Διδάσκων: Παναγιώτης Ανδρέου
|
|
- Αθάμας Λαιμός
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Διάλεξη 10: Αλγόριθμοι ΤαξινόμησηςII Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Οι αλγόριθμοι ταξινόμησης: Δ. QuickSort Γρήγορη Ταξινόμηση Ε. BucketSort Ταξινόμηση με Κάδους - Έμμεση Ταξινόμηση - Εξωτερική Ταξινόμηση Διδάσκων: Παναγιώτης Ανδρέου ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 1
2 Δ. Γρήγορη Ταξινόμηση (QuickSort) Η γρήγορη ταξινόμηση (QuickSort) είναι, όπως ο Mergesort, διαδικασία διαίρει και βασίλευε(divide and conquer, δηλ. αναδρομική διαδικασία όπου το πρόβλημα μοιράζεται σε μέρη τα οποία λύνονται ξεχωριστά, και μετά οι λύσεις συνδυάζονται). Δεν χρειάζεται βοηθητικό πίνακα (όπως στην Mergesort) Πρακτικά, ο πιo γρήγορος αλγόριθμος. Στη χείριστη περίπτωση ο αλγόριθμοςquick Sortείναι Ο(n²)αλλά στην καλύτερη περίπτωση χρειάζεται Ω(nlogn): Τα περισσότερα συστήματα χρησιμοποιούν το QuickSort(π.χ., Unix) και οι περισσότερες γλώσσες προγραμματισμού το προσφέρουν σαν μέρος των βασικών βιβλιοθηκών τους πχ. C, JAVA, C++, etc. ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 2
3 QuickSort: Αλγόριθμος Aν το δεδομένο εισόδου περιέχει 0 ή 1 στοιχεία δεν κάνουμε τίποτα. Διαφορετικά, αναδρομικά: 1. διαλέγουμε ένα στοιχείο p(ακόμα δεν ορίζουμε πιο ακριβώς), το οποίο ονομάζουμε τοάξονα(pivot)στοιχείο και το αφαιρούμε από το δεδομένο εισόδου. 2. χωρίζουμε τον πίνακα σε δύο μέρη S1και S2, όπου το S1θα περιέχει όλα τα στοιχεία του πίνακα που είναι μικρότερα από το p, και το S2θα περιέχει τα υπόλοιπα στοιχεία (όλα τα στοιχεία που είναι μεγαλύτερα ή ίσα από το p). 3. Καλούμε αναδρομικά τον αλγόριθμο στο S1, και παίρνουμε απάντηση το Τ1, και στο S2, και παίρνουμε απάντηση το Τ2. 4. Επιστρέφουμε τον πίνακα [Τ1, p, T2]. ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 3
4 QuickSort: Βασική Ιδέα [72, 12, 1, 34, 3, 50, 28, 6, 5, 22, 91, 73] χωρίζουμε με pivot το 28 (μπορούσε να είναι οποιοδήποτε άλλο στοιχείο) Θέτουμε αριστερά του pivot τα μικρότερα και δεξιά τα μεγαλύτερα του < 28 >= 28 [12, 1, 3, 6, 5, 22] 28 [72,34,50,91,73] Quicksort Quicksort 1, 3, 5, 6, 12, 22 34, 50,72, 73, 91 Αποτέλεσμα: 1, 3, 5, 6, 12, 22, 28, 34, 50, 72, 73, 91 ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 4
5 QuickSort: Ψευδοκώδικας void Quicksort(int A[], int l, int r){ if (l>=r) return; int pivotindex = findpivotindex(a, l, r); int pivot = A[pivotIndex]; // κάνουμε swap τον pivot με το τελευταίο. swap(a, pivotindex, r); Έστω ότι διαλέξαμε τον μεσαίο, δηλ., (l+r)/2;. Θα μπορούσαμε να διαλέξουμε οποιονδήποτε άλλο /* H διαδικασία partition χωρίζει τον πίνακα Α[l r-1] έτσι ώστε Α[l..k-1] να περιέχει στοιχεία < pivot, A[k r-1] να περιέχει στοιχεία >=pivot, και επιστρέφει την τιμή k. */ int k = partition (A, l, r-1, pivot); // κάνουμε swap τον k με το τελευταίο. swap(a, k, r); } Quicksort(A, l, k-1); QuickSort(A, k+1, r); A l r-1 r pivot ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 5
6 Διαδικασία Partition(A, l, r, p) Με δεδομένο εισόδου τον πίνακα Α[l r], και pivot p, θέλουμε να χωρίσουμε τον πίνακα σε δύο μέρη ως προς το p. To πιο πάνω πρέπει να επιτευχθεί χωρίςτη χρήση δεύτερου πίνακα (το sorting θα γίνει επί τόπου). Βασική Ιδέα: 1. Επαναλαμβάνουμε τα εξής μέχρις ότου τα l και r να συναντηθούν. 2. Προχώρα τοrπρος τα αριστεράόσο τα στοιχεία που βρίσκεις είναι μεγαλύτερα(ή ίσα) του p, 3. Προχώρα το l προς τα δεξιάόσο τα στοιχεία που βρίσκεις είναι μικρότερα του p, 4. αντάλλαξε τα στοιχεία που δείχνονται από τα l και r. ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 6
7 Παράδειγμα Εκτέλεσης Partition Δεδομένο Εισόδου: index pivot = 48, μετακίνηση του pivot στο τέλος (swap(4, 8)): l r εκτέλεση του Partition(A, l, r, 48): l r l r l r r l pivot ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 7
8 Quicksort: Υλοποίηση public static void QuickSort(int A[], int l, int r) { int pivot, pivotindex; A if (l >= r) return; // Διαλέγουμε το pivot pivotindex = findpivotindex(l, r); pivot = A[pivotIndex]; // Κάνουμε swap το pivot με το τελευταίο swap(a, pivotindex, r); /* H διαδικασία partition χωρίζει τον πίνακα Α[l r-1] έτσι ώστε * Α[l..k-1] να περιέχει στοιχεία < pivot, A[k r-1] να περιέχει στοιχεία * >=pivot, και επιστρέφει την τιμή k. */ int k = partition(a, l, r - 1, pivot); // Κάνουμε swap το k με το τελευταίο if (A[r] < A[k]) swap(a, k, r); l r-1 r pivot } QuickSort(A, l, k - 1); QuickSort(A, k + 1, r); ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 8
9 Quicksort: Υλοποίηση(συν.) public static int findpivotindex(int l, int r) { return (l + r) / 2; } public static void swap(int A[], int pivot, int r) { int tmp = A[pivot]; A[pivot] = A[r]; A[r] = tmp; } ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 9
10 Quicksort: Υλοποίηση(συν.) public static int partition(int A[], int l, int r, int pivot) { while (l < r) { // προχωρούμε από l στο r μέχρι να χρειαστεί ένα swap while (A[l] < pivot && l < r) l++; // leave <pivot on left // προχωρούμε από r στο l μέχρι να χρειαστεί ένα swap while (pivot <= A[r] && l < r) r--; // leave >=pivot on right if (l == r) break; A } // τώρα κάνε το swap l if (A[l] >= pivot) swap(a, l, r); // move >= to the right r-1 r pivot } // επέστρεψε το σημείο στο οποίο θέλουμε να γίνει η // εισαγωγή του pivot return l; ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 10
11 Παράδειγμα Εκτέλεσης QuickSort BEFORE:[72,6,37,48,30,42,83,75] Index: ** QuickSort [0,7] [72,6,37,48,30,42,83,75,] PivotIndex: 3(48) => Swapping 48, 75 [72,6,37,75,30,42,83,48,] Partitioning [0,6] Swapping 72, 42 [42,6,37,75,30,72,83,48,] Swapping 75, 30 [42,6,37,30,75,72,83,48,] Inserting Pivot at Position:4 Swapping 75, 48 [42,6,37,30,48,72,83,75,] ** QuickSort [0,3] [42,6,37,30,48,72,83,75,] PivotIndex: 1(6) => Swapping 6, 30 [42,30,37,6,48,72,83,75,] Partitioning [0,2] Inserting Pivot at Position:0 Swapping 42, 6 ** QuickSort [1,3] [6,30,37,42,48,72,83,75,] PivotIndex: 2(37) => Swapping 37, 42 [6,30,42,37,48,72,83,75,] Partitioning [1,2] Inserting Pivot at Position:2 Swapping 42, 37 ** QuickSort [1,1] -> RETURN ** QuickSort [3,3] -> RETURN ** QuickSort [5,7] [6,30,37,42,48,72,83,75,] PivotIndex: 6(83) => Swapping 83, 75 [6,30,37,42,48,72,75,83,] Partitioning [5,6] with pivot:83 Inserting Pivot at Position:6 ** QuickSort [5,5] -> RETURN ** QuickSort [7,7] -> RETURN AFTER:[6,30,37,42,48,72,75,83,] ** QuickSort [0,-1] -> RETURN ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 11
12 Ανάλυση του Χρόνου Εκτέλεσης Η εύρεση του pivotαπαιτεί χρόνο Ο(1) και η διαδικασία Partition(Α, l, r, p) εκτελείται σε χρόνο O(n)σε κάθε επίπεδο της αναδρομής. Η αναδρομική εκτέλεσητου QuickSortπαίρνει στην χείριστη περίπτωση χρόνο O(n) και στην καλύτερη περίπτωση χρόνο Ω(logn) Χείριστη περίπτωση: Κάθε φορά που επιλέγουμε τον pivot όλα τα στοιχεία τυγχάνει να ταξινομούνται είτε μόνοαριστερά του (δηλαδή <pivot)ή μόνοδεξιά του (δηλαδή >=pivot) πχ 9,9,9,9,9,9,9 Συνολικός χρόνος εκτέλεσης Τ(n) O(n²). Βέλτιστη περίπτωση: Κάθε φορά που επιλέγουμε τον pivot τα μισάστοιχεία ταξινομούνται αριστερά του (δηλαδή <pivot) και τα υπόλοιπα μισά δεξιά του (δηλαδή >=pivot) πχ 1,2,3,4,5,6,7 Συνολικός χρόνος εκτέλεσης Τ(n) Ω(n log n). ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 12
13 Ανάλυση Μέσης Περίπτωσης Θεωρούμε όλες τις πιθανές περιπτώσεις της συμπεριφοράς της μεθόδου Partition(A, i, j, p), όπου j-i= n-1. Υπάρχουν n τέτοιες περιπτώσεις: το αριστερό κομμάτι του partition μπορεί να έχει από 0 μέχρι n-1 στοιχεία. Ας υποθέσουμε πως οι n αυτές περιπτώσεις είναι ισοπίθανες, δηλαδή η κάθε μια έχει πιθανότητα 1/n. Τότε η μέση περίπτωση του Τ(n) δίνεται ως Επίλυση της αναδρομικής σχέσης δίνει T(n) O(n log n). ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 13 = = + = + + = ) ( 2 )] 1 ( ) ( [ 1 ) ( n i n i i T n n c i n T i T n n c n T
14 Παρατηρήσεις Πως δουλεύει η μέθοδος Partition με δεδομένο εισόδου πίνακα με πολλά στοιχεία ίσα με το pivot; Υπάρχουν άλλες στρατηγικές για επιλογή του pivot; pivot = mid(a[1], A[n], A[n/2]) Επέλεξε τυχαία κάποιο στοιχείο του πίνακα Στην πράξη, για δεδομένα εισόδου μικρού μεγέθους το InsertionSort δουλεύει πιο αποδοτικά. Επομένως μια καλή στρατηγική θα ήταν να συνδυάσουμε τους δύο αλγόριθμους ώστε σε μικρούς πίνακες (π.χ. n 10) να χρησιμοποιείται το ΙnsertionSort και σε μεγάλους το Quicksort: στη μέθοδος Quicksort ανταλλάξτε την πρώτη γραμμή με την εξής: if (j-i)<= 10 InsertionSort(A[i j], j-i); Ακόμα ένας πιθανός τρόπος βελτίωσης του χρόνου εκτέλεσης είναι η χρήση στοίβας αντί αναδρομής. ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 14
15 Κάτω φράγμα για αλγόριθμους ταξινόμησης Ξέρουμε πως το πρόβλημα ταξινόμησης μπορεί να λυθεί σε χρόνο Ο(n log n) (QuickSort και MergeSort). Υπάρχει πιο αποδοτικός αλγόριθμος ταξινόμησης; Θα δείξουμε πως κάθε αλγόριθμος ταξινόμησης είναι Ω(n log n). Ως μονάδα μέτρησης αποδοτικότητας θα χρησιμοποιήσουμε τον αριθμό συγκρίσεωνπου απαιτεί κάποιος αλγόριθμος. Υποθέτουμε ότι κάθε στοιχείο του πίνακα που θέλουμε να ταξινομήσουμε είναι διαφορετικό από όλα τα άλλα. ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 15
16 Σειριακή διάταξη στοιχείων και ταξινόμηση Η συμπεριφορά ενός αλγόριθμου ταξινόμησης εξαρτάται μόνο από τη σχετική σειρά μεταξύ των στοιχείων που ταξινομούμε και όχι από τα συγκεκριμένα στοιχεία. Δηλαδή: αν Ακαι Βείναι δύο πίνακες τέτοιοι ώστε για κάθε iκαι j, A[i] < A[j] αν και μόνο αν Β[i] < B[j], τότε ο αριθμός των βημάτων (όπως και ο αριθμός των συγκρίσεων) που θα εκτελέσει κάποιος αλγόριθμος με δεδομένο εισόδου Αθα είναι ο ίδιος με τον ανάλογο αριθμό που θα εκτελέσει με δεδομένο εισόδου Β. Άρα, η σειριακή διάταξη των στοιχείων του δεδομένου εισόδου Α, Α[1], Α[2],, Α[n], έχει κύρια σημασία. Υπάρχουν n! διαφορετικές τοποθετήσεις nξεχωριστών στοιχείων. Άρα υπάρχουν n! διαφορετικά δεδομένα εισόδου. ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 16
17 Ανάλυση Αλγόριθμων Ταξινόμησης Θα περιγράψουμε τη συμπεριφορά ενός αλγόριθμου ως ένα δένδρο αποφάσεων(decision tree). Στη ρίζα επιτρέπονται όλες οι διαφορετικές σειρές των στοιχείων. Ας υποθέσουμε πως ο αλγόριθμος συγκρίνει τα δύο πρώτα στοιχεία Α[1] και Α[2]. Τότε το αριστερό παιδί του δένδρου αντιστοιχεί στην περίπτωση Α[1] < Α[2] και το δεξί παιδί της ρίζας στην περίπτωση Α[2] < Α[1]. Σε κάθε κόμβο, μια σειρά στοιχείων είναι νόμιμη αν ικανοποιεί όλες τις συγκρίσεις στο μονοπάτι από τη ρίζα στον κόμβο. Τα φύλλα αντιστοιχούν στον τερματισμό του αλγόριθμου και κάθε φύλλο περιέχει το πολύ μια νόμιμη σειρά στοιχείων. ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 17
18 Δένδρο αποφάσεων για 3 στοιχεία b<c a<b<c a<c<b c<a<b a<b a<b<c a<c<b b<a<c b<c<a c<a<b c<b<a b<a b<a<c b<c<a c<b<a c<b b<c c<b a<b<c a<c<b c<a<b b<a<c b<c<a c<b<a a<c c<a a<c c<a a<c<b c<a<b b<a<c b<c<a ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 18
19 Κάτω φράγμα Έστω Pένας αλγόριθμός ταξινόμησης, και έστω Tτο δένδρο αποφάσεων του Pμε δεδομένο εισόδου μεγέθους n. Ο αριθμός των φύλλων του Τείναι n! Το ύψος του Τείναι ένα κάτω φράγμα του χείριστου χρόνου εκτέλεσης του αλγόριθμου P. Ένα δυαδικό δένδρο ύψους dέχει το πολύ 2 d φύλλα. Άρα το Τέχει ύψος το λιγότερο log n! Συμπέρασμα: P Ω(log n!) = Ω(n log n). Hμέση περίπτωση είναι επίσης n log n. ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 19
20 Ε. Ταξινόμηση με Κάδους - BucketSort Έστω ότι ο πίνακας A n στοιχείων περιέχει στοιχεία που ανήκουν στο διάστημα [1..m]. O αλγόριθμος BucketSort βασίζεται πάνω στα ακόλουθα βήματα: 1.Δημιουργούμε ένα πίνακα bucketsμήκουςmκαι θέτουμε buckets[i]=0,για όλα τα i(αυτά τα είναι τα buckets -κάδοι) 2.Διαβάζουμε τον πίνακα Αξεκινώντας από το πρώτο στοιχείο. Αν διαβάσουμε το στοιχείο α, τότε αυξάνουμε την τιμή του buckets[α]κατά ένα. Επαναλαμβάνουμε το βήμα μέχρι το τελευταίο στοιχείο. 3.Τέλος, διαβάζουμε γραμμικά τον πίνακα buckets, o oποίος περιέχει αναπαράσταση του ταξινομημένου πίνακα, και θέτουμε τα στοιχεία του πίνακα Α με την ταξινομημένη ακολουθία. ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 20
21 BucketSort: Βασική Ιδέα Δεδομένο Εισόδου: Τα στοιχεία είναι στο εύρος m=[0,14], n= n-1 Μετά την 1 η εκτέλεση του Bucketsort(Εισαγωγή του 1) Μετά τη 2 η εκτέλεση του Bucketsort(Εισαγωγή του 11) Μετά τη 3 η εκτέλεση του Bucketsort(Εισαγωγή του 1) Μετά την 8ή εκτέλεση του Bucketsort m m m m ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 21
22 BucketSort: Υλοποίηση // Α: Πίνακας για ταξινόμηση μεγέθους n // Buckets: Βοηθητικός πίνακας μεγέθους m void BucketSort(int A[], int buckets[], int n, int m){ int i, j, k=0; } // Κατανομή στοιχείων στους σωστούς κάδους for (i=0; i<n; i++) { buckets[a[i]]++; } // Αντιγραφή στοιχείων από πίνακα BUCKETS // στον πίνακα A for (i=0; i<m; i++) { for (j=0; j<buckets[i]; j++) { A[k] = i; k++; } } Ο(n) Ο(n+m) Συνολικά περνάμε 1 φορά από τα στοιχεία του πίνακα BUCKETS (m) και μια φορά από αυτά του A (n) ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 22
23 BucketSort: Χρόνος Εκτέλεσης O αλγόριθμος BucketSortπετυχαίνει ταξινόμηση του Α σε χρόνο Θ(n+m) Σημαίνει ότι ο αλγόριθμος είναι καλύτερος από τον MergeSort Θ(nlogn); Αυτό διαψεύδει το κάτω φράγμα Ω(n log n); (θυμειθείτε ότι έχουμε αποδείξει ότι όλοι οι αλγόριθμοι ταξινόμησης,με δυαδική σύγκριση, έχουν σαν κάτω φράγμα Ω(n log n)) ΟΧΙ,γιατί το μοντέλο είναι διαφορετικό. Μέχρι τώρα υποθέσαμε ότι η μόνη πράξη που μπορούμε να εφαρμόσουμε στα δεδομένα είναι η δυαδική σύγκριση ή ανταλλαγή στοιχείων. Ο αλγόριθμος BucketSortόμως στο Βήμα 2 ουσιαστικά εφαρμόζει m-αδική(m-ary) σύγκριση, σε χρόνο Ο(1). Αυτό μας υπενθυμίζει πως σχεδιάζοντας ένα αλγόριθμο και λαμβάνοντας υπόψη κάποια αποδεδειγμένα κάτω φράγματα πρέπει πάντα να αναλύουμε το μοντέλο στο οποίο δουλεύουμε. Η ύπαρξη και αξιοποίηση περισσότερων πληροφοριών πιθανόν να επιτρέπουν τη δημιουργία αποδοτικότερων αλγορίθμων. ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 23
24 Έμμεση Ταξινόμηση(Indirect Sorting) Έμμεση Ταξινόμηση (Indirect Sorting) Οι αλγόριθμου που έχουμε παρουσιάσει υποθέτουν πως οι πίνακεςδεδομένα εισόδου περιέχουν ακέραιους αριθμούςκαι προϋποθέτουν μετακίνηση των στοιχείων μέσα στον πίνακα. Τι γίνεται αν θέλουμε να ταξινομήσουμε αρχείαπου περιέχουν πολύπλοκα αντικείμενα (π.χ. εγγραφές με πολλαπλές στήλες)? Σε τέτοιες περιπτώσεις η μετακίνηση (swapping) στοιχείων είναι δαπανηρή. Αυτό μπορεί να αποφευχθεί με τη χρήση δεικτών (C), αναφορών (JAVA): ως δεδομένο εισόδου χρησιμοποιούμε πίνακα που περιέχει δείκτεςστα στοιχεία που θέλουμε να ταξινομήσουμε. Σύγκριση και ανταλλαγή γίνεται μεταξύ των δεικτών αντί μεταξύ των ιδίων των αντικειμένων. Έτσι έχουμε λιγότερη μετακίνηση στοιχείων. Οποιοσδήποτε από τους αλγόριθμους που αναφέραμε μπορεί να υλοποιηθεί με αυτό τον συλλογισμό χωρίς να αλλάξει ο αλγόριθμος. ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 24
25 Εξωτερική ταξινόμηση (External Sorting) Τι γίνεται αν έχουμε 256ΜΒ RAM αλλά θέλουμε να ταξινομήσουμε ένα αρχείο με 800ΜΒ έγγραφες; Η ταξινόμηση μπορεί να γίνεται κατά τμήματα: Ένα μέρος του αρχείου μεταφέρεται στην κύρια μνήμη, ταξινομείται (με ένα από τους αλγόριθμους που συζητήσαμε) και αποθηκεύεται σε ένα προσωρινό αρχείο. Το επόμενο τμήμα μεταφέρεται στην κύρια μνήμη και ταξινομείται και μετά συγχωνεύεται με το προσωρινό αρχείο. Η διαδικασία επαναλαμβάνεται μέχρι εξάντλησης του αρχικού αρχείου. Με βάση αυτή την κύρια ιδέα υπάρχουν διάφοροι αλγόριθμοι εξωτερικής ταξινόμησης. Κύριος στόχος τους είναι η αποδοτική επεξεργασία της δευτερεύουσας μνήμης (δηλαδή του μαγνητικού δίσκου). Τέτοιοι αλγόριθμοι βρίσκουν εφαρμογές σε Βάσεις Δεδομένων ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 25
Διδάσκων: Παναγιώτης Ανδρέου
Διάλεξη 20: Αλγόριθμοι ΤαξινόμησηςIII Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Οι αλγόριθμοι ταξινόμησης: Ε. QuickSort Γρήγορη Ταξινόμηση - Έμμεση Ταξινόμηση - Εξωτερική Ταξινόμηση Διδάσκων:
Διάλεξη 10: Αλγόριθμοι Ταξινόμησης II
ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 1 Διάλεξη 10: Αλγόριθμοι Ταξινόμησης II Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Οι αλγόριθμοι ταξινόμησης: Δ. QuickSort Γρήγορη Ταξινόμηση Ε. BucketSort
Αλγόριθμοι ταξινόμησης
Αλγόριθμοι Ταξινόμησης Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Οι αλγόριθμοι ταξινόμησης BuubleSort, SelectionSort, InsertionSort, Merger Sort, Quick Soft ΕΠΛ Δομές Δεδομένων και Αλγόριθμοι
Διάλεξη 19: Αλγόριθμοι ΤαξινόμησηςII. Διδάσκων: Παναγιώτης Ανδρέου
Διάλεξη 19: Αλγόριθμοι ΤαξινόμησηςII Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Οι αλγόριθμοι ταξινόμησης: Γ. MergeSort Ταξινόμηση με Συγχώνευση Δ. BucketSort Ταξινόμηση με Κάδους Διδάσκων:
Διδάσκων: Κωνσταντίνος Κώστα Διαφάνειες: Δημήτρης Ζεϊναλιπούρ
Διάλεξη 14: Αλγόριθμοι Ταξινόμησης Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Οι αλγόριθμοι ταξινόμησης 3) Mergesort Ταξινόμηση με Συγχώνευση 4) BucketSort Ταξινόμηση με Κάδους Διδάσκων:
Αλγόριθµοι Ταξινόµησης
Αλγόριθµοι Ταξινόµησης Στην ενότητα αυτή θα µελετηθούν τα εξής επιµέρους θέµατα: Οι αλγόριθµοι ταξινόµησης SelectionSort, InsertionSort, Mergesort, QuickSort, BucketSort Κάτω φράγµα της αποδοτικότητας
Αλγόριθµοι Ταξινόµησης
Αλγόριθµοι Ταξινόµησης Στην ενότητα αυτή θα µελετηθούν τα εξής επιµέρους θέµατα: Οι αλγόριθµοι ταξινόµησης SelectionSort, InsertionSort, Mergesort, QuickSort, BucketSort Κάτω φράγµα της αποδοτικότητας
Διάλεξη 09: Αλγόριθμοι Ταξινόμησης I
Διάλεξη 09: Αλγόριθμοι Ταξινόμησης I Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Οι αλγόριθμοι ταξινόμησης: Α. SelectionSort Ταξινόμηση με Επιλογή Β. InsertionSort Ταξινόμηση με Εισαγωγή
Εργαστήριο 7: Ο αλγόριθμος ταξινόμησης Radix Sort
Εργαστήριο 7: Ο αλγόριθμος ταξινόμησης Radix Sort Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: -Ο αλγόριθμος ταξινόμησης Radix Sort -Δυο εκδοχές: Most Significant Digit (MSD) και Least Significant
Διδάσκων: Κωνσταντίνος Κώστα Διαφάνειες: Δημήτρης Ζεϊναλιπούρ ΕΠΛ 035 Δομές Δεδομένων και Αλγόριθμοι για Ηλ. Μηχ. και Μηχ. Υπολ.
Διάλεξη 13: Αλγόριθμοι Ταξινόμησης Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Οι αλγόριθμοι ταξινόμησης SelectionSort, InsertionSort, Στις ερχόμενες διαλέξεις θα δούμε τους αλγόριθμους Mergesort,
Quicksort [Hoare, 62] Αλγόριθµοι & Πολυπλοκότητα (Χειµώνας 2011) Quicksort 1
Quicksort [Hoare, 62] Αλγόριθµοι & Πολυπλοκότητα (Χειµώνας 2011) Quicksort 1 Quicksort [Hoare, 62] Στοιχείο διαχωρισµού (pivot), π.χ. πρώτο, τυχαίο, Αναδιάταξη και διαίρεση εισόδου σε δύο υπο-ακολουθίες:
Quicksort. Επιμέλεια διαφανειών: Δ. Φωτάκης Μικροαλλαγές: Α. Παγουρτζής. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών
Quicksort Επιμέλεια διαφανειών: Δ. Φωτάκης Μικροαλλαγές: Α. Παγουρτζής Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Quicksort [Hoare, 6] Στοιχείο διαχωρισμού (pivot),
ΠΛΗ111. Ανοιξη Μάθηµα 9 ο. Ταξινόµηση. Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης
ΠΛΗ111 οµηµένος Προγραµµατισµός Ανοιξη 2005 Μάθηµα 9 ο Ταξινόµηση Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης Ταξινόµηση Εισαγωγή Selection sort Insertion sort Bubble sort
Quicksort. Πρόβλημα Ταξινόμησης. Μέθοδοι Ταξινόμησης. Συγκριτικοί Αλγόριθμοι
Πρόβλημα Ταξινόμησης Quicksort Διδάσκοντες: Σ. Ζάχος, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Είσοδος : ακολουθία n αριθμών (α 1, α 2,..., α n
Quicksort. ημήτρης Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. Εθνικό Μετσόβιο Πολυτεχνείο
Quicksort ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Quicksort [Hoare, 62] Στοιχείο διαχωρισμού (pivot), π.χ. πρώτο, τυχαίο, Αναδιάταξη και διαίρεση
Quicksort. ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών
Quicksort ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Αλγόριθμοι Ταξινόμησης Μέρος 2
Αλγόριθμοι Ταξινόμησης Μέρος 2 Μανόλης Κουμπαράκης 1 Προχωρημένοι Αλγόριθμοι Ταξινόμησης Στη συνέχεια θα παρουσιάσουμε τρείς προχωρημένους αλγόριθμους ταξινόμησης: treesort, quicksort και mergesort. 2
Διάλεξη 09: Αλγόριθμοι Ταξινόμησης I
Διάλεξη 09: Αλγόριθμοι Ταξινόμησης I Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Οι αλγόριθμοι ταξινόμησης: Α. SelectoSort Ταξινόμηση με Επιλογή Β. IsertoSort Ταξινόμηση με Εισαγωγή Γ. MergeSort
Διάλεξη 17: O Αλγόριθμος Ταξινόμησης HeapSort
Διάλεξη 17: O Αλγόριθμος Ταξινόμησης HeapSort Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Η διαδικασία PercolateDown, Δημιουργία Σωρού O Αλγόριθμος Ταξινόμησης HeapSort Υλοποίηση, Παραδείγματα
Επιλογή. Επιμέλεια διαφανειών: Δ. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. Εθνικό Μετσόβιο Πολυτεχνείο
Επιλογή Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Πρόβλημα Επιλογής Πίνακας Α[ ] με n στοιχεία (όχι ταξινομημένος). Αριθμός k,
Επιλογή. Πρόβλημα Επιλογής. Μέγιστο / Ελάχιστο. Εφαρμογές
Επιλογή Διδάσκοντες: Σ. Ζάχος, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Πρόβλημα Επιλογής Πίνακας Α[]με n στοιχεία (όχι ταξινομημένος). Αριθμός
Επιλογή. ημήτρης Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. Εθνικό Μετσόβιο Πολυτεχνείο
Επιλογή ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Πρόβλημα Επιλογής Πίνακας Α[]με n στοιχεία (όχι ταξινομημένος). Αριθμός k, 1 k n. Υπολογισμός
Δοµές Δεδοµένων. 11η Διάλεξη Ταξινόµηση Quicksort και Ιδιότητες Δέντρων. Ε. Μαρκάκης
Δοµές Δεδοµένων 11η Διάλεξη Ταξινόµηση Quicksort και Ιδιότητες Δέντρων Ε. Μαρκάκης Περίληψη Quicksort Χαρακτηριστικά επιδόσεων Μη αναδροµική υλοποίηση Δέντρα Μαθηµατικές ιδιότητες Δοµές Δεδοµένων 11-2
Πρόβληµα Επιλογής. Αλγόριθµοι & Πολυπλοκότητα (Χειµώνας 2011) Επιλογή 1
Πρόβληµα Επιλογής Αλγόριθµοι & Πολυπλοκότητα (Χειµώνας 2011) Επιλογή 1 Πρόβληµα Επιλογής Πίνακας Α[ Αριθµός k, 1 k n. ] µε n στοιχεία (όχι ταξινοµηµένος). Υπολογισµός του k-οστού µικρότερου στοιχείου (στοιχείο
1η Σειρά Γραπτών Ασκήσεων
1/20 Ασυμπτωτικός Συμβολισμός, Αναδρομικές Σχέσεις 1η Σειρά Γραπτών Ασκήσεων Αλγόριθμοι και Πολυπλοκότητα ΣΗΜΜΥ, Εθνικό Μετσόβιο Πολυτεχνείο 1 Ασυμπτωτικός Συμβολισμός, Αναδρομικές Σχέσεις 2 3 4 5 2/20
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ. Ταξινόµηση Quicksort Κεφάλαιο 7. Ε. Μαρκάκης Επίκουρος Καθηγητής
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ Ταξινόµηση Quicksort Κεφάλαιο 7 Ε. Μαρκάκης Επίκουρος Καθηγητής Περίληψη Quicksort Ο βασικός αλγόριθµος Χαρακτηριστικά επιδόσεων Μικροί υποπίνακες Μη αναδροµική υλοποίηση Δοµές Δεδοµένων
Δομές Δεδομένων και Αλγόριθμοι
Δομές Δεδομένων και Αλγόριθμοι Χρήστος Γκόγκος ΤΕΙ Ηπείρου Χειμερινό Εξάμηνο 2014-2015 Παρουσίαση 8 Quick Sort 1 / 11 Ο αλγόριθμος QuickSort 1 Προτάθηκε από τον CAR (Tony) Hoare το 1961 2 Ο αλγόριθμος
Επιλογή. ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών
Επιλογή ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
p
ΑΝΑ ΡΟΜΙΚΗ ΤΑΞΙΝΟΜΗΣΗ- ΑΣΚΗΣΕΙΣ Οι μέθοδοι ταξινόμησης QUICK SORT και MERGE SORT κωδικοποιούνται εύκολα αναδρομικά Oι δυο αναδροµικοί µέθοδοι δέχονται 1ο όρισµα τον πίνακα, και δεν επιστρέφουν τίποτα.
Διδάσκων: Παναγιώτης Ανδρέου
Διάλεξη 28: O Αλγόριθμος Ταξινόμησης HeapSort Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Η διαδικασία PercolateDown, Δημιουργία Σωρού - O Αλγόριθμος Ταξινόμησης HeapSort - Υλοποίηση, Παραδείγματα
Δομές Δεδομένων. Δημήτρης Μιχαήλ. Ταξινόμηση. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο
Δομές Δεδομένων Ταξινόμηση Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Το πρόβλημα Είσοδος n αντικείμενα a 1, a 2,..., a n με κλειδιά (συνήθως σε ένα πίνακα, ή λίστα, κ.τ.λ)
Διάλεξη 04: Παραδείγματα Ανάλυσης
Διάλεξη 04: Παραδείγματα Ανάλυσης Πολυπλοκότητας/Ανάλυση Αναδρομικών Αλγόριθμων Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Παραδείγματα Ανάλυσης Πολυπλοκότητας : Μέθοδοι, παραδείγματα
Εργαστηριακή Άσκηση 1
Εργαστηριακή Άσκηση 1 Επανάληψη προγραμματισμού Βασικοί Αλγόριθμοι Είσοδος τιμών από το πληκτρολόγιο Σε όλα τα προγράμματα που θα γράψουμε στην συνέχεια του εξαμήνου θα χρειαστεί να εισάγουμε τιμές σε
Διάλεξη 04: Παραδείγματα Ανάλυσης Πολυπλοκότητας/Ανάλυση Αναδρομικών Αλγόριθμων
Διάλεξη 04: Παραδείγματα Ανάλυσης Πολυπλοκότητας/Ανάλυση Αναδρομικών Αλγόριθμων Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Παραδείγματα Ανάλυσης Πολυπλοκότητας : Μέθοδοι, παραδείγματα
ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 4. Παραδείγματα Ανάλυσης Πολυπλοκότητας Ανάλυση Αναδρομικών Αλγόριθμων
ΕΠΛ31 Δομές Δεδομένων και Αλγόριθμοι 4. Παραδείγματα Ανάλυσης Πολυπλοκότητας Ανάλυση Αναδρομικών Αλγόριθμων Διάλεξη 04: Παραδείγματα Ανάλυσης Πολυπλοκότητας/Ανάλυση Αναδρομικών Αλγόριθμων Στην ενότητα
Προγραμματισμός Ι (ΗΥ120)
Προγραμματισμός Ι (ΗΥ120) Διάλεξη 10: Ταξινόμηση Πίνακα Αναζήτηση σε Ταξινομημένο Πίνακα Πρόβλημα Δίνεται πίνακας t από Ν ακεραίους. Ζητούμενο: να ταξινομηθούν τα περιεχόμενα του πίνακα σε αύξουσα αριθμητική
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ 2 ΛΥΣΕΙΣ Γραμμικές Δομές Δεδομένων, Ταξινόμηση
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 231: Δομές Δεδομένων και Αλγόριθμοι Εαρινό Εξάμηνο 2013 ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ 2 ΛΥΣΕΙΣ Γραμμικές Δομές Δεδομένων, Ταξινόμηση Διδάσκων Καθηγητής: Παναγιώτης Ανδρέου
Σχεδίαση και Ανάλυση Αλγορίθμων
Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα.0 Σταύρος Δ. Νικολόπουλος 06-7 Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Ιωαννίνων Webpage: www.cs.uoi.gr/~stavros Ταξινόμηση Selection-Sort Bubble-Sort και
Ταξινόμηση. Σαλτογιάννη Αθανασία
Ταξινόμηση Σαλτογιάννη Αθανασία Ταξινόμηση Ταξινόμηση Τι εννοούμε όταν λέμε ταξινόμηση; Ταξινόμηση Τι εννοούμε όταν λέμε ταξινόμηση; Ποια είδη αλγορίθμων ταξινόμησης υπάρχουν; Ταξινόμηση Τι εννοούμε όταν
Διάλεξη 22: Δυαδικά Δέντρα. Διδάσκων: Παναγιώτης Ανδρέου
Διάλεξη 22: Δυαδικά Δέντρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Δυαδικά Δένδρα - Δυαδικά Δένδρα Αναζήτησης - Πράξεις Εισαγωγής, Εύρεσης Στοιχείου, Διαγραφής Μικρότερου Στοιχείου
Ταχεία Ταξινόμηση Quick-Sort
Ταχεία Ταξινόμηση Quc-Sort 7 4 9 6 2 2 4 6 7 9 4 2 2 4 7 9 7 9 2 2 9 9 Δομές Δεδομένων και Αλγόριθμοι Εργαστήριο Γνώσης και Ευφυούς Πληροφορικής 1 Outlne Quc-sort Αλγόριθμος Βήμα διαχωρισμού Δένδρο Quc-sort
Ταξινόμηση. Παύλος Εφραιμίδης. Δομές Δεδομένων Ταξινόμηση 1
Ταξινόμηση Παύλος Εφραιμίδης Δομές Δεδομένων Ταξινόμηση 1 Το πρόβλημα της ταξινόμησης Δομές Δεδομένων Ταξινόμηση 2 Ταξινόμηση Δίνεται πολυ-σύνολο Σ με στοιχεία από κάποιο σύμπαν U (πχ. U = το σύνολο των
Διδάσκων: Παναγιώτης Ανδρέου
Διάλεξη 04: ΠαραδείγματαΑνάλυσης Πολυπλοκότητας/Ανάλυση Αναδρομικών Αλγόριθμων Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: -Παραδείγματα Ανάλυσης Πολυπλοκότητας : Μέθοδοι, παραδείγματα -Γραμμική
Εργαστήριο 2: Πίνακες
Εργαστήριο 2: Πίνακες Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Επεξεργασία Πινάκων - Υλοποίηση της Δυαδικής Αναζήτησης σε πίνακες - Υλοποίηση της Ταξινόμησης με Επιλογής σε πίνακες ΕΠΛ035
Κατ οίκον Εργασία 2 Σκελετοί Λύσεων
Κατ οίκον Εργασία 2 Σκελετοί Λύσεων 1. (α) Αλγόριθµος: ηµιούργησε το σύνολο P που αποτελείται από τα άκρα όλων των ευθυγράµµων τµηµάτων. Βρες το κυρτό περίβληµα του P µε τον αλγόριθµο του Graham. Ορθότητα:
Διδάσκων: Παναγιώτης Ανδρέου
Διάλεξη 12: Δέντρα ΙΙ -Δυαδικά Δέντρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Δυαδικά Δένδρα - Δυαδικά Δένδρα Αναζήτησης(ΔΔΑ) - Εύρεση Τυχαίου, Μέγιστου, Μικρότερου στοιχείου - Εισαγωγή
add $t0,$zero, $zero I_LOOP: beq $t0,$s3, END add $t1, $zero,$zero J_LOOP: sub $t2, $s3, $t0 add $t2, $t2, $s1 int i, j, tmp; int *arr, n;
Άσκηση 1 η Μέρος Α Ζητούμενο: Δίνεται το παρακάτω πρόγραμμα σε C καθώς και μια μετάφραση του σε assembly MIPS. Συμπληρώστε τα κενά. Σας υπενθυμίζουμε ότι ο καταχωρητής $0 (ή $zero) είναι πάντα μηδέν. int
Ο αλγόριθμος Quick-Sort. 6/14/2007 3:42 AM Quick-Sort 1
Ο αλγόριθμος Quick-Sort 7 4 9 6 2 2 4 6 7 9 4 2 2 4 7 9 7 9 2 2 9 9 6/14/2007 3:42 AM Quick-Sort 1 Κύρια σημεία για μελέτη Quick-sort ( 4.3) Αλγόριθμος Partition step Δέντρο Quick-sort Παράδειγμα εκτέλεσης
auth Αλγόριθμοι - Τμήμα Πληροφορικής ΑΠΘ - Εξάμηνο 4ο
Σχεδίαση Αλγορίθμων Διαίρει και Βασίλευε http://delab.csd.auth.gr/courses/algorithms/ auth 1 Διαίρει και Βασίλευε Η γνωστότερη ρημέθοδος σχεδιασμού αλγορίθμων: 1. Διαιρούμε το στιγμιότυπο του προβλήματος
Εισ. Στην ΠΛΗΡΟΦΟΡΙΚΗ. Διάλεξη 7 η. Βασίλης Στεφανής
Εισ. Στην ΠΛΗΡΟΦΟΡΙΚΗ Διάλεξη 7 η Βασίλης Στεφανής Αλγόριθμοι ταξινόμησης Στην προηγούμενη διάλεξη είδαμε: Binary search Λειτουργεί μόνο σε ταξινομημένους πίνακες Πώς τους ταξινομούμε? Πολλοί τρόποι. Ενδεικτικά:
Σύνοψη Προηγούμενου. Πίνακες (Arrays) Πίνακες (Arrays): Βασικές Λειτουργίες. Πίνακες (Arrays) Ορέστης Τελέλης
Σύνοψη Προηγούμενου Πίνακες (Arrays Ορέστης Τελέλης telelis@unipi.gr Τμήμα Ψηφιακών Συστημάτων, Πανεπιστήμιο Πειραιώς Διαδικαστικά θέματα. Aντικείμενο Μαθήματος. Aντικείμενα, Κλάσεις, Μέθοδοι, Μεταβλητές.
Ταξινόμηση κάδου και ταξινόμηση Ρίζας Bucket-Sort και Radix-Sort
Ταξινόμηση κάδου και ταξινόμηση Ρίζας Bucket-Sort και Radix-Sort 1, c 3, a 3, b 7, d 7, g 7, e B 0 1 3 4 5 6 7 8 9 1 BucketSort (Ταξινόμηση Κάδου) - Αρχικά θεωρείται ένα κριτήριο κατανομής με βάση το οποίο
Αλγόριθμοι Ταξινόμησης Μέρος 4
Αλγόριθμοι Ταξινόμησης Μέρος 4 Μανόλης Κουμπαράκης Δομές Δεδομένων και Τεχνικές 1 Μέθοδοι Ταξινόμησης Βασισμένοι σε Συγκρίσεις Κλειδιών Οι αλγόριθμοι ταξινόμησης που είδαμε μέχρι τώρα αποφασίζουν πώς να
Διαίρει-και-Βασίλευε. Αλγόριθµοι & Πολυπλοκότητα (Χειµώνας 2011) Διαίρει-και-Βασίλευε 2
Διαίρει-και-Βασίλευε Αλγόριθµοι & Πολυπλοκότητα (Χειµώνας 2011) Διαίρει-και-Βασίλευε 2 Διαίρει-και-Βασίλευε Γενική µέθοδος σχεδιασµού αλγορίθµων: Διαίρεση σε ( 2) υποπροβλήµατα (σηµαντικά) µικρότερου µεγέθους.
8. Σωροί (Heaps)-Αναδρομή- Προχωρημένη Ταξινόμηση
Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων 8. Σωροί (Heaps)-Αναδρομή- Προχωρημένη Ταξινόμηση 2 ομές εδομένων 4 5 Χρήστος ουλκερίδης Τμήμα Ψηφιακών Συστημάτων
Πληροφορική 2. Αλγόριθμοι
Πληροφορική 2 Αλγόριθμοι 1 2 Τι είναι αλγόριθμος; Αλγόριθμος είναι ένα διατεταγμένο σύνολο από σαφή βήματα το οποίο παράγει κάποιο αποτέλεσμα και τερματίζεται σε πεπερασμένο χρόνο. Ο αλγόριθμος δέχεται
Δομές Δεδομένων και Αλγόριθμοι
Δομές Δεδομένων και Αλγόριθμοι Χρήστος Γκόγκος ΤΕΙ Ηπείρου Χειμερινό Εξάμηνο 2014-2015 Παρουσίαση 22 Counting sort, bucket sort και radix sort 1 / 16 Ιδιότητες αλγορίθμων ταξινόμησης ευστάθεια (stable
Αλγόριθμοι Ταξινόμησης Bubble Sort Quick Sort. Αντρέας Δημοσθένους Καθηγητής Πληροφορικής Ολυμπιάδα 2012
Αλγόριθμοι Ταξινόμησης Bubble Sort Quick Sort Αντρέας Δημοσθένους Καθηγητής Πληροφορικής Ολυμπιάδα 2012 3 5 1 Ταξινόμηση - Sorting Πίνακας Α 1 3 5 5 3 1 Ταξινόμηση (Φθίνουσα) Χωρίς Ταξινόμηση Ταξινόμηση
Επιμέλεια διαφανειών: Δ. Φωτάκης Τροποποιήσεις-προσθήκες: Α. Παγουρτζής. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών
Διαίρει-και-Βασίλευε Επιμέλεια διαφανειών: Δ. Φωτάκης Τροποποιήσεις-προσθήκες: Α. Παγουρτζής Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Διαίρει-και-Βασίλευε Γενική
Εισαγωγή στους Αλγορίθμους
Εισαγωγή στους Αλγορίθμους Ενότητα 5η Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Η Μέθοδος «Διαίρει & Βασίλευε» Η Μέθοδος
Σχεδίαση Αλγορίθμων -Τμήμα Πληροφορικής ΑΠΘ - Εξάμηνο 4ο
Σχεδίαση Αλγορίθμων Διαίρει και Βασίλευε http://delab.csd.auth.gr/~gounaris/courses/ad auth gounaris/courses/ad 1 Διαίρει και Βασίλευε Η γνωστότερη ρημέθοδος σχεδιασμού αλγορίθμων: 1. Διαιρούμε το στιγμιότυπο
Διδάσκων: Παναγιώτης Ανδρέου
Διάλεξη 6: ΠαραδείγματαΑνάλυσης Πολυπλοκότητας/Ανάλυση Αναδρομικών Αλγόριθμων Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: -Παραδείγματα Ανάλυσης Πολυπλοκότητας : Μέθοδοι, παραδείγματα -Γραμμική
Αλγόριθμοι και Πολυπλοκότητα
Αλγόριθμοι και Πολυπλοκότητα Διαίρει και Βασίλευε Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Διαίρει και Βασίλευε Divide and Conquer Η τεχνική διαίρει και βασίλευε αναφέρεται
Ταξινόμηση με συγχώνευση Merge Sort
Ταξινόμηση με συγχώνευση Merge Sort 7 2 9 4 2 4 7 9 7 2 2 7 9 4 4 9 7 7 2 2 9 9 4 4 Πληροφορικής 1 Διαίρει και Βασίλευε Η μέθοδος του «Διαίρει και Βασίλευε» είναι μια γενική αρχή σχεδιασμού αλγορίθμων
Δομές Δεδομένων & Αλγόριθμοι
Δομές Δεδομένων & Αναζήτηση & Ταξινόμηση 1 Αναζήτηση Έχω έναν πίνακα Α με Ν στοιχεία. Πρόβλημα: Βρες αν το στοιχείο x ανήκει στον πίνακα Αν ο πίνακας είναι αταξινόμητος τότε μόνη λύση σειριακή αναζήτηση
Διάλεξη 17: Δυαδικά Δέντρα. Διδάσκων: Κωνσταντίνος Κώστα Διαφάνειες: Δημήτρης Ζεϊναλιπούρ
Διάλεξη 7: Δυαδικά Δέντρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Δυαδικά Δένδρα Δυαδικά Δένδρα Αναζήτησης Πράξεις Εισαγωγής, Εύρεσης Στοιχείου, Διαγραφής Μικρότερου Στοιχείου Διδάσκων:
Αναδρομικοί Αλγόριθμοι
Αναδρομικός αλγόριθμος (recursive algorithm) Επιλύει ένα πρόβλημα λύνοντας ένα ή περισσότερα στιγμιότυπα του ίδιου προβλήματος. Αναδρομικός αλγόριθμος (recursive algorithm) Επιλύει ένα πρόβλημα λύνοντας
Σχεδίαση Αλγορίθμων -Τμήμα Πληροφορικής ΑΠΘ - Εξάμηνο 4ο
Πολλαπλασιασμός μεγάλων ακεραίων (1) Για να πολλαπλασιάσουμε δύο ακεραίους με n 1 και n 2 ψηφία με το χέρι, θα εκτελέσουμε n 1 n 2 πράξεις πολλαπλασιασμού Πρόβλημα ρβημ όταν έχουμε πολλά ψηφία: A = 12345678901357986429
Ουρές Προτεραιότητας: Υπενθύμιση. Σωροί / Αναδρομή / Ταξινόμηση. Υλοποίηση Σωρού. Σωρός (Εισαγωγή) Ορέστης Τελέλης
Ουρές Προτεραιότητας: Υπενθύμιση Σωροί / Αναδρομή / Ταξινόμηση Ορέστης Τελέλης telelis@unipi.gr Τμήμα Ψηφιακών Συστημάτων, Πανεπιστήμιο Πειραιώς (Abstract Data Type) με μεθόδους: Μπορεί να υλοποιηθεί με
Διδάσκων: Κωνσταντίνος Κώστα
Διάλεξη Ε4: Επανάληψη Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Εισαγωγή σε δενδρικές δομές δεδομένων, Δυαδικά Δένδρα Αναζήτησης Ισοζυγισμένα Δένδρα & 2-3 Δένδρα Διδάσκων: Κωνσταντίνος
Διάλεξη 16: Σωροί. Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Ουρές Προτεραιότητας - Ο ΑΤΔ Σωρός, Υλοποίηση και πράξεις
ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 1 Διάλεξη 16: Σωροί Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Ουρές Προτεραιότητας - Ο ΑΤΔ Σωρός, Υλοποίηση και πράξεις Ουρά Προτεραιότητας Η δομή
Σχεδίαση και Ανάλυση Αλγορίθμων
Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 3.0 Σταύρος Δ. Νικολόπουλος 0-7 Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Ιωαννίνων Webpage: www.cs.uoi.gr/~stavros Διαίρει και Βασίλευε Quick-sort και Merge-sort
Διάλεξη 14: Δέντρα IV B Δένδρα. Διδάσκων: Παναγιώτης Ανδρέου
Διάλεξη 14: Δέντρα IV B Δένδρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: 2 3 Δένδρα, Εισαγωγή και άλλες πράξεις Άλλα Δέντρα: Β δένδρα, Β+ δέντρα, R δέντρα Διδάσκων: Παναγιώτης Ανδρέου ΕΠΛ231
Διαδικασιακός Προγραμματισμός
Τμήμα ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ ΤΕΙ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ Διαδικασιακός Προγραμματισμός Διάλεξη 12 η Αναζήτηση/Ταξινόμηση Πίνακα Οι διαλέξεις βασίζονται στο βιβλίο των Τσελίκη και Τσελίκα C: Από τη Θεωρία στην
Αλγόριθµοι και Πολυπλοκότητα
Αλγόριθµοι και Πολυπλοκότητα Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Πανεπιστήµιο Αθηνών Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα Φεβρουαρίου 0 / ένδρα Ενα δένδρο είναι
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ 1 ΛΥΣΕΙΣ Ανάλυση Πολυπλοκότητας
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 231: Δομές Δεδομένων και Αλγόριθμοι Εαρινό Εξάμηνο 2013 ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ 1 ΛΥΣΕΙΣ Ανάλυση Πολυπλοκότητας Διδάσκων Καθηγητής: Παναγιώτης Ανδρέου Ημερομηνία Υποβολής:
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Ενότητα 13: Αλγόριθμοι-Μεγάλων ακεραίων- Εκθετοποίηση- Πολλαπλασιασμός πινάκων -Strassen Μαρία Σατρατζέμη Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό
Προγραμματισμός Ι (ΗΥ120)
Προγραμματισμός Ι (ΗΥ120) Διάλεξη 20: Δυαδικό Δέντρο Αναζήτησης Δυαδικό δέντρο Κάθε κόμβος «γονέας» περιέχει δύο δείκτες που δείχνουν σε δύο κόμβους «παιδιά» του ιδίου τύπου. Αν οι δείκτες προς αυτούς
ΔΥΑΔΙΚΗ ΑΝΑΖΗΤΗΣΗ & ΤΑΞΙΝΟΜΗΣΗ ΜΕ ΣΥΓΧΩΝΕΥΣΗ
ΔΥΑΔΙΚΗ ΑΝΑΖΗΤΗΣΗ & ΤΑΞΙΝΟΜΗΣΗ ΜΕ ΣΥΓΧΩΝΕΥΣΗ (ΑΛΓΟΡΙΘΜΟΙ, Sanjoy Dasgupta, Christos Papadimitriou, Umesh Vazirani, σελ. 55-62 ΣΧΕΔΙΑΣΜΟΣ ΑΛΓΟΡΙΘΜΩΝ, Jon Kleinberg, Eva Tardos, Κεφάλαιο 5) Δυαδική αναζήτηση
ιαίρει-και-βασίλευε ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο
ιαίρει-και-βασίλευε ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο ιαίρει-και-βασίλευε Γενική μέθοδος σχεδιασμού αλγορίθμων: ιαίρεση σε ( 2) υποπροβλήματα
Κατ οίκον Εργασία 3 Σκελετοί Λύσεων
Κατ οίκον Εργασία 3 Σκελετοί Λύσεων Άσκηση 1 (α) Έστω Α(n) και Κ(n) ο αριθμός των ακμών και ο αριθμός των κόμβων ενός αυστηρά δυαδικού δένδρου με n φύλλα. Θέλουμε να αποδείξουμε για κάθε n 1 την πρόταση
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ. Ταξινόµηση Mergesort Κεφάλαιο 8. Ε. Μαρκάκης Επίκουρος Καθηγητής
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ Ταξινόµηση Mergesort Κεφάλαιο 8 Ε. Μαρκάκης Επίκουρος Καθηγητής Περίληψη Ταξινόµηση µε συγχώνευση Αλγόριθµος Mergesort Διµερής συγχώνευση Αφηρηµένη επιτόπου συγχώνευση Αναλυτική ταξινόµηση
Διάλεξη 18: B-Δένδρα
Διάλεξη 18: B-Δένδρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Εισαγωγή & Ισοζυγισμένα Δένδρα 2-3 Δένδρα, Περιγραφή Πράξεων της Εισαγωγής και άλλες πράξεις Β-δένδρα Διδάσκων: Κωνσταντίνος
Ειδικά θέματα Αλγορίθμων και Δομών Δεδομένων (ΠΛΕ073) Απαντήσεις 1 ου Σετ Ασκήσεων
Ειδικά θέματα Αλγορίθμων και Δομών Δεδομένων (ΠΛΕ073) Απαντήσεις 1 ου Σετ Ασκήσεων Άσκηση 1 α) Η δομή σταθμισμένης ένωσης με συμπίεση διαδρομής μπορεί να τροποποιηθεί πολύ εύκολα ώστε να υποστηρίζει τις
Εισαγωγή στην επιστήμη των υπολογιστών. Λογισμικό Υπολογιστών Κεφάλαιο 8ο Αλγόριθμοι
Εισαγωγή στην επιστήμη των υπολογιστών Λογισμικό Υπολογιστών Κεφάλαιο 8ο Αλγόριθμοι 1 Έννοια Ανεπίσημα, ένας αλγόριθμος είναι μια βήμα προς βήμα μέθοδος για την επίλυση ενός προβλήματος ή την διεκπεραίωση
Διάλεξη 12: Δέντρα ΙΙ Δυαδικά Δέντρα
Διάλεξη 12: Δέντρα ΙΙ Δυαδικά Δέντρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Δυαδικά Δένδρα Δυαδικά Δένδρα Αναζήτησης (ΔΔΑ) Εύρεση Τυχαίου, Μέγιστου, Μικρότερου στοιχείου Εισαγωγή στοιχείου
Προχωρημένες έννοιες προγραμματισμού σε C
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Διδάσκοντες: Στάθης Ζάχος (zachos@cs.ntua.gr) Νίκος Παπασπύρου (nickie@softlab.ntua.gr)
Δομές Δεδομένων & Αλγόριθμοι
Δομές Δεδομένων & Αναζήτηση & Ταξινόμηση 1 Αναζήτηση Έχω έναν πίνακα Α με Ν στοιχεία. Πρόβλημα: Βρες αν το στοιχείο x ανήκει στον πίνακα Αν ο πίνακας είναι αταξινόμητος τότε μόνη λύση σειριακή αναζήτηση
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ 1 ΛΥΣΕΙΣ Ανάλυση Πολυπλοκότητας
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 231: Δομές Δεδομένων και Αλγόριθμοι ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ 1 ΛΥΣΕΙΣ Ανάλυση Πολυπλοκότητας ΠΕΡΙΓΡΑΦΗ Σε αυτή την άσκηση καλείστε να αναλύσετε και να υπολογίσετε το
Δομές Δεδομένων & Αλγόριθμοι
- Πίνακες 1 Πίνακες Οι πίνακες έχουν σταθερό μέγεθος και τύπο δεδομένων. Βασικά πλεονεκτήματά τους είναι η απλότητα προγραμματισμού τους και η ταχύτητα. Ωστόσο δεν παρέχουν την ευελιξία η οποία απαιτείται
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΕΠΛ 035: οµές εδοµένων και Αλγόριθµοι για Ηλεκτρολόγους Μηχανικούς και Μηχανικούς Υπολογιστών
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 035: οµές εδοµένων και Αλγόριθµοι για Ηλεκτρολόγους Μηχανικούς και Μηχανικούς Υπολογιστών Ακαδηµαϊκό έτος 2010 2011, Χειµερινό εξάµηνο Όλες οι ασκήσεις να δακτυλογραφηθούν
Εργαστήριο 6: Αναζήτηση, Ανάλυση Πολυπλοκότητας
Εργαστήριο 6: Αναζήτηση, Ανάλυση Πολυπλοκότητας Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Αναζήτηση με linearsearch, binarysearch, ternarysearch - Ανάλυση Πολυπλοκότητας ternarysearch
Διαίρει-και-Βασίλευε. Διαίρει-και-Βασίλευε. MergeSort. MergeSort. Πρόβλημα Ταξινόμησης: Είσοδος : ακολουθία n αριθμών (α 1
Διαίρει-και-Βασίλευε Διδάσκοντες: Σ. Ζάχος, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Διαίρει-και-Βασίλευε Γενική μέθοδος
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 23: οµές εδοµένων και Αλγόριθµοι Ενδιάµεση Εξέταση Ηµεροµηνία : ευτέρα, 3 Νοεµβρίου 2008 ιάρκεια : 2.00-4.00 ιδάσκουσα : Άννα Φιλίππου Ονοµατεπώνυµο: ΣΚΕΛΕΤΟΙ
Πανεπιστήμιο Ιωαννίνων Τμήμα Πληροφορικής Δομές Δεδομένων [ΠΛΥ302] Χειμερινό Εξάμηνο 2012
Πανεπιστήμιο Ιωαννίνων Τμήμα Πληροφορικής Δομές Δεδομένων [ΠΛΥ302] Χειμερινό Εξάμηνο 2012 Ενδεικτικές απαντήσεις 1 ου σετ ασκήσεων. Άσκηση 1 Πραγματοποιήσαμε μια σειρά μετρήσεων του χρόνου εκτέλεσης τριών
Διδάσκων: Κωνσταντίνος Κώστα Διαφάνειες: Δημήτρης Ζεϊναλιπούρ ΕΠΛ 035 Δομές Δεδομένων και Αλγόριθμοι για Ηλ. Μηχ. και Μηχ. Υπολ.
Διάλεξη : Παραδείγματα Ανάλυσης Πολυπλοκότητας / Ανάλυση Αναδρομικών Αλγόριθμων Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Παραδείγματα Ανάλυσης Πολυπλοκότητας : Μέθοδοι, 6 παραδείγματα
Ταξινόµηση. Παύλος Εφραιµίδης. οµές εδοµένων και
Παύλος Εφραιµίδης 1 Το πρόβληµα της ταξινόµησης 2 3 ίνεται πολυ-σύνολο Σ µε στοιχεία από κάποιο σύµπαν U (πχ. U = το σύνολο των ακεραίων αριθµών). του Σ είναι η επιβολή µιας διάταξης στα στοιχεία του συνόλου
Ουρά Προτεραιότητας (priority queue)
Ουρά Προτεραιότητας (priority queue) Δομή δεδομένων που υποστηρίζει δύο βασικές λειτουργίες : Εισαγωγή στοιχείου με δεδομένο κλειδί. Επιστροφή ενός στοιχείου με μέγιστο (ή ελάχιστο) κλειδί και διαγραφή
Merge Sort (Ταξινόμηση με συγχώνευση) 6/14/2007 3:04 AM Merge Sort 1
Merge Sort (Ταξινόμηση με συγχώνευση) 7 2 9 4 2 4 7 9 7 2 2 7 9 4 4 9 7 7 2 2 9 9 4 4 6/14/2007 3:04 AM Merge Sort 1 Κύρια σημεία για μελέτη Το παράδειγμα του «διαίρει και βασίλευε» ( 4.1.1) Merge-sort
Ανάλυση αλγορίθμων. Χρόνος εκτέλεσης: Αναμενόμενη περίπτωση. - απαιτεί γνώση της κατανομής εισόδου
Ανάλυση αλγορίθμων Παράμετροι απόδοσης ενός αλγόριθμου: Χρόνος εκτέλεσης Απαιτούμενοι πόροι, π.χ. μνήμη, επικοινωνία (π.χ. σε κατανεμημένα συστήματα) Προσπάθεια υλοποίησης Ανάλυση της απόδοσης Θεωρητική