«Ας ακούσουμε μια εικόνα»

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "«Ας ακούσουμε μια εικόνα»"

Transcript

1 Χαράλαμπος Χ. Σπυρίδης, Άγγελος Κ. Μουστάκας «Ας Ακούσουμε Μια Εικόνα» 1 ΕΝΩΣΗ ΕΛΛΗΝΩΝ ΦΥΣΙΚΩΝ 11 Ο ΠΑΝΕΛΛΗΝΙΟ ΣΥΝΕΔΡΙΟ ΦΥΣΙΚΗΣ «ΟΙ ΝΕΟΙ ΟΡΙΖΟΝΤΕΣ ΤΗΣ ΦΥΣΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΣΤΟΝ ΑΙΩΝΑ ΜΑΣ ΣΤΗΝ ΕΡΕΥΝΑ, ΣΤΗΝ ΤΕΧΝΟΛΟΓΙΑ ΚΑΙ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ» ΜΑΡΤΙΟΥ, 1-2 ΑΠΡΙΛΙΟΥ ΛΑΡΙΣΑ «Ας ακούσουμε μια εικόνα» Χαράλαμπος Χ. Σπυρίδης 1 και Άγγελος Κ. Μουστάκας 2 1 Καθηγητής Μουσικής Ακουστικής, Πληροφορικής Διευθυντής Εργαστηρίου Μουσικής Ακουστικής τεχνολογίας, Τμήματος Μουσικών Σπουδών Πανεπιστημίου Αθηνών. 2 Φυσικός. 1. Περίληψη Αντικείμενο της εισηγήσεως αποτελεί η παρουσίαση λογισμικού, που συγγράψαμε, δια του οποίου δημιουργείται το ηχητικό ανάλογο μιας εικόνας. Το λογισμικό δι ενός αλγορίθμου παράγει μουσικές μελωδίες μετατρέποντας την RGB πληροφορία για το χρώμα κάθε σημείου μιας εικόνας ψηφιακής μορφής, σε ηχητικές συχνότητες της συγκερασμένης ευρωπαϊκής κλίμακας. Πιο συγκεκριμένα, μετά την ανάγνωση της RGB χρωματικής πληροφορίας για κάθε σημείο μιας εικόνας αποθηκευμένης σε υπολογιστή, μετατρέπουμε τη χρωματική πληροφορία σε μονοχρωματική συχνότητα του ορατού φάσματος και παράγουμε νέα εικόνα. μετασχηματίζουμε τις συχνότητες του ορατού φάσματος σε συχνότητες του ακουστού φάσματος. μέσω μιας μαθηματικής διαδικασίας ομαδοποιούμε τις ακουστές συχνότητες και τις ανάγουμε σε φθόγγους της συγκερασμένης ευρωπαϊκής κλίμακας, συγκεκριμένου μουσικού ύψους και διάρκειας. Μας δίδεται, έτσι, η δυνατότητα να ακούμε την εικόνα μέσω του μουσικού αναλόγου της, που προέκυψε. 2. Προλεγόμενα Κυρίες και Κύριοι σύνεδροι, επιθυμών να σας προϊδεάσω για την επομένη εισήγηση με θέμα «Ας ακούσουμε μια εικόνα», θα σας αναφέρω δύο αποφθέγματα. Το πρώτο μας το διασώζει ο Πολύβιος στο έργο του Ιστορίαι και το δεύτερο ο Σέξτος ο Εμπειρικός στο έργο του Προς Μαθηματικούς. Αμφότερα αποδίδονται στον μεγάλο προσωκρατικό φιλόσοφο Ηράκλειτο τον Εφέσιο ( π.χ.. Ñfqalmoˆ g r tîn êtwn kribšsteroi m rturej Πολυβίου, Ιστορίαι, 12, 27, 1, 5 [τα μάτια είναι ακριβέστεροι μάρτυρες απ ό,τι τα αυτιά]

2 Χαράλαμπος Χ. Σπυρίδης, Άγγελος Κ. Μουστάκας «Ας Ακούσουμε Μια Εικόνα» 2 Η κοινωνική μας δραστηριότητα καθίσταται δυνατή δια της αισθήσεως της οράσεως και της ακοής. Τα μάτια, τα όργανα της οράσεως, θεωρούνται πιστότεροι μάρτυρες από τα αυτιά, τα όργανα της ακοής. Στο απόσπασμα αυτό ο Ηράκλειτος διαχωρίζει τις πηγές της γνώσεως λέγοντας ότι τα μάτια είναι ακριβέστεροι μάρτυρες, όσον αφορά στην ουσία των όντων, διότι από τη μορφή και το είδος συλλαμβάνομε την εντελέχεια την οποία πραγματοποιούν τα όντα κατά την εδώ πορεία τους. kakoˆ m rturej nqrèpoisin Ñfqalmoˆ kaˆ ðta barb rouj yuc j còntwn Σέξτος Εμπειρικός, Προς Μαθηματικούς, 7, 126, 7-8 [Τα μάτια και τα αυτιά είναι κακοί μάρτυρες για τους ανθρώπους που έχουν βάρβαρη (=ακαλλιέργητη ψυχή] Κατά τον Ηράκλειτο τα μάτια και τα αυτιά μαρτυρούν για την ύπαρξη των όντων. Η γνώση, όμως, επιτυγχάνεται μόνον όταν ο άνθρωπος αντιλαμβάνεται σωστά τα όσα του προσφέρουν οι αισθήσεις. Άρα ο άνθρωπος αξιολογείται ανάλογα με την ικανότητά του να επεξεργάζεται τις πληροφορίες δια των αισθήσεων με σκοπό να επιτύχει την κατανόηση του όντος. Βάρβαρος (=ακαλλιέργητος είναι ο άνθρωπος που δεν μεθίσταται των φαινομένων, ώστε να προσεγγίσει την αλήθεια. Οι πρόγονοί μας, κυρίες και κύριοι σύνεδροι, δια μέσου της φιλοσοφίας είχαν συνείδηση ότι ο πολιτισμός χαρακτηρίζεται από την επεξεργασία της αισθήσεως. Αφού, λοιπόν, τα μάτια είναι ακριβέστεροι μάρτυρες απ ό,τι είναι τα αυτιά, μια εικόνα, που ευχαριστεί τα μάτια, θα μπορούσε με κάποιο τρόπο να ευχαριστήσει και τα αυτιά; Αυτό το ερώτημα μας ωδήγησε στη συγκεκριμένη έρευνα από την οποία προσπαθήσαμε να βρούμε την απάντησή του. Η απάντηση εξαρτάται από τον χαρακτηρισμό barb rouj yuc j, που θα μπορούσε να εκλιφθεί ως ψυχές εθισμένες σε εικόνες συγκεκριμένης τεχνοτροπίας και σε ακούσματα συγκεκριμένης μουσικής νοοτροπίας. Προβληματισθείτε βλέποντας και ακούοντας τα της εισηγήσεως και καταλήξτε στη δική σας απάντηση. 3. Απόδοση χρωμάτων και μοντέλο RGB. Το χρώμα στους υπολογιστές παριστάνεται ως μείξη τριών βασικών χρωμάτων. Πιο συγκεκριμένα χρησιμοποιείται το χρωματικό μοντέλο RGB και κάθε χρώμα προκύπτει ως μίξη του Κόκκινου (R, του Πράσινου (G και του Μπλε (B. Για κάθε σημείο μιας εικόνας (pixel, όπως αυτή παριστάνεται σε οθόνη πραγματικού χρώματος, αφιερώνονται 3 bytes πληροφορίας. Το καθένα από αυτά, με τιμή από 0 ως 255 ( 2 8 = 256, αφορά στο «ποσοστό» συμμετοχής καθενός από τα τρία βασικά χρώματα στην σύνθεση του αποδιδόμενου χρώματος. Οι καμπύλες μείξης RGB για την σύνθεση των λοιπών χρωμάτων παριστάνονται στο σχήμα 1. Εξετάζοντας τις καμπύλες μείξης των βασικών χρωμάτων του μοντέλου RGB γίνεται φανερή η αδυναμία απόδοσης κάποιων συχνοτήτων του ορατού φάσματος, διότι, ενώ

3 Χαράλαμπος Χ. Σπυρίδης, Άγγελος Κ. Μουστάκας «Ας Ακούσουμε Μια Εικόνα» 3 αυτό λειτουργεί προσθετικά, σε κάποια περιοχή μηκών κύματος του ορατού φάσματος η καμπύλη του ερυθρού χρώματος λαμβάνει αρνητικές τιμές. Η αδυναμία αποδόσεως όλων των χρωμάτων από το μοντέλο RGB οφείλεται στο γεγονός ότι η παράσταση των χρωμάτων μεταφέρεται από το πεδίο των μηκών κύματος στο πεδίο απεικονίσεως 1. Σχήμα 1: Οι καμπύλες μείξης RGB για την σύνθεση των λοιπών χρωμάτων. Πιο συγκεκριμένα το μοντέλο RGB ορίζει έναν τρισδιάστατο χώρο, ο οποίος περιλαμβάνει όλα τα χρώματα που είναι δυνατόν να παρασταθούν από έναν υπολογιστή. Σχήμα 2: Ο τρισδιάστατος χώρος που ορίζει το RGB μοντέλο, ο οποίος περιλαμβάνει όλα τα χρώματα που είναι δυνατόν να παρασταθούν από έναν υπολογιστή. Κάθε άξονας του τρισδιάστατου αυτού χώρου λαμβάνει ( = τιμές στο διάστημα [0,255] ή [0,1] σε κανονικοποιημένες τιμές. Το (0,0,0 παριστάνει το μαύρο χρώμα και το (1,1,1 το λευκό. Κάθε άλλο χρώμα προκύπτει ως γραμμική σύνθεση: F = r R + g G + b B 1 GARRETT M. JOHNSON & MARK D. FAIRCHILD, "Computer Synthesis of Spectroradiometric Images for Color Imaging Systems Analysis", The Sixth Color Imaging Conference: Color Science, Systems, and Applications

4 Χαράλαμπος Χ. Σπυρίδης, Άγγελος Κ. Μουστάκας «Ας Ακούσουμε Μια Εικόνα» 4 Εξ αιτίας αυτής της ιδιομορφίας της χρωματικής πληροφορίας στους υπολογιστές, δεν υπάρχει μια μονοσήμαντη αντιστοίχιση συχνοτήτων και RGB τιμών. Αναγκαστήκαμε, λοιπόν, να χρησιμοποιήσουμε κάποια ευρηματική μέθοδο. Επιλέξαμε τον αλγόριθμο Bruton 2 λόγω του πολύ καλού αισθητικού αποτελέσματος με την έννοια ότι αποδίδει πολύ ικανοποιητικά τα χρώματα του ορατού φάσματος. Στο σχήμα 3 απεικονίζονται οι RGB τιμές για τα ορατά μήκη κύματος, όπως αυτά προκύπτουν από τον αλγόριθμο Bruton. Σχήμα 3: Οι RGB τιμές για τα ορατά μήκη κύματος, όπως προκύπτουν από τον αλγόριθμο Bruton. Ο αναφερθείς αλγόριθμος του Bruton μετατρέπει συχνότητες του ορατού φάσματος σε RGB τιμές. Δεν υπάρχει αντίστροφος αλγόριθμος, ο οποίος να μετατρέπει RGB τιμές σε μονοχρωματικές συχνότητες του ορατού φάσματος. Προκειμένου, όμως, να έχουμε τιμές συχνοτήτων του ορατού φάσματος για τις RGB τιμές του χρώματος (r,g,b εκάστου pixel της εικόνας, που θα μετατρέψουμε σε μουσική, εφαρμόσαμε την ακόλουθη διαδικασία: Κάθε τιμή χρώματος (r,g,b εκάστου pixel της εικόνας, που θα μετατρέψουμε σε μουσική, πρέπει να αντιστοιχηθεί σε κάποια τιμή χρώματος (r,g,b του ορατού φάσματος, η οποία προέκυψε από τον αλγόριθμο του Bruton. Η αντιστοίχιση επιτυγχάνεται ελαχιστοποιώντας τη συνάρτηση ( ', ', ' ( ' ( ' ( ' f r g b = r r + g g + b b, η οποία παριστάνει την μεταξύ τους απόσταση στον τρισδιάστατο RGB χώρο. Για προφανείς πρακτικούς λόγους μνήμης και διάρκειας της μουσικής σύνθεσης, που θα προκύψει, η ανωτέρω διαδικασία δεν εφαρμόζεται σε όλα τα σημεία της εικόνας, αλλά στα σημεία εκείνα, που επιλέγονται με βάση κάποιο καθοριζόμενο από τον χρήστη (user βήμα κατά την οριζόντιο και κατά την κατακόρυφο διεύθυνση. 2 DAN BRUTON, Color Science Web Page,

5 Χαράλαμπος Χ. Σπυρίδης, Άγγελος Κ. Μουστάκας «Ας Ακούσουμε Μια Εικόνα» 5 Υλοποιώντας, λοιπόν, τις αναφερθείσες ενέργειες, που φαίνονται στο σχήμα 4, μετατρέπουμε τις RGB τιμές για το χρώμα κάθε σημείου (pixel μιας εικόνας σε συχνότητες του ορατού φάσματος. RGB Τιμή Σημείου RGB Τιμή Συχνότητας Ορατού Φάσματος Συχνότητα Ορατού Φάσματος Σχήμα 4: Οι ενέργειες δια των οποίων μετατρέπουμε τις RGB τιμές για το χρώμα κάθε σημείου (pixel μιας εικόνας σε συχνότητες του ορατού φάσματος. Επίσης, έχοντας νέες RGB τιμές για το χρώμα του κάθε σημείου (που αντιστοιχούν σε συχνότητες του ορατού φάσματος ξανασχεδιάζουμε την εικόνα χρησιμοποιώντας αυτές τις τιμές. 4. Μετασχηματισμός Οπτικών συχνοτήτων σε Ακουστές συχνότητες Εν συνεχεία, μετατρέπουμε τις συχνότητες του οπτικού φάσματος σε συχνότητες του ακουστού φάσματος χρησιμοποιώντας την παρακάτω σχέση μετασχηματισμού: max = max ως συνέπεια του ψυχοφυσικού νόμου των Weber-Fechner ότι δηλαδή το αίσθημα είναι ανάλογο του λογαρίθμου του ερεθίσματος. Με άλλα λόγια αυτό που βλέπουμε και αυτό που ακούμε είναι ανάλογο των λογαρίθμων των συχνοτήτων των κυματικών (οπτικών και ακουστικών, αντιστοίχως ερεθισμάτων. Τα όρια για το φάσμα υπό την έννοια της ανθρώπινης μουσικής δραστηριότητος- είναι επιλέξιμα εντός του συχνοτικού εύρους οκτώ μουσικών οκτάβων και συγκεκριμένα από 16,352 Hz έως 7.902,1 Hz (C0-B8. Τα όρια του ορατού φάσματος είναι προφανώς τα μήκη κύματος από 380nm ως 780nm.

6 Χαράλαμπος Χ. Σπυρίδης, Άγγελος Κ. Μουστάκας «Ας Ακούσουμε Μια Εικόνα» 6 5. Ομαδοποίηση τιμών με χρήση του Συντελεστή Συσχέτισης Έχοντας ως στόχο να καταλήξουμε σε μουσική μελωδία, πρέπει με κάποιο τρόπο να ομαδοποιήσουμε τις προκύπτουσες συχνότητες έτσι, ώστε να διαμορφωθούν φθόγγοι συγκεκριμένου μουσικού ύψους και χρονικής διάρκειας. Επιλέχθηκε να χρησιμοποιήσουμε τη διαδικασία με τον Συντελεστή Συσχέτισης r που περιγράφουν στην εργασία τους οι Σπυρίδης, Ρουμελιώτης, Παπαδημητράκη- Χλίχλια 3. Ο Συντελεστής Συσχέτισης xy x y ( x ][ n y ( y ] n r =, 2 [ n x ως γνωστόν, περιγράφει την ποιότητα της προσαρμογής n πλήθους σημείων επ ευθείας. Εφ όσον ο συντελεστής συσχέτισης ενός πλήθους n διαδοχικών συχνοτικών τιμών εμπίπτει εντός των ορίων, που καθορίζονται από τον χρήστη (user, τότε οι συχνότητες αυτές ομαδοποιούμενες δίδουν φθόγγο μουσικού ύψους ίσο με τη μέση τιμή των εν λόγω συχνοτήτων και διάρκειας ίσης προς το πλήθος των ομαδοποιούμενων τιμών. 6. Μετατροπή Ακουστών συχνοτήτων σε συχνότητες της συγκερασμένης ευρωπαϊκής μουσικής κλίμακας και δημιουργία πολυφωνικής μουσικής. Το επόμενο βήμα είναι η αναγωγή των συχνοτήτων των φθόγγων, που προέκυψαν, σε συχνότητες της συγκερασμένης ευρωπαϊκής κλίμακας. Αυτό επιτυγχάνεται με την αντικατάσταση της συχνότητας εκάστου φθόγγου με την πλησιέστερή της συχνότητα της συγκερασμένης ευρωπαϊκής κλίμακας. Κατ αυτόν τον τρόπο προκύπτει μελωδία με φθόγγους της ευρωπαϊκής μουσικής. Τους φθόγγους αυτούς τους χωρίζουμε στον επιθυμητό από τον χρήστη αριθμό συνηχουσών φωνών ως εξής: η πρώτη γραμμή σημείων (pixel της εικόνας αποδίδεται στην πρώτη φωνή, η δεύτερη γραμμή αποδίδεται στη δεύτερη φωνή κ.ο.κ μέχρις εξαντλήσεως του πλήθους των επιθυμητών συνηχουσών φωνών. Η επόμενη γραμμή της εικόνας αποδίδεται και πάλι στην πρώτη φωνή κ.ο.κ. Δηλαδή οι n το πλήθος φωνές σαρώνουν ταυτόχρονα ζώνη εύρους n γραμμών σημείων της εικόνας. Η μελωδία που παράγεται αποθηκεύεται σε αρχείο σε μορφή midi και είναι δυνατό να την ακούσουμε ή να την επεξεργαστούμε με οποιοδήποτε πρόγραμμα επεξεργασίας παρτιτούρας. 3 H. SPYRIDIS, E. ROUMELIOTIS, and H. PAPADIMITRAKI - CHLICHLIA, A computer approach to the construction and analysis of a pitch-curve in music, ACUSTICA, vol. 51, No 3, pp , (1982.

7 Χαράλαμπος Χ. Σπυρίδης, Άγγελος Κ. Μουστάκας «Ας Ακούσουμε Μια Εικόνα» 7 Το λογισμικό μας παρέχει τη δυνατότητα: επιλογής διαφορετικών μουσικών οργάνων για την απόδοση κάθε φωνής (μελωδίας επιλογής του μέτρου, ρύθμισης του tempo, «εκτέλεσης» της πολυφωνικής μελωδίας και προβολής σε πίνακα των νοτών όλων των φωνών. 7. Αντιστροφή της διαδικασίας και επανασχεδίαση της αρχικής εικόνας Από τη μελωδία που έχει προκύψει έχουμε μια τιμή συγκερασμένης συχνότητας του ακουστού φάσματος για κάθε σημείο (pixel της αρχικής εικόνας. Με εφαρμογή της σχέσης μετασχηματισμού max = max για κάθε δεδομένη ακουστή συχνότητα προκύπτει η αντίστοιχή της συχνότητα του ορατού φάσματος. Τα όρια είναι για τις οπτικές συχνότητες εκείνα του ορατού φάσματος και για τις ακουστές εκείνα που χρησιμοποιήθηκαν κατά τον μετασχηματισμό των οπτικών συχνοτήτων σε ακουστές. Με την βοήθεια του αλγορίθμου του Bruton λαμβάνονται οι αντίστοιχες RGB τιμές και επανασχεδιάζεται η αρχική εικόνα έχοντας ως «πηγή» την μελωδία. Η προκύπτουσα εικόνα είναι κατά το μάλλον ή ήττον αλλοιωμένη, λόγω του ότι οι ακουστές συχνότητες αφενός είχαν αναχθεί κατά τις απαιτήσεις της ευρωπαϊκής μουσικής- σε συχνότητες της συγκερασμένης ευρωπαϊκής κλίμακας και αφετέρου είχαν αλλοιωθεί λόγω της ομαδοποίησής τους με χρήση του συντελεστή συσχέτισης. 8. Ανακεφαλαίωση Ανακεφαλαιώνοντας, οι διαδικασίες τις οποίες εκτελεί το λογισμικό που συγγράψαμε, συνοψίζονται στο βήματα του διαγράμματος στο σχήμα 5.

8 Χαράλαμπος Χ. Σπυρίδης, Άγγελος Κ. Μουστάκας «Ας Ακούσουμε Μια Εικόνα» 8 Μετατροπή RGB τιμών χρώματος σε μονοχρωματική συχνότητα ορατού φάσματος Σχεδιασμός αρχικής εικόνας με RGB τιμές ορατού φάσματος Μετασχηματισμός Οπτικών συχνοτήτων σε Ακουστές Ομαδοποίηση συχνοτήτων με εφαρμογή του Συντελεστή Συσχέτισης Μετατροπή Ακουστών συχνοτήτων σε συχνότητες της Συγκερασμένης κλίμακας Διαίρεση μελωδίας σε φωνές Αντιστροφή της διαδικασίας και επανασχεδιασμός εικόνας Σχήμα 5: Το διάγραμμα ροής του λογισμικού μας.

«Σαρώνοντας μουσικά μια εικόνα»

«Σαρώνοντας μουσικά μια εικόνα» «Σαρώνοντας μουσικά μια εικόνα» Χαράλαμπος Χ. Σπυρίδης Καθηγητής Μουσικής Ακουστικής, Πληροφορικής Διευθυντής Εργαστηρίου Μουσικής Ακουστικής τεχνολογίας, Τμήματος Μουσικών Σπουδών Πανεπιστημίου Αθηνών.

Διαβάστε περισσότερα

Έγχρωµο και Ασπρόµαυρο Φως

Έγχρωµο και Ασπρόµαυρο Φως Έγχρωµο και Ασπρόµαυρο Φως Χρώµα: κλάδος φυσικής, φυσιολογίας, ψυχολογίας, τέχνης. Αφορά άµεσα τον προγραµµατιστή των γραφικών. Αν αφαιρέσουµε χρωµατικά χαρακτηριστικά, λαµβάνουµε ασπρόµαυρο φως. Μόνο

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας. Παρουσίαση 12 η. Θεωρία Χρώματος και Επεξεργασία Έγχρωμων Εικόνων

Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας. Παρουσίαση 12 η. Θεωρία Χρώματος και Επεξεργασία Έγχρωμων Εικόνων Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Παρουσίαση 12 η Θεωρία Χρώματος και Επεξεργασία Έγχρωμων Εικόνων Εισαγωγή (1) Το χρώμα είναι ένας πολύ σημαντικός παράγοντας περιγραφής, που συχνά απλουστεύει κατά

Διαβάστε περισσότερα

Group (JPEG) το 1992.

Group (JPEG) το 1992. Μέθοδοι Συμπίεσης Εικόνας Πρωτόκολλο JPEG Συμπίεση Εικόνας: Μείωση αποθηκευτικού χώρου Ευκολία στη μεταφορά αρχείων Δημιουργήθηκε από την ομάδα Joint Photographic Experts Group (JPEG) το 1992. Ονομάστηκε

Διαβάστε περισσότερα

MPEG-7 : Περιγραφή πολυμεσικού περιεχομένου

MPEG-7 : Περιγραφή πολυμεσικού περιεχομένου MPEG-7 : Περιγραφή πολυμεσικού περιεχομένου Εξαγωγή μεταδεδομένων / περιγραφών Χαμηλού επιπέδου περιγραφείς Συντακτικός και σημασιολογικός ορισμός Ανάκτηση πολυμεσικών τεκμηρίων XML / OWL Δημοσίευση 2002

Διαβάστε περισσότερα

Τμήμα Επιστήμης Υπολογιστών ΗΥ-474. Ψηφιακή Εικόνα. Αντίληψη χρωμάτων Συστήματα χρωμάτων Κβαντισμός χρωμάτων

Τμήμα Επιστήμης Υπολογιστών ΗΥ-474. Ψηφιακή Εικόνα. Αντίληψη χρωμάτων Συστήματα χρωμάτων Κβαντισμός χρωμάτων Ψηφιακή Εικόνα Αντίληψη χρωμάτων Συστήματα χρωμάτων Κβαντισμός χρωμάτων Σχηματισμός εικόνων Το φως είναι ηλεκτρομαγνητικό κύμα Το χρώμα προσδιορίζεται από το μήκος κύματος L(x, y ; t )= Φ(x, y ; t ; λ)

Διαβάστε περισσότερα

Συλλογή & Επεξεργασία Δεδομένων Εργαστήριο 8 Επεξεργασία Σήματος με την Ανάλυση Fourier. Σύστημα Συλλογής & Επεξεργασίας Μετρήσεων

Συλλογή & Επεξεργασία Δεδομένων Εργαστήριο 8 Επεξεργασία Σήματος με την Ανάλυση Fourier. Σύστημα Συλλογής & Επεξεργασίας Μετρήσεων Συλλογή & Επεξεργασία Δεδομένων Εργαστήριο 8 Επεξεργασία Σήματος με την Ανάλυση Fourier. Σύστημα Συλλογής & Επεξεργασίας Μετρήσεων Σκοπός Βασική δομή ενός προγράμματος στο LabVIEW. Εμπρόσθιο Πλαίσιο (front

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 2 ΒΑΣΙΚΑ ΚΑΙ ΣΥΝΘΕΤΑ ΣΗΜΑΤΑ ΔΥΟ ΔΙΑΣΤΑΣΕΩΝ - ΕΙΚΟΝΑΣ

ΑΣΚΗΣΗ 2 ΒΑΣΙΚΑ ΚΑΙ ΣΥΝΘΕΤΑ ΣΗΜΑΤΑ ΔΥΟ ΔΙΑΣΤΑΣΕΩΝ - ΕΙΚΟΝΑΣ ΑΣΚΗΣΗ 2 ΒΑΣΙΚΑ ΚΑΙ ΣΥΝΘΕΤΑ ΣΗΜΑΤΑ ΔΥΟ ΔΙΑΣΤΑΣΕΩΝ - ΕΙΚΟΝΑΣ Αντικείμενο: Κατανόηση και αναπαράσταση των βασικών σημάτων δύο διαστάσεων και απεικόνισης αυτών σε εικόνα. Δημιουργία και επεξεργασία των διαφόρων

Διαβάστε περισσότερα

2.0 ΒΑΣΙΚΕΣ ΓΝΩΣΕΙΣ-ΟΡΟΛΟΓΙΕΣ

2.0 ΒΑΣΙΚΕΣ ΓΝΩΣΕΙΣ-ΟΡΟΛΟΓΙΕΣ 2.0 ΒΑΣΙΚΕΣ ΓΝΩΣΕΙΣ-ΟΡΟΛΟΓΙΕΣ Η σάρωση ενός εγγράφου εισάγει στον υπολογιστή μια εικόνα, ενώ η εκτύπωση μεταφέρει στο χαρτί μια εικόνα από αυτόν. Για να αντιληφθούμε επομένως τα χαρακτηριστικά των σαρωτών

Διαβάστε περισσότερα

Ιατρική Πληροφορική. Δρ. Π. ΑΣΒΕΣΤΑΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΒΙΟΪΑΤΡΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ Τ.Ε.

Ιατρική Πληροφορική. Δρ. Π. ΑΣΒΕΣΤΑΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΒΙΟΪΑΤΡΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ Τ.Ε. Ιατρική Πληροφορική Δρ. Π. ΑΣΒΕΣΤΑΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΒΙΟΪΑΤΡΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ Τ.Ε. Οι διάφορες τεχνικές απεικόνισης (imaging modalities) της ανθρώπινης ανατομίας περιγράφονται κατά DICOM ως συντομογραφία

Διαβάστε περισσότερα

ΠΛΗΡΟΦΟΡΙΚΗ I. 7 η ΔΙΑΛΕΞΗ Γραφικά με Υπολογιστή

ΠΛΗΡΟΦΟΡΙΚΗ I. 7 η ΔΙΑΛΕΞΗ Γραφικά με Υπολογιστή ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ - ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΣΑΓΩΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΤΟΥΡΙΣΤΙΚΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ ΚΑΙ ΕΠΙΧΕΙΡΗΣΕΩΝ ΦΙΛΟΞΕΝΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗ I 7 η ΔΙΑΛΕΞΗ Γραφικά με Υπολογιστή ΧΑΣΑΝΗΣ ΒΑΣΙΛΕΙΟΣ

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 3 ΒΕΛΤΙΩΣΗ ΕΙΚΟΝΑΣ ΜΕΛΕΤΗ ΙΣΤΟΓΡΑΜΜΑΤΟΣ. ( ) 1, αν Ι(i,j)=k hk ( ), διαφορετικά

ΑΣΚΗΣΗ 3 ΒΕΛΤΙΩΣΗ ΕΙΚΟΝΑΣ ΜΕΛΕΤΗ ΙΣΤΟΓΡΑΜΜΑΤΟΣ. ( ) 1, αν Ι(i,j)=k hk ( ), διαφορετικά ΑΣΚΗΣΗ 3 ΒΕΛΤΙΩΣΗ ΕΙΚΟΝΑΣ ΜΕΛΕΤΗ ΙΣΤΟΓΡΑΜΜΑΤΟΣ Αντικείμενο: Εξαγωγή ιστογράμματος εικόνας, απλοί μετασχηματισμοί με αυτό, ισοστάθμιση ιστογράμματος. Εφαρμογή βασικών παραθύρων με την βοήθεια του ΜΑΤLAB

Διαβάστε περισσότερα

Συστήματα Πολυμέσων. Ενότητα 4: Θεωρία Χρώματος. Θρασύβουλος Γ. Τσιάτσος Τμήμα Πληροφορικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ

Συστήματα Πολυμέσων. Ενότητα 4: Θεωρία Χρώματος. Θρασύβουλος Γ. Τσιάτσος Τμήμα Πληροφορικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 4: Θεωρία Χρώματος Θρασύβουλος Γ. Τσιάτσος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Α.Τ.Ε.Ι. Ηρακλείου Ψηφιακή Επεξεργασία Εικόνας ιδάσκων: Βασίλειος Γαργανουράκης. Ανθρώπινη Όραση - Χρωµατικά Μοντέλα

Α.Τ.Ε.Ι. Ηρακλείου Ψηφιακή Επεξεργασία Εικόνας ιδάσκων: Βασίλειος Γαργανουράκης. Ανθρώπινη Όραση - Χρωµατικά Μοντέλα Ανθρώπινη Όραση - Χρωµατικά Μοντέλα 1 Τι απαιτείται για την όραση Φωτισµός: κάποια πηγή φωτός Αντικείµενα: που θα ανακλούν (ή διαθλούν) το φως Μάτι: σύλληψη του φωτός σαν εικόνα Τρόποι µετάδοσης φωτός

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 11 η : θεωρία Χρώματος & Επεξεργασία Έγχρωμων Εικόνων

Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 11 η : θεωρία Χρώματος & Επεξεργασία Έγχρωμων Εικόνων Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 11 η : θεωρία Χρώματος & Επεξεργασία Έγχρωμων Εικόνων Καθ. Κωνσταντίνος Μπερμπερίδης Πολυτεχνική Σχολή Μηχανικών Η/Υ & Πληροφορικής Σκοποί ενότητας Εισαγωγή

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. ΕΙΣΑΓΩΓΗ: Γνωριμία με την ΑΚΟΥΣΤΙΚΗ 1 ΜΕΡΟΣ ΠΡΩΤΟ: ΘΕΩΡΙΑ 5. 1 ος ΘΕΜΑΤΙΚΟΣ ΑΞΟΝΑΣ: ΤΑΛΑΝΤΩΣΕΙΣ 7 Προσδοκώμενα αποτελέσματα 8

ΠΕΡΙΕΧΟΜΕΝΑ. ΕΙΣΑΓΩΓΗ: Γνωριμία με την ΑΚΟΥΣΤΙΚΗ 1 ΜΕΡΟΣ ΠΡΩΤΟ: ΘΕΩΡΙΑ 5. 1 ος ΘΕΜΑΤΙΚΟΣ ΑΞΟΝΑΣ: ΤΑΛΑΝΤΩΣΕΙΣ 7 Προσδοκώμενα αποτελέσματα 8 ΠΕΡΙΕΧΟΜΕΝΑ ΕΙΣΑΓΩΓΗ: Γνωριμία με την ΑΚΟΥΣΤΙΚΗ 1 ΜΕΡΟΣ ΠΡΩΤΟ: ΘΕΩΡΙΑ 5 1 ος ΘΕΜΑΤΙΚΟΣ ΑΞΟΝΑΣ: ΤΑΛΑΝΤΩΣΕΙΣ 7 Προσδοκώμενα αποτελέσματα 8 1.1. Περιοδική κίνηση Περιοδικά φαινόμενα 9 1.2. Ταλάντωση - Ταλαντούμενα

Διαβάστε περισσότερα

Συλλογή & Επεξεργασία Δεδομένων Εργαστήριο 9 Ανάλυση Fourier: Από τη Θεωρία στην Πρακτική Εφαρμογή των Μαθηματικών

Συλλογή & Επεξεργασία Δεδομένων Εργαστήριο 9 Ανάλυση Fourier: Από τη Θεωρία στην Πρακτική Εφαρμογή των Μαθηματικών Συλλογή & Επεξεργασία Δεδομένων Εργαστήριο 9 Ανάλυση Fourier: Από τη Θεωρία στην Πρακτική Εφαρμογή των Μαθηματικών Τύπων. Σύστημα Συλλογής & Επεξεργασίας Μετρήσεων Σκοπός Βασική δομή ενός προγράμματος

Διαβάστε περισσότερα

ΣΤΕΡΕΟΣΚΟΠΙΚΕΣ ΕΙΚΟΝΕΣ

ΣΤΕΡΕΟΣΚΟΠΙΚΕΣ ΕΙΚΟΝΕΣ ΣΤΕΡΕΟΣΚΟΠΙΚΕΣ ΕΙΚΟΝΕΣ Η προοπτική εικόνα, είναι, όπως είναι γνωστό, η προβολή ενός χωρικού αντικειμένου, σε ένα επίπεδο, με κέντρο προβολής, το μάτι του παρατηρητή. Η εικόνα αυτή, θεωρούμε ότι αντιστοιχεί

Διαβάστε περισσότερα

2.2.1. Ανοίξτε την εικόνα Hel_MDSGEO και δημιουργήστε δύο έγχρωμα σύνθετα ένα σε πραγματικό χρώμα (True color) και ένα σε ψευδοέχρωμο υπέρυθρο (CIR)

2.2.1. Ανοίξτε την εικόνα Hel_MDSGEO και δημιουργήστε δύο έγχρωμα σύνθετα ένα σε πραγματικό χρώμα (True color) και ένα σε ψευδοέχρωμο υπέρυθρο (CIR) ΕΡΓΑΣΤΗΡΙΟ 2 ο : Φασματικές υπογραφές 2.1. Επανάληψη από τα προηγούμενα 2.2.1. Ανοίξτε την εικόνα Hel_MDSGEO και δημιουργήστε δύο έγχρωμα σύνθετα ένα σε πραγματικό χρώμα (True color) και ένα σε ψευδοέχρωμο

Διαβάστε περισσότερα

Εισαγωγή Ασπρόμαυρο Halftoning γάμμα Φως/Χρώμα Χρωματικά Μοντέλα Άλλα. 6ο Μάθημα Χρώμα. Γραφικα. Ευάγγελος Σπύρου

Εισαγωγή Ασπρόμαυρο Halftoning γάμμα Φως/Χρώμα Χρωματικά Μοντέλα Άλλα. 6ο Μάθημα Χρώμα. Γραφικα. Ευάγγελος Σπύρου Εισαγωγή Ασπρόμαυρο Halftoning γάμμα Φως/Χρώμα Χρωματικά Μοντέλα Άλλα Γραφικα Τμήμα Πληροφορικής Πανεπιστήμιο Θεσσαλίας Ακ Έτος 2016-17 Σύνοψη του σημερινού μαθήματος 1 Εισαγωγή 2 Ασπρόμαυρο Φως 3 Halftoning

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ ΧΗΜΕΙΑΣ ΤΜΗΜΑΤΟΣ ΒΙΟΛΟΓΙΑΣ Φασματοφωτομετρία

ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ ΧΗΜΕΙΑΣ ΤΜΗΜΑΤΟΣ ΒΙΟΛΟΓΙΑΣ Φασματοφωτομετρία 1 ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ ΧΗΜΕΙΑΣ ΤΜΗΜΑΤΟΣ ΒΙΟΛΟΓΙΑΣ Φασματοφωτομετρία Ιωάννης Πούλιος Αθανάσιος Κούρας Ευαγγελία Μανώλη ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ ΧΗΜΕΙΑΣ ΤΜΗΜΑ ΧΗΜΕΙΑΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ 54124

Διαβάστε περισσότερα

Κύλινδρος κοιμώμενος εντός κώνου

Κύλινδρος κοιμώμενος εντός κώνου Κύλινδρος κοιμώμενος εντός κώνου Γιώργος Μπαλόγλου gbaloglou@gmail.com 7 η Μαθηματική Εβδομάδα, 18- Μαρτίου 015, Θεσσαλονίκη Εισαγωγή Περίληψη: Υπολογίζεται ο μέγιστος όγκος οριζοντίου κυλίνδρου εγγεγραμμένου

Διαβάστε περισσότερα

Άσκηση 1. Όργανα εργαστηρίου, πηγές συνεχούς τάσης και μετρήσεις

Άσκηση 1. Όργανα εργαστηρίου, πηγές συνεχούς τάσης και μετρήσεις ΤΕΙ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΗΛΕΚΤΡΟΝΙΚΑ Ι (ΕΡ) Άσκηση 1 Όργανα εργαστηρίου, πηγές συνεχούς τάσης και μετρήσεις Στόχος Η άσκηση είναι εισαγωγική και προσφέρει γνωριμία και εξοικείωση

Διαβάστε περισσότερα

DIP_04 Σημειακή επεξεργασία. ΤΕΙ Κρήτης

DIP_04 Σημειακή επεξεργασία. ΤΕΙ Κρήτης DIP_04 Σημειακή επεξεργασία ΤΕΙ Κρήτης ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΕΙΚΟΝΑΣ Σκοπός μιας τέτοιας τεχνικής μπορεί να είναι: η βελτιστοποίηση της οπτικής εμφάνισης μιας εικόνας όπως την αντιλαμβάνεται ο άνθρωπος, η τροποποίηση

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 8 «ΑΠΟΤΕΛΕΣΜΑΤΑ»

ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 8 «ΑΠΟΤΕΛΕΣΜΑΤΑ» ΠΕΡΙΕΧΟΜΕΝΑ I.ΤΟ ΝΕΟ ΑΝΑΒΑΘΜΙΣΜΕΝΟ ΠΕΡΙΒΑΛΛΟΝ ΤΟΥ SCADA Pro 3 II.ΑΝΑΛΥΤΙΚΗ ΠΕΡΙΓΡΑΦΗ ΤΟΥ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΕΡΓΑΣΙΑΣ 4 1. Αποτελέσματα 4 1.1 Διαγράμματα Παραμορφώσεις 5 1.2 Βοηθητικά 17 2 I. ΤΟ ΝΕΟ ΑΝΑΒΑΘΜΙΣΜΕΝΟ

Διαβάστε περισσότερα

Συλλογή & Επεξεργασία Δεδομένων Εργαστήριο 7 Ακούγοντας Πρώτη Ματιά στην Ανάλυση Fourier. Σύστημα Συλλογής & Επεξεργασίας Μετρήσεων

Συλλογή & Επεξεργασία Δεδομένων Εργαστήριο 7 Ακούγοντας Πρώτη Ματιά στην Ανάλυση Fourier. Σύστημα Συλλογής & Επεξεργασίας Μετρήσεων Συλλογή & Επεξεργασία Δεδομένων Εργαστήριο 7 Ακούγοντας Πρώτη Ματιά στην Ανάλυση Fourier. Σύστημα Συλλογής & Επεξεργασίας Μετρήσεων Σκοπός Βασική δομή ενός προγράμματος στο LabVIEW. Εμπρόσθιο Πλαίσιο (front

Διαβάστε περισσότερα

Διάλεξη 8. Η Φυσική της Μουσικής Τ.Ε.Ι. Ιονίων Νήσων. Αντιληπτό ύψος καθαρού τόνου Απόλυτο ύψος

Διάλεξη 8. Η Φυσική της Μουσικής Τ.Ε.Ι. Ιονίων Νήσων. Αντιληπτό ύψος καθαρού τόνου Απόλυτο ύψος Η Φυσική της Μουσικής Τ.Ε.Ι. Ιονίων Νήσων Διάλεξη 8 Αντιληπτό ύψος καθαρού τόνου Απόλυτο ύψος Ανασκόπηση της Διάλεξης 7 Το αν ένας ήχος είναι ακουστός ή όχι εξαρτάται κυρίως από την έντασή του και τη συχνότητα.

Διαβάστε περισσότερα

Επεξεργασία Χαρτογραφικής Εικόνας

Επεξεργασία Χαρτογραφικής Εικόνας Επεξεργασία Χαρτογραφικής Εικόνας Διδάσκων: Αναγνωστόπουλος Χρήστος Κώδικες μετρήσεων αντικειμένων σε εικόνα Χρωματικά μοντέλα: Munsell, HSB/HSV, CIE-LAB Κώδικες μετρήσεων αντικειμένων σε εικόνες Η βασική

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία Σηµμάτων

Ψηφιακή Επεξεργασία Σηµμάτων Ψηφιακή Επεξεργασία Σηµμάτων Διάλεξη 3: DSP for Audio Δρ. Θωµμάς Ζαρούχας Επιστηµμονικός Συνεργάτης Μεταπτυχιακό Πρόγραµμµμα: Τεχνολογίες και Συστήµματα Ευρυζωνικών Εφαρµμογών και Υπηρεσιών 1 Προεπισκόπηση

Διαβάστε περισσότερα

ΣΧΕΔΙΑΣΗ ΣΥΣΤΗΜΑΤΩΝ ΜΕ ΧΡΗΣΗ ΥΠΟΛΟΓΙΣΤΩΝ (E-CAD) ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ

ΣΧΕΔΙΑΣΗ ΣΥΣΤΗΜΑΤΩΝ ΜΕ ΧΡΗΣΗ ΥΠΟΛΟΓΙΣΤΩΝ (E-CAD) ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ ΣΧΕΔΙΑΣΗ ΣΥΣΤΗΜΑΤΩΝ ΜΕ ΧΡΗΣΗ ΥΠΟΛΟΓΙΣΤΩΝ (E-CAD) ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2014 2015 ΕΡΓΑΣΙΑ ΕΞΑΜΗΝΟΥ Σκοπός της φετινής εργασίας εξαμήνου είναι η σχεδίαση ενός Συστήματος Εισαγωγής & Απεικόνισης Χαρακτήρων (στο

Διαβάστε περισσότερα

Παρατηρήσεις για τη χρήση ενός κυκλικού διαγράμματος

Παρατηρήσεις για τη χρήση ενός κυκλικού διαγράμματος Παρατηρήσεις για τη χρήση ενός κυκλικού διαγράμματος Χρησιμοποιείται μόνο όταν οι τιμές της μεταβλητής έχουν ένα σταθερό άθροισμα (συνήθως 100%, όταν μιλάμε για σχετικές συχνότητες) Είναι χρήσιμο μόνο

Διαβάστε περισσότερα

ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΛΥΚΕΙΟ ΕΥΑΓΓΕΛΙΚΗΣ ΣΧΟΛΗΣ ΣΜΥΡΝΗΣ

ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΛΥΚΕΙΟ ΕΥΑΓΓΕΛΙΚΗΣ ΣΧΟΛΗΣ ΣΜΥΡΝΗΣ ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΛΥΚΕΙΟ ΕΥΑΓΓΕΛΙΚΗΣ ΣΧΟΛΗΣ ΣΜΥΡΝΗΣ ΕΠΙΛΟΓΗ ΘΕΜΑΤΩΝ ΑΠΟ ΤΗΝ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ «Β ΘΕΜΑΤΑ ΦΩΣ» ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Β ΛΥΚΕΙΟΥ Χ. Δ. ΦΑΝΙΔΗΣ ΣΧΟΛΙΚΟ ΕΤΟΣ 04-05 ΠΟΡΕΙΑ ΑΚΤΙΝΑΣ. Β. Στο διπλανό

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ

ΑΛΓΕΒΡΑ Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΣΤΟΙΧΕΙΑ ΑΡΧΙΚΗΣ ΕΚ ΟΣΗΣ Συγγραφική ομάδα: Ανδρεαδάκης Στυλιανός Κατσαργύρης Βασίλειος Παπασταυρίδης Σταύρος Πολύζος Γεώργιος Σβέρκος Ανδρέας Καθηγητής Πανεπιστημίου Αθηνών Καθηγητής

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 1

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 1 ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 1 ΒΑΣΙΚΟΙ ΧΕΙΡΙΣΜΟΙ ΕΙΚΟΝΑΣ Αντικείμενο: Εισαγωγή στις βασικές αρχές της ψηφιακής επεξεργασίας εικόνας χρησιμοποιώντας το MATLAB και το πακέτο Επεξεργασίας Εικόνας. Περιγραφή και αναπαράσταση

Διαβάστε περισσότερα

ΜΕΘΟΔΟΣ ΕΛΑΧΙΣΤΩΝ ΤΕΤΡΑΓΩΝΩΝ

ΜΕΘΟΔΟΣ ΕΛΑΧΙΣΤΩΝ ΤΕΤΡΑΓΩΝΩΝ ΜΕΘΟΔΟΣ ΕΛΑΧΙΣΤΩΝ ΤΕΤΡΑΓΩΝΩΝ ΧΑΡΑΞΗ ΓΡΑΦΙΚΗΣ ΠΑΡΑΣΤΑΣΗΣ Δημήτρης Στεφανάκης Η Μέθοδος των Ελαχίστων Τετραγώνων (ΜΕΤ) χρησιμοποιείται για την κατασκευή της γραφικής παράστασης που περιγράφει ένα φαινόμενο,

Διαβάστε περισσότερα

Κεφάλαιο 11 Πολυμέσα. Εφ. Πληροφορικής Κεφ. 11 Καραμαούνας Π. 1

Κεφάλαιο 11 Πολυμέσα. Εφ. Πληροφορικής Κεφ. 11 Καραμαούνας Π. 1 Κεφάλαιο 11 Πολυμέσα Εφ. Πληροφορικής Κεφ. 11 Καραμαούνας Π. 1 Εφαρμογές πολυμέσων: πολλές μορφές πληροφορίας, αποθηκευμένες σε ψηφιακή μορφή, με δυνατότητα αλληλεπίδρασης κατά την παρουσίασή τους 11.1

Διαβάστε περισσότερα

Σχεδίαση με Ηλεκτρονικούς Υπολογιστές

Σχεδίαση με Ηλεκτρονικούς Υπολογιστές ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Σχεδίαση με Ηλεκτρονικούς Υπολογιστές Ενότητα # 10: Χρωματικά μοντέλα στον ΗΥ Καθηγητής Ιωάννης Γ. Παρασχάκης Τμήμα Αγρονόμων & Τοπογράφων

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία Εικόνας. Σ. Φωτόπουλος ΨΕΕ

Ψηφιακή Επεξεργασία Εικόνας. Σ. Φωτόπουλος ΨΕΕ Ψηφιακή Επεξεργασία Εικόνας ΒΕΛΤΙΩΣΗ ΕΙΚΟΝΑΣ ΜΕ ΙΣΤΟΓΡΑΜΜΑ ΔΠΜΣ ΗΕΠ 1/46 Περιλαμβάνει: Βελτίωση (Enhancement) Ανακατασκευή (Restoration) Κωδικοποίηση (Coding) Ανάλυση, Κατανόηση Τμηματοποίηση (Segmentation)

Διαβάστε περισσότερα

Ένα αναλογικό σήμα περιέχει άπειρες πιθανές τιμές. Για παράδειγμα ένας απλός ήχος αν τον βλέπαμε σε ένα παλμογράφο θα έμοιαζε με το παρακάτω:

Ένα αναλογικό σήμα περιέχει άπειρες πιθανές τιμές. Για παράδειγμα ένας απλός ήχος αν τον βλέπαμε σε ένα παλμογράφο θα έμοιαζε με το παρακάτω: Σημειώσεις Δικτύων Αναλογικά και ψηφιακά σήματα Ένα αναλογικό σήμα περιέχει άπειρες πιθανές τιμές. Για παράδειγμα ένας απλός ήχος αν τον βλέπαμε σε ένα παλμογράφο θα έμοιαζε με το παρακάτω: Χαρακτηριστικά

Διαβάστε περισσότερα

Απεικόνιση Υφής. Μέρος Α Υφή σε Πολύγωνα

Απεικόνιση Υφής. Μέρος Α Υφή σε Πολύγωνα Απεικόνιση Γραφικά ΥφήςΥπολογιστών Απεικόνιση Υφής Μέρος Α Υφή σε Πολύγωνα Γ. Γ. Παπαϊωάννου, - 2008 Τι Είναι η Υφή; Η υφή είναι η χωρική διαμόρφωση των ποιοτικών χαρακτηριστικών της επιφάνειας ενός αντικειμένου,

Διαβάστε περισσότερα

Η μεταβλητή "χρόνος" στη δημογραφική ανάλυση - το διάγραμμα του Lexis

Η μεταβλητή χρόνος στη δημογραφική ανάλυση - το διάγραμμα του Lexis Η μεταβλητή "χρόνος" στη δημογραφική ανάλυση - το διάγραμμα του Lexis Η αναφορά στο χρόνο Αναφερόμενοι στο χρόνο, θα πρέπει κατ αρχάς να τονίσουμε ότι αυτός μπορεί να είναι είτε το ημερολογιακό έτος, είτε

Διαβάστε περισσότερα

Εγχειρίδιο Χρήσης ❽ Αποτελέσματα

Εγχειρίδιο Χρήσης ❽ Αποτελέσματα Εγχειρίδιο Χρήσης ❽ Αποτελέσματα 2 ΠΕΡΙΕΧΟΜΕΝΑ I.ΤΟ ΝΕΟ ΑΝΑΒΑΘΜΙΣΜΕΝΟ ΠΕΡΙΒΑΛΛΟΝ ΤΟΥ SCADA Pro 4 II.ΑΝΑΛΥΤΙΚΗ ΠΕΡΙΓΡΑΦΗ ΤΟΥ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΕΡΓΑΣΙΑΣ 5 1.Αποτελέσματα 5 1.1 Διαγράμματα Παραμορφώσεις 6 1.2

Διαβάστε περισσότερα

Αριθμητική Ανάλυση & Εφαρμογές

Αριθμητική Ανάλυση & Εφαρμογές Αριθμητική Ανάλυση & Εφαρμογές Διδάσκων: Δημήτριος Ι. Φωτιάδης Τμήμα Μηχανικών Επιστήμης Υλικών Ιωάννινα 2017-2018 Υπολογισμοί και Σφάλματα Παράσταση Πραγματικών Αριθμών Συστήματα Αριθμών Παράσταση Ακέραιου

Διαβάστε περισσότερα

Εφαρμογές Πληροφορικής

Εφαρμογές Πληροφορικής Εφαρμογές Πληροφορικής Κεφάλαιο 11 Πολυμέσα ΜΕΡΟΣ Α 1. Υπερκείμενο Ποιός είναι ο κόμβος, ποιός ο σύνδεσμος και ποιά η θερμή λέξη; 1 2. Υπερμέσα Χαρακτηριστικά Κόμβος (Node) Αποτελεί τη βάση πληροφοριών

Διαβάστε περισσότερα

Αφήγηση Μαρτυρία. Μουσική. Ενίσχυση μηνύματος Μουσική επένδυση Ηχητικά εφέ

Αφήγηση Μαρτυρία. Μουσική. Ενίσχυση μηνύματος Μουσική επένδυση Ηχητικά εφέ ΠΟΥ ΧΡΗΣΙΜΟΠΟΙΕΙΤΑΙ Ο ΗΧΟΣ ΗΧΗΤΙΚΗ ΕΠΕΝΔΥΣΗ ΕΦΑΡΜΟΓΩΝ ΠΟΛΥΜΕΣΩΝ ΗΧΟΙ ΠΕΡΙΕΧΟΜΕΝΟΥ Αφήγηση Μαρτυρία Εκφώνηση Μουσική ΗΧΟΙ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΗΧΟΙ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Ενίσχυση μηνύματος Μουσική επένδυση Ηχητικά εφέ

Διαβάστε περισσότερα

Τεχνολογία Πολυμέσων. Ενότητα # 4: Ήχος Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής

Τεχνολογία Πολυμέσων. Ενότητα # 4: Ήχος Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής Τεχνολογία Πολυμέσων Ενότητα # 4: Ήχος Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα. Το

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΚΥΜΑΤΙΚΗΣ ΟΠΤΙΚΗΣ

ΑΣΚΗΣΕΙΣ ΚΥΜΑΤΙΚΗΣ ΟΠΤΙΚΗΣ ΑΣΚΗΣΕΙΣ ΚΥΜΑΤΙΚΗΣ ΟΠΤΙΚΗΣ ΑΣΚΗΣΗ 1: Ένα οπτικό φράγμα με δυο σχισμές που απέχουν μεταξύ τους απόσταση d=0.20 mm είναι τοποθετημένο σε απόσταση =1,20 m από μια οθόνη. Το οπτικό φράγμα με τις δυο σχισμές

Διαβάστε περισσότερα

Γραφικά & Οπτικοποίηση. Κεφάλαιο 1. Εισαγωγή. Γραφικά & Οπτικοπίηση: Αρχές & Αλγόριθμοι Κεφάλαιο 1

Γραφικά & Οπτικοποίηση. Κεφάλαιο 1. Εισαγωγή. Γραφικά & Οπτικοπίηση: Αρχές & Αλγόριθμοι Κεφάλαιο 1 Γραφικά & Οπτικοποίηση Κεφάλαιο 1 Εισαγωγή Ιστορικά Ιστορική ανασκόπηση : 2 Ιστορικά (2) Ρυθμοί ανάπτυξης CPU και GPU 3 Εφαρμογές Ειδικά εφέ για ταινίες & διαφημίσεις Επιστημονική εξερεύνηση μέσω οπτικοποίησης

Διαβάστε περισσότερα

2. ΤΟ ΠΛΕΟΝΕΚΤΗΜΑ ΤΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ SYNTHESIS ΣΤΗΝ ΑΠΟ ΟΣΗ ΤΩΝ ΙΑΣΤΗΜΑΤΩΝ ΚΑΙ Η ΑΙΤΙΟΛΟΓΗΣΗ ΤΟΥ

2. ΤΟ ΠΛΕΟΝΕΚΤΗΜΑ ΤΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ SYNTHESIS ΣΤΗΝ ΑΠΟ ΟΣΗ ΤΩΝ ΙΑΣΤΗΜΑΤΩΝ ΚΑΙ Η ΑΙΤΙΟΛΟΓΗΣΗ ΤΟΥ 2. ΤΟ ΠΛΕΟΝΕΚΤΗΜΑ ΤΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ SYNTHESIS ΣΤΗΝ ΑΠΟ ΟΣΗ ΤΩΝ ΙΑΣΤΗΜΑΤΩΝ ΚΑΙ Η ΑΙΤΙΟΛΟΓΗΣΗ ΤΟΥ Tο σύστηµα γραφής που χρησιµοποιεί ο χρήστης στο πρόγραµµα Synthesis προσφέρει αρκετές από τις δυνατότητες

Διαβάστε περισσότερα

ΌΡΑΣΗ. Εργασία Β Τετράμηνου Τεχνολογία Επικοινωνιών Μαρία Κόντη

ΌΡΑΣΗ. Εργασία Β Τετράμηνου Τεχνολογία Επικοινωνιών Μαρία Κόντη ΌΡΑΣΗ Εργασία Β Τετράμηνου Τεχνολογία Επικοινωνιών Μαρία Κόντη Τι ονομάζουμε όραση; Ονομάζεται μία από τις πέντε αισθήσεις Όργανο αντίληψης είναι τα μάτια Αντικείμενο αντίληψης είναι το φως Θεωρείται η

Διαβάστε περισσότερα

Διακριτός Μετασχηματισμός Fourier

Διακριτός Μετασχηματισμός Fourier Διακριτός Μετασχηματισμός Fourier 1 Διακριτός Μετασχηματισμός Fourier Ο μετασχηματισμός Fourier αποτελεί τον ακρογωνιαίο λίθο της επεξεργασίας σήματος αλλά και συχνή αιτία πονοκεφάλου για όσους πρωτοασχολούνται

Διαβάστε περισσότερα

ΑΚΟΥΜΕ ΤΑ ΧΡΩΜΑΤΑ ΚΑΙ ΒΛΕΠΟΥΜΕ ΤΗ ΜΟΥΣΙΚΗ

ΑΚΟΥΜΕ ΤΑ ΧΡΩΜΑΤΑ ΚΑΙ ΒΛΕΠΟΥΜΕ ΤΗ ΜΟΥΣΙΚΗ ΕΡΕΥΝΗΤΙΚΗ ΕΡΓΑΣΙΑ Α ΤΕΤΡΑΜΗΝΟΥ Α ΛΥΚΕΙΟΥ ΜΟΥΣΙΚΟ ΣΧΟΛΕΙΟ ΓΙΑΝΝΙΤΣΩΝ ΣΧ.ΕΤΟΣ 2012-2013 ΑΚΟΥΜΕ ΤΑ ΧΡΩΜΑΤΑ ΚΑΙ ΒΛΕΠΟΥΜΕ ΤΗ ΜΟΥΣΙΚΗ ΤΙ ΕΙΝΑΙ ΧΡΩΜΑ Το χρώμα είναι μια αίσθηση που δημιουργείται στον εγκέφαλο

Διαβάστε περισσότερα

Φύλλο Εργασίας. Σύνθεση χρωμάτων

Φύλλο Εργασίας. Σύνθεση χρωμάτων Φύλλο Εργασίας Σύνθεση χρωμάτων Η ώρα της πρόβλεψης Τι χρώμα έχουν τα πορτοκάλια; Μπορούμε να τα δούμε κίτρινα; (χωρίς να τα βάψουμε!). Αν ΝΑΙ, πώς; Μπορούμε να τα δούμε μπλε; Αν ΝΑΙ, πώς; Η ώρα της πειραματικής

Διαβάστε περισσότερα

Επεξεργασία Δεδομένων - Γραφικές Παραστάσεις

Επεξεργασία Δεδομένων - Γραφικές Παραστάσεις 1. Σκοπός Επεξεργασία Δεδομένων - Γραφικές Παραστάσεις Σκοπός της άσκησης είναι να εξοικειωθούν οι σπουδαστές με τη γραφική απεικόνιση των δεδομένων τους, την χρήση των γραφικών παραστάσεων για την εξαγωγή

Διαβάστε περισσότερα

Ο Παλμογράφος στη Διδασκαλία της Τριγωνομετρίας. Εφαρμογές της Τριγωνομετρίας σε πραγματικά προβλήματα και ενδιαφέρουσες επεκτάσεις

Ο Παλμογράφος στη Διδασκαλία της Τριγωνομετρίας. Εφαρμογές της Τριγωνομετρίας σε πραγματικά προβλήματα και ενδιαφέρουσες επεκτάσεις Ο Παλμογράφος στη Διδασκαλία της Τριγωνομετρίας Εφαρμογές της Τριγωνομετρίας σε πραγματικά προβλήματα και ενδιαφέρουσες επεκτάσεις Περίληψη Τριγωνομετρικές Συναρτήσεις Κυματική Παλμογράφος STEM Εφαρμογές

Διαβάστε περισσότερα

Α. ΔΙΑΓΡΑΜΜΑ ΔΙΑΣΠΟΡΑΣ Απεικόνιση της σχέσης(θετική, αρνητική, απροσδιόριστη) δύο μεταβλητών. Παραδείγματα σχέσεων. Παράδειγμα

Α. ΔΙΑΓΡΑΜΜΑ ΔΙΑΣΠΟΡΑΣ Απεικόνιση της σχέσης(θετική, αρνητική, απροσδιόριστη) δύο μεταβλητών. Παραδείγματα σχέσεων. Παράδειγμα Α. ΔΙΑΓΡΑΜΜΑ ΔΙΑΣΠΟΡΑΣ Απεικόνιση της σχέσης(θετική, αρνητική, απροσδιόριστη) δύο μεταβλητών. Παραδείγματα σχέσεων Παράδειγμα Μας δίνονται τα παρακάτω δεδομένα που αντιπροσωπεύουν τις τιμές πίεσης σε ατμόσφαιρες

Διαβάστε περισσότερα

Επεξεργασία Δεδομένων - Γραφικές Παραστάσεις

Επεξεργασία Δεδομένων - Γραφικές Παραστάσεις 1. Σκοπός Επεξεργασία Δεδομένων - Γραφικές Παραστάσεις Σκοπός της άσκησης είναι να εξοικειωθούν οι σπουδαστές με τη γραφική απεικόνιση των δεδομένων τους, την χρήση των γραφικών παραστάσεων για την εξαγωγή

Διαβάστε περισσότερα

1) Η εξάρτηση του δείκτη διάθλασης n από το μήκος κύματος για το κρύσταλλο του ιωδιούχου ρουβιδίου (RbI) παρουσιάζεται στο παρακάτω σχήμα.

1) Η εξάρτηση του δείκτη διάθλασης n από το μήκος κύματος για το κρύσταλλο του ιωδιούχου ρουβιδίου (RbI) παρουσιάζεται στο παρακάτω σχήμα. 1) Η εξάρτηση του δείκτη διάθλασης n από το μήκος κύματος για το κρύσταλλο του ιωδιούχου ρουβιδίου (RbI) παρουσιάζεται στο παρακάτω σχήμα. Για τους δείκτες διάθλασης n 1 και n 2 ισχύει: n 2 = (11 / 10)

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 03-01-11 ΘΕΡΙΝΑ ΣΕΙΡΑ Α ΘΕΜΑ 1 ο ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Οδηγία: Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράµµα που αντιστοιχεί στη

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ. Εργαστήριο 8 ο. Αποδιαμόρφωση PAM-PPM με προσαρμοσμένα φίλτρα

ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ. Εργαστήριο 8 ο. Αποδιαμόρφωση PAM-PPM με προσαρμοσμένα φίλτρα Τμήμα Πληροφορικής και Τηλεπικοινωνιών ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ ΨΗΦΙΑΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ Εργαστήριο 8 ο Αποδιαμόρφωση PAM-PPM με προσαρμοσμένα φίλτρα Βασική Θεωρία Σε ένα σύστημα μετάδοσης

Διαβάστε περισσότερα

Δυαδικό Σύστημα Αρίθμησης

Δυαδικό Σύστημα Αρίθμησης Δυαδικό Σύστημα Αρίθμησης Το δυαδικό σύστημα αρίθμησης χρησιμοποιεί δύο ψηφία. Το 0 και το 1. Τα ψηφία ενός αριθμού στο δυαδικό σύστημα αρίθμησης αντιστοιχίζονται σε δυνάμεις του 2. Μονάδες, δυάδες, τετράδες,

Διαβάστε περισσότερα

ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ : ΚΥΜΑΤΑ (ΤΡΕΧΟΝΤΑ) ΟΝΟΜΑΤΕΠΩΝΥΜΟ:.

ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ : ΚΥΜΑΤΑ (ΤΡΕΧΟΝΤΑ) ΟΝΟΜΑΤΕΠΩΝΥΜΟ:. ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ : ΚΥΜΑΤΑ (ΤΡΕΧΟΝΤΑ) ΟΝΟΜΑΤΕΠΩΝΥΜΟ:.. Αν η εξίσωση ενός αρμονικού κύματος είναι y = 0ημ(6πt - πx) στο S.I., τότε η ταχύτητα διάδοσης του κύματος είναι ίση με: α. 0m/s β. 6m/s γ. m/s δ. 3m/s..

Διαβάστε περισσότερα

ΠΑΡΑΤΗΡΗΣΗ ΣΥΝΕΧΩΝ ΦΑΣΜΑΤΩΝ ΕΚΠΟΜΠΗΣ & ΑΠΟΡΡΟΦΗΣΗΣ ΣΤΕΡΕΟΥ

ΠΑΡΑΤΗΡΗΣΗ ΣΥΝΕΧΩΝ ΦΑΣΜΑΤΩΝ ΕΚΠΟΜΠΗΣ & ΑΠΟΡΡΟΦΗΣΗΣ ΣΤΕΡΕΟΥ 1 ο ΕΚΦΕ (Ν. ΣΜΥΡΝΗΣ) Δ Δ/ΝΣΗΣ Δ. Ε. ΑΘΗΝΑΣ 1 ΠΑΡΑΤΗΡΗΣΗ ΣΥΝΕΧΩΝ ΦΑΣΜΑΤΩΝ ΕΚΠΟΜΠΗΣ & ΑΠΟΡΡΟΦΗΣΗΣ ΣΤΕΡΕΟΥ Α. ΣΤΟΧΟΙ Η παραγωγή λευκού φωτός με τη χρήση λαμπτήρα πυράκτωσης. Η χρήση πηγών φωτός διαφορετικής

Διαβάστε περισσότερα

Δx

Δx Ποια είναι η ελάχιστη αβεβαιότητα της ταχύτητας ενός φορτηγού μάζας 2 τόνων που περιμένει σε ένα κόκκινο φανάρι (η η μέγιστη δυνατή ταχύτητά του) όταν η θέση του μετράται με αβεβαιότητα 1 x 10-10 m. Δx

Διαβάστε περισσότερα

Μελέτη και εικονική διαμόρφωση ακουστικής σε αίθουσα διδασκαλίας

Μελέτη και εικονική διαμόρφωση ακουστικής σε αίθουσα διδασκαλίας Μελέτη και εικονική διαμόρφωση ακουστικής σε αίθουσα διδασκαλίας Ιωάννης Γ. Μαλαφής, Π.Δ. 407/82 Εργαστήριο Μουσικής Ακουστικής Τεχνολογίας, Τμήμα Μουσικών Σπουδών, Πανεπιστήμιο Αθηνών. Παναγιώτης Ε. Χατζημανολάκης

Διαβάστε περισσότερα

ΠΑΡΟΥΣΙΑΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ

ΠΑΡΟΥΣΙΑΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ ο Κεφάλαιο: Στατιστική ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΟΡΙΣΜΟΙ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ Πληθυσμός: Λέγεται ένα σύνολο στοιχείων που θέλουμε να εξετάσουμε με ένα ή περισσότερα χαρακτηριστικά. Μεταβλητές X: Ονομάζονται

Διαβάστε περισσότερα

ΣΤ ΕΝΟΤΗΤΑ. Βασικές έννοιες των συναρτήσεων. ΣΤ.1 (6.1 παρ/φος σχολικού βιβλίου) ΣΤ.2 (6.2 παρ/φος σχολικού βιβλίου)

ΣΤ ΕΝΟΤΗΤΑ. Βασικές έννοιες των συναρτήσεων. ΣΤ.1 (6.1 παρ/φος σχολικού βιβλίου) ΣΤ.2 (6.2 παρ/φος σχολικού βιβλίου) ΣΤ ΕΝΟΤΗΤΑ Βασικές έννοιες των συναρτήσεων ΣΤ. (6. παρ/φος σχολικού βιβλίου) Η έννοια της συνάρτησης ΣΤ. (6. παρ/φος σχολικού βιβλίου) Γραφική παράσταση συνάρτησης ΣΤ.3 (6.3 παρ/φος σχολικού βιβλίου) Η

Διαβάστε περισσότερα

ΣΧΕΔΙΑΣΗ ΣΥΣΤΗΜΑΤΩΝ ΜΕ ΧΡΗΣΗ ΥΠΟΛΟΓΙΣΤΩΝ (E-CAD) ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ

ΣΧΕΔΙΑΣΗ ΣΥΣΤΗΜΑΤΩΝ ΜΕ ΧΡΗΣΗ ΥΠΟΛΟΓΙΣΤΩΝ (E-CAD) ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ ΣΧΕΔΙΑΣΗ ΣΥΣΤΗΜΑΤΩΝ ΜΕ ΧΡΗΣΗ ΥΠΟΛΟΓΙΣΤΩΝ (E-CAD) ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2016 2017 Χ. Βέργος Καθηγητής ΕΡΓΑΣΙΑ ΕΞΑΜΗΝΟΥ Σκοπός της φετινής εργασίας εξαμήνου είναι η σχεδίαση ενός Συστήματος Απεικόνισης Χαρακτήρων

Διαβάστε περισσότερα

Κεφάλαιο 11 Πολυμέσα

Κεφάλαιο 11 Πολυμέσα Κεφάλαιο 11 Πολυμέσα 1 Εφαρμογές πολυμέσων: πολλές μορφές πληροφορίας, αποθηκευμένες σε ψηφιακή μορφή, με δυνατότητα αλληλεπίδρασης κατά την παρουσίασή τους 11.1 Βασικές έννοιες 11.1.1 Γραμμική και μη

Διαβάστε περισσότερα

Γνωστική Ψυχολογία Ι (ΨΧ32)

Γνωστική Ψυχολογία Ι (ΨΧ32) Γνωστική Ψυχολογία Ι (ΨΧ32) Διάλεξη 6 Μηχανισμοί επεξεργασίας οπτικού σήματος Οι άλλες αισθήσεις Πέτρος Ρούσσος Η αντιληπτική πλάνη του πλέγματος Hermann 1 Πλάγια αναστολή Η πλάγια αναστολή (lateral inhibition)

Διαβάστε περισσότερα

Από τις τριγωνομετρικές συναρτήσεις στο Mp3

Από τις τριγωνομετρικές συναρτήσεις στο Mp3 Από τις τριγωνομετρικές συναρτήσεις στο Mp3 Εισαγωγή Οι περισσότεροι μαθητές δεν γνωρίζουν πως μία από τις περισσότερο αγαπημένες τους συνήθειες που είναι η ανταλλαγή τραγουδιών στο διαδίκτυο (ή και στο

Διαβάστε περισσότερα

Ειδικά Θέματα Ηλεκτρονικών 1

Ειδικά Θέματα Ηλεκτρονικών 1 Ειδικά Θέματα Ηλεκτρονικών 1 ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 3...2 ΑΠΟΚΡΙΣΗ ΣΥΧΝΟΤΗΤΑΣ ΕΝΙΣΧΥΤΩΝ...2 3.1 Απόκριση συχνότητας ενισχυτών...2 3.1.1 Παραμόρφωση στους ενισχυτές...5 3.1.2 Πιστότητα των ενισχυτών...6 3.1.3

Διαβάστε περισσότερα

Κουρδίσµατα (περίληψη)

Κουρδίσµατα (περίληψη) Κουρδίσµατα (περίληψη) Ι. Αρµονική στήλη Κάθε νότα που παράγεται µε φυσικά µέσα είναι ένα πολύ σύνθετο φαινόµενο. Ως προς το τονικό ύψος, συνιστώσες του ("αρµονικοί") είναι η συχνότητα που ακούµε ("θεµελιώδης")

Διαβάστε περισσότερα

Κλινική χρήση των ήχων

Κλινική χρήση των ήχων Κλινική χρήση των ήχων Ήχοι και ακουστότητα Κύματα υπερήχων Ακουστικά κύματα, Ήχοι, Είδη ήχων Ήχους υπό την ευρεία έννοια καλούμε κάθε κύμα πίεσης που υπάρχει και διαδίδεται στο εσωτερικό των σωμάτων.

Διαβάστε περισσότερα

Τεχνολογία Πολυμέσων. Ενότητα # 8: Αρχές κωδικοποίησης Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής

Τεχνολογία Πολυμέσων. Ενότητα # 8: Αρχές κωδικοποίησης Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής Τεχνολογία Πολυμέσων Ενότητα # 8: Αρχές κωδικοποίησης Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του

Διαβάστε περισσότερα

Αρχές κωδικοποίησης. Τεχνολογία Πολυμέσων και Πολυμεσικές Επικοινωνίες 08-1

Αρχές κωδικοποίησης. Τεχνολογία Πολυμέσων και Πολυμεσικές Επικοινωνίες 08-1 Αρχές κωδικοποίησης Απαιτήσεις κωδικοποίησης Είδη κωδικοποίησης Κωδικοποίηση εντροπίας Διαφορική κωδικοποίηση Κωδικοποίηση μετασχηματισμών Στρωματοποιημένη κωδικοποίηση Κβαντοποίηση διανυσμάτων Τεχνολογία

Διαβάστε περισσότερα

ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ

ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ Ξεφυλλίζοντας τα σχολικά βιβλία της Α και Β Λυκείου θα συναντήσουμε τις παρακάτω 10 "βασικές" συναρτήσεις των οποίων τη γραφική παράσταση πρέπει να γνωρίζουμε:

Διαβάστε περισσότερα

Κεφάλαιο 1: Κίνηση και γεωμετρικά σχήματα

Κεφάλαιο 1: Κίνηση και γεωμετρικά σχήματα Ασκήσεις της Ενότητας 2 : Ζωγραφίζοντας με το ΒΥΟΒ -1- α. Η χρήση της πένας Κεφάλαιο 1: Κίνηση και γεωμετρικά σχήματα Υπάρχουν εντολές που μας επιτρέπουν να επιλέξουμε το χρώμα της πένας, καθώς και το

Διαβάστε περισσότερα

Δύο κύριοι τρόποι παρουσίασης δεδομένων. Παράδειγμα

Δύο κύριοι τρόποι παρουσίασης δεδομένων. Παράδειγμα Δύο κύριοι τρόποι παρουσίασης δεδομένων Παράδειγμα Με πίνακες Με διαγράμματα Ονομαστικά δεδομένα Εδώ τα περιγραφικά μέτρα (μέσος, διάμεσος κλπ ) δεν έχουν νόημα Πήραμε ένα δείγμα από 25 άτομα και τα ρωτήσαμε

Διαβάστε περισσότερα

Τμήμα Λογιστικής. Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές. Μαθήματα 6 και 7 Αναπαράσταση της Πληροφορίας στον Υπολογιστή. 1 Στέργιος Παλαμάς

Τμήμα Λογιστικής. Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές. Μαθήματα 6 και 7 Αναπαράσταση της Πληροφορίας στον Υπολογιστή. 1 Στέργιος Παλαμάς ΤΕΙ Ηπείρου Παράρτημα Πρέβεζας Τμήμα Λογιστικής Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές Μαθήματα 6 και 7 Αναπαράσταση της Πληροφορίας στον Υπολογιστή 1 1. Αριθμοί: Το Δυαδικό Σύστημα Οι ηλεκτρονικοί υπολογιστές

Διαβάστε περισσότερα

Εισαγωγή στις Τηλεπικοινωνίες

Εισαγωγή στις Τηλεπικοινωνίες ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Εισαγωγή στις Τηλεπικοινωνίες Ενότητα : Εισαγωγή στη Διαμόρφωση Συχνότητας (FΜ) Όνομα Καθηγητή: Δρ. Ηρακλής Σίμος Τμήμα: Ηλεκτρονικών

Διαβάστε περισσότερα

ΣΧΕΔΙΑΣΗ ΣΥΣΤΗΜΑΤΩΝ ΜΕ ΧΡΗΣΗ ΥΠΟΛΟΓΙΣΤΩΝ (E-CAD) ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ Χ. Βέργος Καθηγητής

ΣΧΕΔΙΑΣΗ ΣΥΣΤΗΜΑΤΩΝ ΜΕ ΧΡΗΣΗ ΥΠΟΛΟΓΙΣΤΩΝ (E-CAD) ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ Χ. Βέργος Καθηγητής ΣΧΕΔΙΑΣΗ ΣΥΣΤΗΜΑΤΩΝ ΜΕ ΧΡΗΣΗ ΥΠΟΛΟΓΙΣΤΩΝ (E-CAD) ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2013 2014 Χ. Βέργος Καθηγητής ΕΡΓΑΣΙΑ ΕΞΑΜΗΝΟΥ Σκοπός της φετινής εργασίας εξαμήνου είναι η σχεδίαση ενός Συστήματος Απεικόνισης Χαρακτήρων

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΚΗ ΟΠΤΙΚΗ. Ανάκλαση. Κάτοπτρα. Διάθλαση. Ολική ανάκλαση. Φαινόμενη ανύψωση αντικειμένου. Μετατόπιση ακτίνας. Πρίσματα

ΓΕΩΜΕΤΡΙΚΗ ΟΠΤΙΚΗ. Ανάκλαση. Κάτοπτρα. Διάθλαση. Ολική ανάκλαση. Φαινόμενη ανύψωση αντικειμένου. Μετατόπιση ακτίνας. Πρίσματα ΓΕΩΜΕΤΡΙΚΗ ΟΠΤΙΚΗ Ανάκλαση Κάτοπτρα Διάθλαση Ολική ανάκλαση Φαινόμενη ανύψωση αντικειμένου Μετατόπιση ακτίνας Πρίσματα ΓΕΩΜΕΤΡΙΚΗ ΟΠΤΙΚΗ - Ανάκλαση Επιστροφή σε «γεωμετρική οπτική» Ανάκλαση φωτός ονομάζεται

Διαβάστε περισσότερα

Τα ηλεκτρονικά σήματα πληροφορίας διακρίνονται ανάλογα με τη μορφή τους σε δύο κατηγορίες : Αναλογικά σήματα Ψηφιακά σήματα

Τα ηλεκτρονικά σήματα πληροφορίας διακρίνονται ανάλογα με τη μορφή τους σε δύο κατηγορίες : Αναλογικά σήματα Ψηφιακά σήματα ΕΝΟΤΗΤΑ 2 2.0 ΗΛΕΚΤΡΙΚΑ ΣΗΜΑΤΑ ΚΑΙ ΑΡΧΕΣ ΕΠΙΚΟΙΝΩΝΙΑΣ ΕΙΣΑΓΩΓΗ Ηλεκτρικό σήμα ονομάζεται η τάση ή το ρεύμα που μεταβάλλεται ως συνάρτηση του χρόνου. Στα ηλεκτρονικά συστήματα επικοινωνίας, οι πληροφορίες

Διαβάστε περισσότερα

Λύσεις των θεμάτων ΔΕΥΤΕΡΑ 19 ΙΟΥΝΙΟΥ 2017 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

Λύσεις των θεμάτων ΔΕΥΤΕΡΑ 19 ΙΟΥΝΙΟΥ 2017 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΔΕΥΤΕΡΑ 19 ΙΟΥΝΙΟΥ 017 Λύσεις των θεμάτων Έκδοση η (0/06/017, 1:00) ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ

Διαβάστε περισσότερα

Οδηγίες σχεδίασης στο περιβάλλον Blender

Οδηγίες σχεδίασης στο περιβάλλον Blender Οδηγίες σχεδίασης στο περιβάλλον Blender Στον πραγματικό κόσμο, αντιλαμβανόμαστε τα αντικείμενα σε τρεις κατευθύνσεις ή διαστάσεις. Τυπικά λέμε ότι διαθέτουν ύψος, πλάτος και βάθος. Όταν θέλουμε να αναπαραστήσουμε

Διαβάστε περισσότερα

ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΑΠΡΙΛΙΟΥ 2011 Γ ΤΑΞΗΣ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤ/ΝΣΗΣ Μ

ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΑΠΡΙΛΙΟΥ 2011 Γ ΤΑΞΗΣ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤ/ΝΣΗΣ Μ ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΑΠΡΙΛΙΟΥ 2011 Γ ΤΑΞΗΣ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤ/ΝΣΗΣ Μ. ΤΡΙΤΗ 19 ΑΠΡΙΛΙ ΟΥ 2011 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ : ΟΧΤΩ (8) ΘΕΜΑ Α Στις ημιτελείς προτάσεις

Διαβάστε περισσότερα

Σ Τ Α Τ Ι Σ Τ Ι Κ Η 2. 1. Β Α Σ Ι Κ Ε Σ Ε Ν Ν Ο Ι Ε Σ.

Σ Τ Α Τ Ι Σ Τ Ι Κ Η 2. 1. Β Α Σ Ι Κ Ε Σ Ε Ν Ν Ο Ι Ε Σ. Σ Τ Α Τ Ι Σ Τ Ι Κ Η Στατιστική έρευνα : Πρόκειται για ένα σύνολο αρχών και μεθοδολογιών με αντικείμενο : 1) το σχεδιασμό της διαδικασίας συλλογής δεδομένων. Κλάδος της στατιστικής που ασχολείται : Σχεδιασμός

Διαβάστε περισσότερα

Συνολικός Χάρτης Πόλης

Συνολικός Χάρτης Πόλης Στα πλαίσια εφαρµογής της οδηγίας 2002/49/ΕΚ, για την αντιµετώπιση των σοβαρών περιβαλλοντικών προβληµάτων που αντιµετωπίζουν οι πόλεις, εξαιτίας του οδικού Θορύβου, µε σοβαρές επιπτώσεις στην ανθρώπινη

Διαβάστε περισσότερα

Συστήματα συντεταγμένων

Συστήματα συντεταγμένων Κεφάλαιο. Για να δημιουργήσουμε τρισδιάστατα αντικείμενα, που μπορούν να παρασταθούν στην οθόνη του υπολογιστή ως ένα σύνολο από γραμμές, επίπεδες πολυγωνικές επιφάνειες ή ακόμη και από ένα συνδυασμό από

Διαβάστε περισσότερα

Φίλη μαθήτρια, φίλε μαθητή,

Φίλη μαθήτρια, φίλε μαθητή, Φίλη μαθήτρια φίλε μαθητή Η εργασία αυτή έγινε με σκοπό να συμβάλει στην κατανόηση στην εμπέδωση και στην εμβάθυνση των μαθηματικών εννοιών που αναπτύσσονται στην Άλγεβρα της Β Λυκείου. Η ύλη είναι γραμμένη

Διαβάστε περισσότερα

9. Τοπογραφική σχεδίαση

9. Τοπογραφική σχεδίαση 9. Τοπογραφική σχεδίαση 9.1 Εισαγωγή Το κεφάλαιο αυτό εξετάζει τις παραμέτρους, μεθόδους και τεχνικές της τοπογραφικής σχεδίασης. Η προσέγγιση του κεφαλαίου γίνεται τόσο για την περίπτωση της συμβατικής

Διαβάστε περισσότερα

Συστήματα Πολυμέσων. Ενότητα 8: Συμπίεση Εικόνας κατά JPEG Θρασύβουλος Γ. Τσιάτσος Τμήμα Πληροφορικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ

Συστήματα Πολυμέσων. Ενότητα 8: Συμπίεση Εικόνας κατά JPEG Θρασύβουλος Γ. Τσιάτσος Τμήμα Πληροφορικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 8: Συμπίεση Εικόνας κατά JPEG 2000 Θρασύβουλος Γ. Τσιάτσος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Τηλεπισκόπηση. Ψηφιακή Ανάλυση Εικόνας Η ΒΕΛΤΙΩΣΗ εικόνας

Τηλεπισκόπηση. Ψηφιακή Ανάλυση Εικόνας Η ΒΕΛΤΙΩΣΗ εικόνας Τηλεπισκόπηση Ψηφιακή Ανάλυση Εικόνας Η ΒΕΛΤΙΩΣΗ εικόνας Η βελτίωση εικόνας ασχολείται με την τροποποίηση των εικόνων ώστε να είναι πιο κατάλληλες για την ανθρώπινη όραση. Ανεξάρτητα από το βαθμό της ψηφιακής

Διαβάστε περισσότερα

Εργαστήριο Τεχνολογίας Πολυμέσων & Γραφικών, Τ.Ε.Π Π.Μ, Μάθημα: Γραφικά με Η/Υ

Εργαστήριο Τεχνολογίας Πολυμέσων & Γραφικών, Τ.Ε.Π Π.Μ, Μάθημα: Γραφικά με Η/Υ ΓΡΑΦΙΚΑ Γέμισμα ΑΛΓΟΡΙΘΜΟΙ ΓΕΜΙΣΜΑΤΟΣ Για τις πλεγματικές οθόνες υπάρχουν: Αλγόριθμοι γεμίσματος:, που στηρίζονται στη συνάφεια των pixels του εσωτερικού ενός πολυγώνου Αλγόριθμοι σάρωσης: που στηρίζονται

Διαβάστε περισσότερα

Ήχος. Τεχνολογία Πολυμέσων και Πολυμεσικές Επικοινωνίες 04-1

Ήχος. Τεχνολογία Πολυμέσων και Πολυμεσικές Επικοινωνίες 04-1 Ήχος Χαρακτηριστικά του ήχου Ψηφιοποίηση με μετασχηματισμό Ψηφιοποίηση με δειγματοληψία Κβαντοποίηση δειγμάτων Παλμοκωδική διαμόρφωση Συμβολική αναπαράσταση μουσικής Τεχνολογία Πολυμέσων και Πολυμεσικές

Διαβάστε περισσότερα

ΕΚΘΕΣΗ ΠΕΠΡΑΓΜΕΝΩΝ. καταστροφές υπό το πρίσμα των ψηφιακών τεχνολογιών»

ΕΚΘΕΣΗ ΠΕΠΡΑΓΜΕΝΩΝ. καταστροφές υπό το πρίσμα των ψηφιακών τεχνολογιών» ΕΚΘΕΣΗ ΠΕΠΡΑΓΜΕΝΩΝ του Ευάγγελου Ι. Φιλιππίδη για τη συμμετοχή στο έργο «Εκπαιδευτική εμβάθυνση στις φυσικές καταστροφές υπό το πρίσμα των ψηφιακών τεχνολογιών» και επιστημονικό υπεύθυνο τον κ. Δημήτριο

Διαβάστε περισσότερα

Σημεία Προσοχής στην Παράγραφο Ε2.

Σημεία Προσοχής στην Παράγραφο Ε2. Σημεία Προσοχής στην Παράγραφο Ε2. 1. Ίσα Σύνολα Δεν αρκεί δύο σύνολα να έχουν τον ίδιο αριθμό στοιχέιων για να είναι ίσα. Πρέπει να έχουν ακριβώς τα ίδια στοιχεία. ΠΑΡΑΔΕΙΓΜΑ Έχουμε τα σύνολα Α={1,α,5}

Διαβάστε περισσότερα

Διδασκαλία γραμμάτων-συλλαβών

Διδασκαλία γραμμάτων-συλλαβών Διδασκαλία γραμμάτων-συλλαβών Ο μαθητής αξιοποιεί τον Η/Υ και ακούει κάθε φορά την εκφώνηση της άσκησης αλλά και την εργασία που έχει να κάνει. Μπορεί να διακρίνει ακουστικά και οπτικά την πρώτη συλλαβή-γράμμα,

Διαβάστε περισσότερα

7.2.1 Εκτίμηση της Καμπύλης Παλινδρόμησης της Μεταβλητής Υ πάνω στην Μεταβλητή Χ

7.2.1 Εκτίμηση της Καμπύλης Παλινδρόμησης της Μεταβλητής Υ πάνω στην Μεταβλητή Χ 7.2.1 Εκτίμηση της Καμπύλης Παλινδρόμησης της Μεταβλητής Υ πάνω στην Μεταβλητή Χ Για να προσδιορισθεί η καμπύλη παλινδρόμησης, η οποία αποτελείται από όλα τα ζεύγη σημείων τα οποία μπορούν προσδιορισθούν

Διαβάστε περισσότερα