Κρυπτογραφία. Ψευδοτυχαιότητα - Κρυπτοσυστήματα ροής. Άρης Παγουρτζής - Πέτρος Ποτίκας

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Κρυπτογραφία. Ψευδοτυχαιότητα - Κρυπτοσυστήματα ροής. Άρης Παγουρτζής - Πέτρος Ποτίκας"

Transcript

1 Κρυπτογραφία Ψευδοτυχαιότητα - Κρυπτοσυστήματα ροής Άρης Παγουρτζής - Πέτρος Ποτίκας Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 1 / 37

2 Περιεχόμενα 1 Εισαγωγή 2 Ψευδοτυχαίες γεννήτριες, συναρτήσεις, μεταθέσεις 3 Blum-Blum-Shub 4 Κρυπτοσυστήματα ροής (stream ciphers) 5 RC4 6 Linear Recurrence Keystream 7 Πρακτικά κρυπτοσυστήματα ροής με LFSRs 8 Σύγχρονα κρυπτοσυστήματα ροής Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 2 / 37

3 Εισαγωγή Tυχαίοι αριθμοί αποτελούν σημαντικό στοιχείο της επιστήμης των υπολογιστών αλλά και της κρυπτογραφίας Αλγόριθμοι και πρωτόκολλα που τους χρησιμοποιούν: Κατανομή κλειδιών, σχήματα ταυτοποίησης χρηστών Ακεραιότητα μηνύματος (MAC) Παραγωγή κλειδιών συνεδρίας (session keys) Παραγωγή ροής από bit για συμμετρική κρυπτογράφηση (stream ciphers) Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 3 / 37

4 Ψευδοτυχαίες γεννήτριες Επιτρέπουν ένα μικρό τυχαίο κλειδί (seed) να δώσει ένα μεγάλο ψευδοτυχαίο, αρκετά τυχαίο για έναν πολυωνυμικά φραγμένο αντίπαλο Το ψευδοτυχαίο κλειδί μπορεί να χρησιμοποιηθεί σαν κλειδί για το one-time pad (πράξη XOR) Παρεμφερής χρήση: σε κρυπτοσυστήματα ροής Η ύπαρξη ψευδοτυχαίων γεννητριών σχετίζεται με την ύπαρξη μονόδρομων συναρτήσεων (one-way functions) RC4 (Rivest 87): μια σημαντική γεννήτρια / κρυπτοσύστημα ροής Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 4 / 37

5 Ψευδοτυχαίες γεννήτριες Ιδέα: κάτι που μοιάζει με τυχαίο, αλλά δεν είναι πραγματικά Δε ξεχωρίζει ένα τυχαίο string από ένα που δημιουργείται από τη γεννήτρια ψευδοτυχαιότητας Εφαρμογή ψευδοτυχαιότητας και αλλού όπως πχ παίγνια, δειγματοληψία Την χρησιμοποιούμε είτε για την παραγωγή κλειδιών σε σχήματα συμμετρικής/ασύμμετρης κρυπτογράφησης είτε σε κρυπτογράφηση ροής Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 5 / 37

6 Ψευδοτυχαίες γεννήτριες Ποιο είναι τυχαίο; Κατανομή πάνω σε strings: D: {0, 1} n [0, 1], ώστε Σ x D(x) = 1 Oρισμός ψευδοτυχαιότητας μέσω στατιστικών τεστ: Μια κατανομή D πάνω σε n-bit strings είναι ψευδοτυχαία αν ικανοποιεί κάποια τεστ (NIST SP ) 1 Pr x D [1ο bit του x = 1] 1/2 2 Pr x D [parity του x = 1] 1/2 3 Pr x D [#1 = #0 in x] 1/2 4 Όμως με αντίπαλο, δε γνωρίζουμε τα τεστ που έχει Κρυπτογραφικά, η κατανομή D είναι ψευδοτυχαία, αν περνάει όλα τα αποδοτικά στατιστικά τεστ Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 6 / 37

7 PRG Ορισμός Μια γεννήτρια ψευδοτυχαιότητας (PRG) είναι ένας αποδοτικός, ντετερμινιστικός αλγόριθμος που επεκτείνει ένα μικρό, τυχαία επιλεγμένο σπόρο σε μια μεγαλύτερη, ψευδοτυχαία έξοδο Από λίγα πραγματικά τυχαία bits, παράγονται πολλά περισσότερα bits που φαίνονται τυχαία Παραγωγή πραγματικά τυχαίων bits είναι δύσκολη και χρονοβόρα Μέριμνα για τον σπόρο Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 7 / 37

8 Pseudorandom Generators (PRG) Παρατήρηση: ασυμπτωτικά μιλάμε για Dist = {Dist n }, όπου n η παράμετρος ασφαλείας Όπως η σημασιολογική (υπολογιστική) ασφάλεια είναι η υπολογιστική χαλάρωση της τέλειας μυστικότητας έτσι και η ψευδοτυχαιότητα είναι η υπολογιστική χαλάρωση της πραγματικής τυχαιότητας Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 8 / 37

9 Τυπικός ορισμός ψευδοτυχαίας κατανομής Έστω συνάρτηση G : {0, 1} n {0, 1} l Ορίζουμε Dist να είναι κατανομή σε l-bit strings που προκύπτει επιλέγοντας ομοιόμορφα τυχαία ένα s {0, 1} n δίνει έξοδο G(s) Η G είναι ψευδοτυχαία ανν η Dist είναι ψευδοτυχαία Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 9 / 37

10 Πείραμα Θεωρούμε πως έχουμε έναν πολυωνυμικά φραγμένο αντίπαλο, ο οποίος λαμβάνει strings μήκους l Θέλουμε ο αντίπαλος να μην καταλαβαίνει αν παίρνουμε δείγμα από την κατανομή Dist ή αν παίρνουμε ομοιόμορφα τυχαία l-bit string Θέλουμε ο αντίπαλος να μην καταλαβαίνει αν αυτά προήλθαν από την G(s) (με ομοιόμορφα τυχαία επιλεγμένο s) ή αν αυτά προήλθαν ομοιόμορφα τυχαία από το {0, 1} l (δηλ είναι πραγματικά τυχαία string μήκους l) Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 10 / 37

11 Pseudorandom Generators Ορισμός Έστω l πολυώνυμο, G ένας ντετερμινιστικός αλγόριθμος πολυωνυμικού χρόνου, τώ για κάθε n και είσοδο s {0, 1} n το αποτέλεσμα G(s) είναι μήκους l(n) Ο G είναι ψευδοτυχαίος γεννήτορας (PRG) αν: 1 Για κάθε n, l(n) > n 2 Για κάθε πιθανοτικό πολυωνυμικού χρόνου αλγόριθμο (PPT) D, υπάρχει μια αμελητέα 1 συνάρτηση negl, ώστε Pr[D(G(s)) = 1] Pr[D(r) = 1] negl(n) όπου η πρώτη πιθανότητα είναι από την ομοιόμορφη επιλογή του s {0, 1} n και την τυχαιότητα του D, ενώ η δεύτερη από την ομοιόμορφη επιλογή του r {0, 1} l(n) και την τυχαιότητα του D 1 αμελητέα συνάρτηση f: για κάθε πολυώνυμο p, υπάρχει μια σταθερά N, τώ για κάθε n > N ισχύει f(n) < 1/p(n) Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 11 / 37

12 Pseudorandom Generators Παράδειγμα Δίνεται ο G(s) = s n i=1 s i Είναι PRG; Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 12 / 37

13 Pseudorandom Generators Παρατηρήσεις: Ο αλγόριθμος είναι ντετερμινιστικός και αποδοτικός (πολυωνυμικός) Είναι τυχαία η κατανομή; Όχι τελείως! αν l(n) = n + 1, τότε στην ομοιόμορφη κατανομή στο {0, 1} n+1 κάθε συμβολοσειρά έχει ακριβώς 1/2 n+1 πιθανότητα να επιλεγεί αν dom(g) = 2 n, range(g) = 2 n+1, τότε η πιθανότητα μια συμβολοσειρά μήκους n + 1 να εμφανιστεί στην έξοδο της G είναι τουλάχιστον 1/2 n για τις μισές το πολύ συμβολοσειρές και 0 για τις υπόλοιπες Αν ο διαχωριστής είναι εκθετικού χρόνου, τότε με εξαντλητική αναζήτηση μπορεί να ξεχωρίσει την κατανομή D από την ομοιόμορφη Ο σπόρος πρέπει να μείνει μυστικός και αρκετά μεγάλος, ώστε να μη γίνεται επίθεση με εξαντλητική αναζήτηση Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 13 / 37

14 PRG Υπάρχουν γεννήτριες ψευδοτυχαιότητας; Άγνωστο, χωρίς κάποια υπόθεση Μπορούν να κατασκευαστούν με την υπόθεση ότι υπάρχουν μονόδρομες συναρτήσεις (one-way functions) Υπάρχουν, με την υπόθεση ότι το πρόβλημα της παραγοντοποίησης μεγάλων αριθμών είναι δύσκολο Υποψήφιες: stream ciphers, block ciphers (OFB, CFB, CTR mode) Ισχύει: G γεννήτρια ψευδοτυχαιότητας ανν G μη προβλέψιμη Ορισμός (Προβλέψιμη) Υπάρχει πολυωνυμικός αλγόριθμος A τέτοιος ώστε: για μη αμελητέο ϵ Pr[A(G(K) 1i ) = G(K) i+1 ] > ϵ Επιπλέον, θα πρέπει να έχουμε και προς τα πίσω μη προβλεψιμότητα: οι τιμές που έχουν εμφανιστεί δεν αποκαλύπτουν το σπόρο Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 14 / 37

15 Pseudorandom Functions - PRF Συνάρτηση που φαίνεται ίδια με μια τυχαία συνάρτηση Τυχαία συνάρτηση: Func n = όλες οι συναρτήσεις από το {0, 1} n στο {0, 1} n Πόσες; Μπορούμε να αναπαραστήσουμε μια συνάρτηση στο Func n με n2 n bits Άρα, Func n = 2 n2n Τυχαία συνάρτηση: διάλεξε ομοιόμορφα μια f Func n Ισοδύναμα: σε κάθε θέση του πίνακα τιμών διάλεξε ομοιόμορφα ένα string από το {0, 1} n Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 15 / 37

16 Pseudorandom Functions - PRF Δεν έχει νόημα να μιλάμε για σταθερή συνάρτηση, αλλά θέλουμε κάποια κατανομή Αν έχουμε μια F: {0, 1} {0, 1} {0, 1}, τότε αν κρατήσουμε σταθερή την πρώτη παράμετρο έχουμε συναρτήσεις F k (x) = F(k, x), όπου k κλειδί (επιλέγεται ομοιόμορφα) Επιλέγοντας το κλειδί k {0, 1} n επιλέγεται μια F k : {0, 1} n {0, 1} n Άρα η F με κλειδί, ορίζει μια κατανομή στις συναρτήσεις της Func n Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 16 / 37

17 Τυπικός ορισμός PRF Η αναπαράσταση με n2 n bits είναι αδύνατο να ελεχθεί από έναν πολυωνυμικό διαχωριστή Έχουμε ένα μαντείο O που είτε είναι ίσο με F k (για ομοιόμορφο k) ή με f (για ομοιόμορφη f) Mπορούμε να ρωτήσουμε για όποιο x θέλουμε, αλλά ίδια απάντηση για το ίδιο x Μόνο πολυωνυμικά πολλές ερωτήσεις γίνονται στο μαντείο Οι ερωτήσεις προσαρμόζονται Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 17 / 37

18 Ψευδοτυχαία συνάρτηση - Ορισμός Ορισμός Έστω συνάρτηση F : {0, 1} n {0, 1} n {0, 1} n αποδοτικά υπολογίσιμη Η F είναι ψευδοτυχαία συνάρτηση αν για κάθε πολυωνυμικού χρόνου διαχωριστή D υπάρχει αμελητέα συνάρτηση negl ώστε: Pr k {0,1} n[d F k() (1 n ) = 1] Pr f Funcn [D f() (1 n ) = 1] negl(n) Σημείωση: Αν δοθεί το κλειδί, παύει να είναι PRF Παράδειγμα F(k, x) = k x Είναι ψευδοτυχαία συνάρτηση; Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 18 / 37

19 Ψευδοτυχαία μετάθεση (Pseudorandom permutation) Υπάρχει και η έννοια της ψευδοτυχαίας μετάθεσης, δηλ συνάρτηση που είναι 1-1 και επί (άρα έχει και αντίστροφη) Ο υπολογισμός της αντίστροφης πρέπει να γίνεται αποδοτικά Όμως έχουμε oracle και για την αντίστροφη, οπότε ο ορισμός της ασφάλειας πρέπει να αλλάξει (strong pseudorandom permutation) Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 19 / 37

20 PRF vs PRG Από PRF σε PRG: Από μια ψευδοτυχαία συνάρτηση μπορούμε να πάρουμε μια ψευδοτυχαία γεννήτρια: G(k) = F k (0) F k (1) Αλλά και αντίστροφα, από μια PRG μπορούμε να πάρουμε μια PRF: Έστω PRG G με παράγοντα επέκτασης n2 t(n), τότε ορίζεται μια συνάρτηση f : {0, 1} n {0, 1} t(n) {0, 1} n Για να υπολογίσουμε το F k (i), υπολογίζουμε το G(k) και ερμηνεύουμε το αποτέλεσμα σαν look-up table με 2 t(n) γραμμές, όπου κάθε γραμμή έχει ένα n-bit string Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 20 / 37

21 Δημιουργία πραγματικής τυχαιότητας υλικό, φυσικά φαινόμενα πχ θερμικός ή ηλεκτρικός θόρυβος λογισμικό πχ πάτημα πλήκτρων πληκτρολογίου, κίνηση του ποντικιού Γεννήτριες τυχαίων αριθμών γενικού σκοπού είναι μη κατάλληλες για την κρυπτογραφία πχ rand() της C Intel, randomorg Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 21 / 37

22 Αποδεδειγμένα ασφαλείς γεννήτριες ψευδοτυχαίων RSA-based (Micali-Schnorr), BBS Βασίζονται σε (γενικά παραδεκτές) αριθμοθεωρητικές μονόδρομες συναρτήσεις: ύψωση σε δύναμη modulo n, τετραγωνισμός modulo n Λειτουργία: διαδοχικές εφαρμογές της συνάρτησης, έξοδος κάθε φορά το λιγότερο σημαντικό bit του αριθμού (ή κάποια από τα λιγότερο σημαντικά bit) Είναι ασφαλείς κάτω από την υπόθεση δυσκολίας αντιστροφής της αντίστοιχης συνάρτησης Απαιτούν μεγαλύτερη υπολογιστική προσπάθεια Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 22 / 37

23 Blum-Blum-Shub (1986) Αλγόριθμος Πάρε δύο μεγάλους πρώτους p, q, με p q 3 (mod 4), και θέσε n = pq Επίλεξε τυχαία ένα s 0 σχετικά πρώτο με το n Πάρε z 0 = s 2 0 mod n Για 1 i z i = (z 2 i 1 mod n) mod 2 Παρατήρηση: σχετικά αργό, αλλά ασφαλές με την υπόθεση ότι ο έλεγχος τετραγωνικών υπολοίπων modn είναι δύσκολος αν δεν είναι γνωστή η παραγοντοποίηση του n Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 23 / 37

24 Παράδειγμα BBS Έστω n = = και z 0 = mod n = Τα πρώτα 5 bits που παράγονται από τον BBS είναι και προκύπτουν: i s i z i Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 24 / 37

25 Κρυπτοσυστήματα ροής (stream ciphers) Παραγωγή ακολουθίας κλειδιών με βάση κάποιο αρχικό κλειδί, και (πιθανά) το plaintext Ορισμός Plaintext: x 0, x 1,, x n 1 Ciphertext: y 0, y 1,, y n 1 Αρχικό κλειδί: k Βοηθητικές συναρτήσεις: f i, 0 i < m Key stream: z i = f i mod m (k, x 0,, x i 1, z 0,, z i 1 ) Κρυπτογράφηση: y i = enc zi (x i ) Αποκρυπτογράφηση: x i = dec zi (y i ) Πχ για δυαδικές ακολουθίες: enc z (x) = x z = x + z mod 2 dec z (y) = y z = y + z mod 2 Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 25 / 37

26 Κρυπτοσυστήματα ροής - Τρόποι λειτουργίας Διακρίνονται σε synchronous (το κλειδί δεν εξαρτάται από το plaintext), και asynchronous (λέγονται και self-synchronizing) Επίσης σε periodic ( i : z i+d = z i, όπου d η περίοδος) και aperiodic Παράδειγμα: το Vigenère είναι synchronous και periodic Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 26 / 37

27 H γεννήτρια ψευδοτυχαίων RC4 Rivest (1987) Ιδιωτικό της εταιρίας RSA Data Security, Inc (κλειστό) Διέρρευσε το 1994 Χρήση σε πολύ διαδεδομένα πρωτόκολλα: WEP/WPA, SSL/TLS Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 27 / 37

28 RC4 σχηματικά Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 28 / 37

29 H γεννήτρια ψευδοτυχαίων RC4 Συστατικά: 2 arrays of bytes: Μετάθεση P[0255] Αρχικοποίηση: for all i {0255} do : P[i] = i Κλειδί K[0keylen 1], keylen 256 συνήθως keylen [58] Επιλέγεται από χρήστη Δημιουργία σειράς κλειδιών (key-scheduling algorithm KSA) Η αρχική (ταυτοτική) μετάθεση P μετατρέπεται μέσω μιας σειράς ανταλλαγών (swap) σε μια (φαινομενικά τυχαία) μετάθεση Το ανακάτεμα επηρεάζεται από το αρχικό κλειδί K Παραγωγή ψευδοτυχαίων bytes (pseudorandom generation algorithm PRGA) Επαναληπτικός βρόχος Σε κάθε επανάληψη επιλέγεται κάποιο byte της P ως κλειδί εξόδου με τρόπο που καθορίζεται από τα τρέχοντα περιεχόμενα της P Οι επαναλήψεις συνεχίζονται για όσο χρειάζεται (δηλ μέχρι να τελειώσει το stream) Σε κάθε επανάληψη γίνεται και ένα νέο swap Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 29 / 37

30 H γεννήτρια ψευδοτυχαίων RC4 Περιγραφή KSA, PRGA Δημιουργία σειράς κλειδιών (KSA) j = 0 for i = 0 to 255 do : j = (j + P[i] + K[i mod keylen]) mod 256 swap(p[i], P[j]) Παραγωγή ψευδοτυχαίων bytes (PRGA) i = 0; j = 0 while next key needed : i = (i + 1) mod 256 ; j = (j + P[i]) mod 256 swap(p[i], P[j]) K o = P[(P[i] + P[j]) mod 256] output K o Κάθε κλειδί εξόδου K o χρησιμοποιείται για την κρυπτογράφηση ενός byte αρχικού κειμένου Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 30 / 37

31 H γεννήτρια ψευδοτυχαίων RC4 Παρατηρήσεις Με ίδιο αρχικό κλειδί K προκύπτει η ίδια σειρά κλειδιών εξόδου Απλή και γρήγορη στην υλοποίηση με software (σε αντίθεση με άλλα stream cipher, πχ αυτά που βασίζονται σε LFSRs) Η ασφάλεια της γεννήτριας RC4 έχει αμφισβητηθεί έντονα Κάποιοι τρόποι χρήσης ιδιαίτερα ανασφαλείς (πχ WEP) επίθεση Fluhrer, Mantin, Shamir (2001) Απόδειξη στον πίνακα Ουσιαστικό πρόβλημα η παραλλαγή του RC4 με χρήση IV, όπου μπορεί να αποκαλυφθεί το πραγματικό κλειδί (WEP) Άμυνα: απόρριψη αρχικού τμήματος κλειδοροής (RC4-drop[n]), ενδεικτικά: n = 768 bytes, συστήνεται ακόμη και n = 3072 Μη ασφαλές! Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 31 / 37

32 Κρυπτοσυστήματα ροής: Linear Recurrence Keystream Αρχικό διάνυσμα κλειδιών: (z 0, z 1,, z m 1 ) Τα υπόλοιπα κλειδιά υπολογίζονται ως εξής: m 1 z i+m = c j z i+j (mod 2), j, c j {0, 1} j=0 Εάν το πολυώνυμο c 0 + c 1 x + c 2 x c m 1 x m 1 + x m είναι primitive, τότε το κρυπτοσύστημα έχει περίοδο d = 2 m 1 Πχ c 0 = c 1 = 1, c 2 = c 3 = 0 ορίζουν το πολυώνυμο x 4 + x + 1, και με δεδομένο αρχικό κλειδί z 0,, z 3 έχουμε z 4+i = z i + z i+1 mod 2 Το κρυπτοσύστημα αυτό έχει περίοδο 15 Υλοποίηση με Linear Feedback Shift Register (LFSR) Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 32 / 37

33 bits κατάσταση: τιμές των z i z n-1 z n-2 z 1 z 0 z 0 νέο z n-1 bits που χρησιμοποιούνται F(z n-1, z 0 ) στην F Σχήμα : FSR Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 33 / 37

34 Καταχωρητές Ολίσθησης Γραμμικής Ανάδρασης - LFSRs Δημιουργούν περιοδικές ακολουθίες, με περίοδο το πολύ 2 L 1, όπου L το πλήθος των ψηφίων Αν το αντίστοιχο πολυώνυμο είναι primitive έχουμε maximum-length LFSR Πολλά γνωστά primitive πολυώνυμα Σημαντικό μέγεθος για ακολουθίες: γραμμική πολυπλοκότητα (linear complexity) Είναι το ελάχιστο μέγεθος LFSR που παράγει την ίδια ακολουθία Αλγόριθμος Berlekamp-Massey: υπολογίζει τη γραμμική πολυπλοκότητα και τον αντίστοιχο LFSR Αλγόριθμος Games-Chan: υπολογίζει τη γραμμική πολυπλοκότητα δυαδικής ακολουθίας με περίοδο 2n Αλγόριθμος Lauder-Paterson: υπολογίζει το error (αν αλλάξω κάποια bits???) Αύξηση γραμμικής πολυπλοκότητας: χρήση περισσότερων LFSRs, συνδυασμός εξόδων με μη γραμμικό τρόπο Πχ Geffe generator συνδυάζει 3 maximum-length LFSRs με μήκος Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 34 / 37

35 Kρυπτοσυστήματα ροής με LFSRs LFSR: εύκολη υλοποίηση σε hardware, καλές στατιστικές ιδιότητες, αλλά μη ασφαλή γιατί τα bits εξόδου έχουν γραμμική σχέση Λύσεις μη γραμμική ανάδραση μη γραμμικός συνδυασμός των registers δίνει την έξοδο συνδυασμός των εξόδων περισσότερων LFSRs, αλλά χωρίς εξάρτηση της τελικής εξόδου από κάποια από τις επιμέρους Χρήση σε: 1 DVD (CSS): 2 LFSRs, (ανάκτηση σπόρου σε 2 17 ) 2 GSM (A5/1): 3 LFSRs (2 3991, με προεργασία 2 38 ), (A5/2): 4 LFSRs 3 Bluetooth (E0): 4 LFSRs (ανάκτηση σπόρου σε 2 38 ) Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 35 / 37

36 estream estream project: Κατηγορίες: Μήκος κλειδιού 128 bits και ένα IV (initialization vector) μήκους 64 και/ή 128 bits (SW) Μήκος κλειδιού 80 bits και ένα IV (initialization vector) μήκους 32 και/ή 64 bits (HW) Ξεχωριστές προτάσεις για SW και για HW Αξιολόγηση: Ασφάλεια Δωρεάν αδειοδότηση Επιδόσεις και φάσμα εφαρμογών Η επιτροπή απλά μάζεψε τις συμμετοχές, η αξιολόγηση έγινε από την κοινότητα Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 36 / 37

37 estream Κριτήρια ασφάλειας οποιαδήποτε επίθεση ανάκτησης κλειδιού πρέπει να είναι τόσο δύσκολη όσο η εξαντλητική αναζήτηση Απλότητα σχεδίασης Κριτήρια υλοποίησης SW και HW αποδοτικότητα Εκτέλεση και μνήμη Επίδοση Ευελιξία χρήσης SW HW HC-128 Grain v1 Rabbit MICKEY 20 Salsa20 Trivium Sosemanuk Λεπτομέρειες στο wwwecrypteuorg/stream Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 37 / 37

Κρυπτογραφία. Ψευδοτυχαιότητα - Κρυπτοσυστήματα ροής. Άρης Παγουρτζής - Πέτρος Ποτίκας

Κρυπτογραφία. Ψευδοτυχαιότητα - Κρυπτοσυστήματα ροής. Άρης Παγουρτζής - Πέτρος Ποτίκας Κρυπτογραφία Ψευδοτυχαιότητα - Κρυπτοσυστήματα ροής Άρης Παγουρτζής - Πέτρος Ποτίκας Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 1 / 34

Διαβάστε περισσότερα

Κρυπτογραφία. Ψευδοτυχαιότητα - Κρυπτοσυστήματα ροής. Άρης Παγουρτζής - Πέτρος Ποτίκας

Κρυπτογραφία. Ψευδοτυχαιότητα - Κρυπτοσυστήματα ροής. Άρης Παγουρτζής - Πέτρος Ποτίκας Κρυπτογραφία Ψευδοτυχαιότητα - Κρυπτοσυστήματα ροής Άρης Παγουρτζής - Πέτρος Ποτίκας Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 1 / 37

Διαβάστε περισσότερα

Κρυπτογραφία. Ψευδοτυχαιότητα - Κρυπτοσυστήματα ροής. Άρης Παγουρτζής - Πέτρος Ποτίκας

Κρυπτογραφία. Ψευδοτυχαιότητα - Κρυπτοσυστήματα ροής. Άρης Παγουρτζής - Πέτρος Ποτίκας Κρυπτογραφία Ψευδοτυχαιότητα - Κρυπτοσυστήματα ροής Άρης Παγουρτζής - Πέτρος Ποτίκας Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 1 / 38

Διαβάστε περισσότερα

Κρυπτογραφία. Κρυπτοσυστήματα ροής. Πέτρος Ποτίκας. Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Κρυπτογραφία. Κρυπτοσυστήματα ροής. Πέτρος Ποτίκας. Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Κρυπτογραφία Κρυπτοσυστήματα ροής Πέτρος Ποτίκας Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 1 / 22 Περιεχόμενα 1 Εισαγωγή 2 Υπολογιστική

Διαβάστε περισσότερα

Κρυπτογραφία. Εργαστηριακό μάθημα 5 Stream ciphers Κρυπτανάλυση με τον αλγόριθμο Berlekamp-Massey

Κρυπτογραφία. Εργαστηριακό μάθημα 5 Stream ciphers Κρυπτανάλυση με τον αλγόριθμο Berlekamp-Massey Κρυπτογραφία Εργαστηριακό μάθημα 5 Stream ciphers Κρυπτανάλυση με τον αλγόριθμο Berlekamp-Massey Γενικά χαρακτηριστικά των stream ciphers Keystream Generator K i P i C i Δουλεύουν πάνω σε ένα ρεύμα από

Διαβάστε περισσότερα

Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία

Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία Εισαγωγή - Κλασσικά κρυπτοσυστήματα Άρης Παγουρτζής Στάθης Ζάχος Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Σχολή ΗΜΜΥ

Διαβάστε περισσότερα

Κρυπτογραφία. Κωνσταντίνου Ελισάβετ

Κρυπτογραφία. Κωνσταντίνου Ελισάβετ Κρυπτογραφία Κωνσταντίνου Ελισάβετ ekonstantinou@aegean.gr http://www.icsd.aegean.gr/ekonstantinou AES Ιαν. 1997: Το NIST (National Institute of Standards and Technology) απευθύνει κάλεσμα για τη δημιουργία

Διαβάστε περισσότερα

Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία

Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία Συμμετρικά κρυπτοσυστήματα Άρης Παγουρτζής Στάθης Ζάχος Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Σχολή ΗΜΜΥ ΕΜΠ 1

Διαβάστε περισσότερα

Κρυπτογραφία. Κρυπτοσυστήματα τμήματος (Block ciphers) Άρης Παγουρτζής Στάθης Ζάχος Πέτρος Ποτίκας

Κρυπτογραφία. Κρυπτοσυστήματα τμήματος (Block ciphers) Άρης Παγουρτζής Στάθης Ζάχος Πέτρος Ποτίκας Κρυπτογραφία Κρυπτοσυστήματα τμήματος (Block ciphers) Άρης Παγουρτζής Στάθης Ζάχος Πέτρος Ποτίκας Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Σχολή ΗΜΜΥ ΕΜΠ 1 / 26

Διαβάστε περισσότερα

Συμμετρικά κρυπτοσυστήματα

Συμμετρικά κρυπτοσυστήματα Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία Συμμετρικά κρυπτοσυστήματα Άρης Παγουρτζής Στάθης Ζάχος Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών - Μηχανικών Υπολογιστών Δίκτυα Feistel Σημαντικές

Διαβάστε περισσότερα

Επισκόπηση Κρυπτογραφίας: privacy. Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία. Επισκόπηση Κρυπτογραφίας: authentication, integrity

Επισκόπηση Κρυπτογραφίας: privacy. Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία. Επισκόπηση Κρυπτογραφίας: authentication, integrity Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία Εισαγωγή - Κλασσικά κρυπτοσυστήματα Άρης Παγουρτζής Στάθης Ζάχος Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Επισκόπηση

Διαβάστε περισσότερα

Κρυπτογραφία. Κρυπτοσυστήματα τμήματος (Block ciphers) Άρης Παγουρτζής Στάθης Ζάχος Πέτρος Ποτίκας

Κρυπτογραφία. Κρυπτοσυστήματα τμήματος (Block ciphers) Άρης Παγουρτζής Στάθης Ζάχος Πέτρος Ποτίκας Κρυπτογραφία Κρυπτοσυστήματα τμήματος (Block ciphers) Άρης Παγουρτζής Στάθης Ζάχος Πέτρος Ποτίκας Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Block ciphers και ψευδοτυχαίες

Διαβάστε περισσότερα

Κρυπτογραφία. Κρυπτοσυστήματα τμήματος (Block ciphers) Άρης Παγουρτζής Στάθης Ζάχος Πέτρος Ποτίκας

Κρυπτογραφία. Κρυπτοσυστήματα τμήματος (Block ciphers) Άρης Παγουρτζής Στάθης Ζάχος Πέτρος Ποτίκας Κρυπτογραφία Κρυπτοσυστήματα τμήματος (Block ciphers) Άρης Παγουρτζής Στάθης Ζάχος Πέτρος Ποτίκας Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Block ciphers (κρυπτοσυστήματα

Διαβάστε περισσότερα

Κρυπτογραφία. Κρυπτοσυστήματα τμήματος (Block ciphers) Άρης Παγουρτζής Στάθης Ζάχος Πέτρος Ποτίκας

Κρυπτογραφία. Κρυπτοσυστήματα τμήματος (Block ciphers) Άρης Παγουρτζής Στάθης Ζάχος Πέτρος Ποτίκας Κρυπτογραφία Κρυπτοσυστήματα τμήματος (Block ciphers) Άρης Παγουρτζής Στάθης Ζάχος Πέτρος Ποτίκας Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία

Διαβάστε περισσότερα

Κρυπτογραφία. Κρυπτοσυστήματα πακέτου (Block ciphers) Άρης Παγουρτζής Στάθης Ζάχος Πέτρος Ποτίκας

Κρυπτογραφία. Κρυπτοσυστήματα πακέτου (Block ciphers) Άρης Παγουρτζής Στάθης Ζάχος Πέτρος Ποτίκας Κρυπτογραφία Κρυπτοσυστήματα πακέτου (Block ciphers) Άρης Παγουρτζής Στάθης Ζάχος Πέτρος Ποτίκας Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Block ciphers και ψευδοτυχαίες

Διαβάστε περισσότερα

ΤΕΙ Κρήτης Τμήμα Μηχανικών Πληροφορικής. Συμμετρική Κρυπτογραφία

ΤΕΙ Κρήτης Τμήμα Μηχανικών Πληροφορικής. Συμμετρική Κρυπτογραφία ΤΕΙ Κρήτης Τμήμα Μηχανικών Πληροφορικής Συμμετρική Κρυπτογραφία Εισαγωγή Στην συνηθισμένη κρυπτογραφία, ο αποστολέας και ο παραλήπτης ενός μηνύματος γνωρίζουν και χρησιμοποιούν το ίδιο μυστικό κλειδί.

Διαβάστε περισσότερα

ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ. Δ Εξάμηνο

ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ. Δ Εξάμηνο ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ Δ Εξάμηνο Οι Αλγόριθμοι Κρυπτογραφίας και οι Ιδιότητές τους Διδάσκων : Δρ. Παρασκευάς Κίτσος Επίκουρος Καθηγητής e-mail: pkitsos@teimes.gr, pkitsos@ieee.org Αντίρριο

Διαβάστε περισσότερα

Εφαρμοσμένη Κρυπτογραφία Ι

Εφαρμοσμένη Κρυπτογραφία Ι Εφαρμοσμένη Κρυπτογραφία Ι Κωνσταντίνου Ελισάβετ ekonstantinou@aegean.gr http://www.icsd.aegean.gr/ekonstantinou Συνολικό Πλαίσιο Ασφάλεια ΠΕΣ Εμπιστευτικότητα Ακεραιότητα Πιστοποίηση Μη-αποποίηση Κρυπτογράφηση

Διαβάστε περισσότερα

Εφαρμοσμένη Κρυπτογραφία Ι

Εφαρμοσμένη Κρυπτογραφία Ι Εφαρμοσμένη Κρυπτογραφία Ι Κωνσταντίνου Ελισάβετ ekonstantinou@aegean.gr http://www.icsd.aegean.gr/ekonstantinou Stream ciphers Η διαδικασία κωδικοποίησης για έναν stream cipher συνοψίζεται παρακάτω: 1.

Διαβάστε περισσότερα

Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων. Κρυπτογραφία. Κρυπτογραφικές Συναρτήσεις. Χρήστος Ξενάκης

Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων. Κρυπτογραφία. Κρυπτογραφικές Συναρτήσεις. Χρήστος Ξενάκης Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων Κρυπτογραφία Κρυπτογραφικές Συναρτήσεις Χρήστος Ξενάκης Ψευδοτυχαίες ακολουθίες Η επιλογή τυχαίων αριθμών είναι ένα βασικό σημείο στην ασφάλεια των κρυπτοσυστημάτων

Διαβάστε περισσότερα

Κρυπτογραφία. MAC - Γνησιότητα/Ακεραιότητα μηνύματος. Πέτρος Ποτίκας

Κρυπτογραφία. MAC - Γνησιότητα/Ακεραιότητα μηνύματος. Πέτρος Ποτίκας Κρυπτογραφία MAC - Γνησιότητα/Ακεραιότητα μηνύματος Πέτρος Ποτίκας Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 1 / 32 Περιεχόμενα 1 Message

Διαβάστε περισσότερα

Κρυπτογραφία. Κεφάλαιο 2 Αλγόριθμοι ροής - Stream ciphers

Κρυπτογραφία. Κεφάλαιο 2 Αλγόριθμοι ροής - Stream ciphers Κρυπτογραφία Κεφάλαιο 2 Αλγόριθμοι ροής - Stream ciphers Γενικά χαρακτηριστικά Keystream Generator K i P i C i Δουλεύουν πάνω σε ένα ρεύμα από bits (ή bytes) Απαιτούν μία γεννήτρια ψευδοτυχαίας ακολουθίας

Διαβάστε περισσότερα

Κρυπτογραφία. Μονόδρομες συναρτήσεις - Συναρτήσεις σύνοψης. Άρης Παγουρτζής - Πέτρος Ποτίκας

Κρυπτογραφία. Μονόδρομες συναρτήσεις - Συναρτήσεις σύνοψης. Άρης Παγουρτζής - Πέτρος Ποτίκας Κρυπτογραφία Μονόδρομες συναρτήσεις - Συναρτήσεις σύνοψης Άρης Παγουρτζής - Πέτρος Ποτίκας Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία

Διαβάστε περισσότερα

Κρυπτογραφία. MAC - Γνησιότητα/Ακεραιότητα μηνύματος. Πέτρος Ποτίκας

Κρυπτογραφία. MAC - Γνησιότητα/Ακεραιότητα μηνύματος. Πέτρος Ποτίκας Κρυπτογραφία MAC - Γνησιότητα/Ακεραιότητα μηνύματος Πέτρος Ποτίκας Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 1 / 37 Περιεχόμενα 1 Message

Διαβάστε περισσότερα

Κρυπτογραφία. MAC - Γνησιότητα/Ακεραιότητα μηνύματος. Πέτρος Ποτίκας

Κρυπτογραφία. MAC - Γνησιότητα/Ακεραιότητα μηνύματος. Πέτρος Ποτίκας Κρυπτογραφία MAC - Γνησιότητα/Ακεραιότητα μηνύματος Πέτρος Ποτίκας Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 1 / 35 Περιεχόμενα 1 Message

Διαβάστε περισσότερα

Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία

Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Σημειώσεις Διαλέξεων Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία Επιμέλεια σημειώσεων: Ελένη Μπακάλη Άρης Παγουρτζής

Διαβάστε περισσότερα

Κρυπτογραφία. MAC - Γνησιότητα/Ακεραιότητα μηνύματος. Πέτρος Ποτίκας

Κρυπτογραφία. MAC - Γνησιότητα/Ακεραιότητα μηνύματος. Πέτρος Ποτίκας Κρυπτογραφία MAC - Γνησιότητα/Ακεραιότητα μηνύματος Πέτρος Ποτίκας Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 1 / 38 Περιεχόμενα 1 Message

Διαβάστε περισσότερα

Κρυπτογραφία. Κωνσταντίνου Ελισάβετ

Κρυπτογραφία. Κωνσταντίνου Ελισάβετ Κρυπτογραφία Κωνσταντίνου Ελισάβετ ekonstantinou@aegean.gr http://www.icsd.aegean.gr/ekonstantinou Συμμετρικά Κρυπτοσυστήματα κλειδί k Αρχικό κείμενο (m) Αλγόριθμος Κρυπτογράφησης Ε c = E k (m) Κρυπτογραφημένο

Διαβάστε περισσότερα

ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ. Δ Εξάμηνο

ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ. Δ Εξάμηνο ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ Δ Εξάμηνο Οι Αλγόριθμοι Κρυπτογραφίας και οι Ιδιότητές τους Διδάσκων : Δρ. Παρασκευάς Κίτσος Επίκουρος Καθηγητής e-mail: pkitsos@teimes.gr, pkitsos@ieee.org Αντίρριο

Διαβάστε περισσότερα

Κρυπτοσύστημα RSA (Rivest, Shamir, Adlemann, 1977) Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία

Κρυπτοσύστημα RSA (Rivest, Shamir, Adlemann, 1977) Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία Κρυπτογραφία Δημοσίου Κλειδιού Άρης Παγουρτζής Στάθης Ζάχος Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Κρυπτοσύστημα

Διαβάστε περισσότερα

Κρυπτογραφία. Έλεγχος πρώτων αριθών-παραγοντοποίηση. Διαφάνειες: Άρης Παγουρτζής Πέτρος Ποτίκας

Κρυπτογραφία. Έλεγχος πρώτων αριθών-παραγοντοποίηση. Διαφάνειες: Άρης Παγουρτζής Πέτρος Ποτίκας Κρυπτογραφία Έλεγχος πρώτων αριθών-παραγοντοποίηση Διαφάνειες: Άρης Παγουρτζής Πέτρος Ποτίκας Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ 1. Εισαγωγή 2. Θεωρία αριθμών Αλγεβρικές δομές 3. Οι κρυπταλγόριθμοι και οι ιδιότητές τους

ΠΕΡΙΕΧΟΜΕΝΑ 1. Εισαγωγή 2. Θεωρία αριθμών Αλγεβρικές δομές  3. Οι κρυπταλγόριθμοι και οι ιδιότητές τους ΠΕΡΙΕΧΟΜΕΝΑ 1. Εισαγωγή... 1 1.1. Ορισμοί και ορολογία... 2 1.1.1. Συμμετρικά και ασύμμετρα κρυπτοσυστήματα... 4 1.1.2. Κρυπτογραφικές υπηρεσίες και πρωτόκολλα... 9 1.1.3. Αρχές μέτρησης κρυπτογραφικής

Διαβάστε περισσότερα

Blum Blum Shub Generator

Blum Blum Shub Generator Κρυπτογραφικά Ασφαλείς Γεννήτριες Ψευδοτυχαίων Αριθμών : Blum Blum Shub Generator Διονύσης Μανούσακας 31-01-2012 Εισαγωγή Πού χρειαζόμαστε τυχαίους αριθμούς; Σε κρυπτογραφικές εφαρμογές κλειδιά κρυπτογράφησης

Διαβάστε περισσότερα

Εφαρμοσμένη Κρυπτογραφία Ι

Εφαρμοσμένη Κρυπτογραφία Ι Εφαρμοσμένη Κρυπτογραφία Ι Κωνσταντίνου Ελισάβετ ekonstantinou@aegean.gr http://www.icsd.aegean.gr/ekonstantinou Συμμετρικά Κρυπτοσυστήματα κλειδί k Αρχικό κείμενο (m) Αλγόριθμος Κρυπτογράφησης Ε c = E

Διαβάστε περισσότερα

Συμμετρική Κρυπτογραφία

Συμμετρική Κρυπτογραφία ΤΕΙ Κρήτης Τμήμα Μηχανικών Πληροφορικής Ασφάλεια Πληροφοριακών Συστημάτων Εργαστήριο Συμμετρική Κρυπτογραφία Konstantinos Fysarakis, PhD kfysarakis@staff.teicrete.gr Εισαγωγή } Στην συνηθισμένη κρυπτογραφία,

Διαβάστε περισσότερα

Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων. Κρυπτογραφία. Συμμετρική Κρυπτογραφία. Χρήστος Ξενάκης

Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων. Κρυπτογραφία. Συμμετρική Κρυπτογραφία. Χρήστος Ξενάκης Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων Κρυπτογραφία Συμμετρική Κρυπτογραφία Χρήστος Ξενάκης Χρονολογείται από την Αρχαία Αίγυπτο Η πλειοψηφία των συμμετρικών κρυπτοαλγορίθμων είναι κρυπτοαλγόριθμοι

Διαβάστε περισσότερα

Κρυπτογραφία Δημοσίου Κλειδιού

Κρυπτογραφία Δημοσίου Κλειδιού Στοιχεία Θεωρίας Αριθμών και Εφαρμογές στην Κρυπτογραφία Κρυπτογραφία Δημοσίου Κλειδιού Άρης Παγουρτζής Στάθης Ζάχος Σχολή Ηλεκτρολόγων Μηχανικών - Μηχανικών Υπολογιστών Εθνικού Mετσόβιου Πολυτεχνείου

Διαβάστε περισσότερα

Κρυπτογραφία. Hash functions. Πέτρος Ποτίκας. Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Κρυπτογραφία. Hash functions. Πέτρος Ποτίκας. Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Κρυπτογραφία Hash functions Πέτρος Ποτίκας Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 1 / 34 Περιεχόμενα 1 Συναρτήσεις μονής-κατεύθυνσης

Διαβάστε περισσότερα

UP class. & DES και AES

UP class. & DES και AES Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Σημειώσεις Διαλέξεων UP class & DES και AES Επιμέλεια σημειώσεων: Ιωάννης Νέμπαρης Μάριος Κουβαράς Διδάσκοντες: Στάθης Ζάχος

Διαβάστε περισσότερα

ΥΠΟΛΟΓΙΣΤΙΚΗ ΚΡΥΠΤΟΓΡΑΦΙΑ

ΥΠΟΛΟΓΙΣΤΙΚΗ ΚΡΥΠΤΟΓΡΑΦΙΑ ΥΠΟΛΟΓΙΣΤΙΚΗ ΚΡΥΠΤΟΓΡΑΦΙΑ Εισαγωγή Άρης Παγουρτζής Στάθης Ζάχος Σχολή ΗΜΜΥ ΕΜΠ Διοικητικά του μαθήματος Διδάσκοντες Στάθης Ζάχος Άρης Παγουρτζής Πέτρος Ποτίκας (2017-18) Βοηθοί διδασκαλίας Παναγιώτης Γροντάς

Διαβάστε περισσότερα

Κρυπτογραφία. Συναρτήσεις μονής κατεύθυνσης - Συναρτήσεις κατακερματισμού. Άρης Παγουρτζής - Πέτρος Ποτίκας

Κρυπτογραφία. Συναρτήσεις μονής κατεύθυνσης - Συναρτήσεις κατακερματισμού. Άρης Παγουρτζής - Πέτρος Ποτίκας Κρυπτογραφία Συναρτήσεις μονής κατεύθυνσης - Συναρτήσεις κατακερματισμού Άρης Παγουρτζής - Πέτρος Ποτίκας Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Σχολή ΗΜΜΥ ΕΜΠ

Διαβάστε περισσότερα

Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων. Κρυπτογραφία. Εισαγωγή. Χρήστος Ξενάκης

Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων. Κρυπτογραφία. Εισαγωγή. Χρήστος Ξενάκης Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων Κρυπτογραφία Εισαγωγή Χρήστος Ξενάκης Στόχος του μαθήματος Η παρουσίαση και ανάλυση των βασικών θεμάτων της θεωρίας κρυπτογραφίας. Οι εφαρμογές της κρυπτογραφίας

Διαβάστε περισσότερα

Αλγόριθµοι συµµετρικού κλειδιού

Αλγόριθµοι συµµετρικού κλειδιού Αλγόριθµοι συµµετρικού κλειδιού Αλγόριθµοι συµµετρικού κλειδιού Χρησιµοποιούν το ίδιο κλειδί για την κρυπτογράφηση και την αποκρυπτογράφηση Υλοποιούνται τόσο µε υλικό (hardware) όσο και µε λογισµικό (software)

Διαβάστε περισσότερα

Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία

Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία Εισαγωγή - Κλασσικά κρυπτοσυστήματα Άρης Παγουρτζής Στάθης Ζάχος Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Σχολή ΗΜΜΥ

Διαβάστε περισσότερα

Κατάλογος Σχηµάτων. Κατάλογος Πινάκων. I Θεµέλια 27

Κατάλογος Σχηµάτων. Κατάλογος Πινάκων. I Θεµέλια 27 Κατάλογος Σχηµάτων Κατάλογος Πινάκων ix xv xx I Θεµέλια 27 1 Μαθηµατικά 29 1.1 Κριτήρια διαιρετότητας................ 30 1.2 Μέγιστος κοινός διαιρέτης και Ευκλείδειος αλγόριθµος 31 1.3 Πρώτοι αριθµοί....................

Διαβάστε περισσότερα

Ασφάλεια Υπολογιστικών Συστημάτων

Ασφάλεια Υπολογιστικών Συστημάτων Ασφάλεια Υπολογιστικών Συστημάτων Ενότητα 2: Συμμετρική κρυπτογραφία Νικολάου Σπύρος Τμήμα Μηχανικών Πληροφορικής ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων. Κρυπτογραφία. Ασύμμετρη Κρυπτογραφία. Χρήστος Ξενάκης

Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων. Κρυπτογραφία. Ασύμμετρη Κρυπτογραφία. Χρήστος Ξενάκης Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων Κρυπτογραφία Ασύμμετρη Κρυπτογραφία Χρήστος Ξενάκης Ασύμμετρη κρυπτογραφία Μονόδρομες συναρτήσεις με μυστική πόρτα Μια συνάρτηση f είναι μονόδρομη, όταν δοθέντος

Διαβάστε περισσότερα

Ψευδο-τυχαιότητα. Αριθµοί και String. Μονόδροµες Συναρτήσεις 30/05/2013

Ψευδο-τυχαιότητα. Αριθµοί και String. Μονόδροµες Συναρτήσεις 30/05/2013 Ψευδο-τυχαιότητα Συναρτήσεις µιας Κατεύθυνσης και Γεννήτριες Ψευδοτυχαίων Αριθµών Παύλος Εφραιµίδης 2013/02 1 Αριθµοί και String Όταν θα αναφερόµαστε σε αριθµούς θα εννοούµε ουσιαστικά ακολουθίες από δυαδικά

Διαβάστε περισσότερα

Παύλος Εφραιμίδης. Βασικές Έννοιες Κρυπτογραφίας. Ασφ Υπολ Συστ

Παύλος Εφραιμίδης. Βασικές Έννοιες Κρυπτογραφίας. Ασφ Υπολ Συστ Παύλος Εφραιμίδης Βασικές Έννοιες Κρυπτογραφίας Ασφ Υπολ Συστ 1 θα εξετάσουμε τα ακόλουθα εργαλεία κρυπτογραφίας: ψηφιακές υπογραφές κατακερματισμός (hashing) συνόψεις μηνυμάτων μ (message digests) ψευδοτυχαίοι

Διαβάστε περισσότερα

Εισαγωγή στην Κρυπτογραφία και τις Ψηφιακές Υπογραφές

Εισαγωγή στην Κρυπτογραφία και τις Ψηφιακές Υπογραφές Εισαγωγή στην Κρυπτογραφία και τις Ψηφιακές Υπογραφές Βαγγέλης Φλώρος, BSc, MSc Τµήµα Πληροφορικής και Τηλεπικοινωνιών Εθνικό και Καποδιστριακό Πανεπιστήµιο Αθηνών Εν αρχή είναι... Η Πληροφορία - Αρχείο

Διαβάστε περισσότερα

project RSA και Rabin-Williams

project RSA και Rabin-Williams Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών project RSA και Rabin-Williams Στοιχεία Θεωρίας Αριθμών& Εφαρμογές στην Κρυπτογραφία Ονοματεπώνυμο Σπουδαστών: Θανάσης Ανδρέου

Διαβάστε περισσότερα

Πρόλογος 1. 1 Μαθηµατικό υπόβαθρο 9

Πρόλογος 1. 1 Μαθηµατικό υπόβαθρο 9 Πρόλογος 1 Μαθηµατικό υπόβαθρο 7 1 Μαθηµατικό υπόβαθρο 9 1.1 Η αριθµητική υπολοίπων.............. 10 1.2 Η πολυωνυµική αριθµητική............ 14 1.3 Θεωρία πεπερασµένων οµάδων και σωµάτων.... 17 1.4 Πράξεις

Διαβάστε περισσότερα

Κρυπ Κρ το υπ γραφία Κρυπ Κρ το υπ λογίας

Κρυπ Κρ το υπ γραφία Κρυπ Κρ το υπ λογίας Διαχείριση και Ασφάλεια Τηλεπικοινωνιακών Συστημάτων Κρυπτογραφία Κρυπτογραφία Η Κρυπτογραφία (cryptography) είναι ένας κλάδος της επιστήμης της Κρυπτολογίας (cryptology), η οποία ασχολείται με την μελέτη

Διαβάστε περισσότερα

ΑΣΦΑΛΕΙΑ & ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ(Θ)

ΑΣΦΑΛΕΙΑ & ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ(Θ) ΑΣΦΑΛΕΙΑ & ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ(Θ) Ενότητα 4: ΑΣΦΑΛΕΙΑ & ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ ΔΙΔΑΣΚΩΝ: ΚΩΝΣΤΑΝΤΙΝΟΣ ΧΕΙΛΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ. Δ Εξάμηνο

ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ. Δ Εξάμηνο ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ Δ Εξάμηνο Ασύμμετρη Κρυπτογράφηση (Κρυπτογραφία Δημόσιου Κλειδιού) Διδάσκων : Δρ. Παρασκευάς Κίτσος Επίκουρος Καθηγητής e-mail: pkitsos@teimes.gr, pkitsos@ieee.org

Διαβάστε περισσότερα

Εφαρμοσμένη Κρυπτογραφία Ι

Εφαρμοσμένη Κρυπτογραφία Ι Εφαρμοσμένη Κρυπτογραφία Ι Κωνσταντίνου Ελισάβετ ekonstantinou@aegean.gr http://www.icsd.aegean.gr/ekonstantinou Ψηφιακές Υπογραφές Ορίζονται πάνω σε μηνύματα και είναι αριθμοί που εξαρτώνται από κάποιο

Διαβάστε περισσότερα

Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων. Κρυπτογραφία. Κρυπτοαλγόριθμοι. Χρήστος Ξενάκης

Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων. Κρυπτογραφία. Κρυπτοαλγόριθμοι. Χρήστος Ξενάκης Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων Κρυπτογραφία Κρυπτοαλγόριθμοι Χρήστος Ξενάκης Θεωρία Πληροφορίας Η Θεωρία πληροφορίας (Shannon 1948 1949) σχετίζεται με τις επικοινωνίες και την ασφάλεια

Διαβάστε περισσότερα

Κρυπτογραφία. Κεφάλαιο 4 Αλγόριθμοι Δημοσίου Κλειδιού (ή ασύμμετροι αλγόριθμοι)

Κρυπτογραφία. Κεφάλαιο 4 Αλγόριθμοι Δημοσίου Κλειδιού (ή ασύμμετροι αλγόριθμοι) Κρυπτογραφία Κεφάλαιο 4 Αλγόριθμοι Δημοσίου Κλειδιού (ή ασύμμετροι αλγόριθμοι) Κρυπτοσυστήματα Δημοσίου κλειδιού Αποστολέας P Encryption C Decryption P Παραλήπτης Προτάθηκαν το 1976 Κάθε συμμετέχων στο

Διαβάστε περισσότερα

Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία

Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Σημειώσεις Διαλέξεων Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία Επιμέλεια σημειώσεων: Καλογερόπουλος Παναγιώτης

Διαβάστε περισσότερα

Διπλωματική Εργασία. Τίτλος:

Διπλωματική Εργασία. Τίτλος: Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής Μεταπτυχιακό Πρόγραμμα Σπουδών Πληροφορική και Επικοινωνίες Διπλωματική Εργασία Τίτλος: Ανάλυση και υλοποίηση κρυπτογραφικού

Διαβάστε περισσότερα

PSEUDORANDOM GENERATORS- PREDICATES & ZK PROOFS

PSEUDORANDOM GENERATORS- PREDICATES & ZK PROOFS PSEUDORANDOM GENERATORS- PREDICATES & ZK PROOFS ΑΛΓΟΡΙΘΜΟΙ ΚΑΙ ΠΟΛΥΠΛΟΚΟΤΗΤΑ 2 Επιμέλεια: Νικόλαος Λάμπρου μπλ 2014 Γεννήτρια ψευδοτυχαίων αριθμών Άτυπος ορισμός: Έστω μια συνάρτηση G από strings σε strings.λέμε

Διαβάστε περισσότερα

Δ Εξάμηνο. Κρυπτογραφία: Συμμετρική Κρυπτογράφηση

Δ Εξάμηνο. Κρυπτογραφία: Συμμετρική Κρυπτογράφηση ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ Δ Εξάμηνο Κρυπτογραφία: Συμμετρική Κρυπτογράφηση Διδάσκων : Δρ. Παρασκευάς Κίτσος http://www.diceslab.cied.teiwest.gr Επίκουρος Καθηγητής Εργαστήριο Σχεδίασης Ψηφιακών

Διαβάστε περισσότερα

Εισαγωγή στην επιστήμη της Πληροφορικής και των Τηλεπικοινωνιών. Aσφάλεια

Εισαγωγή στην επιστήμη της Πληροφορικής και των Τηλεπικοινωνιών. Aσφάλεια Εισαγωγή στην επιστήμη της Πληροφορικής και των Τηλεπικοινωνιών Aσφάλεια Περιεχόμενα Πλευρές Ασφάλειας Ιδιωτικό Απόρρητο Μέθοδος Μυστικού Κλειδιού (Συμμετρική Κρυπτογράφηση) Μέθοδος Δημόσιου Κλειδιού (Ασύμμετρη

Διαβάστε περισσότερα

ΥΠΟΛΟΓΙΣΤΙΚΗ ΚΡΥΠΤΟΓΡΑΦΙΑ

ΥΠΟΛΟΓΙΣΤΙΚΗ ΚΡΥΠΤΟΓΡΑΦΙΑ ΥΠΟΛΟΓΙΣΤΙΚΗ ΚΡΥΠΤΟΓΡΑΦΙΑ Εισαγωγή Άρης Παγουρτζής Στάθης Ζάχος Σχολή ΗΜΜΥ ΕΜΠ Διοικητικά του μαθήματος Διδάσκοντες Στάθης Ζάχος Άρης Παγουρτζής Πέτρος Ποτίκας Βοηθοί διδασκαλίας Παναγιώτης Γροντάς Αντώνης

Διαβάστε περισσότερα

Υπολογιστική Κρυπτογραφία

Υπολογιστική Κρυπτογραφία Υπολογιστική Κρυπτογραφία Εισαγωγή - Κλασσικά κρυπτοσυστήματα Άρης Παγουρτζής Στάθης Ζάχος Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Σχολή ΗΜΜΥ ΕΜΠ Υπολογιστική

Διαβάστε περισσότερα

Διαλογικά Συσ τήματα Αποδείξεων Διαλογικά Συστήματα Αποδείξεων Αντώνης Αντωνόπουλος Κρυπτογραφία & Πολυπλοκότητα 17/2/2012

Διαλογικά Συσ τήματα Αποδείξεων Διαλογικά Συστήματα Αποδείξεων Αντώνης Αντωνόπουλος Κρυπτογραφία & Πολυπλοκότητα 17/2/2012 Αντώνης Αντωνόπουλος Κρυπτογραφία & Πολυπλοκότητα 17/2/2012 Εισαγωγή Ορισμός Επέκταση του NP συστήματος αποδείξεων εισάγωντας αλληλεπίδραση! Ενα άτομο προσπαθεί να πείσει ένα άλλο για το ότι μία συμβολοσειρά

Διαβάστε περισσότερα

Οικονομικό Πανεπιστήμιο Αθηνών Τμήμα Πληροφορικής ΠΜΣ Κρυπτογραφία και Εφαρμογές Διαλέξεις Ακ. Έτους

Οικονομικό Πανεπιστήμιο Αθηνών Τμήμα Πληροφορικής ΠΜΣ Κρυπτογραφία και Εφαρμογές Διαλέξεις Ακ. Έτους Οικονομικό Πανεπιστήμιο Αθηνών Τμήμα Πληροφορικής ΠΜΣ Κρυπτογραφία και Εφαρμογές Διαλέξεις Ακ. Έτους 2011-2012 Μαριάς Ιωάννης Μαρκάκης Ευάγγελος marias@aueb.gr markakis@gmail.com Διάλεξη 6-1 5-1 Περίληψη

Διαβάστε περισσότερα

Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία

Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Σημειώσεις Διαλέξεων Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία Επιμέλεια σημειώσεων: Δημήτριος Μπάκας Αθανάσιος

Διαβάστε περισσότερα

6/1/2010. Ασφάλεια Ασύρματων & Κινητών Επικοινωνιών. Περιεχόμενα. Εισαγωγή /1 IEEE

6/1/2010. Ασφάλεια Ασύρματων & Κινητών Επικοινωνιών. Περιεχόμενα. Εισαγωγή /1 IEEE Ασφάλεια Ασύρματων & Κινητών Επικοινωνιών Ασύρματες Επικοινωνίες Μέρος III Χρήστος Ξενάκης Τμήμα Ψηφιακών Συστημάτων Πανεπιστήμιο Πειραιώς Slide: 1/42 Περιεχόμενα IEEE 802.11 WIRED EQUIVALENT PRIVACY (WEP)

Διαβάστε περισσότερα

Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία

Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Σημειώσεις Διαλέξεων Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία Επιμέλεια σημειώσεων: Ζωή Παρασκευοπούλου Νίκος

Διαβάστε περισσότερα

ΑΣΦΑΛΕΙΑ & ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ(Θ)

ΑΣΦΑΛΕΙΑ & ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ(Θ) ΑΣΦΑΛΕΙΑ & ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ(Θ) Ενότητα 5: ΑΣΦΑΛΕΙΑ & ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ ΔΙΔΑΣΚΩΝ: ΚΩΝΣΤΑΝΤΙΝΟΣ ΧΕΙΛΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Αριθμοθεωρητικοί Αλγόριθμοι

Αριθμοθεωρητικοί Αλγόριθμοι Αλγόριθμοι που επεξεργάζονται μεγάλους ακέραιους αριθμούς Μέγεθος εισόδου: Αριθμός bits που απαιτούνται για την αναπαράσταση των ακεραίων. Έστω ότι ένας αλγόριθμος λαμβάνει ως είσοδο έναν ακέραιο Ο αλγόριθμος

Διαβάστε περισσότερα

Θεμελιώδη Θέματα Επιστήμης Υπολογιστών

Θεμελιώδη Θέματα Επιστήμης Υπολογιστών http://www.corelab.ntua.gr/courses/ Θεμελιώδη Θέματα Επιστήμης Υπολογιστών 5ο εξάμηνο ΣΕΜΦΕ Ενότητα 0: Εισαγωγή Διδάσκοντες: Στάθης Ζάχος, Άρης Παγουρτζής Υπεύθυνη εργαστηρίου / ασκήσεων: Δώρα Σούλιου

Διαβάστε περισσότερα

Εισαγωγή στην επιστήμη της Πληροφορικής και των Τηλεπικοινωνιών. Aσφάλεια

Εισαγωγή στην επιστήμη της Πληροφορικής και των Τηλεπικοινωνιών. Aσφάλεια Εισαγωγή στην επιστήμη της Πληροφορικής και των Τηλεπικοινωνιών Aσφάλεια ΣΤΟΧΟΙ ΚΕΦΑΛΑΙΟΥ Ορισµός τριών στόχων ασφάλειας - Εµπιστευτικότητα, ακεραιότητα και διαθεσιµότητα Επιθέσεις Υπηρεσίες και Τεχνικές

Διαβάστε περισσότερα

Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία

Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία Επιθέσεις και Ασφάλεια Κρυπτοσυστημάτων Διδάσκοντες: Άρης Παγουρτζής Στάθης Ζάχος Διαφάνειες: Παναγιώτης Γροντάς Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων

Διαβάστε περισσότερα

Εισαγωγή στην επιστήμη της Πληροφορικής και των. Aσφάλεια

Εισαγωγή στην επιστήμη της Πληροφορικής και των. Aσφάλεια Εισαγωγή στην επιστήμη της Πληροφορικής και των Τηλεπικοινωνιών Aσφάλεια Περιεχόμενα Πλευρές Ασφάλειας Ιδιωτικό Απόρρητο Μέθοδος Μυστικού Κλειδιού (Συμμετρική Κρυπτογράφηση) Μέθοδος Δημόσιου Κλειδιού (Ασύμμετρη

Διαβάστε περισσότερα

Υπολογιστική Κρυπτογραφία

Υπολογιστική Κρυπτογραφία Υπολογιστική Κρυπτογραφία Εισαγωγή - Κλασσικά κρυπτοσυστήματα Άρης Παγουρτζής Στάθης Ζάχος Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Σχολή ΗΜΜΥ ΕΜΠ 1 / 42 Ιστορικά

Διαβάστε περισσότερα

Cryptography and Network Security Chapter 9. Fifth Edition by William Stallings

Cryptography and Network Security Chapter 9. Fifth Edition by William Stallings Cryptography and Network Security Chapter 9 Fifth Edition by William Stallings Chapter 9 Κρυπτογραφια Δημοσιου Κλειδιου και RSA Every Egyptian received two names, which were known respectively as the true

Διαβάστε περισσότερα

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων

Διαβάστε περισσότερα

ΑΛΓΟΡΙΘΜΟΙ ΚΑΙ ΠΟΛΥΠΛΟΚΟΤΗΤΑ 2 ΕΠΙΜΕΛΕΙΑ :ΣΤΟΥΚΑ ΑΙΚΑΤΕΡΙΝΗ-ΠΑΝΑΓΙΩΤΑ ΜΕΤΑΠΤΥΧΙΑΚΟ:ΜΠΛΑ

ΑΛΓΟΡΙΘΜΟΙ ΚΑΙ ΠΟΛΥΠΛΟΚΟΤΗΤΑ 2 ΕΠΙΜΕΛΕΙΑ :ΣΤΟΥΚΑ ΑΙΚΑΤΕΡΙΝΗ-ΠΑΝΑΓΙΩΤΑ ΜΕΤΑΠΤΥΧΙΑΚΟ:ΜΠΛΑ ΑΛΓΟΡΙΘΜΟΙ ΚΑΙ ΠΟΛΥΠΛΟΚΟΤΗΤΑ 2 ΕΠΙΜΕΛΕΙΑ :ΣΤΟΥΚΑ ΑΙΚΑΤΕΡΙΝΗ-ΠΑΝΑΓΙΩΤΑ ΜΕΤΑΠΤΥΧΙΑΚΟ:ΜΠΛΑ Η Alice θέλει να στείλει ένα μήνυμα m(plaintext) στον Bob μέσα από ένα μη έμπιστο κανάλι και να μην μπορεί να το

Διαβάστε περισσότερα

Ασυμπτωτικός Συμβολισμός

Ασυμπτωτικός Συμβολισμός Ασυμπτωτικός Συμβολισμός Επιμέλεια διαφανειών: Δημήτρης Φωτάκης (λίγες προσθήκες: Άρης Παγουρτζής) Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Υπολογιστική Πολυπλοκότητα

Διαβάστε περισσότερα

4 ΚΡΥΠΤΟΓΡΑΦΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ

4 ΚΡΥΠΤΟΓΡΑΦΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ 4 ΚΡΥΠΤΟΓΡΑΦΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ 4.1. Εισαγωγή Τα προηγούμενα κεφάλαια αποτελούν μια εισαγωγή στην κρυπτολογία, στις κατηγορίες κρυπτογραφικών πράξεων καθώς και στα βασικά μοντέλα κρυπτανάλυσης και αξιολόγησης

Διαβάστε περισσότερα

Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία

Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Σημειώσεις Διαλέξεων Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία Επιμέλεια σημειώσεων: Ελένη Μπακάλη Άρης Παγουρτζής

Διαβάστε περισσότερα

Ασφάλεια Τηλεπικοινωνιακών Συστημάτων ΣΤΑΥΡΟΣ Ν ΝΙΚΟΛΟΠΟΥΛΟΣ 03 ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΚΡΥΠΤΟΛΟΓΙΑ

Ασφάλεια Τηλεπικοινωνιακών Συστημάτων ΣΤΑΥΡΟΣ Ν ΝΙΚΟΛΟΠΟΥΛΟΣ 03 ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΚΡΥΠΤΟΛΟΓΙΑ Ασφάλεια Τηλεπικοινωνιακών Συστημάτων ΣΤΑΥΡΟΣ Ν ΝΙΚΟΛΟΠΟΥΛΟΣ 03 ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΚΡΥΠΤΟΛΟΓΙΑ Περιγραφή μαθήματος Η Κρυπτολογία είναι κλάδος των Μαθηματικών, που ασχολείται με: Ανάλυση Λογικών Μαθηματικών

Διαβάστε περισσότερα

Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία

Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία Επιθέσεις και Ασφάλεια Κρυπτοσυστημάτων Διδάσκοντες: Άρης Παγουρτζής Στάθης Ζάχος Αρχικές διαφάνειες: Παναγιώτης Γροντάς Τροποποιήσεις: Άρης Παγουρτζής Εθνικό

Διαβάστε περισσότερα

Μοντέλα και Αποδείξεις Ασφάλειας στην Κρυπτογραφία

Μοντέλα και Αποδείξεις Ασφάλειας στην Κρυπτογραφία Μοντέλα και Αποδείξεις Ασφάλειας στην Κρυπτογραφία Παναγιώτης Γροντάς ΕΜΠ - Κρυπτογραφία 09/10/2015 1 / 46 (ΕΜΠ - Κρυπτογραφία) Μοντέλα και Αποδείξεις Ασφάλειας στην Κρυπτογραφία Περιεχόμενα Ορισμός Κρυπτοσυστήματος

Διαβάστε περισσότερα

Κρυπτογραφία και Ασφάλεια Δικτύων

Κρυπτογραφία και Ασφάλεια Δικτύων Το έργο υλοποιείται στο πλαίσιο του υποέργου 2 με τίτλο «Ανάπτυξη έντυπου εκπαιδευτικού υλικού για τα νέα Προγράμματα Σπουδών» της Πράξης «Ελληνικό Ανοικτό Πανεπιστήμιο», η οποία έχει ενταχθεί στο Επιχειρησιακό

Διαβάστε περισσότερα

Κρυπτογραφία. Εργαστηριακό μάθημα 1

Κρυπτογραφία. Εργαστηριακό μάθημα 1 Κρυπτογραφία Εργαστηριακό μάθημα 1 Βασικοί όροι Με τον όρο κρυπτογραφία εννοούμε τη μελέτη μαθηματικών τεχνικών που στοχεύουν στην εξασφάλιση θεμάτων που άπτονται της ασφάλειας μετάδοσης της πληροφορίας,

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Ενότητα 13: Αλγόριθμοι-Μεγάλων ακεραίων- Εκθετοποίηση- Πολλαπλασιασμός πινάκων -Strassen Μαρία Σατρατζέμη Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Hash Functions. μεγεθος h = H(M) ολους. στο μηνυμα. στο συγκεκριμενο hash (one-way property)

Hash Functions. μεγεθος h = H(M) ολους. στο μηνυμα. στο συγκεκριμενο hash (one-way property) Hash Functions Συρρικνωνει μηνυμα οποιουδηποτε μηκους σε σταθερο μεγεθος h = H(M) Συνηθως θεωρουμε οτι η hash function ειναι γνωστη σε ολους Το hash χρησιμοποιειται για να ανιχνευσει τυχον αλλαγες στο

Διαβάστε περισσότερα

Στοιχεία Θεωρίας Αριθμών Και Εφαρμογές Στην Κρυπτογραφία. Linux Random Number Generator

Στοιχεία Θεωρίας Αριθμών Και Εφαρμογές Στην Κρυπτογραφία. Linux Random Number Generator Στοιχεία Θεωρίας Αριθμών Και Εφαρμογές Στην Κρυπτογραφία Linux Random Number Generator Επιμέλεια Διαφανειών : Ι. Κατσάτος ΦΕΒΡΟΥΑΡΙΟΣ 2013 ΑΘΗΝΑ Ορισμός: Τυχαίοι Αριθμοί Συχνά στην καθομιλουμένη, ο κόσμος

Διαβάστε περισσότερα

Πρόβληµα 2 (15 µονάδες)

Πρόβληµα 2 (15 µονάδες) ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΕΦΑΡΜΟΓΕΣ, 2013-2014 ΔΙΔΑΣΚΩΝ: Ε. Μαρκάκης Πρόβληµα 1 (5 µονάδες) 2 η Σειρά Ασκήσεων Προθεσµία Παράδοσης: 19/1/2014 Υπολογίστε

Διαβάστε περισσότερα

Ασφάλεια Πληροφοριακών Συστημάτων

Ασφάλεια Πληροφοριακών Συστημάτων Ασφάλεια Πληροφοριακών Συστημάτων Κρυπτογραφία/Ψηφιακές Υπογραφές Διάλεξη 2η Δρ. Β. Βασιλειάδης Τμ. Διοίκησης Επιχειρήσεων, ΤΕΙ Δυτ. Ελλάδας Kρυπτανάλυση Προσπαθούμε να σπάσουμε τον κώδικα. Ξέρουμε το

Διαβάστε περισσότερα

ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ

ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ Δ Εξάμηνο Συναρτήσεις Κατακερματισμού και Πιστοποίηση Μηνύματος Διδάσκων : Δρ. Παρασκευάς Κίτσος Επίκουρος Καθηγητής e-mail: pkitsos@teimes.gr, pkitsos@ieee.org Αντίρριο

Διαβάστε περισσότερα

Ασφάλεια Ασύρματων & Κινητών Επικοινωνιών

Ασφάλεια Ασύρματων & Κινητών Επικοινωνιών Ασφάλεια Ασύρματων & Κινητών Επικοινωνιών Ασύρματες Επικοινωνίες Μέρος V Χρήστος Ξενάκης Τμήμα Ψηφιακών Συστημάτων Πανεπιστήμιο Πειραιώς Slide: 1/30 Περιεχόμενα IEEE 802.11i ΤΟ ΠΡΩΤΟΚΟΛΛΟ CCMP Γενικά Λίγα

Διαβάστε περισσότερα

1. Τι είναι ακεραιότητα δεδομένων, με ποιους μηχανισμούς επιτυγχάνετε κ πότε θα χρησιμοποιούσατε τον καθένα εξ αυτών;

1. Τι είναι ακεραιότητα δεδομένων, με ποιους μηχανισμούς επιτυγχάνετε κ πότε θα χρησιμοποιούσατε τον καθένα εξ αυτών; 1. Τι είναι ακεραιότητα δεδομένων, με ποιους μηχανισμούς επιτυγχάνετε κ πότε θα χρησιμοποιούσατε τον καθένα εξ αυτών; Η ακεραιότητα δεδομένων(data integrity) Είναι η ιδιότητα που μας εξασφαλίζει ότι δεδομένα

Διαβάστε περισσότερα

Επιθέσεις και Ασφάλεια Κρυπτοσυστημάτων

Επιθέσεις και Ασφάλεια Κρυπτοσυστημάτων Στοιχεία Θεωρίας Αριθμών και Εφαρμογές στην Κρυπτογραφία Επιθέσεις και Ασφάλεια Κρυπτοσυστημάτων Άρης Παγουρτζής Στάθης Ζάχος Διαφάνειες: Παναγιώτης Γροντάς Σχολή Ηλεκτρολόγων Μηχανικών - Μηχανικών Υπολογιστών

Διαβάστε περισσότερα

Pseudorandomness. Pseudorandom Generators - Derandomisation. Παναγιώτης Γροντάς ,

Pseudorandomness. Pseudorandom Generators - Derandomisation. Παναγιώτης Γροντάς , Pseudorandomness Pseudorandom Generators - Derandomisation Παναγιώτης Γροντάς µπλ 17.05.2012, 24.05.2012 1 / 47 Παναγιώτης Γροντάς(µΠλ ) Pseudorandomness Κλάσεις Πολυπλοκότητας Θα χρησιμοποιήσουμε τις

Διαβάστε περισσότερα

Threshold Cryptography Algorithms. Εργασία στα πλαίσια του μαθήματος Τεχνολογίες Υπολογιστικού Νέφους

Threshold Cryptography Algorithms. Εργασία στα πλαίσια του μαθήματος Τεχνολογίες Υπολογιστικού Νέφους Threshold Cryptography Algorithms Εργασία στα πλαίσια του μαθήματος Τεχνολογίες Υπολογιστικού Νέφους Ορισμός Το σύστημα το οποίο τεμαχίζει ένα κλειδί k σε n τεμάχια έτσι ώστε οποιοσδήποτε συνδυασμός πλήθους

Διαβάστε περισσότερα

Symmetric Cryptography. Dimitris Mitropoulos

Symmetric Cryptography. Dimitris Mitropoulos Symmetric Cryptography Dimitris Mitropoulos dimitro@di.uoa.gr Ορολογία Αρχικό Κείμενο (Plaintext): Αποτελεί το αρχικό μήνυμα (ή τα αρχικά δεδομένα) που εισάγεται στον αλγόριθμο κρυπτογράφησης. Αλγόριθμος

Διαβάστε περισσότερα