμος Kruskal, Δομές Union-Find Άσκηση # 0 5 0 0 0

Διαβάστε περισσότερα

Διδάσκων: Παναγιώτης Ανδρέου

Διδάσκων: Παναγιώτης Ανδρέου Διάλεξη 28: O Αλγόριθμος Ταξινόμησης HeapSort Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Η διαδικασία PercolateDown, Δημιουργία Σωρού - O Αλγόριθμος Ταξινόμησης HeapSort - Υλοποίηση, Παραδείγματα

Διαβάστε περισσότερα

Γ. Κορίλη Αλγόριθµοι ροµολόγησης

Γ. Κορίλη Αλγόριθµοι ροµολόγησης - Γ. Κορίλη Αλγόριθµοι ροµολόγησης http://www.seas.upenn.edu/~tcom50/lectures/lecture.pdf ροµολόγηση σε ίκτυα εδοµένων Αναπαράσταση ικτύου µε Γράφο Μη Κατευθυνόµενοι Γράφοι Εκτεταµένα έντρα Κατευθυνόµενοι

Διαβάστε περισσότερα

ΠΛΗ111. Ανοιξη 2005. Μάθηµα 10 ο. Γράφοι. Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης

ΠΛΗ111. Ανοιξη 2005. Μάθηµα 10 ο. Γράφοι. Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης ΠΛΗ111 οµηµένος Προγραµµατισµός Ανοιξη 2005 Μάθηµα 10 ο Γράφοι Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης Γράφοι Ορισµός Αφηρηµένος τύπος δεδοµένων Υλοποίηση Αναζήτηση έντρο

Διαβάστε περισσότερα

Διάλεξη 17: O Αλγόριθμος Ταξινόμησης HeapSort

Διάλεξη 17: O Αλγόριθμος Ταξινόμησης HeapSort Διάλεξη 17: O Αλγόριθμος Ταξινόμησης HeapSort Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Η διαδικασία PercolateDown, Δημιουργία Σωρού O Αλγόριθμος Ταξινόμησης HeapSort Υλοποίηση, Παραδείγματα

Διαβάστε περισσότερα

Μέγιστη ροή. Κατευθυνόμενο γράφημα. Συνάρτηση χωρητικότητας. αφετηρίακός κόμβος. τερματικός κόμβος. Ροή δικτύου. με τις ακόλουθες ιδιότητες

Μέγιστη ροή. Κατευθυνόμενο γράφημα. Συνάρτηση χωρητικότητας. αφετηρίακός κόμβος. τερματικός κόμβος. Ροή δικτύου. με τις ακόλουθες ιδιότητες Κατευθυνόμενο γράφημα Συνάρτηση χωρητικότητας 12 16 2 Ροή δικτύου Συνάρτηση αφετηρίακός κόμβος 13 1 με τις ακόλουθες ιδιότητες 4 14 9 7 4 τερματικός κόμβος Περιορισμός χωρητικότητας: Αντισυμμετρία: Διατήρηση

Διαβάστε περισσότερα

Αλγόριθµοι και Πολυπλοκότητα

Αλγόριθµοι και Πολυπλοκότητα Αλγόριθµοι και Πολυπλοκότητα Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Πανεπιστήµιο Αθηνών Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα 6 Μαΐου 2015 1 / 42 Εύρεση Ελάχιστου Μονοπατιού

Διαβάστε περισσότερα

Outline 1 Άσκηση 1 2 Άσκηση 2 3 Άσκηση 3 4 Άσκηση 4 5 Άσκηση 5 6 Προγραμματιστική Άσκηση 1 7 Προγραμματιστική Άσκηση 2 (CoReLab - NTUA) Αλγόριθμοι - 3

Outline 1 Άσκηση 1 2 Άσκηση 2 3 Άσκηση 3 4 Άσκηση 4 5 Άσκηση 5 6 Προγραμματιστική Άσκηση 1 7 Προγραμματιστική Άσκηση 2 (CoReLab - NTUA) Αλγόριθμοι - 3 Αλγόριθμοι και Πολυπλοκότητα 3η Σειρά Γραπτών και Προγραμματιστικών Ασκήσεων CoReLab ΣΗΜΜΥ - Ε.Μ.Π. Ιανουάριος 2019 (CoReLab - NTUA) Αλγόριθμοι - 3η σειρά ασκήσεων Ιανουάριος 2019 1 / 54 Outline 1 Άσκηση

Διαβάστε περισσότερα

Διάλεξη 29: Γράφοι. Διδάσκων: Παναγιώτης Ανδρέου

Διάλεξη 29: Γράφοι. Διδάσκων: Παναγιώτης Ανδρέου Διάλεξη 9: Γράφοι Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Γράφοι - ορισμοί και υλοποίηση - Διάσχιση Γράφων Διδάσκων: Παναγιώτης νδρέου ΕΠΛ035 Δομές Δεδομένων και λγόριθμοι για Ηλ. Μηχ.

Διαβάστε περισσότερα

Ενότητα 9 Ξένα Σύνολα που υποστηρίζουν τη λειτουργία της Ένωσης (Union-Find)

Ενότητα 9 Ξένα Σύνολα που υποστηρίζουν τη λειτουργία της Ένωσης (Union-Find) Ενότητα 9 (Union-Find) ΗΥ240 - Παναγιώτα Φατούρου 1 Έστω ότι S 1,, S k είναι ξένα υποσύνολα ενός συνόλου U, δηλαδή ισχύει ότι S i S j =, για κάθε i,j µε i j και S 1 S k = U. Λειτουργίες q MakeSet(X): επιστρέφει

Διαβάστε περισσότερα

1 Διάσχιση κατευθυνόμενων γραφημάτων

1 Διάσχιση κατευθυνόμενων γραφημάτων ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΛΑΜΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΣΧΕΔΙΑΣΜΟΣ ΚΑΙ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2010 11 Ιστοσελίδα μαθήματος: http://eclass.teilam.gr/di288 5ο ΕΡΓΑΣΤΗΡΙΟ

Διαβάστε περισσότερα

Θεωρία Γράφων Αλγόριθμοι BFS, Prim, Dijkstra, Bellman-Ford

Θεωρία Γράφων Αλγόριθμοι BFS, Prim, Dijkstra, Bellman-Ford Θεωρία ράφων λγόριθμοι BFS, Prim, Dijkstra, Bellman-Ford Θεωρία γράφων Υπογράφοι και spanning trees Ένας γράφος G =(V,E ) είναι υπογράφος (subgraph) ενός γράφου G=(V,E) αν V ' V και E' E Ένας υπογράφος

Διαβάστε περισσότερα

Διδάσκων: Κωνσταντίνος Κώστα

Διδάσκων: Κωνσταντίνος Κώστα Διάλεξη Ε7: Επανάληψη Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Hashing, Final Exam Διδάσκων: Κωνσταντίνος Κώστα ΕΠΛ 035 Δομές Δεδομένων και Αλγόριθμοι για Ηλ. Μηχ. και Μηχ. Υπολ. Ε7-1

Διαβάστε περισσότερα

ΕΠΛ 231 οµές εδοµένων και Αλγόριθµοι Άννα Φιλίππου,

ΕΠΛ 231 οµές εδοµένων και Αλγόριθµοι Άννα Φιλίππου, B- ένδρα Στην ενότητα αυτή θα µελετηθούν τα εξής επιµέρους θέµατα: 2-3 ένδρα, Υλοποίηση και πράξεις Β-δένδρα ΕΠΛ 231 οµές εδοµένων και Αλγόριθµοι Άννα Φιλίππου, 2006 8-1 2-3 ένδρα Γενίκευση των δυαδικών

Διαβάστε περισσότερα

Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 3: Εφαρμογές Δικτυωτής Ανάλυσης (2 ο Μέρος)

Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 3: Εφαρμογές Δικτυωτής Ανάλυσης (2 ο Μέρος) Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 3: Εφαρμογές Δικτυωτής Ανάλυσης (2 ο Μέρος) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων

Διαβάστε περισσότερα

Γράφοι: κατευθυνόμενοι και μη

Γράφοι: κατευθυνόμενοι και μη Γράφοι: κατευθυνόμενοι και μη (V,E ) (V,E ) Γράφος (ή γράφημα): ζεύγος (V,E), V ένα μη κενό σύνολο, Ε διμελής σχέση πάνω στο V Μη κατευθυνόμενος γράφος: σχέση Ε συμμετρική V: κορυφές (vertices), κόμβοι

Διαβάστε περισσότερα

Σχεδίαση Αλγορίθμων - Τμήμα Πληροφορικής ΑΠΘ -4ο εξάμηνο 1

Σχεδίαση Αλγορίθμων - Τμήμα Πληροφορικής ΑΠΘ -4ο εξάμηνο 1 Σχεδίαση Αλγορίθμων Μείωσε και Βασίλευε http://delab.csd.auth.gr/~gounaris/courses/ad auth gounaris/courses/ad Σχεδίαση Αλγορίθμων - Τμήμα Πληροφορικής ΑΠΘ -4ο εξάμηνο 1 Μείωσε και Βασίλευε 1. Μειώνουμε

Διαβάστε περισσότερα

Ελάχιστο Συνδετικό έντρο

Ελάχιστο Συνδετικό έντρο Ελάχιστο Συνδετικό έντρο ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Ελάχιστο Συνδετικό έντρο (MST) Συνεκτικό μη-κατευθ. G(V, E, w) με βάρη Βάρος

Διαβάστε περισσότερα

Εργαστήριο 8: Αναδρομική διεργασία εισαγωγής καινούριου κόμβου σε ΔΔΑ

Εργαστήριο 8: Αναδρομική διεργασία εισαγωγής καινούριου κόμβου σε ΔΔΑ Εργαστήριο 8: Αναδρομική διεργασία εισαγωγής καινούριου κόμβου σε ΔΔΑ Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: -Αναδρομική διεργασία εισαγωγής καινούριου κόμβου σε ΔΔΑ με αλφαβητική σειρά

Διαβάστε περισσότερα

Αλγόριθμοι και πολυπλοκότητα Περιήγηση Πανεπιστημίων

Αλγόριθμοι και πολυπλοκότητα Περιήγηση Πανεπιστημίων ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Αλγόριθμοι και πολυπλοκότητα Περιήγηση Πανεπιστημίων Ιωάννης Τόλλης Τμήμα Επιστήμης Υπολογιστών Περιήγηση Πανεπιστημίων 5/8/008 :46 AM Campus Tour Περίληψη και ανάγνωση

Διαβάστε περισσότερα

Εργαστήριο 4: Υλοποίηση Αφηρημένου Τύπου Δεδομένων: Ταξινομημένη Λίστα

Εργαστήριο 4: Υλοποίηση Αφηρημένου Τύπου Δεδομένων: Ταξινομημένη Λίστα Εργαστήριο 4: Υλοποίηση Αφηρημένου Τύπου Δεδομένων: Ταξινομημένη Λίστα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: -Λίστες -Υλοποίηση ταξινομημένης λίστας με δυναμική δέσμευση μνήμης ΕΠΛ035

Διαβάστε περισσότερα

Διδάσκων: Παναγιώτης Ανδρέου

Διδάσκων: Παναγιώτης Ανδρέου Διάλεξη 12: Δέντρα ΙΙ -Δυαδικά Δέντρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Δυαδικά Δένδρα - Δυαδικά Δένδρα Αναζήτησης(ΔΔΑ) - Εύρεση Τυχαίου, Μέγιστου, Μικρότερου στοιχείου - Εισαγωγή

Διαβάστε περισσότερα

Διδάσκων: Παναγιώτης Ανδρέου

Διδάσκων: Παναγιώτης Ανδρέου Διάλεξη 20: Αλγόριθμοι ΤαξινόμησηςIII Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Οι αλγόριθμοι ταξινόμησης: Ε. QuickSort Γρήγορη Ταξινόμηση - Έμμεση Ταξινόμηση - Εξωτερική Ταξινόμηση Διδάσκων:

Διαβάστε περισσότερα

Πανεπιστήµιο Αθηνών. Τµήµα Πληροφορικής και Τηλεπικοινωνιών. Παραλληλία. Κ. Χαλάτσης, Εισαγωγή στην Επιστήµη της Πληροφορικής και των Τηλεπικοινωνιών

Πανεπιστήµιο Αθηνών. Τµήµα Πληροφορικής και Τηλεπικοινωνιών. Παραλληλία. Κ. Χαλάτσης, Εισαγωγή στην Επιστήµη της Πληροφορικής και των Τηλεπικοινωνιών Αλγόριθµοι-Προγραµµατισµός /2 Παραλληλία οµές εδοµένων Παραλληλία (Parallelism) Παραλληλία, ταυτοχρονισµός Παράλληλος αλγόριθµος - σειριακός αλγόριθµος Παράδειγµα : υπολογισµός κέρδους module σειριακό_κέρδος(λ_α,

Διαβάστε περισσότερα

έντρα ομές εδομένων 3ο εξάμηνο ιδάσκων: Χρήστος ουλκερίδης ιαφάνειες προσαρμοσμένες από το υλικό της Μαρίας Χαλκίδη

έντρα ομές εδομένων 3ο εξάμηνο ιδάσκων: Χρήστος ουλκερίδης ιαφάνειες προσαρμοσμένες από το υλικό της Μαρίας Χαλκίδη έντρα 2-3-4 ομές εδομένων 3ο εξάμηνο ιδάσκων: Χρήστος ουλκερίδης ιαφάνειες προσαρμοσμένες από το υλικό της Μαρίας Χαλκίδη Σημερινό Μάθημα 2-3-4 έντρα Ισοζυγισμένα δέντρα αναζήτησης έντρα αναζήτησης πολλαπλών

Διαβάστε περισσότερα

Διδάσκων: Παναγιώτης Ανδρέου

Διδάσκων: Παναγιώτης Ανδρέου Διάλεξη 21: Εισαγωγή σε Δενδρικές Δομές Δεδομένων Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: -Εισαγωγή σε δενδρικές δομές δεδομένων, -Ορισμοί και πράξεις - Αναπαράσταση δενδρικών δομών δεδομένων

Διαβάστε περισσότερα

Κατανεμημένα Συστήματα Ι

Κατανεμημένα Συστήματα Ι Κατανεμημένα Συστήματα Ι Παναγιώτα Παναγοπούλου Χριστίνα Σπυροπούλου 8η Διάλεξη 8 Δεκεμβρίου 2016 1 Ασύγχρονη κατασκευή BFS δέντρου Στα σύγχρονα συστήματα ο αλγόριθμος της πλημμύρας είναι ένας απλός αλλά

Διαβάστε περισσότερα

Εισαγωγή στους Αλγορίθμους Φροντιστήριο 3

Εισαγωγή στους Αλγορίθμους Φροντιστήριο 3 Εισαγωγή στους Αλγορίθμους Φροντιστήριο 3 Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Κεφάλαιο 3 : εδοµένα. Πίνακες Στοίβα Ουρά Αναζήτηση Ταξινόµηση. Προγράµµατα

Κεφάλαιο 3 : εδοµένα. Πίνακες Στοίβα Ουρά Αναζήτηση Ταξινόµηση. Προγράµµατα εδοµένα Αλγόριθµοι + οµές εδοµένων = Προγράµµατα Πίνακες Στοίβα Ουρά Αναζήτηση Ταξινόµηση Κεφάλαιο 3 : οµές εδοµένων και Αλγόριθµοι Στοίβα Στη δοµή δεδοµένων στοίβα τα δεδοµένα στοιβάζονται το ένα πάνω

Διαβάστε περισσότερα

13/5/2015 ΟΥΡΕΣ ΠΡΟΤΕΡΑΙΟΤΗΤΑΣ. Δομές Δεδομένων. Ουρές Προτεραιότητας

13/5/2015 ΟΥΡΕΣ ΠΡΟΤΕΡΑΙΟΤΗΤΑΣ. Δομές Δεδομένων. Ουρές Προτεραιότητας ΟΥΡΕΣ ΠΡΟΤΕΡΑΙΟΤΗΤΑΣ Δομές Δεδομένων Τι θα δούμε Ουρές προτεραιότητας Πράξεις Διωνυμικές Ουρές Διωνυμικά Δέντρα Διωνυμικοί Σωροί Ουρές Fibonacci Αναπαράσταση Πράξεις Ανάλυση Συγκρίσεις Ουρές προτεραιότητας

Διαβάστε περισσότερα

Ενότητα 5: Αλγόριθμοι γράφων και δικτύων

Ενότητα 5: Αλγόριθμοι γράφων και δικτύων Εισαγωγή στην Επιστήμη των Υπολογιστών ο εξάμηνο ΣΗΜΜΥ Ενότητα : Αλγόριθμοι γράφων και δικτύων Επιμέλεια διαφανειών: Στάθης Ζάχος, Άρης Παγουρτζής, Δημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών

Διαβάστε περισσότερα

Δομές Δεδομένων Ενότητα 6

Δομές Δεδομένων Ενότητα 6 ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 6: Γράφοι Απόστολος Παπαδόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Αλγόριθμοι και Πολυπλοκότητα

Αλγόριθμοι και Πολυπλοκότητα Αλγόριθμοι και Πολυπλοκότητα Άπληστοι Αλγόριθμοι Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Άπληστοι Αλγόριθμοι Είναι δύσκολο να ορίσουμε ακριβώς την έννοια του άπληστου

Διαβάστε περισσότερα

Εισαγωγή στην Επεξεργασία Ερωτήσεων. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1

Εισαγωγή στην Επεξεργασία Ερωτήσεων. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1 Εισαγωγή στην Επεξεργασία Ερωτήσεων Βάσεις Δεδομένων 2013-2014 Ευαγγελία Πιτουρά 1 Επεξεργασία Ερωτήσεων Θα δούμε την «πορεία» μιας SQL ερώτησης (πως εκτελείται) Ερώτηση SQL Ερώτηση ΣΒΔ Αποτέλεσμα Βάσεις

Διαβάστε περισσότερα

Αλγόριθµοι και Πολυπλοκότητα

Αλγόριθµοι και Πολυπλοκότητα Αλγόριθµοι και Πολυπλοκότητα Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Πανεπιστήµιο Αθηνών Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα Φεβρουαρίου 0 / ένδρα Ενα δένδρο είναι

Διαβάστε περισσότερα

Διάλεξη 26: Σωροί. Διδάσκων: Παναγιώτης Ανδρέου

Διάλεξη 26: Σωροί. Διδάσκων: Παναγιώτης Ανδρέου Διάλεξη 26: Σωροί Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Ουρές Προτεραιότητας -Ο ΑΤΔ Σωρός, Υλοποίηση και πράξεις Διδάσκων: Παναγιώτης Ανδρέου ΕΠΛ035 Δομές Δεδομένων και Αλγόριθμοι

Διαβάστε περισσότερα

Άπληστοι Αλγόριθµοι (CLR, κεφάλαιο 17)

Άπληστοι Αλγόριθµοι (CLR, κεφάλαιο 17) Άπληστοι Αλγόριθµοι (CLR, κεφάλαιο 17) Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: Σχεδιασµός αλγορίθµων µε Άπληστους Αλγόριθµους Στοιχεία άπληστων αλγορίθµων Το πρόβληµα επιλογής εργασιών ΕΠΛ 232

Διαβάστε περισσότερα

Κινητός και ιάχυτος Υπολογισµός (Mobile & Pervasive Computing) Ιστοσελίδα του µαθήµατος. Περιεχόµενα. ηµήτριος Κατσαρός, Ph.D.

Κινητός και ιάχυτος Υπολογισµός (Mobile & Pervasive Computing) Ιστοσελίδα του µαθήµατος. Περιεχόµενα. ηµήτριος Κατσαρός, Ph.D. 1 Κινητός και ιάχυτος Υπολογισµός (Mobile & Pervasive Computing) ηµήτριος Κατσαρός, Ph.D. Χειµώνας 2006 ιάλεξη 5η Ιστοσελίδα του µαθήµατος 2 http://skyblue.csd.auth.gr/~dimitris/courses/mpc_fall06.htm

Διαβάστε περισσότερα

Τομές Γραφήματος. Γράφημα (μη κατευθυνόμενο) Συνάρτηση βάρους ακμών. Τομή : Διαμέριση του συνόλου των κόμβων σε δύο μη κενά σύνολα

Τομές Γραφήματος. Γράφημα (μη κατευθυνόμενο) Συνάρτηση βάρους ακμών. Τομή : Διαμέριση του συνόλου των κόμβων σε δύο μη κενά σύνολα Τομές Γραφήματος Γράφημα (μη κατευθυνόμενο) Συνάρτηση βάρους ακμών Τομή : Διαμέριση του συνόλου των κόμβων σε δύο μη κενά σύνολα και 12 26 20 10 9 7 17 14 4 Τομές Γραφήματος Γράφημα (μη κατευθυνόμενο)

Διαβάστε περισσότερα