Αριθμητική Ανάλυση & Εφαρμογές

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Αριθμητική Ανάλυση & Εφαρμογές"

Transcript

1 Αριθμητική Ανάλυση & Εφαρμογές Διδάσκων: Δημήτριος Ι. Φωτιάδης Τμήμα Μηχανικών Επιστήμης Υλικών Ιωάννινα

2 Υπολογισμοί και Σφάλματα

3 Παράσταση Πραγματικών Αριθμών Συστήματα Αριθμών Παράσταση Ακέραιου Μέρους ενός Πραγματικού Αριθμού Παράσταση Δεκαδικού Μέρους ενός Πραγματικού Αριθμού Παράσταση Κινητής Υποδιαστολής

4 Συστήματα Αριθμών Κάθε πραγματικός αριθμός μπορεί να παρασταθεί μονοσήμαντα σε ένα σύστημα αριθμών με βάση με τη μορφή: όπου οι συντελεστές σύνολο των ψηφίων d i D x x dib της σειράς αυτής είναι στοιχεία από το και ονομάζονται ψηφία του αριθμού. Συμβολικά ο αριθμός γράφεται ως εξής dndn1 d0. d 1d2 αν n 0, dn 0, x.000 0dndn 1dn2 αν n 0. in b 2 0,1,2,, b1 i x x

5 Συστήματα Αριθμών Ανάλογα με την τιμή της βάσης σε ένα σύστημα αριθμών έχουμε αντίστοιχα την ονομασία του συστήματος. b 2 δυαδικό σύστημα αριθμών b 10 δεκαδικό σύστημα αριθμών b Κάθε αριθμός έχει πεπερασμένη παράσταση σε ένα σύστημα αριθμών, αν υπάρχει ακέραιος με k n: di 0, για όλα τα i k, k 1, k 2, Σημαντικά ψηφία ενός πραγματικού αριθμού ονομάζονται όλα τα ψηφία του αριθμού εκτός των μηδενικών ψηφίων που βρίσκονται στην αρχή του αριθμού. Το πρώτο διάφορο του μηδενός ψηφίο αποτελεί το πρώτο σημαντικό ψηφίο του αριθμού. π.χ. ο αριθμός του δεκαδικού συστήματος έχει 4 σημαντικά ψηφία και πρώτο σημαντικό ψηφίο το 7. k

6 Συστήματα Αριθμών Κανόνες στα συστήματα αριθμών Η βάση κάθε συστήματος αριθμών είναι κατά ένα μεγαλύτερη του μεγαλύτερου ψηφίου του συστήματος. Πολλαπλασιασμός ή διαίρεση με τη βάση γίνεται με μια μετάθεση της υποδιαστολής δεξιά ή αριστερά αντίστοιχα. Αν η βάση του συστήματος αριθμών είναι μεγαλύτερη από το δέκα, τότε χρησιμοποιούνται τα γράμματα A, B, C, D, E, F, για να παραστήσουν αντίστοιχα τα ψηφία: 10, 11, 12, 13, 14, 15, 16, π.χ. το δεκαεξαδικό σύστημα αριθμών έχει τα ψηφία 0, 1, 2,, 9, Α, Β, C, D, E, και F.

7 Συστήματα Αριθμών Κανόνες στα συστήματα αριθμών Για να διαχωρίσουμε τους αριθμούς μεταξύ διαφόρων συστημάτων αριθμών τοποθετούμε στο τέλος του αριθμού ως υποδείκτη τη βάση του συστήματος (π.χ , , , )ή το κεφαλαίο γράμμα της βάσης του συστήματος αριθμών που ανήκει (π.χ Β, D, Ο ή Q, H). Αν κάποιος αριθμός δε δηλώνεται, αυτό σημαίνει ότι ανήκει στο δεκαδικό σύστημα αριθμών. Το πλήθος των σημαντικών ψηφίων ενός ακέραιου αριθμού που απαιτούνται για να παρασταθεί σε ένα σύστημα αριθμών με βάση b 1 είναι μεγαλύτερο ή ίσο από το πλήθος των σημαντικών ψηφίων του ίδιου αριθμού που απαιτούνται για να παρασταθεί σε ένα σύστημα αριθμών με βάση b 2 όταν b 1 <b 2.

8 Συστήματα Αριθμών Παραδείγματα 1. Ο αριθμός μπορεί να παρασταθεί μονοσήμαντα στο δεκαδικό σύστημα αριθμών ως Ο αριθμός F2Β 16 μπορεί να παρασταθεί μονοσήμαντα στο δεκαδικό σύστημα αριθμών ως F2B F B

9 Παράσταση Ακέραιου Μέρους ενός Πραγματικού Αριθμού Επαναληπτική διαδικασία για τον υπολογισμό των ψηφίων ενός di, i 01 n ενός αριθμού στο σύστημα αριθμών με βάση, ο οποίος μονοσήμαντα παριστάνει το ακέραιο μέρος ενός αριθμού που ανήκει στο δεκαδικό σύστημα αριθμών: d y mod b, i 0,, n i i x b όπου x y y d b i i1 i1 αν i 0, αν i 1,, n.

10 Παράσταση Ακέραιου Μέρους ενός Πραγματικού Αριθμού Αλγόριθμος Βήμα 1: Είσοδος I Βήμα 2: Θέσε και Βήμα 3: Αν ισχύει υπολόγισε το y y d b Βήμα 4: Αν ισχύει yi b τότε θέσε di yi και πήγαινε στο Βήμα 6, διαφορετικά υπολόγισε το d y mod b. Βήμα 5: Αντικατάστησε το με το i 1και πήγαινε στο Βήμα 4. Βήμα 6: Έξοδος i 0 i 0 x, b. y x 0. i i O d, d,. 0 1 i i i1 i1.

11 Παράσταση Ακέραιου Μέρους ενός Πραγματικού Αριθμού Όπως έχουμε αναφέρει ένα αριθμητικό πρόβλημα θεωρείται λυμένο με την παράθεση ενός αλγορίθμου που εφαρμοζόμενος δίνει τη λύση του προβλήματος. Έτσι, υλοποιώντας τον αντίστοιχο αλγόριθμο σε μία γλώσσα προγραμματισμού μπορούμε να πάρουμε τα αριθμητικά αποτελέσματα με τη χρήση ενός υπολογιστή.

12 Παράσταση Ακέραιου Μέρους ενός Παράδειγμα i Πραγματικού Αριθμού I x, b ,2,,, 1,1,1,1,0,1,1 O d d d yi 1 b yi : 2 = : 2 = : 2 = : 2 = : 2 = : 2 = : 2 = d i

13 Παράσταση Δεκαδικού Μέρους ενός Πραγματικού Αριθμού Επαναληπτική διαδικασία για τον υπολογισμό των ψηφίων di, i 1, 2,, k ενός αριθμού στο σύστημα αριθμών με βάση, ο οποίος μονοσήμαντα παριστάνει το δεκαδικό μέρος ενός αριθμού που ανήκει στο δεκαδικό σύστημα αριθμών: b x di y ib, i1,2,, k όπου y i x αν i 1, yi 1b di 1 αν i 2,, k.

14 Παράσταση Δεκαδικού Μέρους ενός Πραγματικού Αριθμού Αλγόριθμος Βήμα 1: Είσοδος I Βήμα 2: Θέσε Βήμα 3: Αν ισχύει και υπολόγισε το Βήμα 4: Αν ισχύει i 0 τότε πήγαινε στο Βήμα 6, διαφορετικά υπολόγισε το di y ib. Βήμα 5: Αν ισχύει i k αντικατάστησε το με το i 1 και πήγαινε στο Βήμα 3. Βήμα 6: Έξοδος i 1 y i 1 x, b, k. y x O d, d,. y y b d. i i1 i1 i

15 Παράσταση Δεκαδικού Μέρους ενός Πραγματικού Αριθμού Παράδειγμα I x, b, k ,2,50,, 1,0,0,1,1 O d d 1 2 y i y i i 1 b x 2 = x 2 = x 2 = x 2 = x 2 = d i

16 Παράσταση Δεκαδικού Μέρους ενός Πραγματικού Αριθμού Υπάρχει περίπτωση ένας αριθμός που εκφράζεται με πεπερασμένα στοιχεία σε ένα σύστημα αριθμών μίας συγκεκριμένης βάσης να μην έχει πεπερασμένη παράσταση σε ένα σύστημα αριθμών διαφορετικής βάσης π.χ. I 0.1,2,50 i y i y i b x 2 = x 2 = x 2 = x 2 = x 2 = x 2 = x 2 = x 2 = x 2 = d i 10

17 Παράσταση Κινητής Υποδιαστολής Δεν μπορούμε να εκφράσουμε με πεπερασμένη παράσταση όλους τους αριθμούς. Σε αυτήν την περίπτωση μπορούμε να πάρουμε μόνο προσεγγίσεις, οι οποίες γίνονται ακριβέστερες όσο αυξάνει ο χώρος αποθήκευσης. π.χ. ο αριθμός του δυαδικού συστήματος αριθμών αντιστοιχεί στον και προσεγγίζει τον Συχνά και κυρίως στον επιστημονικό υπολογισμό απαιτείται μεγάλη ακρίβεια στην παράσταση των αριθμών, γεγονός το οποίο σημαίνει μεγάλο αποθηκευτικό χώρο σε μία μηχανή επεξεργασίας αριθμών. Τι γίνεται στην περίπτωση που θέλουμε να αποθηκεύσουμε τον αριθμό όταν ο αποθηκευτικός μας χώρος μπορεί να αποθηκεύσει μόνο οκτώ δεκαδικά ψηφία;

18 Παράσταση Κινητής Υποδιαστολής x Ένας αριθμός σε ένα σύστημα αριθμών με βάση μπορεί να γραφεί ως εξής: E x r b E Όπου ένας μη αρνητικός ακέραιος και ένας αριθμός στο σύστημα αριθμών με βάση. b Αυτή η παράσταση ονομάζεται παράσταση κινητής υποδιαστολής για τον αριθμό x σε ένα σύστημα αριθμών με βάση b, με εκθέτη και ουρά ή κλάσμα r. Η παράσταση κινητής υποδιαστολής δεν είναι μοναδική εφόσον E μπορούμε να γράψουμε. r 1 x rb b b E

19 Παράσταση Κινητής Υποδιαστολής Για να διατηρήσουμε την παράσταση κινητής υποδιαστολής μοναδική ως προς την παράστασή της, έχει επικρατήσει να χρησιμοποιείται η κανονικοποιημένη παράσταση κινητής υποδιαστολής. Η κανονικοποιημένη παράσταση κινητής υποδιαστολής είναι η παράσταση εκείνη σύμφωνα με την οποία ένας αριθμός x σε σύστημα αριθμών με βάση το γράφεται ως εξής: b E 1 x r b, r 1 b

20 Απόλυτο και Σχετικό Σφάλμα x Υποθέτουμε ότι είναι η αληθής (ακριβή) τιμή ενός μεγέθους ή μιας ποσότητας και ότι x μια προσεγγιστική τιμή που προσεγγίστηκε με έναν οποιοδήποτε τρόπο, τότε η παρακάτω διαφορά: x x ονομάζεται σφάλμα (error), ενώ η ποσότητα η οποία είναι αντίθετη προς το σφάλμα: r x x ονομάζεται διόρθωση (correction). Η απόλυτη τιμή του σφάλματος x x ονομάζεται απόλυτο σφάλμα.

21 Απόλυτο και Σχετικό Σφάλμα Η ποσότητα που εκφράζει το λόγο του σφάλματος προς την ακριβή τιμή x 0, δηλαδή η ποσότητα x x x x ονομάζεται σχετικό σφάλμα. Το σχετικό σφάλμα κατά προσέγγιση είναι ίσο με: x Η ποσότητα εκφράζει το απόλυτο σχετικό σφάλμα. x x x.

22 Απόλυτο και Σχετικό Σφάλμα Το σχετικό σφάλμα είναι ανεξάρτητο από τη μονάδα της προσεγγιστικής μέτρησης, σε αντίθεση με το απόλυτο σφάλμα το οποίο εξαρτάται από τη χρησιμοποιούμενη μονάδα μέτρησης. Όταν χρησιμοποιούμε το σχετικό σφάλμα, λαμβάνουμε υπόψη και το μέγεθος της ποσότητας που μετράμε, σε αντίθεση με το απόλυτο σφάλμα στο οποίο το μέγεθος δε συμμετέχει. Παράδειγμα x 1 x 100, x 101, x x , 0.01 x x 10000, x 9999, x x , x 10000

23 Πηγές και Είδη Σφαλμάτων Η λύση ενός προβλήματος με τη βοήθεια αριθμητικών μεθόδων διαφέρει πάντοτε από την ακριβή λύση λόγω της παρουσίας σφαλμάτων. Αρχικά σφάλματα Σφάλμα του μαθηματικού προβλήματος ή σφάλμα της μαθηματικής περιγραφής Προβλήματα κακής κατάστασης Η λύση των αριθμητικών προβλημάτων είναι πολύ ευαίσθητη σε μικρές μεταβολές των δεδομένων του προβλήματος και μικρές μεταβολές των δεδομένων του προβλήματος δημιουργούν μεγάλη μεταβολή στα αποτελέσματα.

24 Πηγές και Είδη Σφαλμάτων Παράδειγμα προβλήματος κακής κατάστασης Η λύση του συστήματος γραμμικών εξισώσεων είναι xy, 3,0. x2y3 0.5x1.001y1.5 Αν ο συντελεστής 0.5 του στη 2 η εξίσωση διαταραχθεί με μία ποσότητα και γίνει 0.499, τότε η λύση του προβλήματος είναι: xy, 1,1. x

25 Πηγές και Είδη Σφαλμάτων Το σφάλμα αποκοπής είναι σφάλμα που δημιουργείται από το χρησιμοποιούμενο αλγόριθμο και προσέγγιση με την υπόθεση ότι όλες οι αριθμητικές πράξεις είναι ακριβείς. Παράδειγμα: Υπολογισμός μίας σειράς απείρων όρων χρησιμοποιώντας πεπερασμένο πλήθος όρων x x x x x e 1 x 2! 3! 4! 5! x x x x x sin x x 3! 5! 7! 9! 11! Ανάλογα με την επιθυμητή προσέγγιση χρησιμοποιείται ένα ορισμένο πλήθος όρων της σειράς. Οι άπειροι στο πλήθος όροι που αποκόπτονται εισάγουν το σφάλμα αποκοπής.

26 Πηγές και Είδη Σφαλμάτων Παράδειγμα Υπολογισμός του Πραγματική τιμή Προσεγγιστική τιμή Σφάλμα χρησιμοποιώντας τους όρους της σειράς x x e e x x k i i i x x x x x i! i! i! i0 i0 ik1 k

27 Πηγές και Είδη Σφαλμάτων Σφάλμα στρογγυλοποίησης: Κάθε αριθμός που χρησιμοποιείται σε έναν υπολογισμό ως δεδομένο ή ως αποτέλεσμα μιας πράξης πρέπει να προσεγγιστεί με έναν αριθμό που έχει περιορισμένο πλήθος ψηφίων Ο μεγαλύτερος επιτρεπτός αριθμός ψηφίων εξαρτάται από το μέσο επεξεργασίας αριθμών. Κατά τη διαδικασία της στρογγυλοποίησης το ζητούμενο είναι η ελαχιστοποίηση του σφάλματος στρογγυλοποίησης.

28 Πηγές και Είδη Σφαλμάτων Διαδικασία στρογγυλοποίησης ενός αριθμού σε k δεκαδικά ψηφία Παραλείπονται όλα τα δεκαδικά ψηφία που υπάρχουν μετά την δεκαδική θέση Αν το πρώτο ψηφίο που αποκόπτεται είναι μεγαλύτερο του 5, το τελευταίο ψηφίο που παραμένει αυξάνεται κατά μία μονάδα. Αν το πρώτο ψηφίο που αποκόπτεται είναι μικρότερο του 5, το τελευταίο ψηφίο που παραμένει δεν αλλάζει. Διαφορετικά το τελευταίο ψηφίο που παραμένει: δεν αλλάζει, αν αυτό είναι άρτιο. αυξάνεται κατά μία μονάδα, αν αυτό είναι περιττό. k

29 Πηγές και Είδη Σφαλμάτων x Αν είναι η ακριβής τιμή που στρογγυλοποιείται και είναι η προσεγγιστική τιμή μετά την στρογγυλοποίηση της σε δεκαδικά ψηφία, τότε για το απόλυτο σφάλμα θα ισχύει ότι: x x k k

30 Πηγές και Είδη Σφαλμάτων Παράδειγμα: Στρογγυλοποίηση του αριθμού σε k 611 δεκαδικά ψηφία και υπολογισμός των αντίστοιχων απόλυτων σχετικών σφαλμάτων. k x k

31 Πηγές και Είδη Σφαλμάτων Η ανάγκη της χρήσης αριθμών με πεπερασμένο πλήθος ψηφίων έχει ως συνέπεια να μην ισχύουν πάντα οι ιδιότητες των πραγματικών αριθμών. π.χ. αντιμεταθετική, προσεταιριστική, επιμεριστική Η σειρά εκτέλεσης των πράξεων για την επίλυση ενός αριθμητικού προβλήματος έχει μεγάλη σημασία.

32 Πηγές και Είδη Σφαλμάτων Παράδειγμα: Υπολογισμός του αθροίσματος σε μέσο επεξεργασίας αριθμών που αποθηκεύει 2 μόνο ψηφία. Εφαρμόζοντας τα γνωστό τρόπο πρόσθεσης αριθμών έχουμε διαδοχικά Λύση: Υπολογισμός δύο μερικών αθροισμάτων που το καθένα είναι ίσο με 10 και πρόσθεση αυτών. x 40 i1 a, a 0.5 x i x 1, x 1.5, x 2,, x 10, x 10,, x 10. i

33 Πηγές και Είδη Σφαλμάτων Ένα σημαντικό ψηφίο ενός προσεγγιστικού αριθμού είναι ακριβές, εάν το απόλυτο σφάλμα δεν υπερβαίνει τη μισή μονάδα της τάξεως που αντιστοιχεί σε αυτό το ψηφίο. Αν σημαντικά ψηφία του είναι ακριβή, τότε θα λέμε ότι ο αριθμός είναι ακριβής σε σημαντικά ψηφία. k k x Εάν όλα τα σημαντικά ψηφία του είναι ακριβή, τότε ο είναι ακριβής στο δοθέντα αριθμό ψηφίων. Δύο αριθμοί συμφωνούν σε δεκαδικά ψηφία, αν η απόλυτη k τιμή της διαφοράς τους είναι μικρότερη ή ίση από Δύο αριθμοί συμφωνούν σε σημαντικά ψηφία, αν μετά τη στρογγυλοποίησή τους σε k σημαντικά ψηφία οι αριθμοί ταυτίζονται. k k x x x

34 Μετάδοση Σφαλμάτων κατά τους Υπολογισμούς Θεώρημα 1: Το απόλυτο σφάλμα του αθροίσματος δύο αριθμών είναι μικρότερο ή ίσο με το άθροισμα των απολύτων σφαλμάτων των αριθμών αυτών. Απόδειξη: Οπότε x 1 x2 x1 x2 x 1 x1 x2 x

35 Μετάδοση Σφαλμάτων κατά τους Υπολογισμούς Θεώρημα 2: Το απόλυτο σφάλμα της διαφοράς δύο αριθμών είναι μικρότερο ή ίσο με το άθροισμα των απολύτων σφαλμάτων των αριθμών αυτών. Απόδειξη: Οπότε x 1 x2 x1 x2 x 1 x1 x2 x

36 Μετάδοση Σφαλμάτων κατά τους Υπολογισμούς Πρέπει να αποφεύγεται, εκεί που είναι δυνατόν, η αφαίρεση δύο περίπου ίσων προσεγγιστικών αριθμών, διότι αυτή η αφαίρεση οδηγεί στη μείωση της ακρίβειας του αποτελέσματος. Καταστροφική ακύρωση σημαντικών ψηφίων: Σχετίζεται με την απώλεια σωστών σημαντικών ψηφίων μικρών αριθμών, οι οποίοι απορρέουν από πράξεις μεταξύ μεγάλων αριθμών.

37 Μετάδοση Σφαλμάτων κατά τους Υπολογισμούς Παράδειγμα 1: Υπολογισμός του e -α με χρήση της σειράς Taylor όταν α > 0. Στην περίπτωση αυτή ο υπολογισμός του e -α πραγματοποιείται με αθροίσεις των παρακάτω όρων: e 1 a a a a a... 2! 3! 4! Όταν το α είναι σχετικά μεγάλο, τότε το σφάλμα στρογγυλοποίησης μπορεί να είναι μεγαλύτερο από την πραγματική τιμή του e -α. Για α = -5.5 αν αθροίσουμε τους 25 πρώτους χρησιμοποιώντας 5 σημαντικά ψηφία, τότε η άθροιση θα μας δώσει: 5.5 e , ενώ το σωστό αποτέλεσμα είναι: 5.5 e , δηλαδή δεν έχουμε κανένα σημαντικό ψηφίο σωστό.

38 Μετάδοση Σφαλμάτων κατά τους Υπολογισμούς Το φαινόμενο αυτό μπορεί να αντιμετωπιστεί υπολογίζοντας τους μεγάλους σε μέγεθος όρους με μεγαλύτερη ακρίβεια σημαντικών ψηφίων, έτσι ώστε να είναι δυνατόν να συνεισφέρουν στην απάντηση. Κοστίζει σε μνήμη καθώς και σε υπολογιστικό χρόνο. Εναλλακτικά, αντί του e -α μπορεί να υπολογιστεί το e α και μετά να αντιστραφεί το τελικό εξαγόμενο. Το αποτέλεσμα της άθροισης δεν είναι μικρός αριθμός και έτσι δεν υφίσταται το φαινόμενο της καταστροφικής ακύρωσης.

39 Μετάδοση Σφαλμάτων κατά τους Υπολογισμούς Παράδειγμα 2: Υπολογισμός της διαφοράς για x 707, Τότε θα έχουμε: χρησιμοποιώντας τέσσερα σημαντικά ψηφία Αφού οι αριθμοί είναι στρογγυλοποιημένοι σε τέσσερα σημαντικά ψηφία, τότε τα απόλυτα σφάλματα των αριθμών αυτών είναι -2 μικρότερα ή ίσα με και επομένως το απόλυτο σφάλμα της -2-2 διαφοράς τους είναι μικρότερο ή ίσο με Έτσι η τιμή 0.02 δεν είναι αρκετά ακριβής. x1 x

40 Μετάδοση Σφαλμάτων κατά τους Εναλλακτική μέθοδος: Υπολογισμούς Προφανώς, η παραπάνω διαδικασία δίνει πιο ακριβείς τιμές και ο λόγος είναι ότι αποφεύχθηκε η αφαίρεση δύο περίπου ίσων αριθμών.

41 Μετάδοση Σφαλμάτων κατά τους Υπολογισμούς Θεώρημα 3: Το απόλυτο σχετικό σφάλμα του γινομένου δύο αριθμών είναι κατά προσέγγιση μικρότερο ή ίσο από το άθροισμα των απολύτων σχετικών σφαλμάτων των αριθμών αυτών. Θεώρημα 4: Το απόλυτο σχετικό σφάλμα του πηλίκου δύο αριθμών είναι κατά προσέγγιση μικρότερο ή ίσο από το άθροισμα των απολύτων σχετικών σφαλμάτων των αριθμών αυτών.

42 Μετάδοση Σφαλμάτων κατά τους Υπολογισμούς Παράδειγμα Έστω ότι οι αριθμοί x1 και x2 δίνονται στρογγυλοποιημένοι σε 2 δεκαδικά ψηφία. Θα δείξουμε ότι το απόλυτο σφάλμα της έκφρασης 3.1x1 2.9x2είναι μικρότερο ή ίσο από 0.03, με την υπόθεση ότι οι συντελεστές 3.1 και 3.2 είναι ακριβείς. Λύση x x 3.1x 2.9x 3.1x 2.9x x1 x1 x2 x Επειδή οι αριθμοί δίνονται στρογγυλοποιημένοι σε 2 δεκαδικά ψηφία, τότε θα ισχύει: ,

43 Ολικό Σφάλμα Έστω ότι το προς εξέταση αριθμητικό πρόβλημα είναι η εύρεση μιας τιμής της συνάρτησης f(x) για κάποια τιμή της ανεξάρτητης μεταβλητής x. 1. Πολλές φορές στην πράξη αντί της συνάρτησης f(x) χρησιμοποιείται μια απλούστερη και πιο εύχρηστη συνάρτηση g(x). g x f x σφάλμα αποκοπής 2. Αντί όμως της ακριβούς τιμής της ανεξάρτητης μεταβλητής x χρησιμοποιείται μια προσεγγιστική τιμή x* * g x g x σφάλμα διάδοσης 3. Όμως μετά του αριθμητικούς υπολογισμούς και λόγω των διαφορετικών προσεγγιστικών πράξεων που γίνονται κατά τη διάρκεια αυτών, η τελική τιμή είναι μια προσέγγιση g*(x*) της πραγματικής τιμή g(x*). παραχθέν σφάλμα g * x * g x *

44 Ολικό Σφάλμα Με βάση τα παραπάνω για το ολικό σφάλμα ε ο στην τελική τιμή g*(x*) θα ισχύουν διαδοχικά τα παρακάτω: * * * * * * o g x f x g x g x g x g x g x f x και τελικά θα έχουμε: o Τέλος, αν λάβουμε υπόψη το υπολογιστικό σφάλμα ε υ, που δημιουργείται από τη διαφορά της προσεγγιστικής τιμής g*(x*) από την πραγματική τιμή g(x), τότε για το υπολογιστικό σφάλμα θα ισχύει ότι: * * * * * * g x g x g x g x g x g x

45 Ολικό Σφάλμα Επομένως: Με βάση το παραπάνω υπολογιστικό σφάλμα το ολικό ε ο στην τελική τιμή g*(x*) θα είναι: o Έτσι το ολικό σφάλμα δίνεται από το άθροισμα του υπολογιστικού σφάλματος και του σφάλματος αποκοπής.

1 Αριθμητική κινητής υποδιαστολής και σφάλματα στρογγύλευσης

1 Αριθμητική κινητής υποδιαστολής και σφάλματα στρογγύλευσης 1 Αριθμητική κινητής υποδιαστολής και σφάλματα στρογγύλευσης Στη συγκεκριμένη ενότητα εξετάζουμε θέματα σχετικά με την αριθμητική πεπερασμένης ακρίβειας που χρησιμοποιούν οι σημερινοί υπολογιστές και τα

Διαβάστε περισσότερα

Αριθμητική Ανάλυση και Εφαρμογές

Αριθμητική Ανάλυση και Εφαρμογές Αριθμητική Ανάλυση και Εφαρμογές Διδάσκων: Δημήτριος Ι. Φωτιάδης Τμήμα Μηχανικών Επιστήμης Υλικών Ιωάννινα 07-08 Αριθμητική Παραγώγιση Εισαγωγή Ορισμός 7. Αν y f x είναι μια συνάρτηση ορισμένη σε ένα διάστημα

Διαβάστε περισσότερα

11. Ποιες είναι οι άμεσες συνέπειες της διαίρεσης;

11. Ποιες είναι οι άμεσες συνέπειες της διαίρεσης; 10. Τι ονομάζουμε Ευκλείδεια διαίρεση και τέλεια διαίρεση; Όταν δοθούν δύο φυσικοί αριθμοί Δ και δ, τότε υπάρχουν δύο άλλοι φυσικοί αριθμοί π και υ, έτσι ώστε να ισχύει: Δ = δ π + υ. Ο αριθμός Δ λέγεται

Διαβάστε περισσότερα

ΣΦΑΛΜΑΤΑ ΑΡΙΘΜΗΤΙΚΩΝ ΥΠΟΛΟΓΙΣΜΩΝ

ΣΦΑΛΜΑΤΑ ΑΡΙΘΜΗΤΙΚΩΝ ΥΠΟΛΟΓΙΣΜΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Εργαστήριο Θερμικών Στροβιλομηχανών Μονάδα Παράλληλης Υπολογιστικής Ρευστοδυναμικής & Βελτιστοποίησης ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ (4 ο Εξάμηνο Σχολής Μηχ.Μηχ. ΕΜΠ) ΣΦΑΛΜΑΤΑ ΑΡΙΘΜΗΤΙΚΩΝ

Διαβάστε περισσότερα

ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ

ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΜΑΘΗΜΑ 1 ο 1 Εισαγωγή Έντυπα εγχειρίδια ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, ΑΚΡΙΒΗΣ Γ.Δ., ΔΟΥΓΑΛΗΣ Β.Α. Αριθμητική ανάλυση με εφαρμογές σε matlab & mathematica,

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά

Εφαρμοσμένα Μαθηματικά Εφαρμοσμένα Μαθηματικά Τμήμα Τεχνολογίας Αεροσκαφών ΤΕ ΤΕΙ ΣΤΕΡΕΑΣ ΕΛΛΑΔΑΣ Χειμερινό Εξάμηνο 2013-14 Δρ. Β. Σγαρδώνη ΚΕΦΑΛΑΙΑ 1. Εισαγωγή 2. Σφάλματα, αριθμητική μηχανής και αλγόριθμοι 3. Επίλυση συστήματος

Διαβάστε περισσότερα

Αριθμητική Ανάλυση και Εφαρμογές

Αριθμητική Ανάλυση και Εφαρμογές Αριθμητική Ανάλυση και Εφαρμογές Διδάσκων: Δημήτριος Ι. Φωτιάδης Τμήμα Μηχανικών Επιστήμης Υλικών Ιωάννινα 07-08 Πεπερασμένες και Διαιρεμένες Διαφορές Εισαγωγή Θα εισάγουμε την έννοια των διαφορών με ένα

Διαβάστε περισσότερα

Λέγονται οι αριθμοί που βρίσκονται καθημερινά στη φύση, γύρω μας. π.χ. 1 μήλο, 2 παιδιά, 5 αυτοκίνητα, 100 πρόβατα, δέντρα κ.λ.π.

Λέγονται οι αριθμοί που βρίσκονται καθημερινά στη φύση, γύρω μας. π.χ. 1 μήλο, 2 παιδιά, 5 αυτοκίνητα, 100 πρόβατα, δέντρα κ.λ.π. Λέγονται οι αριθμοί που βρίσκονται καθημερινά στη φύση, γύρω μας. π.χ. 1 μήλο, 2 παιδιά, 5 αυτοκίνητα, 100 πρόβατα, 1.000 δέντρα κ.λ.π. Εκτός από πλήθος οι αριθμοί αυτοί μπορούν να δηλώσουν και τη θέση

Διαβάστε περισσότερα

1.1. Με τι ασχολείται η Αριθμητική Ανάλυση

1.1. Με τι ασχολείται η Αριθμητική Ανάλυση Κεφάλαιο 1 Εισαγωγικά 1.1. Με τι ασχολείται η Αριθμητική Ανάλυση Πολλοί επιστημονικοί κλάδοι, στην προσπάθειά τους να επιλύσουν πρακτικά προβλήματα κάνουν χρήση μεθόδων Αριθμητικής Ανάλυσης. Οι μέθοδοι

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α ΓΥΜΝΑΣΙΟΥ ΘΕΤΙΚΟΙ ΚΑΙ ΑΡΝΗΤΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ

ΑΛΓΕΒΡΑ Α ΓΥΜΝΑΣΙΟΥ ΘΕΤΙΚΟΙ ΚΑΙ ΑΡΝΗΤΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ ΘΕΤΙΚΟΙ ΚΑΙ ΑΡΝΗΤΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ ΚΕΦΑΛΑΙΟ 7 Ο ΘΕΤΙΚΟΙ ΚΑΙ ΑΡΝΗΤΙΚΟΙ ΑΡΙΘΜΟΙ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ 1. Όταν μπροστα" (αριστερα") απο" ε"ναν αριθμο" γραφει" το συ"μβολο + το"τε ο αριθμο"ς

Διαβάστε περισσότερα

2. Να γράψετε έναν αριθμό που είναι μεγαλύτερος από το 3,456 και μικρότερος από το 3,457.

2. Να γράψετε έναν αριθμό που είναι μεγαλύτερος από το 3,456 και μικρότερος από το 3,457. 1. Ένα κεφάλαιο ενός βιβλίου ξεκινάει από τη σελίδα 32 και τελειώνει στη σελίδα 75. Από πόσες σελίδες αποτελείται το κεφάλαιο; Αν το κεφάλαιο ξεκινάει από τη σελίδα κ και τελειώνει στη σελίδα λ, από πόσες

Διαβάστε περισσότερα

2. ΑΡΙΘΜΗΤΙΚΗ ΤΟΥ ΥΠΟΛΟΓΙΣΤΗ. 2.1 Αριθμητικά συστήματα

2. ΑΡΙΘΜΗΤΙΚΗ ΤΟΥ ΥΠΟΛΟΓΙΣΤΗ. 2.1 Αριθμητικά συστήματα 2. ΑΡΙΘΜΗΤΙΚΗ ΤΟΥ ΥΠΟΛΟΓΙΣΤΗ 2.1 Αριθμητικά συστήματα Κάθε πραγματικός αριθμός χ μπορεί να παρασταθεί σε ένα αριθμητικό σύστημα με βάση β>1 με μια δυναμοσειρά της μορφής, -οο * = ± Σ ψ β " (2 1) η - ν

Διαβάστε περισσότερα

1.4 Αριθμητική υπολογιστών και σφάλματα

1.4 Αριθμητική υπολογιστών και σφάλματα Γ. Γεωργίου, Αριθμητική Ανάλυση 1.4 Αριθμητική υπολογιστών και σφάλματα Στην παράγραφο αυτή καλύπτουμε πρώτα γενικά το θέμα της αριθμητικής υπολογιστών και στην συνέχεια διαπραγματευόμαστε την έννοια του

Διαβάστε περισσότερα

Τμήμα Τεχνολόγων Γεωπόνων - Φλώρινα

Τμήμα Τεχνολόγων Γεωπόνων - Φλώρινα Τμήμα Τεχνολόγων Γεωπόνων - Φλώρινα Μάθημα: Μαθηματικά Διάλεξη 1 η : Εισαγωγή-Επανάληψη βασικών εννοιών (1 ο, 2 ο, 3 ο Κεφάλαιο) 11-10-2017, 18-10-2017 Διδάσκουσα: Αριστούλα Κοντογιάννη ΩΡΕΣ ΔΙΔΑΣΚΑΛΙΑΣ

Διαβάστε περισσότερα

Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον

Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Τεχνολογικό Εκπαιδευτικό Ίδρυμα Κεντρικής Μακεδονίας - Σέρρες Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Δρ. Δημήτρης Βαρσάμης

Διαβάστε περισσότερα

Κεφάλαιο 2. Συστήματα Αρίθμησης και Αναπαράσταση Πληροφορίας. Περιεχόμενα. 2.1 Αριθμητικά Συστήματα. Εισαγωγή

Κεφάλαιο 2. Συστήματα Αρίθμησης και Αναπαράσταση Πληροφορίας. Περιεχόμενα. 2.1 Αριθμητικά Συστήματα. Εισαγωγή Κεφάλαιο. Συστήματα Αρίθμησης και Αναπαράσταση Πληροφορίας Περιεχόμενα. Αριθμητικά συστήματα. Μετατροπή αριθμών από ένα σύστημα σε άλλο.3 Πράξεις στο δυαδικό σύστημα.4 Πράξεις στο δεκαεξαδικό σύστημα.5

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ 1 ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΑΚΟΛΟΥΘΙΕΣ ΑΡΙΘΜΩΝ EΞΙΣΩΣΕΙΣ...47 ΠΡΟΛΟΓΟΣ... 9

ΠΕΡΙΕΧΟΜΕΝΑ 1 ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΑΚΟΛΟΥΘΙΕΣ ΑΡΙΘΜΩΝ EΞΙΣΩΣΕΙΣ...47 ΠΡΟΛΟΓΟΣ... 9 ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ... 9 1 ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ...11 1.1 Βασικές θεωρητικές γνώσεις... 11 1.. Λυμένα προβλήματα... 19 1. Προβλήματα προς λύση... 4 1.4 Απαντήσεις προβλημάτων Πραγματικοί αριθμοί... 0 ΑΚΟΛΟΥΘΙΕΣ

Διαβάστε περισσότερα

Εισαγωγή στην Πληροφορική & τον Προγραμματισμό

Εισαγωγή στην Πληροφορική & τον Προγραμματισμό ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Εισαγωγή στην Πληροφορική & τον Προγραμματισμό Ενότητα 3 η : Κωδικοποίηση & Παράσταση Δεδομένων Ι. Ψαρομήλιγκος Χ. Κυτάγιας Τμήμα

Διαβάστε περισσότερα

Μαθηματικά Γ Γυμνασίου. Επαναληπτικές Ασκήσεις στο Κεφάλαιο 1: 1.2-1.5 Μονώνυμα - Πολυώνυμα - Ταυτότητες

Μαθηματικά Γ Γυμνασίου. Επαναληπτικές Ασκήσεις στο Κεφάλαιο 1: 1.2-1.5 Μονώνυμα - Πολυώνυμα - Ταυτότητες Μαθηματικά Γ Γυμνασίου Επαναληπτικές Ασκήσεις στο Κεφάλαιο 1: 1.2-1.5 Μονώνυμα - Πολυώνυμα - Ταυτότητες Αλγεβρικές παραστάσεις - Μονώνυμα Πράξεις με μονώνυμα Πολυώνυμα Πρόσθεση και Αφαίρεση πολυωνύμων

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι

ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι κ. ΠΕΤΑΛΙΔΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται

Διαβάστε περισσότερα

Αριθμητικά Συστήματα

Αριθμητικά Συστήματα Αριθμητικά Συστήματα Σε οποιοδήποτε αριθμητικό σύστημα, με βάση τον αριθμό Β, ένας ακέραιος αριθμός με πλήθος ψηφίων ν, εκφράζεται ως ακολούθως: α ν-1 α ν-2 α 1 α 0 = α ν-1 Β ν-1 + α ν-2 Β ν-2 + + α 1

Διαβάστε περισσότερα

Αριθμητική Ανάλυση και Εφαρμογές

Αριθμητική Ανάλυση και Εφαρμογές Αριθμητική Ανάλυση και Εφαρμογές Διδάσκων: Δημήτριος Ι. Φωτιάδης Τμήμα Μηχανικών Επιστήμης Υλικών Ιωάννινα 07-08 Αριθμητική Ολοκλήρωση Εισαγωγή Έστω ότι η f είναι μία φραγμένη συνάρτηση στο πεπερασμένο

Διαβάστε περισσότερα

Αλγεβρικές Παραστάσεις

Αλγεβρικές Παραστάσεις Αλγεβρικές Παραστάσεις 1.2 Μονώνυμα-Πράξεις με Μονώνυμα 1 1.2 Μονώνυμα-Πράξεις με Μονώνυμα Α Άλγεβρικές Παραστάσεις-Μονώνυμα Πολλές φορές για να λύσουμε ένα πρόβλημα, καταλήγουμε σε εκφράσεις που περιέχουν

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΤΩΝ ΑΣΚΗΣΕΩΝ ΕΠΑΝΑΛΗΨΗΣ ΓΙΑ ΤΙΣ ΓΙΟΡΤΕΣ (ΑΡΙΘΜΗΤΙΚΗ)

ΛΥΣΕΙΣ ΤΩΝ ΑΣΚΗΣΕΩΝ ΕΠΑΝΑΛΗΨΗΣ ΓΙΑ ΤΙΣ ΓΙΟΡΤΕΣ (ΑΡΙΘΜΗΤΙΚΗ) ΛΥΣΕΙΣ ΤΩΝ ΑΣΚΗΣΕΩΝ ΕΠΑΝΑΛΗΨΗΣ ΓΙΑ ΤΙΣ ΓΙΟΡΤΕΣ (ΑΡΙΘΜΗΤΙΚΗ) 1. Ένα κεφάλαιο ενός βιβλίου ξεκινάει από τη σελίδα 32 και τελειώνει στη σελίδα 75. Από πόσες σελίδες αποτελείται το κεφάλαιο; Αν το κεφάλαιο

Διαβάστε περισσότερα

ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ. Κεφάλαιο 3

ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ. Κεφάλαιο 3 ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ Κεφάλαιο 3 Κεντρική Μονάδα Επεξεργασίας Κεντρική Μονάδα Επεξεργασίας Μονάδα επεξεργασίας δεδομένων Μονάδα ελέγχου Μονάδα επεξεργασίας δεδομένων Δομή Αριθμητικής Λογικής Μονάδας

Διαβάστε περισσότερα

Αριθµητικές Μέθοδοι και Προγραµµατισµός Αριθµητική Ανάλυση (ή Επιστηµονικοί Υπολογισµοί)

Αριθµητικές Μέθοδοι και Προγραµµατισµός Αριθµητική Ανάλυση (ή Επιστηµονικοί Υπολογισµοί) Αριθµητικές Μέθοδοι και Προγραµµατισµός Αριθµητική Ανάλυση (ή Επιστηµονικοί Υπολογισµοί) ιδάσκοντες: Καθηγητής Ν. Μισυρλής, Επίκ. Καθηγητής Φ.Τζαφέρης ΕΚΠΑ 7 Οκτωβρίου 2014 ιδάσκοντες: Καθηγητής Ν. Μισυρλής,Επίκ.

Διαβάστε περισσότερα

Οι Φυσικοί Αριθμοί. Παρατήρηση: Δεν στρογγυλοποιούνται αριθμοί τηλεφώνων, Α.Φ.Μ., κωδικοί αριθμοί κλπ. Πρόσθεση Φυσικών αριθμών

Οι Φυσικοί Αριθμοί. Παρατήρηση: Δεν στρογγυλοποιούνται αριθμοί τηλεφώνων, Α.Φ.Μ., κωδικοί αριθμοί κλπ. Πρόσθεση Φυσικών αριθμών Οι Φυσικοί Αριθμοί Γνωρίζουμε ότι οι αριθμοί είναι ποσοτικές έννοιες και για να τους γράψουμε χρησιμοποιούμε τα αριθμητικά σύμβολα. Οι αριθμοί μετρούν συγκεκριμένα πράγματα και φανερώνουν το πλήθος της

Διαβάστε περισσότερα

Εισαγωγή στην επιστήμη των υπολογιστών

Εισαγωγή στην επιστήμη των υπολογιστών Εισαγωγή στην επιστήμη των υπολογιστών Υπολογιστές και Δεδομένα Κεφάλαιο 3ο Αναπαράσταση Αριθμών www.di.uoa.gr/~organosi 1 Δεκαδικό και Δυαδικό Δεκαδικό σύστημα 2 3 Δεκαδικό και Δυαδικό Δυαδικό Σύστημα

Διαβάστε περισσότερα

Μαθηματικά Γ Γυμνασίου. Επαναληπτικές Ασκήσεις στο Κεφάλαιο 1: Μονώνυμα - Πολυώνυμα - Ταυτότητες

Μαθηματικά Γ Γυμνασίου. Επαναληπτικές Ασκήσεις στο Κεφάλαιο 1: Μονώνυμα - Πολυώνυμα - Ταυτότητες Μαθηματικά Γ Γυμνασίου Επαναληπτικές Ασκήσεις στο Κεφάλαιο :.2 -.5 Μονώνυμα - Πολυώνυμα - Ταυτότητες Αλγεβρικές παραστάσεις - Μονώνυμα Πράξεις με μονώνυμα Πολυώνυμα Πρόσθεση και Αφαίρεση πολυωνύμων Πολλαπλασιασμός

Διαβάστε περισσότερα

Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών

Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών TINΑ ΒΡΕΝΤΖΟΥ www.ma8eno.gr www.ma8eno.gr Σελίδα 1 Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών Στους πραγματικούς αριθμούς ορίστηκαν οι

Διαβάστε περισσότερα

2.1 ΠΡΑΞΕΙΣ ΚΑΙ ΟΙ ΙΔΙΟΤΗΤΕΣ ΤΟΥΣ

2.1 ΠΡΑΞΕΙΣ ΚΑΙ ΟΙ ΙΔΙΟΤΗΤΕΣ ΤΟΥΣ ΚΕΦΑΛΑΙΟ : ΟΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ. ΠΡΑΞΕΙΣ ΚΑΙ ΟΙ ΙΔΙΟΤΗΤΕΣ ΤΟΥΣ Ρητός ονομάζεται κάθε αριθμός που έχει ή μπορεί να πάρει τη μορφή κλάσματος, όπου, είναι ακέραιοι με 0. Ρητοί αριθμοί : Q /, 0. Έτσι π.χ.

Διαβάστε περισσότερα

Αριθμητική Ανάλυση και Εφαρμογές

Αριθμητική Ανάλυση και Εφαρμογές Αριθμητική Ανάλυση και Εφαρμογές Διδάσκων: Δημήτριος Ι. Φωτιάδης Τμήμα Μηχανικών Επιστήμης Υλικών Ιωάννινα 2017-2018 Παρεμβολή και Παρεκβολή Εισαγωγή Ορισμός 6.1 Αν έχουμε στη διάθεσή μας τιμές μιας συνάρτησης

Διαβάστε περισσότερα

Εισαγωγή στους Υπολογιστές

Εισαγωγή στους Υπολογιστές Εισαγωγή στους Υπολογιστές Ενότητα 9: Ψηφιακή Αριθμητική Βασίλης Παλιουράς Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Ψηφιακή Αριθμητική Σκοποί ενότητας 2 Περιεχόμενα ενότητας

Διαβάστε περισσότερα

Σφάλματα (errors) Σε κάθε υπολογισμό μιας πραγματικής ποσότητας υπάρχει σφάλμα

Σφάλματα (errors) Σε κάθε υπολογισμό μιας πραγματικής ποσότητας υπάρχει σφάλμα Σφάλματα (errors) Σε κάθε υπολογισμό μιας πραγματικής ποσότητας υπάρχει σφάλμα Πηγές σφαλμάτων ανακριβής θεωρία ανακριβείς μετρήσεις παραμέτρων μεταβλητότητα παραμέτρων ανακριβής μέθοδος υπολογισμού (σφάλματα

Διαβάστε περισσότερα

Δυαδικό Σύστημα Αρίθμησης

Δυαδικό Σύστημα Αρίθμησης Δυαδικό Σύστημα Αρίθμησης Το δυαδικό σύστημα αρίθμησης χρησιμοποιεί δύο ψηφία. Το 0 και το 1. Τα ψηφία ενός αριθμού στο δυαδικό σύστημα αρίθμησης αντιστοιχίζονται σε δυνάμεις του 2. Μονάδες, δυάδες, τετράδες,

Διαβάστε περισσότερα

Α Γυμνασίου, Μέρο Α, Άλγεβρα, Κεφάλαιο 7, Θετικοί και Αρνητικοί Αριθμοί, Α.7.8. Δυνάμει ρητών αριθμών με εκθέτη φυσικό, Α.7.9. Δυνάμει ρητών αριθμών

Α Γυμνασίου, Μέρο Α, Άλγεβρα, Κεφάλαιο 7, Θετικοί και Αρνητικοί Αριθμοί, Α.7.8. Δυνάμει ρητών αριθμών με εκθέτη φυσικό, Α.7.9. Δυνάμει ρητών αριθμών Α Γυμνασίου, Μέρο Α, Άλγεβρα, Κεφάλαιο, Θετικοί και Αρνητικοί Αριθμοί, Α..8. Δυνάμει ρητών αριθμών με εκθέτη φυσικό, Α..9. Δυνάμει ρητών αριθμών με εκθέτη ακέραιο Περιοδική Έκδοση για τα Μαθηματικά Γυμνασίου

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8 ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ Άλγεβρα 1 ο Κεφάλαιο 1. Τι ονομάζουμε αριθμητική και τι αλγεβρική παράσταση; Να δώσετε από ένα παράδειγμα. Μια παράσταση που περιέχει πράξεις με αριθμούς, καλείται αριθμητική παράσταση,

Διαβάστε περισσότερα

ΠΛΗΡΟΦΟΡΙΚΗ I Ενότητα 6

ΠΛΗΡΟΦΟΡΙΚΗ I Ενότητα 6 ΠΛΗΡΟΦΟΡΙΚΗ I Ενότητα 6 ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ Bits & Bytes Bit: η μικρότερη μονάδα πληροφορίας μία από δύο πιθανές καταστάσεις (ναι / όχι, αληθές / ψευδές, n / ff) κωδικοποίηση σε 0 ή 1 δυαδικό σύστημα

Διαβάστε περισσότερα

Δύο είναι οι κύριες αιτίες που μπορούμε να πάρουμε από τον υπολογιστή λανθασμένα αποτελέσματα εξαιτίας των σφαλμάτων στρογγυλοποίησης:

Δύο είναι οι κύριες αιτίες που μπορούμε να πάρουμε από τον υπολογιστή λανθασμένα αποτελέσματα εξαιτίας των σφαλμάτων στρογγυλοποίησης: Ορολογία bit (binary digit): δυαδικό ψηφίο. Τα δυαδικά ψηφία είναι το 0 και το 1 1 byte = 8 bits word: η θεμελιώδης μονάδα σύμφωνα με την οποία εκπροσωπούνται οι πληροφορίες στον υπολογιστή. Αποτελείται

Διαβάστε περισσότερα

ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ. Γρήγορα τεστ. Μαθηματικά ΣT Δημοτικού ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ

ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ. Γρήγορα τεστ. Μαθηματικά ΣT Δημοτικού ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ Γρήγορα τεστ Μαθηματικά ΣT Δημοτικού 1 ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ ΓΡΗΓΟΡΑ ΤΕΣΤ ΜΑΘΗΜΑΤΙΚΩΝ - ΣΤ Δημοτικού No 1 Γιάννης Ζαχαρόπουλος Διόρθωση: Αντωνία Κιλεσσοπούλου 201, Εκδόσεις Κυριάκος

Διαβάστε περισσότερα

Ξέρουμε ότι: Συνάρτηση-απεικόνιση με πεδίο ορισμού ένα σύνολο Α και πεδίο τιμών ένα σύνολο Β είναι κάθε μονοσήμαντη απεικόνιση f του Α στο Β.

Ξέρουμε ότι: Συνάρτηση-απεικόνιση με πεδίο ορισμού ένα σύνολο Α και πεδίο τιμών ένα σύνολο Β είναι κάθε μονοσήμαντη απεικόνιση f του Α στο Β. Η έννοια της ακολουθίας Ξέρουμε ότι: Συνάρτηση-απεικόνιση με πεδίο ορισμού ένα σύνολο Α και πεδίο τιμών ένα σύνολο Β είναι κάθε μονοσήμαντη απεικόνιση f του Α στο Β. Δηλαδή: f : A B Η ακολουθία είναι συνάρτηση.

Διαβάστε περισσότερα

Πληροφορική. Ενότητα 4 η : Κωδικοποίηση & Παράσταση Δεδομένων. Ι. Ψαρομήλιγκος Τμήμα Λογιστικής & Χρηματοοικονομικής

Πληροφορική. Ενότητα 4 η : Κωδικοποίηση & Παράσταση Δεδομένων. Ι. Ψαρομήλιγκος Τμήμα Λογιστικής & Χρηματοοικονομικής ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Πληροφορική Ενότητα 4 η : Κωδικοποίηση & Παράσταση Δεδομένων Ι. Ψαρομήλιγκος Τμήμα Λογιστικής & Χρηματοοικονομικής Άδειες Χρήσης

Διαβάστε περισσότερα

Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον

Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Τεχνολογικό Εκπαιδευτικό Ίδρυμα Κεντρικής Μακεδονίας - Σέρρες Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Δρ. Δημήτρης Βαρσάμης

Διαβάστε περισσότερα

Μεθοδολογία Επίλυσης Προβλημάτων ============================================================================ Π. Κυράνας - Κ.

Μεθοδολογία Επίλυσης Προβλημάτων ============================================================================ Π. Κυράνας - Κ. Μεθοδολογία Επίλυσης Προβλημάτων ============================================================================ Π. Κυράνας - Κ. Σάλαρης Πολλές φορές μας δίνεται να λύσουμε ένα πρόβλημα που από την πρώτη

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α ΓΥΜΝΑΣΙΟΥ ΑΣΚΗΣΕΙΣ ΓΙΑ ΛΥΣΗ - ΑΝΔΡΕΣΑΚΗΣ ΔΗΜΗΤΡΗΣ

ΑΛΓΕΒΡΑ Α ΓΥΜΝΑΣΙΟΥ ΑΣΚΗΣΕΙΣ ΓΙΑ ΛΥΣΗ - ΑΝΔΡΕΣΑΚΗΣ ΔΗΜΗΤΡΗΣ Ποιους αριθµούς ονοµάζουµε οµόσηµους και ποιους ετερόσηµους; Ποιους αριθµούς ονοµάζουµε ακέραιους; Ποιους αριθµούς ονοµάζουµε ρητούς; Τι ονοµάζουµε απόλυτη τιµή ενός ρητού αριθµού; Τι παριστάνει η απόλυτη

Διαβάστε περισσότερα

ÅÉÓÁÃÙÃÇ ÓÔÇÍ ÁÑÉÈÌÇÔÉÊÇ ÁÍÁËÕÓÇ

ÅÉÓÁÃÙÃÇ ÓÔÇÍ ÁÑÉÈÌÇÔÉÊÇ ÁÍÁËÕÓÇ ÐÁÍÅÐÉÓÔÇÌÉÏ ÉÙÁÍÍÉÍÙÍ ÓïöïêëÞò Ä. ÃáëÜíçò ÁíáðëçñùôÞò ÊáèçãçôÞò ÅÉÓÁÃÙÃÇ ÓÔÇÍ ÁÑÉÈÌÇÔÉÊÇ ÁÍÁËÕÓÇ É Ù Á Í Í É Í Á 0 0 ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ. ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ. Γενικά. Αλγόριθμος του Συμπληρώματος 6.3

Διαβάστε περισσότερα

Αρβανιτίδης Θεόδωρος, - Μαθηματικά Ε

Αρβανιτίδης Θεόδωρος,  - Μαθηματικά Ε Πρόσθεση Φυσικών Αριθμών Μάθημα 5 ο Για να προσθέσω φυσικούς αριθμούς πρέπει να προσθέσω τις μονάδες των αριθμών αυτών, μετά τις δεκάδες των αριθμών, μετά τις εκατοντάδες κλπ. Η πρόσθεση φυσικών αριθμών

Διαβάστε περισσότερα

Κεφάλαιο 1. Εισαγωγή, ακρίβεια και σφάλματα υπολογισμών

Κεφάλαιο 1. Εισαγωγή, ακρίβεια και σφάλματα υπολογισμών Κεφάλαιο 1. Εισαγωγή, ακρίβεια και σφάλματα υπολογισμών Σύνοψη Στο πρώτο αυτό κεφάλαιο γίνεται μια εισαγωγή στο αντικείμενο της Αριθμητικής Ανάλυσης και εξετάζεται το θέμα της ακρίβειας και των σφαλμάτων

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Πίνακας περιεχομένων Κεφάλαιο 1 - ΟΙ ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ... 2 Κεφάλαιο 2 ο - ΤΑ ΚΛΑΣΜΑΤΑ... 6 Κεφάλαιο 3 ο - ΔΕΚΑΔΙΚΟΙ ΑΡΙΘΜΟΙ... 10 ΣΩΤΗΡΟΠΟΥΛΟΣ ΝΙΚΟΣ 1 Κεφάλαιο 1 - ΟΙ ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ

Διαβάστε περισσότερα

HY213. ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ ΥΠΟΛΟΓΙΣΜΟΙ ΚΑΙ ΣΦΑΛΜΑΤΑ ΑΡΙΘΜΗΤΙΚΗ ΚΙΝΗΤΗΣ ΥΠΟΔΙΑΣΤΟΛΗΣ

HY213. ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ ΥΠΟΛΟΓΙΣΜΟΙ ΚΑΙ ΣΦΑΛΜΑΤΑ ΑΡΙΘΜΗΤΙΚΗ ΚΙΝΗΤΗΣ ΥΠΟΔΙΑΣΤΟΛΗΣ HY23. ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ ΥΠΟΛΟΓΙΣΜΟΙ ΚΑΙ ΣΦΑΛΜΑΤΑ ΑΡΙΘΜΗΤΙΚΗ ΚΙΝΗΤΗΣ ΥΠΟΔΙΑΣΤΟΛΗΣ Π. ΤΣΟΜΠΑΝΟΠΟΥΛΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Επιστημονικοί Υπολογισμοί

Διαβάστε περισσότερα

Κεφάλαιο 2. Οργάνωση και διαχείριση της Πληροφορίας στον. Υπολογιστή

Κεφάλαιο 2. Οργάνωση και διαχείριση της Πληροφορίας στον. Υπολογιστή ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ Κεφάλαιο 2 Οργάνωση και διαχείριση της Πληροφορίας στον Υπολογιστή Δεδομένα και Εντολές πληροφορία δεδομένα εντολές αριθμητικά δδ δεδομένα κείμενο εικόνα Επιλογή Αναπαράστασης

Διαβάστε περισσότερα

Απαντήσεις θεωρίας Κεφάλαιο 1ο. (α μέρος)

Απαντήσεις θεωρίας Κεφάλαιο 1ο. (α μέρος) Μαθηματικά Γ Γυμνασίου Απαντήσεις θεωρίας Κεφάλαιο 1ο. (α μέρος) 1. Πως προσθέτουμε δυο πραγματικούς αριθμούς; Για να προσθέσουμε δύο ομόσημους αριθμούς, προσθέτουμε τις απόλυτες τιμές τους και στο άθροισμά

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ Κ. Δεμέστιχας Εργαστήριο Πληροφορικής Γεωπονικό Πανεπιστήμιο Αθηνών Επικοινωνία μέσω e-mail: cdemest@aua.gr, cdemest@cn.ntua.gr 1 2. ΑΡΙΘΜΗΤΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ ΜΕΡΟΣ Α 2 Τεχνολογία

Διαβάστε περισσότερα

Περιεχόμενα. Κεφάλαιο 3 Οι ιδιότητες των αριθμών... 37 3.1 Αριθμητικά σύνολα... 37 3.2 Ιδιότητες... 37 3.3 Περισσότερες ιδιότητες...

Περιεχόμενα. Κεφάλαιο 3 Οι ιδιότητες των αριθμών... 37 3.1 Αριθμητικά σύνολα... 37 3.2 Ιδιότητες... 37 3.3 Περισσότερες ιδιότητες... Περιεχόμενα Πρόλογος... 5 Κεφάλαιο Βασικές αριθμητικές πράξεις... 5. Τέσσερις πράξεις... 5. Σύστημα πραγματικών αριθμών... 5. Γραφική αναπαράσταση πραγματικών αριθμών... 6.4 Οι ιδιότητες της πρόσθεσης

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ Κ. Δεμέστιχας Εργαστήριο Πληροφορικής Γεωπονικό Πανεπιστήμιο Αθηνών Επικοινωνία μέσω e-mail: cdemest@aua.gr, cdemest@cn.ntua.gr 3. ΑΡΙΘΜΗΤΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ ΜΕΡΟΣ Β Παράσταση Προσημασμένων

Διαβάστε περισσότερα

Δυαδικη παρασταση αριθμων και συμβολων

Δυαδικη παρασταση αριθμων και συμβολων Δυαδικη παρασταση αριθμων και συμβολων Ενα αριθμητικο συστημα χαρακτηριζεται απο την βαση r και τα συμβολα a i που παιρνουν τις τιμες 0,1,...,r-1. (a n,,a 1,a 0. a -1,a -2,,a -m ) r = =a n r n + +a 1 r+a

Διαβάστε περισσότερα

4.2 ΕΥΚΛΕΙΔΕΙΑ ΔΙΑΙΡΕΣΗ

4.2 ΕΥΚΛΕΙΔΕΙΑ ΔΙΑΙΡΕΣΗ 14 4 ΕΥΚΛΕΙΔΕΙΑ ΔΙΑΙΡΕΣΗ Ας υποθέσουμε ότι θέλουμε να βρούμε το πηλίκο και το υπόλοιπο της διαίρεσης του με τον Σύμφωνα με το γνωστό αλγόριθμο της διαίρεσης, το πηλίκο θα είναι ένας ακέραιος κ, τέτοιος,

Διαβάστε περισσότερα

2ογελ ΣΥΚΕΩΝ 2ογελ ΣΥΚΕΩΝ ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Β Λυκει(ου ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ

2ογελ ΣΥΚΕΩΝ 2ογελ ΣΥΚΕΩΝ ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Β Λυκει(ου ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ογελ ΣΥΚΕΩΝ ογελ ΣΥΚΕΩΝ ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Β Λυκει(ου ο ΓΕΛ ΣΥΚΕΩΝ ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Β ΛΥΚΕΙΟΥ ογελ ΣΥΚΕΩΝ ογελ ΣΥΚΕΩΝ ΣΧΟΛΙΚΟ ΕΤΟΣ -4 ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Επιμέλεια: ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ

Διαβάστε περισσότερα

Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ. Βασικές Έννοιες Προγραμματισμού. Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD

Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ. Βασικές Έννοιες Προγραμματισμού. Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ Βασικές Έννοιες Προγραμματισμού Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Αριθμητικά συστήματα Υπάρχουν 10 τύποι ανθρώπων: Αυτοί

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Πράξεις με μονώνυμα και πολυώνυμα Ενότητα 2 η Πράξεις με μονώνυμα και πολυώνυμα Σκοπός Ο σκοπός της 2 ης

Διαβάστε περισσότερα

ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΣΤΟ ΜΑΘΗΜΑ ΜΑΘΗΜΑΤΙΚΑ Ι.Ι (τεύχος-1-)

ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΣΤΟ ΜΑΘΗΜΑ ΜΑΘΗΜΑΤΙΚΑ Ι.Ι (τεύχος-1-) ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΣΤΟ ΜΑΘΗΜΑ ΜΑΘΗΜΑΤΙΚΑ Ι.Ι (τεύχος--) .. Μια χρήσιμη ανασκόπηση... Δυνάμεις Πραγματικών Αριθμών Ο συνοπτικός τρόπος για να εκφράσουμε το γινόμενο : 2*2*2*2 4 είναι να το γράψουμε:

Διαβάστε περισσότερα

0,00620 = 6, ΣΗΜΑΝΤΙΚΑ ΨΗΦΙΑ. Γενικοί Κανόνες για τα Σημαντικά Ψηφία

0,00620 = 6, ΣΗΜΑΝΤΙΚΑ ΨΗΦΙΑ. Γενικοί Κανόνες για τα Σημαντικά Ψηφία ΣΗΜΑΝΤΙΚΑ ΨΗΦΙΑ Είναι απαραίτητο να πούμε μερικά πράγματα για μια επαναλαμβανόμενη πηγή προβλημάτων και δυσκολιών: τα σημαντικά ψηφία. Τα μαθηματικά είναι μια επιστήμη όπου οι αριθμοί και οι σχέσεις μπορούν

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΝΑΠΤΥΞΗ ΚΑΙ ΣΧΕΔΙΑΣΗ ΛΟΓΙΣΜΙΚΟΥ Η γλώσσα προγραμματισμού C ΕΡΓΑΣΤΗΡΙΟ 2: Εκφράσεις, πίνακες και βρόχοι 14 Απριλίου 2016 Το σημερινό εργαστήριο

Διαβάστε περισσότερα

1 Σύντομη επανάληψη βασικών εννοιών

1 Σύντομη επανάληψη βασικών εννοιών Σύντομη επανάληψη βασικών εννοιών Μερικές χρήσιμες ταυτότητες + r + r 2 + + r n = rn r r + 2 + 3 + + n = 2 n(n + ) 2 + 2 2 + 3 2 + n 2 = n(n + )(2n + ) 6 Ανισότητα Cauchy Schwarz ( n ) 2 ( n x i y i i=

Διαβάστε περισσότερα

αριθμούς Βασικές ασκήσεις Βασική θεωρία iii) φυσικοί; ii) ακέραιοι; iii) ρητοί;

αριθμούς Βασικές ασκήσεις Βασική θεωρία iii) φυσικοί; ii) ακέραιοι; iii) ρητοί; Πράξεις με πραγματικούς αριθμούς Βασικές ασκήσεις Βασική θεωρία Ρητοί και άρρητοι αριθμοί. α) Ποιοι αριθμοί ονομάζονται: iii) φυσικοί; ii) ακέραιοι; iii) ρητοί; iv) άρρητοι; v) πραγματικοί; β) Να βρείτε

Διαβάστε περισσότερα

Αριθμητικά Συστήματα = 3 x x x x 10 0

Αριθμητικά Συστήματα = 3 x x x x 10 0 Δεκαδικό Όταν αναφερόμαστε σε μία αριθμητική τιμή, απεικονίζουμε μία ποσότητα με ένα σύμβολο ή έναν συνδυασμό από σύμβολα. Το αριθμητικό σύστημα που χρησιμοποιούμε είναι το δεκαδικό. Αποτελείται από δέκα

Διαβάστε περισσότερα

Μαθηματικά. Ενότητα 1: Οι Αριθμοί. Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής

Μαθηματικά. Ενότητα 1: Οι Αριθμοί. Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Μαθηματικά Ενότητα 1: Οι Αριθμοί Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,

Διαβάστε περισσότερα

ΛΧ1004 Μαθηματικά για Οικονομολόγους

ΛΧ1004 Μαθηματικά για Οικονομολόγους ΛΧ1004 Μαθηματικά για Οικονομολόγους Μάθημα 1 ου Εξαμήνου 2Θ+2Φ(ΑΠ) Ι. Δημοτίκαλης, Επίκουρος Καθηγητής 1 ΤΕΙ ΚΡΗΤΗΣ-ΤΜΗΜΑ Λ&Χ: jdim@staff.teicrete.gr ΠΡΟΤΕΙΝΟΜΕΝΟ ΒΙΒΛΙΟ ΕΦΑΡΜΟΓΕΣ ΜΑΘΗΜΑΤΙΚΟΥ ΛΟΓΙΣΜΟΥ

Διαβάστε περισσότερα

Εισαγωγικές Μαθηματικές Έννοιες 1

Εισαγωγικές Μαθηματικές Έννοιες 1 Εισαγωγικές Μαθηματικές Έννοιες 1 1.1 Εισαγωγικές γνώσεις στα μαθηματικά 1.2 Επίλυση εξισώσεων 1.3 Απλές ανισώσεις 1.4 Υπολογισμός ποσοστών Στόχοι του κεφαλαίου Στο τέλος αυτού του κεφαλαίου θα πρέπει

Διαβάστε περισσότερα

Αλγόριθμοι Αναπαράσταση αλγορίθμων Η αναπαράσταση των αλγορίθμων μπορεί να πραγματοποιηθεί με:

Αλγόριθμοι Αναπαράσταση αλγορίθμων Η αναπαράσταση των αλγορίθμων μπορεί να πραγματοποιηθεί με: Αλγόριθμοι 2.2.1. Ορισμός: Αλγόριθμος είναι μια πεπερασμένη σειρά εντολών, αυστηρά καθορισμένων και εκτελέσιμων σε πεπερασμένο χρόνο, που στοχεύουν στην επίλυση ενός προβλήματος. Τα κυριότερα χρησιμοποιούμενα

Διαβάστε περισσότερα

Μαθηματικά Α' Γυμ. - Ερωτήσεις Θεωρίας 1 ΕΡΩΤΗΣΕΙΣ. (1) Ποιοι είναι οι φυσικοί αριθμοί; Γράψε τέσσερα παραδείγματα.

Μαθηματικά Α' Γυμ. - Ερωτήσεις Θεωρίας 1 ΕΡΩΤΗΣΕΙΣ. (1) Ποιοι είναι οι φυσικοί αριθμοί; Γράψε τέσσερα παραδείγματα. Μαθηματικά Α' Γυμ. - Ερωτήσεις Θεωρίας 1 ΕΡΩΤΗΣΕΙΣ (1) Ποιοι είναι οι φυσικοί αριθμοί; Γράψε τέσσερα παραδείγματα. (2) Ποιοι είναι οι άρτιοι και ποιοι οι περιττοί αριθμοί; Γράψε από τρία παραδείγματα.

Διαβάστε περισσότερα

Η-Υ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ. Εργαστήριο 2 Εντολές Εισόδου/Εξόδου Τελεστές. Δρ. Γιώργος Λαμπρινίδης 23/10/2015 Η - Υ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ 1

Η-Υ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ. Εργαστήριο 2 Εντολές Εισόδου/Εξόδου Τελεστές. Δρ. Γιώργος Λαμπρινίδης 23/10/2015 Η - Υ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ 1 Η-Υ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Εργαστήριο 2 Εντολές Εισόδου/Εξόδου Τελεστές Δρ. Γιώργος Λαμπρινίδης amprinidis@pharm.uoa.gr 1 Αριθμητικοί Τελεστές + πρόσθεση - αφαίρεση * πολλαπλασιασμός / διαίρεση Προσοχή! Διαίρεση

Διαβάστε περισσότερα

Διαδικασιακός Προγραμματισμός

Διαδικασιακός Προγραμματισμός Τμήμα ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ ΤΕΙ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ Διαδικασιακός Προγραμματισμός Διάλεξη 2 η Τύποι Δεδομένων Δήλωση Μεταβλητών Έξοδος Δεδομένων Οι διαλέξεις βασίζονται στο βιβλίο των Τσελίκη και Τσελίκα

Διαβάστε περισσότερα

Κάθε φυσικός αριθμός έχει έναν επόμενο αριθμό. Κάθε φυσικός αριθμός (εκτός από το 0) έχει έναν προηγούμενο φυσικό αριθμό.

Κάθε φυσικός αριθμός έχει έναν επόμενο αριθμό. Κάθε φυσικός αριθμός (εκτός από το 0) έχει έναν προηγούμενο φυσικό αριθμό. A.1.1 Φυσικοί αριθμοί Διάταξη φυσικών Στρογγυλοποίηση Φυσικοί αριθμοί OÚÈÛÌfi 1. Φυσικοί αριθμοί λέγονται οι αριθμοί 0, 1, 2, 3,... και συμβολίζονται με το γράμμα Ν (το οποίο είναι το αρχικό γράμμα της

Διαβάστε περισσότερα

Φίλη μαθήτρια, φίλε μαθητή

Φίλη μαθήτρια, φίλε μαθητή Φίλη μαθήτρια, φίλε μαθητή Το βιβλίο αυτό έχει διπλό σκοπό: Να σε βοηθήσει στη γρήγορη, άρτια και αποτελεσματική προετοιμασία του καθημερινού σχολικού μαθήματος. Να σου δώσει όλα τα απαραίτητα εφόδια,

Διαβάστε περισσότερα

2ο ΓΕΛ ΑΓ.ΔΗΜΗΤΡΙΟΥ ΑΕΠΠ ΘΕΟΔΟΣΙΟΥ ΔΙΟΝ ΠΡΟΣΟΧΗ ΣΤΑ ΠΑΡΑΚΑΤΩ

2ο ΓΕΛ ΑΓ.ΔΗΜΗΤΡΙΟΥ ΑΕΠΠ ΘΕΟΔΟΣΙΟΥ ΔΙΟΝ ΠΡΟΣΟΧΗ ΣΤΑ ΠΑΡΑΚΑΤΩ ΠΡΟΣΟΧΗ ΣΤΑ ΠΑΡΑΚΑΤΩ ΣΤΑΘΕΡΕΣ είναι τα μεγέθη που δεν μεταβάλλονται κατά την εκτέλεση ενός αλγόριθμου. Εκτός από τις αριθμητικές σταθερές (7, 4, 3.5, 100 κλπ), τις λογικές σταθερές (αληθής και ψευδής)

Διαβάστε περισσότερα

10-δικό δικό

10-δικό δικό Προγραμματισμός Η/Υ - Ι Εαρινό Εξάμηνο 2018-2019 Τμήμα Ηλεκτρολόγων Μηχανικών Τ.Ε. Αριθμητικά Συστήματα 1. Εισαγωγή Όπως γνωρίζουμε, οι υπολογιστές χρησιμοποιούν το δυαδικό σύστημα για την αναπαράσταση

Διαβάστε περισσότερα

ΘΕΜΑ : ΣΥΣΤΗΜΑΤΑ ΑΡΙΘΜΗΣΗΣ. ΔΙΑΡΚΕΙΑ: 1 περιόδους. 22/1/ :11 Όνομα: Λεκάκης Κωνσταντίνος καθ. Τεχνολογίας

ΘΕΜΑ : ΣΥΣΤΗΜΑΤΑ ΑΡΙΘΜΗΣΗΣ. ΔΙΑΡΚΕΙΑ: 1 περιόδους. 22/1/ :11 Όνομα: Λεκάκης Κωνσταντίνος καθ. Τεχνολογίας ΘΕΜΑ : ΣΥΣΤΗΜΑΤΑ ΑΡΙΘΜΗΣΗΣ ΔΙΑΡΚΕΙΑ: 1 περιόδους 22/1/2010 10:11 καθ. Τεχνολογίας 22/1/2010 10:12 Παραδείγματα Τι ονομάζουμε αριθμητικό σύστημα? Το σύνολο από ψηφία (αριθμοί & χαρακτήρες). Που χρησιμεύουν

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση» ΚΕΦΑΛΑΙΟ 1 Ο : Εξισώσεις - Ανισώσεις 1 1.1 Η ΕΝΝΟΙΑ ΤΗΣ ΜΕΤΑΒΛΗΤΗΣ ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΟΡΙΣΜΟΙ Μεταβλητή

Διαβάστε περισσότερα

Εισαγωγή στην Επιστήμη των Υπολογιστών

Εισαγωγή στην Επιστήμη των Υπολογιστών Εισαγωγή στην Επιστήμη των Υπολογιστών Περιεχόμενα Μαθήματος Συστήματα αρίθμησης Πύλες Διάγραμμα ροής-ψευδοκώδικας Python Συστήματα Αρίθμησης Δεκαδικό σύστημα Οι άνθρωποι χρησιμοποιούν το περίφημο «θεσιακό,

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ 1 ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΘΕΩΡΙΑ ΜΕΡΟΣ 1ο : ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ 1ο ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ 1. Ποιοι αριθμοί ονομάζονται φυσικοί, ποια ιδιότητα έχουν και πως χωρίζονται; Οι αριθμοί

Διαβάστε περισσότερα

, ο αριθμός στον οποίο αντιστοιχεί ο 2 καλείται δεύτερος όρος της ακολουθίας και τον συμβολίζουμε συνήθως με

, ο αριθμός στον οποίο αντιστοιχεί ο 2 καλείται δεύτερος όρος της ακολουθίας και τον συμβολίζουμε συνήθως με 5. ΑΚΟΛΟΥΘΙΕΣ Γενικά ακολουθία πραγματικών αριθμών είναι μια αντιστοίχιση των φυσικών αριθμών,,,...,ν,... στους πραγματικούς αριθμούς. Ο αριθμός στον οποίο αντιστοιχεί ο καλείται πρώτος όρος της ακολουθίας

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥΣΤΗΝ ΑΛΓΕΒΡΑ. Άρτιοι αριθμοί ονομάζονται οι αριθμοί που διαιρούνται με το 2 και περιττοί εκείνοι

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥΣΤΗΝ ΑΛΓΕΒΡΑ. Άρτιοι αριθμοί ονομάζονται οι αριθμοί που διαιρούνται με το 2 και περιττοί εκείνοι ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥΣΤΗΝ ΑΛΓΕΒΡΑ 1)Ποιοι αριθμοί ονομάζονται άρτιοι και ποιοι περιττοί ; Άρτιοι αριθμοί ονομάζονται οι αριθμοί που διαιρούνται με το 2 και περιττοί εκείνοι που δεν διαιρούνται

Διαβάστε περισσότερα

Οργάνωση Υπολογιστών

Οργάνωση Υπολογιστών Οργάνωση Υπολογιστών Επιμέλεια: Γεώργιος Θεοδωρίδης, Επίκουρος Καθηγητής Ανδρέας Εμερετλής, Υποψήφιος Διδάκτορας Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών 1 Άδειες Χρήσης Το παρόν υλικό

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΤΕΙ ΙΟΝΙΩΝ ΝΗΣΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΓΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΣΤΗ ΔΙΟΙΚΗΣΗ ΚΑΙ ΣΤΗΝ ΟΙΚΟΝΟΜΙΑ 7 Ο ΜΑΘΗΜΑ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΑΠΟΣΤΟΛΙΑ ΠΑΓΓΕ Περιεχόμενα 2 Δυαδικό Σύστημα Προσημασμένοι δυαδικοί αριθμοί Αφαίρεση

Διαβάστε περισσότερα

Συστήματα αρίθμησης. = α n-1 *b n-1 + a n-2 *b n-2 + +a 1 b 1 + a 0 όπου τα 0 a i b-1

Συστήματα αρίθμησης. = α n-1 *b n-1 + a n-2 *b n-2 + +a 1 b 1 + a 0 όπου τα 0 a i b-1 Συστήματα αρίθμησης Δεκαδικό σύστημα αρίθμησης 1402 = 1000 + 400 +2 =1*10 3 + 4*10 2 + 0*10 1 + 2*10 0 Γενικά σε ένα σύστημα αρίθμησης με βάση το b N, ένας ακέραιος αριθμός με n ψηφία παριστάνεται ως:

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ www.cslab.ece.ntua.gr Εισαγωγή στην

Διαβάστε περισσότερα

Κεφάλαιο 2 ο Βασικές Έννοιες Αλγορίθμων (σελ )

Κεφάλαιο 2 ο Βασικές Έννοιες Αλγορίθμων (σελ ) Κεφάλαιο 2 ο Βασικές Έννοιες Αλγορίθμων (σελ. 25 48) Τι είναι αλγόριθμος; Γ ΛΥΚΕΙΟΥ Αλγόριθμος είναι μία πεπερασμένη σειρά ενεργειών, αυστηρά καθορισμένων και εκτελέσιμων σε πεπερασμένο χρονικό διάστημα,

Διαβάστε περισσότερα

Κ15 Ψηφιακή Λογική Σχεδίαση 2: Δυαδικό Σύστημα / Αναπαραστάσεις

Κ15 Ψηφιακή Λογική Σχεδίαση 2: Δυαδικό Σύστημα / Αναπαραστάσεις Κ15 Ψηφιακή Λογική Σχεδίαση 2: Δυαδικό Σύστημα / Αναπαραστάσεις Γιάννης Λιαπέρδος TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ Δυαδικό Σύστημα Αρίθμησης Περιεχόμενα 1 Δυαδικό

Διαβάστε περισσότερα

Α Γυμνασίου, Μέρο Α : Αριθμητική Άλγεβρα, Κεφάλαιο 1 - Οι φυσικοί αριθμοί

Α Γυμνασίου, Μέρο Α : Αριθμητική Άλγεβρα, Κεφάλαιο 1 - Οι φυσικοί αριθμοί Α Γυμνασίου, Μέρο Α : Αριθμητική Άλγεβρα, Κεφάλαιο 1 - Οι φυσικοί αριθμοί Μαθηματικά Α Γυμνασίου Μέρο Α - Κεφάλαιο 1 Α. 1.2. Οι αριθμοί 0, 1, 2, 3, 4, 5, 6... 98, 99, 100... 1999, 2000, 2001,... ονομάζονται

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι

ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι κ. ΠΕΤΑΛΙΔΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται

Διαβάστε περισσότερα

Ορισμένες σελίδες του βιβλίου

Ορισμένες σελίδες του βιβλίου Ορισμένες σελίδες του βιβλίου 7. Θεωρούμε το σύνολο αναφοράς 0,,. Να οριστούν τα σύνολα: Α. των τριψηφίων αριθμών που σχηματίζουν τα στοιχεία του Ω. Β. των τριψηφίων αριθμών με διαφορετικά ψηφία Γ. των

Διαβάστε περισσότερα

1. Πότε χρησιμοποιούμε την δομή επανάληψης; Ποιες είναι οι διάφορες εντολές (μορφές) της;

1. Πότε χρησιμοποιούμε την δομή επανάληψης; Ποιες είναι οι διάφορες εντολές (μορφές) της; 1. Πότε χρησιμοποιούμε την δομή επανάληψης; Ποιες είναι οι διάφορες (μορφές) της; Η δομή επανάληψης χρησιμοποιείται όταν μια σειρά εντολών πρέπει να εκτελεστεί σε ένα σύνολο περιπτώσεων, που έχουν κάτι

Διαβάστε περισσότερα

1 η Θεµατική Ενότητα : Δυαδικά Συστήµατα

1 η Θεµατική Ενότητα : Δυαδικά Συστήµατα 1 η Θεµατική Ενότητα : Δυαδικά Συστήµατα Δεκαδικοί Αριθµοί Βάση : 10 Ψηφία : 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 Αριθµοί: Συντελεστές Χ δυνάµεις του 10 7392.25 = 7x10 3 + 3x10 2 + 9x10 1 + 2x10 0 + 2x10-1 + 5x10-2

Διαβάστε περισσότερα

3.2 3.3 3.4 ΠΡΑΞΕΙΣ ΜΕ ΕΚΑ ΙΚΟΥΣ

3.2 3.3 3.4 ΠΡΑΞΕΙΣ ΜΕ ΕΚΑ ΙΚΟΥΣ 1 3.2 3.3 3.4 ΠΡΑΞΕΙΣ ΜΕ ΕΚΑ ΙΚΟΥΣ ΥΠΟΛΟΓΙΣΜΟΙ ΜΕ ΚΟΜΠΙΟΥΤΕΡΑΚΙ ΤΥΠΟΠΟΙΗΜΕΝΗ ΜΟΡΦΗ ΑΡΙΘΜΩΝ ΘΕΩΡΙΑ 1. Πρόσθεση αφαίρεση δεκαδικών Γίνονται όπως και στους φυσικούς αριθµούς. Προσθέτουµε ή αφαιρούµε τα ψηφία

Διαβάστε περισσότερα

Μ Α Θ Η Μ Α Τ Ι Κ Α Γ ΓΥΜΝΑΣΙΟΥ ΖΕΡΒΟΣ ΜΑΝΟΛΗΣ

Μ Α Θ Η Μ Α Τ Ι Κ Α Γ ΓΥΜΝΑΣΙΟΥ ΖΕΡΒΟΣ ΜΑΝΟΛΗΣ Μ Α Θ Η Μ Α Τ Ι Κ Α Γ ΓΥΜΝΑΣΙΟΥ ΖΕΡΒΟΣ ΜΑΝΟΛΗΣ 1 ΜΕΡΟΣ Α ΚEΦΑΛΑΙΟ 1 Ο ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ 1.1 ΠΡΑΞΕΙΣ ΜΕ ΠΡΑΓΜΑΤΙΚΟΥΣ ΑΡΙΘΜΟΥΣ Α. Οι πραγματικοί αριθμοί και οι πράξεις τους 1. ΕΡΩΤΗΣΗ Τι ονομάζουμε

Διαβάστε περισσότερα

Περιεχόμενα. Κεφάλαιο 3 Οι ιδιότητες των αριθμών Αριθμητικά σύνολα Ιδιότητες Περισσότερες ιδιότητες...

Περιεχόμενα. Κεφάλαιο 3 Οι ιδιότητες των αριθμών Αριθμητικά σύνολα Ιδιότητες Περισσότερες ιδιότητες... Περιεχόμενα Πρόλογος 5 Κεφάλαιο Βασικές αριθμητικές πράξεις 5 Τέσσερις πράξεις 5 Σύστημα πραγματικών αριθμών 5 Γραφική αναπαράσταση πραγματικών αριθμών 6 Οι ιδιότητες της πρόσθεσης και του πολλαπλασιασμού

Διαβάστε περισσότερα

Υπολογισμός αθροισμάτων

Υπολογισμός αθροισμάτων Υπολογισμός αθροισμάτων Τα αθροίσματα θα τα δημιουργούμε σαν συναρτήσεις και θα τα αποθηκεύουμε σε αρχείο (m-file) με την ίδια ονομασία με τη συνάρτηση. Για να δημιουργήσουμε ένα άθροισμα ξεκινάμε μηδενίζοντας

Διαβάστε περισσότερα