Java Applets. Visual Simulation of Classical Mechanics in terms of Java Applets. Toshiaki Izumoto 1 and Yuki Irokawa 1. Java Graphics 1) 2) 6)
|
|
- Κανδάκη Δασκαλόπουλος
- 9 χρόνια πριν
- Προβολές:
Transcript
1 Java Applets Applets Runge-Kutta 3 Applet 3, Web Visual Simulation of Classical Mechanics in terms of Java Applets Toshiaki Izumoto 1 and Yuki Irokawa 1 In this paper, some Java applets are made of the visual simulation of the classical mechanics. The orbit of the Kepler motion is first visualized by numerically integrating the differential equation of the 2-body central force problem. The magnitudes of numerical errors are evaluated of the Euler, the Runge-Kutta and the Symplectic integration methods by comparing the numerical results of the orbit and the constants of motion with the eact solution. A visual 3-body simulation is then performed of the earth and the moon in the solar system by making use of the Symplectic 6th integration method, where the constants of motion are carefully observed. The virtual problems are discussed, for eample, of the moon spiraling away. The visual simulation may facilitate learning in a virtual class. 1. Java Graphics 1) 2) 6) Java Applets Kepler 4),5) 7) 10) Newton Euler Runge-Kutta (RK) Symplectic 4 (SI) 10) 12) Kepler Velocity-Verlet 5) RK 13). 3 Symplectic 10),11), 14),15) 1 Department of Physics, Rikkyo University 1 c 2011 Information Processing Society of Japan
2 Applets Hamiltonian m 1 U(q) H = K + U(q) = p 2 /2m + U(q), U(q) = k/ q (1) { dp/dt = {p, H} = H/ q, (2) dq/dt = {q, H} = H/ p K, U, E Newton 4 p md 2 q/dt 2 = kq/ q 3 (9) m 1 ( m 2 ) 2 m µ = m 1 m 2 /(m 1 + m 2 ), k = Gm 1 m 2 (1) 9 G (r, θ), (p r, p θ ) 16) r = C/{1 + ɛ cos(θ + θ 0 )}. (10) C ɛ C = l 2 /mk, ɛ = 1 + 2El 2 /mk 2. (11) {p, H}, {q, H} Poisson {p, K} = 0, {p, U} = U/ q = f(q), {q, K} = p/m, {q, U} = 0 { dp/dt = f(q) = kq/ q 3, dq/dt = p/m (3) (4) E l R = 1 m m 2 = 1 T = 1 ( 1 3). t = 0 (r, θ) = (1, 0) dr/dt = 0, r(dθ/dt) = RΩ = v 0 (Ω ) C = v0/(2π) 2 2, ɛ = 1 v0/(2π) 2 2 (12) r = v0/ [ 2 (2π) 2 + {v0 2 (2π) 2 } cos θ ] (13) E M E = p 2 /2m k/ q, M = [q p]. (5) 4 de/dt = 0, dm/dt = 0 (6) the virial theorem K = Ū/2. (7) K, Ū K, U Ē = Ū/2 (8) v 0 v 0 < 2 2π, E = v0/2 2 (2π) 2 < 0, v 0 = 2π, v 0 = 2 2π, E = v0/2 2 (2π) 2 = 0, v 0 > 2 2π, E = v0/2 2 (2π) 2 > 0. a, b a = C/(1 ɛ 2 ) = k/2e = 1/{2 v0/(2π) 2 2 } (14) b = a 1 ɛ 2 = l 2 /2µE = 1/ 2(2π) 2 /v0 2 1 (15) l/2m πab 1 T 2 c 2011 Information Processing Society of Japan
3 T = 2πab/(l/m) = 4π 2 a 3 /GM = 1/{2 v 2 0/(2π) 2 } 3/2 (16) Hamiltonian m i, q i, p i (i = 1, 2, 3) H = K + U = p 2 i /2m i Gm i m j / q i q j, (17) i i<j M = [q i p i ] (18) i { dp i /dt = H/ q i, dq i/dt = H/ p i, (i = 1, 2, 3) 1 q 1 q 2 q 3 {q 1, q 2, q 3 } {p 1, p 2, p 3 } {R G, R, r} {P G, P, p} q 1 = R G (m 2 + m 3 )R/M G, q 2 = R G + m 1R/M G m 3r/(m 2 + m 3), q 3 = R G + m 1 R/M G + m 2 r/(m 2 + m 3 ), p 1 = m 1 P G /M G P, p 2 = m 2P G/M G + m 2P/(m 2 + m 3) p, p 3 = m 3 P G /M G + m 3 P/(m 2 + m 3 ) + p. Hamiltonian H = P 2 G/2M G + P 2 /2m + p 2 /2µ { Gm 1 m 2 / R m 3 r/(m 2 + m 3 ) (19) (20) +Gm 1 m 3 / R m 2 r/(m 2 + m 3 ) + Gm 2 m 3 / r }, (21) M = [R G P G] + [R P] + [r p] (22) M G = m 1 + m 2 + m 3, m = m 1 (m 2 + m 3 )/M G, µ = m 2 m 3 /(m 2 + m 3 ) (23) Ẽ M Ẽ = E P 2 /2M G, M = M [R G P G] (24) r R m 2, m 3 m 1 21 Newton r M Gd 2 R G /dt 2 = 0, m d 2 R/dt 2 Gm 1(m 2 + m 3)R/ R 3, µ d 2 r/dt 2 Gm 2 m 3 r/ r 3 +Gm 1 m 2 m 3 /(m 2 + m 3 ){3(R r)r/ R 2 r}/ R 3 r, R Java Applets. R G = (0, 0, 0), R = (R, 0, 0), r = (r cos θ, 0, r sin θ), (26) P G = (0, 0, 0), P = (0, mrω, 0), p = (µrω cos θ, 0, µrω sin θ). (27) M G, m, µ R, r Ω, ω 20, {q 1, q 2, q 3 } {p 1, p 2, p 3 }, θ = Euler Runge-Kutta p, q z = {q, p} 4 t dz/dt ż ż = g(t, z) (28) (25) 3 c 2011 Information Processing Society of Japan
4 1 Table 1 Masses and mass ratios of stars 3 T Table 3 Angular velocities of bounded motion m kg 333,400 m kg 1. m kg Ω 2π[T 1 ] 1. ω 2π/(27.32/365.24)[T 1 ] Table 2 2 Average distances of two stars - R km 1. - r km Euler t n = n t Taylor z n+1 z n + tg(t n, z n) (29) Euler t 1. Runge-Kutta t z n+1 = z n + k 2, (30) k 1 = t g(t n, z n), k 2 = t g(t n + t/2, z n + k 1/2) 2 1 Kepler. t z n+1 = z n + (k 1 + 2k 2 + 2k 3 + k 4 )/6, (31) k 1 = t g(t n, z n ), k 2 = t g(t n + t/2, z n + k 1 /2), k 3 = t g(t n + t/2, z n + k 2/2), k 4 = t g(t n + t, z n + k 3) Symplectic z = (q, p), ż = {z, H} (32) {z, H} Poisson H = K(p) + U(q) D H D H = {z, H} (33) z( t) = exp[ td H]z(0) (34) D H = {z, K} + {z, U} = D K + D U (35) z( t) = exp[ t(d K + D U )]z(0) (36) Symplectic 10),11) Symplectic O( t 2 ) exp[ t(d K + D U )] exp[ td K] exp[ td U ] + O( t 2 ) (37) Symplectic O( t 3 ) exp[ t(d K + D U )] exp[( t/2)d K ] exp[ td U ] exp[( t/2)d K ] (38) Symplectic O( t 4 ) exp[ t(d K + D U )] L 2 [s 1 (D K + D U )] L 2 [s 2 (D K + D U )] L 2 [s 1 (D K + D U )] (39) L 2[A + B] = exp[(1/2)a] exp[b] exp[(1/2)a] s 1 = 1/(2 2 1/3 ), s 2 = 1 2s 1 Symplectic O( t 6 ) exp[ t(d K + D U )] L 4 [s 3 (D K + D U )] L 4 [s 4 (D K + D U )] L 4 [s 3 (D K + D U )] (40) L 4[A + B] = L 2[s 1(A + B)]L 2[s 2(A + B)]L 2[s 1(A + B)] s 3 = 1/(2 2 1/5 ), s 4 = 1 2s 3 5) Velocity Verlet 4 c 2011 Information Processing Society of Japan
5 1., r 0 = 1, v 0 = 2π, ɛ = 0 Euler 1 Fig. 1 Orbits of the Earth, calculated by using numerical integration methods for the initial values of r 0 = 1 and v 0 = 2π. A circle is the exact solution in this case. 1 Symplectic Java Applets 3.1 Java Applet Kepler Applet r m k (2π) 2 2. r 0 = 1, v 0 = 2π 0.70 ɛ = Euler Runge-Kutta Fig. 2 Orbits of the Earth, calculated by using numerical integration methods for the case of the initial values of r 0 = 1 and v 0 = (2π) An ellipse with the eccentricity ɛ = 0.51 is the exact solution in this case. Applet Euler Runge-Kutta (RK) Symplectic SI ) t Newton i r 0 v 0 ii t t 1 2 (13) 3 4 Kepler 6 5 c 2011 Information Processing Society of Japan
6 3 Runge-Kutta (RK2nd) Simplectic (SI2nd) r 0 = 1, v 0 = 2π 0.70 RK2nd Fig. 3 Time variation of the energy and the angular momentum, which are calculated with the 2nd-order RK (RK2nd) and the SI2nd methods for the initial values of r 0 = 1 and v 0 = (2π) Note that the numerical deviation in the case of the RK2nd method grows monotonically as time elapses. r 0 = 1, v 0 = 2π 2π 0.70, ɛ = t = T/200, (T ) Euler. Euler 29 Runge-Kutta RK2nd 30 Symplectic SI2nd 38 Euler RK2nd SI2nd ɛ = 0.51 r 0 = 1, v 0 = 2π Runge-Kutta 4 (RK4th) Simplectic 4 (SI4th) r 0 = 1, v 0 = 2π 0.70 RK4th Fig. 4 Time variation of numerical deviations from the constants of motion, which are predicted with the 4th-order Runge-Kutta(RK) and the Symplectic Integrator(SI) methods for the initial values of r 0 = 1 and v 0 = (2π) In the case of the RK4th method, the numerical deviation grows monotonically as time elapses. Note that the scale of the vertical axis is magnified by a factor of 100. ɛ = 0.51 RK2nd SI2nd. RK4th SI4th RK2nd 4 RK4th SI4th RK4th SI4th 6 c 2011 Information Processing Society of Japan
7 5.. R r α 4α. Fig. 5 The binary system of the earth and the moon moving around the sun. Note that the relative distance between the earth and the moon is apparently multiplied by α (, and 4α within an inset) after the numerical integration. 3.2 Java Applet 3 3 Applet Symplectic ) RK 2 13) 2.3 Symplectic 2 Velocity Verlet 5) Kepler 3 6. r α 4α. Fig. 6 The binary system of the earth and the moon which is set to circle in the opposite direction, is traveling around the sun. Note that relative the distance between the earth and the moon is apparently multiplied byα (, and 4α within an inset) in the drawing. Symplectic 6 t. 3 Ẽ M 24 5 R r α =10 ( 4α =40 ). 13),15). Applet α c 2011 Information Processing Society of Japan
8 7 r 1.50 v 1/ 1.5. r α 4α. Fig. 7 The binary system of the earth and the moon moving around the sun. Note that the relative distance between the earth and the moon is apparently multiplied by α (, and 4α within an inset) after the numerical integration. 8 r 2.0 v 1/ 2.0 r α 4α. Fig. 8 The binary system of the earth and the moon is moving around the sun. Note that the relative distance between the earth and the moon is apparently multiplied by α (, and 4α within an inset) after the numerical integration ) 1 80 ±1 14),15) 1 3.8cm < (1 + β) r (1 + β) r, v v / 1 + β (41) β 15) 1/(1 + β) (1 + β) 3/2 50 r c 2011 Information Processing Society of Japan
9 Runge-Kutta Euler Runge-Kutta t Symplectic. 3 Java Applet , Java Applets Applets / 19) Web page 1) Oracle Corporation, Java T M Platform, Standard Edition 6 JDK. 2),,,,, JAVA pYE-3. 3),, Java Graphics Vol.2009-CE-99,No.2,1-8, ) W. Fendt, 5) PhET, Interactive Simulations, univ. of Colorado at Boulder, 6) PheET, ) , 8) (2007, ), phys/comp.pdf 9) 2008), 10) :Symplectic naoki/cipintro/symp/symp1.html 11) H. Yoshida, Construction of higher order symplectic integrators, Physics Letters A150 (1990) pp ) : 2008, Kyoto-University Open Courseware 13), 3 Fortran Pascal 1991,. 14) Wikipedia Lunar distance(astronomy), distance (astronomy) 15) Newton (2009, ) 16) H. Goldstein, Classical Mechanics, (1964, Addison-Wesley Pub. Company). 17) Java 2003,. 18) /. 19), 9 c 2011 Information Processing Society of Japan
Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.
Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action
CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS
CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =
3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β
3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle
Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee
Appendi to On the stability of a compressible aisymmetric rotating flow in a pipe By Z. Rusak & J. H. Lee Journal of Fluid Mechanics, vol. 5 4, pp. 5 4 This material has not been copy-edited or typeset
Math 6 SL Probability Distributions Practice Test Mark Scheme
Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry
Approximation of distance between locations on earth given by latitude and longitude
Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth
ΠΣΤΧΛΑΚΘ ΕΡΓΑΛΑ ΜΕΣΡΘΕΛ ΟΠΣΛΚΟΤ ΒΑΚΟΤ ΑΣΜΟΦΑΛΡΑ ΜΕ ΘΛΛΑΚΟ ΦΩΣΟΜΕΣΡΟ ΕΚΟ
ln(f( )) ΑΡΛΣΟΣΕΛΕΛΟ ΠΑΝΕΠΛΣΘΜΛΟ ΚΕΑΛΟΝΛΚΘ ΣΜΘΜΑ ΦΤΛΚΘ ΠΣΤΧΛΑΚΘ ΕΡΓΑΛΑ ΜΕΣΡΘΕΛ ΟΠΣΛΚΟΤ ΒΑΚΟΤ ΑΣΜΟΦΑΛΡΑ ΜΕ ΘΛΛΑΚΟ ΦΩΣΟΜΕΣΡΟ ΕΚΟ 4,6 4,4 4,2 4,0 3,8 3,6 3,4 3,2 3,0 2,8 2,6 2,4 2,2 2,0 1,8 1,6 1 2 3 4 5
Srednicki Chapter 55
Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third
Homework 3 Solutions
Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For
Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)
Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts
Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------
Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin
Forced Pendulum Numerical approach
Numerical approach UiO April 8, 2014 Physical problem and equation We have a pendulum of length l, with mass m. The pendulum is subject to gravitation as well as both a forcing and linear resistance force.
DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.
DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec
상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님
상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님 Motivation Bremsstrahlung is a major rocess losing energies while jet articles get through the medium. BUT it should be quite different from low energy
Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics
Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)
Second Order RLC Filters
ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor
Study on Re-adhesion control by monitoring excessive angular momentum in electric railway traction
() () Study on e-adhesion control by monitoring excessive angular momentum in electric railway traction Takafumi Hara, Student Member, Takafumi Koseki, Member, Yutaka Tsukinokizawa, Non-member Abstract
DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E.
DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM by Zoran VARGA, Ms.C.E. Euro-Apex B.V. 1990-2012 All Rights Reserved. The 2 DOF System Symbols m 1 =3m [kg] m 2 =8m m=10 [kg] l=2 [m] E=210000
Lifting Entry (continued)
ifting Entry (continued) Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion Planar state equations MARYAN 1 01 avid. Akin - All rights reserved http://spacecraft.ssl.umd.edu
ΠΣΤΥΙΑΚΗ ΔΡΓΑΙΑ. Μειέηε Υξόλνπ Απνζηείξσζεο Κνλζέξβαο κε Τπνινγηζηηθή Ρεπζηνδπλακηθή. Αζαλαζηάδνπ Βαξβάξα
ΣΔΥΝΟΛΟΓΙΚΟ ΔΚΠΑΙΓΔΤΣΙΚΟ ΙΓΡΤΜΑ ΘΔΑΛΟΝΙΚΗ ΥΟΛΗ ΣΔΥΝΟΛΟΓΙΑ ΣΡΟΦΙΜΩΝ & ΓΙΑΣΡΟΦΗ ΣΜΗΜΑ ΣΔΥΝΟΛΟΓΙΑ ΣΡΟΦΙΜΩΝ ΠΣΤΥΙΑΚΗ ΔΡΓΑΙΑ Μειέηε Υξόλνπ Απνζηείξσζεο Κνλζέξβαο κε Τπνινγηζηηθή Ρεπζηνδπλακηθή Αζαλαζηάδνπ Βαξβάξα
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.
Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given
Section 8.3 Trigonometric Equations
99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.
Matrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)
1. MATH43 String Theory Solutions 4 x = 0 τ = fs). 1) = = f s) ) x = x [f s)] + f s) 3) equation of motion is x = 0 if an only if f s) = 0 i.e. fs) = As + B with A, B constants. i.e. allowe reparametrisations
Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.
Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +
Higher Derivative Gravity Theories
Higher Derivative Gravity Theories Black Holes in AdS space-times James Mashiyane Supervisor: Prof Kevin Goldstein University of the Witwatersrand Second Mandelstam, 20 January 2018 James Mashiyane WITS)
Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03)..
Supplemental Material (not for publication) Persistent vs. Permanent Income Shocks in the Buffer-Stock Model Jeppe Druedahl Thomas H. Jørgensen May, A Additional Figures and Tables Figure A.: Wealth and
Macromechanics of a Laminate. Textbook: Mechanics of Composite Materials Author: Autar Kaw
Macromechanics of a Laminate Tetboo: Mechanics of Composite Materials Author: Autar Kaw Figure 4.1 Fiber Direction θ z CHAPTER OJECTIVES Understand the code for laminate stacing sequence Develop relationships
Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET
Aquinas College Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET Pearson Edexcel Level 3 Advanced Subsidiary and Advanced GCE in Mathematics and Further Mathematics Mathematical
Διερεύνηση ακουστικών ιδιοτήτων Νεκρομαντείου Αχέροντα
Διερεύνηση ακουστικών ιδιοτήτων Νεκρομαντείου Αχέροντα Βασίλειος Α. Ζαφρανάς Παναγιώτης Σ. Καραμπατζάκης ΠΕΡΙΛΗΨΗ H εργασία αφορά μία σειρά μετρήσεων του χρόνου αντήχησης της υπόγειας κρύπτης του «Νεκρομαντείου»
Differentiation exercise show differential equation
Differentiation exercise show differential equation 1. If y x sin 2x, prove that x d2 y 2 2 + 2y x + 4xy 0 y x sin 2x sin 2x + 2x cos 2x 2 2cos 2x + (2 cos 2x 4x sin 2x) x d2 y 2 2 + 2y x + 4xy (2x cos
1 String with massive end-points
1 String with massive end-points Πρόβλημα 5.11:Θεωρείστε μια χορδή μήκους, τάσης T, με δύο σημειακά σωματίδια στα άκρα της, το ένα μάζας m, και το άλλο μάζας m. α) Μελετώντας την κίνηση των άκρων βρείτε
D Alembert s Solution to the Wave Equation
D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique
Solution to Review Problems for Midterm III
Solution to Review Problems for Mierm III Mierm III: Friday, November 19 in class Topics:.8-.11, 4.1,4. 1. Find the derivative of the following functions and simplify your answers. (a) x(ln(4x)) +ln(5
VBA Microsoft Excel. J. Comput. Chem. Jpn., Vol. 5, No. 1, pp (2006)
J. Comput. Chem. Jpn., Vol. 5, No. 1, pp. 29 38 (2006) Microsoft Excel, 184-8588 2-24-16 e-mail: yosimura@cc.tuat.ac.jp (Received: July 28, 2005; Accepted for publication: October 24, 2005; Published on
( ) 2 and compare to M.
Problems and Solutions for Section 4.2 4.9 through 4.33) 4.9 Calculate the square root of the matrix 3!0 M!0 8 Hint: Let M / 2 a!b ; calculate M / 2!b c ) 2 and compare to M. Solution: Given: 3!0 M!0 8
is like multiplying by the conversion factor of. Dividing by 2π gives you the
Chapter Graphs of Trigonometric Functions Answer Ke. Radian Measure Answers. π. π. π. π. 7π. π 7. 70 8. 9. 0 0. 0. 00. 80. Multipling b π π is like multipling b the conversion factor of. Dividing b 0 gives
ΠΑΝΔΠΗΣΖΜΗΟ ΠΑΣΡΩΝ ΓΗΑΣΜΖΜΑΣΗΚΟ ΠΡΟΓΡΑΜΜΑ ΜΔΣΑΠΣΤΥΗΑΚΩΝ ΠΟΤΓΩΝ «ΤΣΖΜΑΣΑ ΔΠΔΞΔΡΓΑΗΑ ΖΜΑΣΩΝ ΚΑΗ ΔΠΗΚΟΗΝΩΝΗΩΝ» ΣΜΖΜΑ ΜΖΥΑΝΗΚΩΝ Ζ/Τ ΚΑΗ ΠΛΖΡΟΦΟΡΗΚΖ
ΠΑΝΔΠΗΣΖΜΗΟ ΠΑΣΡΩΝ ΓΗΑΣΜΖΜΑΣΗΚΟ ΠΡΟΓΡΑΜΜΑ ΜΔΣΑΠΣΤΥΗΑΚΩΝ ΠΟΤΓΩΝ «ΤΣΖΜΑΣΑ ΔΠΔΞΔΡΓΑΗΑ ΖΜΑΣΩΝ ΚΑΗ ΔΠΗΚΟΗΝΩΝΗΩΝ» ΣΜΖΜΑ ΜΖΥΑΝΗΚΩΝ Ζ/Τ ΚΑΗ ΠΛΖΡΟΦΟΡΗΚΖ ΣΜΖΜΑ ΖΛΔΚΣΡΟΛΟΓΩΝ ΜΖΥΑΝΗΚΩΝ ΚΑΗ ΣΔΥΝΟΛΟΓΗΑ ΤΠΟΛΟΓΗΣΩΝ ΣΜΖΜΑ
( y) Partial Differential Equations
Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate
Lecture 26: Circular domains
Introductory lecture notes on Partial Differential Equations - c Anthony Peirce. Not to be copied, used, or revised without eplicit written permission from the copyright owner. 1 Lecture 6: Circular domains
High order interpolation function for surface contact problem
3 016 5 Journal of East China Normal University Natural Science No 3 May 016 : 1000-564101603-0009-1 1 1 1 00444; E- 00030 : Lagrange Lobatto Matlab : ; Lagrange; : O41 : A DOI: 103969/jissn1000-56410160300
Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013
Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering
CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS
CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS EXERCISE 01 Page 545 1. Use matrices to solve: 3x + 4y x + 5y + 7 3x + 4y x + 5y 7 Hence, 3 4 x 0 5 y 7 The inverse of 3 4 5 is: 1 5 4 1 5 4 15 8 3
Yoshifumi Moriyama 1,a) Ichiro Iimura 2,b) Tomotsugu Ohno 1,c) Shigeru Nakayama 3,d)
1,a) 2,b) 1,c) 3,d) Quantum-Inspired Evolutionary Algorithm 0-1 Search Performance Analysis According to Interpretation Methods for Dealing with Permutation on Integer-Type Gene-Coding Method based on
ΠΕΡΙΓΡΑΦΗ ΚΥΜΑΤΙΚΟΥ ΚΛΙΜΑΤΟΣ ΣΤΟ ΘΡΑΚΙΚΟ ΠΕΛΑΓΟΣ ΜΕ ΤΗ ΧΡΗΣΗ ΤΟΥ ΜΑΘΗΜΑΤΙΚΟΥ ΟΜΟΙΩΜΑΤΟΣ SWAN
ΠΕΡΙΓΡΑΦΗ ΚΥΜΑΤΙΚΟΥ ΚΛΙΜΑΤΟΣ ΣΤΟ ΘΡΑΚΙΚΟ ΠΕΛΑΓΟΣ ΜΕ ΤΗ ΧΡΗΣΗ ΤΟΥ ΜΑΘΗΜΑΤΙΚΟΥ ΟΜΟΙΩΜΑΤΟΣ SWAN Αναστασίου Σ., Συλαίος Γ.* και Τσιχριντζής Β. Εργαστήριο Οικολογικής Μηχανικής & Τεχνολογίας -Τµήµα Μηχανικών
Section 8.2 Graphs of Polar Equations
Section 8. Graphs of Polar Equations Graphing Polar Equations The graph of a polar equation r = f(θ), or more generally F(r,θ) = 0, consists of all points P that have at least one polar representation
ΙΕΥΘΥΝΤΗΣ: Καθηγητής Γ. ΧΡΥΣΟΛΟΥΡΗΣ Ι ΑΚΤΟΡΙΚΗ ΙΑΤΡΙΒΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΚΑΙ ΑΕΡΟΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΣΥΣΤΗΜΑΤΩΝ ΠΑΡΑΓΩΓΗΣ & ΑΥΤΟΜΑΤΙΣΜΟΥ / ΥΝΑΜΙΚΗΣ & ΘΕΩΡΙΑΣ ΜΗΧΑΝΩΝ ΙΕΥΘΥΝΤΗΣ: Καθηγητής Γ. ΧΡΥΣΟΛΟΥΡΗΣ Ι ΑΚΤΟΡΙΚΗ
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ (ΣΔΟ) ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ (ΣΔΟ) ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ «ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ ΛΟΓΙΣΤΙΚΩΝ ΚΑΤΑΣΤΑΣΕΩΝ ΤΩΝ ΕΤΑΙΡΕΙΩΝ ΚΡΕΤΑ ΦΑΡΜ Α.Β.Ε.Ε. &
Chapter 6: Systems of Linear Differential. be continuous functions on the interval
Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations
b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!
MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.
Design Method of Ball Mill by Discrete Element Method
Design Method of Ball Mill by Discrete Element Method Sumitomo Chemical Co., Ltd. Process & Production Technology Center Makio KIMURA Masayuki NARUMI Tomonari KOBAYASHI The grinding rate of gibbsite in
Buried Markov Model Pairwise
Buried Markov Model 1 2 2 HMM Buried Markov Model J. Bilmes Buried Markov Model Pairwise 0.6 0.6 1.3 Structuring Model for Speech Recognition using Buried Markov Model Takayuki Yamamoto, 1 Tetsuya Takiguchi
GPGPU. Grover. On Large Scale Simulation of Grover s Algorithm by Using GPGPU
GPGPU Grover 1, 2 1 3 4 Grover Grover OpenMP GPGPU Grover qubit OpenMP GPGPU, 1.47 qubit On Large Scale Simulation of Grover s Algorithm by Using GPGPU Hiroshi Shibata, 1, 2 Tomoya Suzuki, 1 Seiya Okubo
ΜΕΛΕΤΗ ΑΠΟΤΙΜΗΣΗΣ ΠΑΡΑΓΟΜΕΝΗΣ ΕΝΕΡΓΕΙΑΣ Φ/Β ΣΥΣΤΗΜΑΤΩΝ ΕΓΚΑΤΕΣΤΗΜΕΝΩΝ ΣΕ ΕΛΛΑ Α ΚΑΙ ΤΣΕΧΙΑ
ΜΕΛΕΤΗ ΑΠΟΤΙΜΗΣΗΣ ΠΑΡΑΓΟΜΕΝΗΣ ΕΝΕΡΓΕΙΑΣ Φ/Β ΣΥΣΤΗΜΑΤΩΝ ΕΓΚΑΤΕΣΤΗΜΕΝΩΝ ΣΕ ΕΛΛΑ Α ΚΑΙ ΤΣΕΧΙΑ V. Poulek 1, M. Libra 2, Ι. Γράβαλος 3, Θ. Γιαλαµάς 3,. Μόσχου 4, Π. Ξυραδάκης 3,. Κατέρης 4, Ζ. Τσιρόπουλος 3,
HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:
HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying
5.4 The Poisson Distribution.
The worst thing you can do about a situation is nothing. Sr. O Shea Jackson 5.4 The Poisson Distribution. Description of the Poisson Distribution Discrete probability distribution. The random variable
DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C
DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C By Tom Irvine Email: tomirvine@aol.com August 6, 8 Introduction The obective is to derive a Miles equation which gives the overall response
Παραμύθια τησ Χαλιμϊσ, τομ. A Σελύδα 1
Παραμύθια τησ Χαλιμϊσ, τομ. A Σελύδα 1 Παραμύθια τησ Χαλιμϊσ, τομ. A Σελύδα 2 Dervish Abu Bekr, «Παραμύθια τησ Χαλιμϊσ, τομ. Α» Ιούνιοσ 2013 Φωτo εξωφύλλου: Βαςιλεύα Αςπαςύα Μαςούρα Επιμϋλεια ϋκδοςησ:
Αναερόβια Φυσική Κατάσταση
Αναερόβια Φυσική Κατάσταση Γιάννης Κουτεντάκης, BSc, MA. PhD Αναπληρωτής Καθηγητής ΤΕΦΑΑ, Πανεπιστήµιο Θεσσαλίας Περιεχόµενο Μαθήµατος Ορισµός της αναερόβιας φυσικής κατάστασης Σχέσης µε µηχανισµούς παραγωγής
1 1 1 2 1 2 2 1 43 123 5 122 3 1 312 1 1 122 1 1 1 1 6 1 7 1 6 1 7 1 3 4 2 312 43 4 3 3 1 1 4 1 1 52 122 54 124 8 1 3 1 1 1 1 1 152 1 1 1 1 1 1 152 1 5 1 152 152 1 1 3 9 1 159 9 13 4 5 1 122 1 4 122 5
Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O
Q1. (a) Explain the meaning of the terms mean bond enthalpy and standard enthalpy of formation. Mean bond enthalpy... Standard enthalpy of formation... (5) (b) Some mean bond enthalpies are given below.
DuPont Suva 95 Refrigerant
Technical Information T-95 ENG DuPont Suva refrigerants Thermodynamic Properties of DuPont Suva 95 Refrigerant (R-508B) The DuPont Oval Logo, The miracles of science, and Suva, are trademarks or registered
Lifting Entry 2. Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYLAND U N I V E R S I T Y O F
ifting Entry Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYAN 1 010 avid. Akin - All rights reserved http://spacecraft.ssl.umd.edu ifting Atmospheric
Navigation Mathematics: Kinematics (Coordinate Frame Transformation) EE 565: Position, Navigation and Timing
Lecture Navigation Mathematics: Kinematics (Coordinate Frame Transformation) EE 565: Position, Navigation and Timing Lecture Notes Update on Feruary 20, 2018 Aly El-Osery and Kevin Wedeward, Electrical
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΗΛΕΚΤΡΙΚΗΣ ΙΣΧΥΟΣ ΕΡΓΑΣΤΗΡΙΟ ΥΨΗΛΩΝ ΤΑΣΕΩΝ Κεραυνοπληξία πλοίου: Πειραματική διερεύνηση, μέσω δοκιμών σε μοντέλα
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΟΔΟΝΤΙΑΤΡΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΟΔΟΝΤΙΚΗΣ ΚΑΙ ΑΝΩΤΕΡΑΣ ΠΡΟΣΘΕΤΙΚΗΣ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΟΔΟΝΤΙΑΤΡΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΟΔΟΝΤΙΚΗΣ ΚΑΙ ΑΝΩΤΕΡΑΣ ΠΡΟΣΘΕΤΙΚΗΣ ΣΥΓΚΡΙΤΙΚΗ ΜΕΛΕΤΗ ΤΗΣ ΣΥΓΚΡΑΤΗΤΙΚΗΣ ΙΚΑΝΟΤΗΤΑΣ ΟΡΙΣΜΕΝΩΝ ΠΡΟΚΑΤΑΣΚΕΥΑΣΜΕΝΩΝ ΣΥΝΔΕΣΜΩΝ ΑΚΡΙΒΕΙΑΣ
Πειράµατα Ηλεκτρικών Ταλαντώσεων µε τη χρήση του Συστήµατος Συγχρονικής Λήψης και Απεικόνισης (Multilog) των Γενικών Λυκείων
Ι ΑΚΤΙΚΗ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΝΕΕΣ ΤΕΧΝΟΛΟΓΙΕΣ ΣΤΗΝ ΕΚΠΑΙ ΕΥΣΗ ΠΡΑΚΤΙΚΑ 5 ου ΠΑΝΕΛΛΗΝΙΟΥ ΣΥΝΕ ΡΙΟΥ, ΤΕΥΧΟΣ Γ Πειραµατική ιδασκαλία της Φυσικής Πειράµατα Ηλεκτρικών Ταλαντώσεων µε τη χρήση του Συστήµατος
2.1
181 8588 2 21 1 e-mail: sekig@th.nao.ac.jp 1. G ab kt ab, (1) k 8pGc 4, G c 2. 1 2.1 308 2009 5 3 1 2) ( ab ) (g ab ) (K ab ) 1 2.2 3 1 (g ab, K ab ) 1 t a S n a a b a 2.3 a b i (t a ) 2 1 2.4 1 g ab ab
Homework 8 Model Solution Section
MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx
Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (2, 1,0). Find a unit vector in the direction of A. Solution: A = 1+9 = 3.
Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (, 1,0). Find a unit vector in the direction of A. Solution: A = ˆx( 1)+ŷ( 1 ( 1))+ẑ(0 ( 3)) = ˆx+ẑ3, A = 1+9 = 3.16, â = A A = ˆx+ẑ3 3.16
DuPont Suva. DuPont. Thermodynamic Properties of. Refrigerant (R-410A) Technical Information. refrigerants T-410A ENG
Technical Information T-410A ENG DuPont Suva refrigerants Thermodynamic Properties of DuPont Suva 410A Refrigerant (R-410A) The DuPont Oval Logo, The miracles of science, and Suva, are trademarks or registered
[1] P Q. Fig. 3.1
1 (a) Define resistance....... [1] (b) The smallest conductor within a computer processing chip can be represented as a rectangular block that is one atom high, four atoms wide and twenty atoms long. One
Differential equations
Differential equations Differential equations: An equation inoling one dependent ariable and its deriaties w. r. t one or more independent ariables is called a differential equation. Order of differential
Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Review Test MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the exact value of the expression. 1) sin - 11π 1 1) + - + - - ) sin 11π 1 ) ( -
Math221: HW# 1 solutions
Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin
An experimental and theoretical study of the gas phase kinetics of atomic chlorine reactions with CH 3 NH 2, (CH 3 ) 2 NH, and (CH 3 ) 3 N
Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2015 An experimental and theoretical study of the gas phase kinetics of atomic chlorine
ΟΙ Υ ΡΟΓΕΩΛΟΓΙΚΕΣ ΣΥΝΘΗΚΕΣ ΣΤΗΝ ΛΕΚΑΝΗ ΠΟΤΑΜΙΑΣ ΚΑΙ Η ΑΛΛΗΛΟΕΠΙ ΡΑΣΗ ΤΟΥ Υ ΑΤΙΚΟΥ ΚΑΘΕΣΤΩΤΟΣ ΜΕ ΤΗ ΜΕΛΛΟΝΤΙΚΗ ΛΙΓΝΙΤΙΚΗ ΕΚΜΕΤΑΛΛΕΥΣΗ ΣΤΗΝ ΕΛΑΣΣΟΝΑ
ελτίο της Ελληνικής εωλογικής Εταιρίας τοµ. XXXVI, 2004 Πρακτικά 10 ου ιεθνούς Συνεδρίου, Θεσ/νίκη Απρίλιος 2004 Bulletin of the Geological Society of Greece vol. XXXVI, 2004 Proceedings of the 10 th International
Trigonometric Formula Sheet
Trigonometric Formula Sheet Definition of the Trig Functions Right Triangle Definition Assume that: 0 < θ < or 0 < θ < 90 Unit Circle Definition Assume θ can be any angle. y x, y hypotenuse opposite θ
Operational Programme Education and Lifelong Learning. Continuing Education Programme for updating Knowledge of University Graduates:
Operational Programme Education and Lifelong Learning Continuing Education Programme for updating Knowledge of University Graduates: Modern Development in Offshore Structures 1 - SECTION 8.2 - GDM George
Derivation of Optical-Bloch Equations
Appendix C Derivation of Optical-Bloch Equations In this appendix the optical-bloch equations that give the populations and coherences for an idealized three-level Λ system, Fig. 3. on page 47, will be
Chapter 6: Systems of Linear Differential. be continuous functions on the interval
Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations
ΚΕΦΑΛΑΙΟ 2. Περιγραφή της Κίνησης. 2.1 Κίνηση στο Επίπεδο
ΚΕΦΑΛΑΙΟ 2 Περιγραφή της Κίνησης Στο κεφάλαιο αυτό θα δείξουμε πώς να προγραμματίσουμε απλές εξισώσεις τροχιάς ενός σωματιδίου και πώς να κάνουμε βασική ανάλυση των αριθμητικών αποτελεσμάτων. Χρησιμοποιούμε
DuPont Suva 95 Refrigerant
Technical Information T-95 SI DuPont Suva refrigerants Thermodynamic Properties of DuPont Suva 95 Refrigerant (R-508B) The DuPont Oval Logo, The miracles of science, and Suva, are trademarks or registered
Supporting Information
Supporting Information Wiley-VCH 27 69451 Weinheim, Germany Supplementary Figure 1. Synthetic results as detected by XRD (Cu-Kα). Simulation pattern of MCM-68 Relative Intensity / a.u. YNU-2P Conventional
SPECIAL FUNCTIONS and POLYNOMIALS
SPECIAL FUNCTIONS and POLYNOMIALS Gerard t Hooft Stefan Nobbenhuis Institute for Theoretical Physics Utrecht University, Leuvenlaan 4 3584 CC Utrecht, the Netherlands and Spinoza Institute Postbox 8.195
ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?
Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least
An Advanced Manipulation for Space Redundant Macro-Micro Manipulator System
6 (5..9) 6 An Advanced Manipulation for Space Redundant Macro-Micro Manipulator System Kazuya Yoshida, Hiromitsu Watanabe * *Tohoku University : (Macro-micro manipulator system) (Flexible base), (Vibration
Distances in Sierpiński Triangle Graphs
Distances in Sierpiński Triangle Graphs Sara Sabrina Zemljič joint work with Andreas M. Hinz June 18th 2015 Motivation Sierpiński triangle introduced by Wac law Sierpiński in 1915. S. S. Zemljič 1 Motivation
SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018
Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals
ΠΕΡΙΕΧΟΜΕΝΑ. Κεφάλαιο 1: Κεφάλαιο 2: Κεφάλαιο 3:
4 Πρόλογος Η παρούσα διπλωµατική εργασία µε τίτλο «ιερεύνηση χωρικής κατανοµής µετεωρολογικών µεταβλητών. Εφαρµογή στον ελληνικό χώρο», ανατέθηκε από το ιεπιστηµονικό ιατµηµατικό Πρόγραµµα Μεταπτυχιακών
([28] Bao-Feng Feng (UTP-TX), ( ), [20], [16], [24]. 1 ([3], [17]) p t = 1 2 κ2 T + κ s N -259-
5,..,. [8]..,,.,.., Bao-Feng Feng UTP-TX,, UTP-TX,,. [0], [6], [4].. ps ps, t. t ps, 0 = ps. s 970 [0] []. [3], [7] p t = κ T + κ s N -59- , κs, t κ t + 3 κ κ s + κ sss = 0. T s, t, Ns, t., - mkdv. mkdv.
Technical Information T-9100 SI. Suva. refrigerants. Thermodynamic Properties of. Suva Refrigerant [R-410A (50/50)]
d Suva refrigerants Technical Information T-9100SI Thermodynamic Properties of Suva 9100 Refrigerant [R-410A (50/50)] Thermodynamic Properties of Suva 9100 Refrigerant SI Units New tables of the thermodynamic
ΚΕΡΚΙΔΙΚΗ ΚΑΙ ΜΗΡΙΑΙΑ ΠΡΟΣΠΕΛΑΣΗ ΣΕ ΣΤΕΦΑΝΙΟΓΡΑΦΙΕΣ ΚΑΙ ΑΓΓΕΙΟΠΛΑΣΤΙΚΕΣ. ΜΙΑ ΣΥΓΚΡΙΤΙΚΗ ΜΕΛΕΤΗ
ΚΕΡΚΙΔΙΚΗ ΚΑΙ ΜΗΡΙΑΙΑ ΠΡΟΣΠΕΛΑΣΗ ΣΕ ΣΤΕΦΑΝΙΟΓΡΑΦΙΕΣ ΚΑΙ ΑΓΓΕΙΟΠΛΑΣΤΙΚΕΣ. ΜΙΑ ΣΥΓΚΡΙΤΙΚΗ ΜΕΛΕΤΗ Μαυρόγιαννη Γεωργία 1, Καραντζούλα Ευαγγελία 2, Τουλιά Γεωργία 3, Κυριακόπουλος Βασίλης 4, Καδδά Όλγα 5 EΡΕΥΝΑ
Π Τ Υ Χ Ι Α Κ Η /ΔΙ Π Λ Ω Μ ΑΤ Ι Κ Η Ε Ρ ΓΑ Σ Ι Α
Α Ρ Ι Σ Τ Ο Τ Ε Λ Ε Ι Ο Π Α Ν Ε Π Ι Σ Τ Η Μ Ι Ο Θ Ε Σ Σ Α Λ Ο Ν Ι Κ Η Σ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ Π Τ Υ Χ Ι Α Κ Η /ΔΙ Π Λ Ω Μ ΑΤ Ι Κ Η Ε Ρ ΓΑ Σ Ι Α «ΥΠΟΣΤΗΡΙΞΗ ΕΚΜΑΘΗΣΗΣ ΝΟΗΜΑΤΙΚΗΣ ΜΕ
Problem 7.19 Ignoring reflection at the air soil boundary, if the amplitude of a 3-GHz incident wave is 10 V/m at the surface of a wet soil medium, at what depth will it be down to 1 mv/m? Wet soil is
The Spiral of Theodorus, Numerical Analysis, and Special Functions
Theo p. / The Spiral of Theodorus, Numerical Analysis, and Special Functions Walter Gautschi wxg@cs.purdue.edu Purdue University Theo p. 2/ Theodorus of ca. 46 399 B.C. Theo p. 3/ spiral of Theodorus 6
derivation of the Laplacian from rectangular to spherical coordinates
derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used
Numerical Analysis FMN011
Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =