Κρυπτογραφία. Εργαστηριακό μάθημα 9 (Πρωτόκολλα πιστοποίησης ταυτότητας μηδενικής γνώσης Fiat-Shamir)
|
|
- Παρθενιά Μαρκόπουλος
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Κρυπτογραφία Εργαστηριακό μάθημα 9 (Πρωτόκολλα πιστοποίησης ταυτότητας μηδενικής γνώσης Fiat-Shamir)
2 Πρωτόκολλα μηδενικής γνώσης Βασική ιδέα: Ένας χρήστης Α (claimant) αποδεικνύει την ταυτότητά του σε κάποιον άλλο Β (verifier) αποδεικνύοντάς του ότι κατέχει μία μυστική γνώση, χωρίς όμως να αποκαλύπτει τη γνώση αυτή. Αυτό επιτυγχάνεται με το να απαντά σε μία «ερώτηση-πρόκληση» του verifier, η απάντηση της οποίας εξαρτάται, εκτός από την ερώτηση, και από τη μυστική γνώση. Πρωτόκολλα με αυτά τα χαρακτηριστικά ονομάζονται μηδενικής γνώσης (zero-knowledge (ZK)) Κώστας Λιμνιώτης Κρυπτογραφία - Εργαστηριακό μάθημα 8 2
3 Γενικά χαρακτηριστικά πρωτοκόλλων ZK O Α (claimant) από το ιδιωτικό του κλειδί (μυστική πληροφορία που την κατέχει μόνο αυτός), παράγει τυχαία μία πληροφορία-βεβαίωση (witness). O Α στέλνει την βεβαίωση στον B (verifier) Με βάση την βεβαίωση, ο B κάνει μία ερώτηση-πρόκληση (challenge) στον A. To πρωτόκολλο πρέπει να είναι έτσι σχεδιασμένο ώστε μόνο κάποιος που κατέχει το μυστικό κλειδί του A να μπορεί να απαντήσει σωστά σε όλες τις προκλήσεις, ενώ επίσης να μην μπορεί να εξαχθεί καμία πληροφορία για το ιδιωτικό κλειδί του A από τις απαντήσεις. Ο Α στέλνει στον B την απάντηση (response) στην πρόκληση. Ο B πρέπει να είναι σε θέση να επιβεβαιώσει την ορθότητα της απάντησης. Κώστας Λιμνιώτης Κρυπτογραφία - Εργαστηριακό μάθημα 8 3
4 Σχηματική αναπαράσταση Common Inputs Τυχαία τιμή Common Inputs C Ερώτηση-πρόκληση V Claimer Απάντηση Verifier Repeats t number of rounds Και οι δύο έχουν κάποια πληροφορία από κοινού (common inputs) Αν όλες οι απαντήσεις είναι αποδεκτές (δηλαδή σωστές), γίνεται η πιστοποίηση ταυτότητας Κώστας Λιμνιώτης Κρυπτογραφία - Εργαστηριακό μάθημα 8 4
5 Σχήμα πιστοποίησης ταυτότητας Έστω N=p q, όπου p,q είναι πολύ μεγάλοι πρώτοι αριθμοί (το N τουλάχιστον 512 bits) Ο claimant Α επιλέγει τυχαία s μικρότερο του N και υπολογίζει υ τέτοιο ώστε: υ = s 2 (mod N) Fiat-Shamir Δημόσιο κλειδί : N, υ (τα ξέρει και ο Verifier) ιδιωτικό κλειδί : s (τo ξέρει μόνο ο Claimant) Κώστας Λιμνιώτης Κρυπτογραφία - Εργαστηριακό μάθημα 8 5
6 Σχήμα πιστοποίησης ταυτότητας Fiat-Shamir (ΙΙ) Κάθε φορά, ο C γεννάει έναν τυχαίο αριθμό r και αποστέλλει στον V τον αριθμό x=r 2 mod N. O V αποστέλλει στον C έναν αριθμό e, είτε 0 είτε 1 O C υπολογίζει τον αριθμό y=rs e mod Νκαιτον στέλνει στον V. Αφού μόνο ο C ξέρει το s, είναι ο μόνος που μπορεί να υπολογίσει το y Ο V κάνει, από το y που λαμβάνει, τον υπολογισμό y 2 mod Ν. Αν ισχύει y 2 =xυ e (mod N) τότε επιβεβαιώνει την ταυτότητα του C. Πράγματι, y 2 =r 2 s 2e (mod N) = x υ e (mod N) Κώστας Λιμνιώτης Κρυπτογραφία - Εργαστηριακό μάθημα 8 6
7 Fiat-Shamir (διάγραμμα) Claimant (C) Verifier (V) N, s, υ Σε κάθε βήμα, επιλογή τυχαίου αριθμού r N μικρότερου του N και x=r 2 mod N (witness) x Ερώτηση (e) = 0 1 r r s modn Λαμβάνει το y=rs e mod Ν. Εξετάζει αν y 2 =xυ e mod Ν Κώστας Λιμνιώτης Κρυπτογραφία - Εργαστηριακό μάθημα 8 7
8 Παράδειγμα Ν=17 x 19 = 323 s=25 υ=s 2 mod N =302 Γέννηση τυχαίου αριθμού r=12 και αποστολή του x=r 2 mod N = 144 O V στέλνει τον αριθμό e=1 O C απαντάει με τον y=rs e mod Ν = 12 x 25 mod 323 = 300 O V υπολογίζει τον αριθμό y 2 mod N = 206 και εξετάζει αν ισούται με τον xυ e (mod N)=144 x 302 mod 323 = 206 (άρα, αποδεκτή η απάντηση y=300 του C). Κώστας Λιμνιώτης Κρυπτογραφία - Εργαστηριακό μάθημα 8 8
9 Σχόλια πάνω στον Fiat Shamir Ένας επιτιθέμενος που θέλει να προσποιηθεί ότι είναι ο C, μπορεί να επιλέξει τυχαίο r, να στείλει x=r 2 /υκαι σε κάθε πρόκληση e=1 να απαντά y=r, κάτι που ο V θα το ανιχνεύει ως σωστή απάντηση. Όμως δεν θα μπορεί να απαντήσει σωστά για e=0. Κώστας Λιμνιώτης Κρυπτογραφία - Εργαστηριακό μάθημα 8 9
10 Σχόλια πάνω στον Fiat Shamir (2) Ένας επιτιθέμενος που θέλει να προσποιηθεί ότι είναι ο C, μπορεί να επιλέξει τυχαίο r, να στείλει x=r 2 και σε κάθε πρόκληση e=0 να απαντά y=r, κάτι που ο V θα το ανιχνεύει ως σωστή απάντηση. Όμως δεν θα μπορεί να απαντήσει σωστά για e=1. Κώστας Λιμνιώτης Κρυπτογραφία - Εργαστηριακό μάθημα 8 10
11 Σχόλια πάνω στον Fiat Shamir (3) Με βάση τις προηγούμενες δύο διαφάνειες, καταλήγουμε ότι πάντα θα μπορεί κάποιος να ξεγελάσει το σύστημα, αρκείναξέρειαπόπρινποιαθαείναιηερώτησηe που θα κάνει ο Verifier (το οποίο όμως δεν το ξέρει!!). Για αυτό ακριβώς είναι πολύ κρίσιμο το ότι πρώτα ο Claimant στέλνει το witness x και μετά δέχεται την ερώτηση/πρόκληση e. Τη στιγμή που στέλνει το x, δεν ξέρει ποια ερώτηση θα δεχτεί μετέπειτα, ως εκ τούτου δεν ξέρει ποιο x να στείλει (x=r 2 /υήx=r 2 ) για να ξεγελάσει τον Verifier. Γίνεται κατανοητό λοιπόν γιατί ο «διάλογος» μεταξύ των δύο γίνεται πολλές φορές προτού ο Verifier εγκρίνει πρόσβαση στον Claimant, έτσι ώστε να ελαχιστοποιηθεί η πιθανότητα εξαπάτησης (δηλαδή η πιθανότητα ο εχθρός να μαντεύει συνέχεια σωστά το e) Κώστας Λιμνιώτης Κρυπτογραφία - Εργαστηριακό μάθημα 8 11
12 Σχόλια πάνω στον Fiat-Shamir Δεν πρέπει να χρησιμοποιείται πάνω από μία φορά το ίδιο r, γιατί με αυτό τον τρόπο ένας εισβολέας μπορεί να παρακολουθεί τη συνομιλία, να μάθει τις απαντήσεις του claimant για τις εκάστοτε ερωτήσεις του verifier και να τις επαναλάβει Κώστας Λιμνιώτης Κρυπτογραφία - Εργαστηριακό μάθημα 8 12
13 Ασφάλεια Fiat-Shamir Έγκειται στην παραγοντοποίηση: ένας αλγόριθμος που «σπάει» τον Fiat- Shamir είναι ισοδύναμος με έναν αλγόριθμο που παραγοντοποιεί τον N. Κι αυτό γιατί για να βρει κάποιος το ιδιωτικό κλειδί s από τα υ, Ν πρέπει να γνωρίζει τα p,q (αυτό έχει εξηγηθεί στη θεωρία, κατά την περιγραφή του αλγορίθμου Rabin, και δεν θα αναλυθεί περαιτέρω εδώ στο εργαστήριο ) Κώστας Λιμνιώτης Κρυπτογραφία - Εργαστηριακό μάθημα 8 13
14 Εφαρμογές του Fiat-Shamir πρωτοκόλλου VideoCrypt (κρυπτογράφηση αναλογικού τηλεοπτικού σήματος π.χ. Filmnet). Σε εφαρμογές e-voting Κώστας Λιμνιώτης Κρυπτογραφία - Εργαστηριακό μάθημα 8 14
Εφαρμοσμένη Κρυπτογραφία Ι
Εφαρμοσμένη Κρυπτογραφία Ι Κωνσταντίνου Ελισάβετ ekonstantinou@aegean.gr http://www.icsd.aegean.gr/ekonstantinou Ψηφιακές Υπογραφές Ορίζονται πάνω σε μηνύματα και είναι αριθμοί που εξαρτώνται από κάποιο
Κρυπτογραφία. Κεφάλαιο 4 Αλγόριθμοι Δημοσίου Κλειδιού (ή ασύμμετροι αλγόριθμοι)
Κρυπτογραφία Κεφάλαιο 4 Αλγόριθμοι Δημοσίου Κλειδιού (ή ασύμμετροι αλγόριθμοι) Κρυπτοσυστήματα Δημοσίου κλειδιού Αποστολέας P Encryption C Decryption P Παραλήπτης Προτάθηκαν το 1976 Κάθε συμμετέχων στο
Κρυπτογραφία. Εργαστηριακό μάθημα 11 (Επαναληπτικές ασκήσεις)
Κρυπτογραφία Εργαστηριακό μάθημα 11 (Επαναληπτικές ασκήσεις) Έστω ότι το κλειδί είναι ένας πίνακας 2 x 2. Αυτό σημαίνει ότι: Σπάμε το μήνυμα σε ζευγάρια γραμμάτων Κάθε γράμμα το αντιστοιχούμε σε έναν αριθμό
El Gamal Αλγόριθμος. Κώστας Λιμνιώτης Κρυπτογραφία - Εργαστηριακό μάθημα 7 2
Κρυπτογραφία Εργαστηριακό μάθημα 7 (Αλγόριθμοι Δημοσίου Κλειδιού) α) El Gamal β) Diffie-Hellman αλγόριθμος για την ανταλλαγή συμμετρικού κλειδιού κρυπτογράφησης El Gamal Αλγόριθμος Παράμετροι συστήματος:
Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά
Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων
Αριθμοθεωρητικοί Αλγόριθμοι
Αλγόριθμοι που επεξεργάζονται μεγάλους ακέραιους αριθμούς Μέγεθος εισόδου: Αριθμός bits που απαιτούνται για την αναπαράσταση των ακεραίων. Έστω ότι ένας αλγόριθμος λαμβάνει ως είσοδο έναν ακέραιο Ο αλγόριθμος
ΑΣΥΜΜΕΤΡΗ ΚΡΥΠΤΟΓΡΑΦΙΑ
ΤΕΙ Κρήτης ΕΠΠ Εργαστήριο Ασφάλεια Πληροφοριακών Συστηµάτων ΑΣΥΜΜΕΤΡΗ ΚΡΥΠΤΟΓΡΑΦΙΑ ΤΕΙ Κρητης Τµηµα Εφαρµοσµενης Πληροφορικης Και Πολυµεσων Fysarakis Konstantinos, PhD kfysarakis@staff.teicrete.gr Εισαγωγή
ΑΣΥΜΜΕΤΡΗ ΚΡΥΠΤΟΓΡΑΦΙΑ Lab 3
ΑΣΥΜΜΕΤΡΗ ΚΡΥΠΤΟΓΡΑΦΙΑ Lab 3 Η Aσύμμετρη Kρυπτογραφία ή Κρυπτογραφία Δημοσίου Κλειδιού χρησιμοποιεί δύο διαφορετικά κλειδιά για την κρυπτογράφηση και αποκρυπτογράφηση. Eπινοήθηκε στο τέλος της δεκαετίας
Κρυπτογραφία. Έλεγχος πρώτων αριθών-παραγοντοποίηση. Διαφάνειες: Άρης Παγουρτζής Πέτρος Ποτίκας
Κρυπτογραφία Έλεγχος πρώτων αριθών-παραγοντοποίηση Διαφάνειες: Άρης Παγουρτζής Πέτρος Ποτίκας Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία
ΑΛΓΟΡΙΘΜΟΙ ΚΑΙ ΠΟΛΥΠΛΟΚΟΤΗΤΑ 2 ΕΠΙΜΕΛΕΙΑ :ΣΤΟΥΚΑ ΑΙΚΑΤΕΡΙΝΗ-ΠΑΝΑΓΙΩΤΑ ΜΕΤΑΠΤΥΧΙΑΚΟ:ΜΠΛΑ
ΑΛΓΟΡΙΘΜΟΙ ΚΑΙ ΠΟΛΥΠΛΟΚΟΤΗΤΑ 2 ΕΠΙΜΕΛΕΙΑ :ΣΤΟΥΚΑ ΑΙΚΑΤΕΡΙΝΗ-ΠΑΝΑΓΙΩΤΑ ΜΕΤΑΠΤΥΧΙΑΚΟ:ΜΠΛΑ Η Alice θέλει να στείλει ένα μήνυμα m(plaintext) στον Bob μέσα από ένα μη έμπιστο κανάλι και να μην μπορεί να το
Κρυπτοσύστημα RSA (Rivest, Shamir, Adlemann, 1977) Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία
Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία Κρυπτογραφία Δημοσίου Κλειδιού Άρης Παγουρτζής Στάθης Ζάχος Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Κρυπτοσύστημα
project RSA και Rabin-Williams
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών project RSA και Rabin-Williams Στοιχεία Θεωρίας Αριθμών& Εφαρμογές στην Κρυπτογραφία Ονοματεπώνυμο Σπουδαστών: Θανάσης Ανδρέου
Κρυπτογραφία ηµόσιου Κλειδιού Η µέθοδος RSA. Κασαπίδης Γεώργιος -Μαθηµατικός
Κρυπτογραφία ηµόσιου Κλειδιού Η µέθοδος RSA Τον Απρίλιο του 977 οι Ρόναλντ Ρίβεστ, Άντι Σαµίρ και Λέοναρντ Άντλεµαν, ερευνητές στο Ινστιτούτο Τεχνολογίας της Μασσαχουσέτης (ΜΙΤ) µετά από ένα χρόνο προσπαθειών
Κρυπτογραφία Δημοσίου Κλειδιού
Στοιχεία Θεωρίας Αριθμών και Εφαρμογές στην Κρυπτογραφία Κρυπτογραφία Δημοσίου Κλειδιού Άρης Παγουρτζής Στάθης Ζάχος Σχολή Ηλεκτρολόγων Μηχανικών - Μηχανικών Υπολογιστών Εθνικού Mετσόβιου Πολυτεχνείου
Εισαγωγή στην επιστήμη της Πληροφορικής και των Τηλεπικοινωνιών. Aσφάλεια
Εισαγωγή στην επιστήμη της Πληροφορικής και των Τηλεπικοινωνιών Aσφάλεια Περιεχόμενα Πλευρές Ασφάλειας Ιδιωτικό Απόρρητο Μέθοδος Μυστικού Κλειδιού (Συμμετρική Κρυπτογράφηση) Μέθοδος Δημόσιου Κλειδιού (Ασύμμετρη
Κρυπτογραφία. Κωνσταντίνου Ελισάβετ
Κρυπτογραφία Κωνσταντίνου Ελισάβετ ekonstantinou@aegean.gr http://www.icsd.aegean.gr/ekonstantinou ιαχείριση Κλειδιών Ορισμός: Εγκαθίδρυση κλειδιού (key establishment) είναι η διαδικασία κατά την οποία
Κρυπτογραφία Δημόσιου Κλειδιού II Αλγόριθμος RSA
Κρυπτογραφία Δημόσιου Κλειδιού II Αλγόριθμος RSA Τμήμα Μηχ. Πληροφορικής ΤΕΙ Κρήτης Κρυπτογραφία Δημόσιου Κλειδιού -RSA 1 Κρυπτογραφία Δημόσιου Κλειδιού - Ιστορία Ηνωμένες Πολιτείες 1975: Ο Diffie οραματίζεται
Εισαγωγή στην επιστήμη της Πληροφορικής και των. Aσφάλεια
Εισαγωγή στην επιστήμη της Πληροφορικής και των Τηλεπικοινωνιών Aσφάλεια Περιεχόμενα Πλευρές Ασφάλειας Ιδιωτικό Απόρρητο Μέθοδος Μυστικού Κλειδιού (Συμμετρική Κρυπτογράφηση) Μέθοδος Δημόσιου Κλειδιού (Ασύμμετρη
κρυπτογραϕία Ψηφιακή ασφάλεια και ιδιωτικότητα Γεώργιος Σπαθούλας Msc Πληροφορική και υπολογιστική βιοιατρική Πανεπιστήμιο Θεσσαλίας
κρυπτογραϕία Ψηφιακή ασφάλεια και ιδιωτικότητα Γεώργιος Σπαθούλας Msc Πληροφορική και υπολογιστική βιοιατρική Πανεπιστήμιο Θεσσαλίας ιδιότητες ασϕάλειας ιδιότητες ασϕάλειας αγαθών Εμπιστευτικότητα (Confidentiality)
Ασφάλεια Πληροφοριακών Συστημάτων
Ασφάλεια Πληροφοριακών Συστημάτων Κρυπτογραφία/Ψηφιακές Υπογραφές Διάλεξη 2η Δρ. Β. Βασιλειάδης Τμ. Διοίκησης Επιχειρήσεων, ΤΕΙ Δυτ. Ελλάδας Kρυπτανάλυση Προσπαθούμε να σπάσουμε τον κώδικα. Ξέρουμε το
Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών Ασφάλεια Δεδομένων.
Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής στην Επιστήμη των Υπολογιστών 2015-16 Ασφάλεια Δεδομένων http://www.ionio.gr/~mistral/tp/csintro/ Μ.Στεφανιδάκης Οι απειλές Ένας κακόβουλος χρήστης Καταγράφει μηνύματα
ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ Δ Εξάμηνο
ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ Δ Εξάμηνο Ψηφιακή Υπογραφή και Αυθεντικοποίηση Μηνύματος Διδάσκων : Δρ. Παρασκευάς Κίτσος Επίκουρος Καθηγητής e-mail: pkitsos@teimes.gr, pkitsos@ieee.org Αντίρριο
Εφαρμοσμένη Κρυπτογραφία Ι
Εφαρμοσμένη Κρυπτογραφία Ι Κωνσταντίνου Ελισάβετ ekonstantinou@aegean.gr http://www.icsd.aegean.gr/ekonstantinou ιαχείριση Κλειδιών Ορισμός: Εγκαθίδρυση κλειδιού (key establishment) είναι η διαδικασία
W i. Subset Sum Μια παραλλαγή του προβλήματος knapsack είναι το πρόβλημα Subset Sum, το οποίο δεν λαμβάνει υπόψιν την αξία των αντικειμένων:
6/4/2017 Μετά την πρόταση των ασύρματων πρωτοκόλλων από τους Diffie-Hellman το 1976, το 1978 προτάθηκε ένα πρωτόκολλο από τους Merkle-Hellman το οποίο βασίστηκε στο ότι δεν μπορούμε να λύσουμε γρήγορα
Κρυπτογραφία. Κεφάλαιο 1 Γενική επισκόπηση
Κρυπτογραφία Κεφάλαιο 1 Γενική επισκόπηση Ανασκόπηση ύλης Στόχοι της κρυπτογραφίας Ιστορικό Γενικά χαρακτηριστικά Κλασσική κρυπτογραφία Συμμετρικού κλειδιού (block ciphers stream ciphers) Δημοσίου κλειδιού
Πρόβληµα 2 (15 µονάδες)
ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΕΦΑΡΜΟΓΕΣ, 2013-2014 ΔΙΔΑΣΚΩΝ: Ε. Μαρκάκης Πρόβληµα 1 (5 µονάδες) 2 η Σειρά Ασκήσεων Προθεσµία Παράδοσης: 19/1/2014 Υπολογίστε
Κρυπτογραφία. Εργαστηριακό μάθημα 5 Stream ciphers Κρυπτανάλυση με τον αλγόριθμο Berlekamp-Massey
Κρυπτογραφία Εργαστηριακό μάθημα 5 Stream ciphers Κρυπτανάλυση με τον αλγόριθμο Berlekamp-Massey Γενικά χαρακτηριστικά των stream ciphers Keystream Generator K i P i C i Δουλεύουν πάνω σε ένα ρεύμα από
YΒΡΙΔΙΚΗ ΚΡΥΠΤΟΓΡΑΦΙΑ
ΤΕΙ Κρητης Τμήμα Μηχανικών Πληροφορικής Εργαστήριο Ασφάλεια Πληροφοριακών Συστημάτων YΒΡΙΔΙΚΗ ΚΡΥΠΤΟΓΡΑΦΙΑ Εισαγωγή Ο στόχος της υβριδικής μεθόδου είναι να αντισταθμίσει τα μειονεκτήματα της συμμετρικής
KΕΦΑΛΑΙΟ 5 ΨΗΦΙΑΚΕΣ ΥΠΟΓΡΑΦΕΣ
KΕΦΑΛΑΙΟ 5 ΨΗΦΙΑΚΕΣ ΥΠΟΓΡΑΦΕΣ 1 Γενικά Η ψηφιακή υπογραφή είναι µια µέθοδος ηλεκτρονικής υπογραφής όπου ο παραλήπτης ενός υπογεγραµµένου ηλεκτρονικού µηνύµατος µπορεί να διαπιστώσει τη γνησιότητα του,
Εφαρμοσμένη Κρυπτογραφία Ι
Εφαρμοσμένη Κρυπτογραφία Ι Κωνσταντίνου Ελισάβετ ekonstantinou@aegean.gr http://www.icsd.aegean.gr/ekonstantinou Ιστορία Ασύμμετρης Κρυπτογραφίας Η αρχή έγινε το 1976 με την εργασία των Diffie-Hellman
ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ Δ Εξάμηνο. Ψηφιακή Υπογραφή και Αυθεντικοποίηση Μηνύματος
ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ Δ Εξάμηνο Ψηφιακή Υπογραφή και Αυθεντικοποίηση Μηνύματος 1 ΠΕΡΙΕΧΟΜΕΝΑ Ψηφιακές Υπογραφές Ασύμμετρης Κρυπτογραφίας Συστήματα ψηφιακής υπογραφής με αυτοανάκτηση Συστήματα
Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Σημειώσεις Διαλέξεων Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία Επιμέλεια σημειώσεων: Δημήτριος Μπάκας Αθανάσιος
Οι απειλές. Απόρρητο επικοινωνίας. Αρχές ασφάλειας δεδομένων. Απόρρητο (privacy) Μέσω κρυπτογράφησης
Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής στην Επιστήμη των Υπολογιστών 2014-015 Ασφάλεια Δεδομένων http://www.ionio.gr/~mistral/tp/csintro/ Οι απειλές Ένας κακόβουλος χρήστης Καταγράφει μηνύματα που ανταλλάσσονται
Εφαρμοσμένη Κρυπτογραφία Ι
Εφαρμοσμένη Κρυπτογραφία Ι Κωνσταντίνου Ελισάβετ ekonstantinou@aegean.gr http://www.icsd.aegean.gr/ekonstantinou Συνολικό Πλαίσιο Ασφάλεια ΠΕΣ Εμπιστευτικότητα Ακεραιότητα Πιστοποίηση Μη-αποποίηση Κρυπτογράφηση
Κρυπτογραφία. MAC - Γνησιότητα/Ακεραιότητα μηνύματος. Πέτρος Ποτίκας
Κρυπτογραφία MAC - Γνησιότητα/Ακεραιότητα μηνύματος Πέτρος Ποτίκας Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 1 / 32 Περιεχόμενα 1 Message
Ψηφιακά Πιστοποιητικά Ψηφιακές Υπογραφές
ΤΕΙ Κρητης Τμήμα Μηχανικών Πληροφορικής Εργαστήριο Ασφάλεια Πληροφοριακών Συστημάτων Ψηφιακά Πιστοποιητικά Ψηφιακές Υπογραφές Ψηφιακά Πιστοποιητικά Υποδομή δημόσιου κλειδιού (Public Key Infrastructure
ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ. Δ Εξάμηνο
ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ Δ Εξάμηνο Ασύμμετρη Κρυπτογράφηση (Κρυπτογραφία Δημόσιου Κλειδιού) Διδάσκων : Δρ. Παρασκευάς Κίτσος Επίκουρος Καθηγητής e-mail: pkitsos@teimes.gr, pkitsos@ieee.org
Στοιχεία Θεωρίας Αριθμών
Ε Μ Π Σ Ε Μ & Φ Ε Σημειώσεις Διαλέξεων Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία Επιμέλεια σημειώσεων: Κωστής Γ Διδάσκοντες: Στάθης Ζ Άρης Π 9 Δεκεμβρίου 2011 1 Πιθανές Επιθέσεις στο RSA Υπενθύμιση
ΑΣΦΑΛΕΙΑ & ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ(Θ)
ΑΣΦΑΛΕΙΑ & ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ(Θ) Ενότητα 5: ΑΣΦΑΛΕΙΑ & ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ ΔΙΔΑΣΚΩΝ: ΚΩΝΣΤΑΝΤΙΝΟΣ ΧΕΙΛΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό
Εισαγωγή στην επιστήμη της Πληροφορικής και των Τηλεπικοινωνιών. Aσφάλεια
Εισαγωγή στην επιστήμη της Πληροφορικής και των Τηλεπικοινωνιών Aσφάλεια ΣΤΟΧΟΙ ΚΕΦΑΛΑΙΟΥ Ορισµός τριών στόχων ασφάλειας - Εµπιστευτικότητα, ακεραιότητα και διαθεσιµότητα Επιθέσεις Υπηρεσίες και Τεχνικές
8.3.4 Τεχνικές Ασφάλειας Συμμετρική Κρυπτογράφηση Ασυμμετρική Κρυπτογράφηση Ψηφιακές Υπογραφές
Κεφάλαιο 8 8.3.4 Τεχνικές Ασφάλειας Συμμετρική Κρυπτογράφηση Ασυμμετρική Κρυπτογράφηση Ψηφιακές Υπογραφές Σελ. 320-325 Γεώργιος Γιαννόπουλος ΠΕ19, ggiannop (at) sch.gr http://diktya-epal-g.ggia.info/ Creative
Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Σημειώσεις Διαλέξεων Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία Επιμέλεια σημειώσεων: Ζωή Παρασκευοπούλου Νίκος
Ασφάλεια Πληροφοριακών Συστημάτων
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Ασφάλεια Πληροφοριακών Συστημάτων Ενότητα 5: Διαχείριση κλειδιών Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται
Κεφάλαιο 21. Κρυπτογραφία δημόσιου κλειδιού και πιστοποίηση ταυτότητας μηνυμάτων
Κεφάλαιο 21 Κρυπτογραφία δημόσιου κλειδιού και πιστοποίηση ταυτότητας μηνυμάτων Κρυπτογράφηση δημόσιου κλειδιού RSA Αναπτύχθηκε το 1977 από τους Rivest, Shamir και Adleman στο MIT Ο πιο γνωστός και ευρέως
Κρυπτογραφία. Εργαστηριακό μάθημα 10 (Επαναληπτικές ασκήσεις)
Κρυπτογραφία Εργαστηριακό μάθημα 10 (Επαναληπτικές ασκήσεις) Εύρεση αντίστροφου αριθμού Mod n Έχουμε ήδη δει ότι πολύ συχνά συναντάμε την ανάγκη να βρούμε τον αντίστροφο ενός αριθμού a modulo n, δηλαδή
Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων. Κρυπτογραφία. Ασύμμετρη Κρυπτογραφία. Χρήστος Ξενάκης
Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων Κρυπτογραφία Ασύμμετρη Κρυπτογραφία Χρήστος Ξενάκης Ασύμμετρη κρυπτογραφία Μονόδρομες συναρτήσεις με μυστική πόρτα Μια συνάρτηση f είναι μονόδρομη, όταν δοθέντος
Πρώτοι αριθμοί και κρυπτογραφικός αλγόριθμος RSA. Άριστος Χαραλάμπους, Δημήτρης Χαραλάμπους, Νικόλας Παρασκευάς
Πρώτοι αριθμοί και κρυπτογραφικός αλγόριθμος RSA Άριστος Χαραλάμπους, Δημήτρης Χαραλάμπους, Νικόλας Παρασκευάς Πρώτοι Αριθμοί Πρώτος αριθμός ονομάζεται ένας φυσικός αριθμός (δηλ. θετικός ακέραιος) μεγαλύτερος
Διαλογικά Συσ τήματα Αποδείξεων Διαλογικά Συστήματα Αποδείξεων Αντώνης Αντωνόπουλος Κρυπτογραφία & Πολυπλοκότητα 17/2/2012
Αντώνης Αντωνόπουλος Κρυπτογραφία & Πολυπλοκότητα 17/2/2012 Εισαγωγή Ορισμός Επέκταση του NP συστήματος αποδείξεων εισάγωντας αλληλεπίδραση! Ενα άτομο προσπαθεί να πείσει ένα άλλο για το ότι μία συμβολοσειρά
Ψηφιακά Πιστοποιητικά Ψηφιακές Υπογραφές
ΤΕΙ Κρητης Τμήμα Μηχανικών Πληροφορικής Εργαστήριο Ασφάλεια Πληροφοριακών Συστημάτων Ψηφιακά Πιστοποιητικά Ψηφιακές Υπογραφές Φυσαράκης Κων/νος, PhD kfysarakis@staff.teicrete.gr Ψηφιακά Πιστοποιητικά Εισαγωγή
Κρυπτογραφία. Κρυπτοσυστήματα ροής. Πέτρος Ποτίκας. Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών
Κρυπτογραφία Κρυπτοσυστήματα ροής Πέτρος Ποτίκας Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 1 / 22 Περιεχόμενα 1 Εισαγωγή 2 Υπολογιστική
Πληροφορική Ι. Μάθημα 10 ο Ασφάλεια. Τμήμα Χρηματοοικονομικής & Ελεγκτικής ΤΕΙ Ηπείρου Παράρτημα Πρέβεζας. Δρ. Γκόγκος Χρήστος
Οι διαφάνειες έχουν βασιστεί στο βιβλίο «Εισαγωγή στην επιστήμη των υπολογιστών» του B. Forouzanκαι Firoyz Mosharraf(2 η έκδοση-2010) Εκδόσεις Κλειδάριθμος Τμήμα Χρηματοοικονομικής & Ελεγκτικής ΤΕΙ Ηπείρου
Κρυπτογραφία. MAC - Γνησιότητα/Ακεραιότητα μηνύματος. Πέτρος Ποτίκας
Κρυπτογραφία MAC - Γνησιότητα/Ακεραιότητα μηνύματος Πέτρος Ποτίκας Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 1 / 37 Περιεχόμενα 1 Message
Cryptography and Network Security Chapter 13. Fifth Edition by William Stallings
Cryptography and Network Security Chapter 13 Fifth Edition by William Stallings Chapter 13 Digital Signatures To guard against the baneful influence exerted by strangers is therefore an elementary dictate
ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012 ΙΚΤΥΑ ΥΠΟΛΟΓΙΣΤΩΝ ΙΙ / ΕΙ ΙΚΟΤΗΤΑΣ
ΤΑΞΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Α.1. 3 η ΤΑΞΗ ΕΠΑ.Λ. (Α Β ΟΜΑ Α) ΙΚΤΥΑ ΥΠΟΛΟΓΙΣΤΩΝ ΙΙ / ΕΙ ΙΚΟΤΗΤΑΣ Ηµεροµηνία: Κυριακή 8 Απριλίου 2012 ΕΚΦΩΝΗΣΕΙΣ Να γράψετε στο τετράδιο σας τον αριθµό κάθε µίας από τις παρακάτω
Λειτουργικά Συστήματα (ΗΥ321)
Λειτουργικά Συστήματα (ΗΥ321) Διάλεξη 19: Ασφάλεια Κρυπτογράφηση Βασική ιδέα: Αποθήκευσε και μετάδωσε την πληροφορία σε κρυπτογραφημένη μορφή που «δε βγάζει νόημα» Ο βασικός μηχανισμός: Ξεκίνησε από το
Ηλεκτρονικό εμπόριο. HE 7 Τεχνολογίες ασφάλειας
Ηλεκτρονικό εμπόριο HE 7 Τεχνολογίες ασφάλειας Πρόκληση ανάπτυξης ασφαλών συστημάτων Η υποδομή του διαδικτύου παρουσίαζε έλλειψη υπηρεσιών ασφάλειας καθώς η οικογένεια πρωτοκόλλων TCP/IP στην οποία στηρίζεται
PSEUDORANDOM GENERATORS- PREDICATES & ZK PROOFS
PSEUDORANDOM GENERATORS- PREDICATES & ZK PROOFS ΑΛΓΟΡΙΘΜΟΙ ΚΑΙ ΠΟΛΥΠΛΟΚΟΤΗΤΑ 2 Επιμέλεια: Νικόλαος Λάμπρου μπλ 2014 Γεννήτρια ψευδοτυχαίων αριθμών Άτυπος ορισμός: Έστω μια συνάρτηση G από strings σε strings.λέμε
Ενδεικτικές Λύσεις 1ου Σετ Ασκήσεων
Κ Σ Ι Ενδεικτικές Λύσεις 1ου Σετ Ασκήσεων Παναγιώτα Παναγοπούλου Άσκηση 1. Υποθέστε ότι οι διεργασίες ενός σύγχρονου κατανεμημένου συστήματος έχουν μοναδικές ταυτότητες (UIDs), γνωρίζουν ότι είναι συνδεδεμένες
Κρυπτογραφικά Πρωτόκολλα
Κρυπτογραφικά Πρωτόκολλα Παύλος Εφραιµίδης 25/04/2013 1 Κρυπτογραφικά Πρωτόκολλα Bit Commitment Fair Coin Mental Poker Secret Sharing Zero-Knowledge Protocol 2 πρωτόκολλα και υπηρεσίες χρήστης κρυπτογραφικές
γ. Αυθεντικότητα (authentication) δ. Εγκυρότητα (validity) Μονάδες 5
ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΕΠΑΛ (ΟΜΑΔΑ Α ) ΚΑΙ ΜΑΘΗΜΑΤΩΝ ΕΙΔΙΚΟΤΗΤΑΣ ΗΜΕΡΗΣΙΩΝ ΕΠΑΛ (ΟΜΑΔΑ Α ΚΑΙ Β ) ΠΑΡΑΣΚΕΥΗ 13 ΙΟΥΝΙΟΥ 2014 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΔΙΚΤΥΑ ΥΠΟΛΟΓΙΣΤΩΝ ΙΙ ΘΕΜΑ Α Α1. Να χαρακτηρίσετε
Σχεδίαση και Ανάλυση Αλγορίθμων
Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 4.0 Επιλογή Αλγόριθμοι Επιλογής Select και Quick-Select Σταύρος Δ. Νικολόπουλος 2016-17 Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Ιωαννίνων Webpage: www.cs.uoi.gr/~stavros
Κρυπτογραφία. Εργαστηριακό μάθημα 1
Κρυπτογραφία Εργαστηριακό μάθημα 1 Βασικοί όροι Με τον όρο κρυπτογραφία εννοούμε τη μελέτη μαθηματικών τεχνικών που στοχεύουν στην εξασφάλιση θεμάτων που άπτονται της ασφάλειας μετάδοσης της πληροφορίας,
Πρωτόκολλα Ασφάλειας IΙ
Πρωτόκολλα Ασφάλειας IΙ Τμήμα Μηχ. Πληροφορικής ΤΕΙ Κρήτης Πρωτόκολλα Ασφάλειας IΙ 1 Πρωτόκολλα Ασφάλειας Συστήματα Σχέδια Εφαρμογή Πρωτόκολλα & πολιτικές Firewalls, intrusion detection SSL, IPSec, Kerberos,
Εργαστήριο Ασφάλεια Πληροφοριακών Συστημάτων. PGP (Pretty Good Privacy)
Εργαστήριο Ασφάλεια Πληροφοριακών Συστημάτων PGP (Pretty Good Privacy) Εισαγωγή Το λογισμικό Pretty Good Privacy (PGP), το οποίο σχεδιάστηκε από τον Phill Zimmerman, είναι ένα λογισμικό κρυπτογράφησης
ΥΠΟΛΟΓΙΣΤΙΚΗ ΚΡΥΠΤΟΓΡΑΦΙΑ
ΥΠΟΛΟΓΙΣΤΙΚΗ ΚΡΥΠΤΟΓΡΑΦΙΑ Εισαγωγή Άρης Παγουρτζής Στάθης Ζάχος Σχολή ΗΜΜΥ ΕΜΠ Διοικητικά του μαθήματος Διδάσκοντες Στάθης Ζάχος Άρης Παγουρτζής Πέτρος Ποτίκας Βοηθοί διδασκαλίας Παναγιώτης Γροντάς Αντώνης
Δραστηριότητες σχετικά με κρυπτογραφία και ελέγχους ισοτιμίας
Δραστηριότητες σχετικά με κρυπτογραφία και ελέγχους ισοτιμίας Δραστηριότητα 6: Κωδικοί και κρυπτογραφία Το αντικείμενο της δραστηριότητας αυτής είναι η κατανόηση από την πλευρά των μαθητών μερικών στοιχειωδών
Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ
Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ 1 Συναρτήσεις Όταν αναφερόμαστε σε μια συνάρτηση, ουσιαστικά αναφερόμαστε σε μια σχέση ή εξάρτηση. Στα μαθηματικά που θα μας απασχολήσουν, με απλά λόγια, η σχέση
Cryptography and Network Security Chapter 9. Fifth Edition by William Stallings
Cryptography and Network Security Chapter 9 Fifth Edition by William Stallings Chapter 9 Κρυπτογραφια Δημοσιου Κλειδιου και RSA Every Egyptian received two names, which were known respectively as the true
Κρυπτογράφηση με χρήση Δημοσίου Κλειδιού (Public Key Cryptography PKC)
Κρυπτογράφηση με χρήση Δημοσίου Κλειδιού (Public Key Cryptography PKC) Σύνοψη Πρόβλημα: θέλωναστείλωμήνυμασεκάποιον δημόσια χωρίς να μπορούν να το καταλάβουν οι άλλοι Λύση: το κωδικοποιώ Γνωρίζω τον παραλήπτη:
ΠΕΡΙΕΧΟΜΕΝΑ 1. Εισαγωγή 2. Θεωρία αριθμών Αλγεβρικές δομές 3. Οι κρυπταλγόριθμοι και οι ιδιότητές τους
ΠΕΡΙΕΧΟΜΕΝΑ 1. Εισαγωγή... 1 1.1. Ορισμοί και ορολογία... 2 1.1.1. Συμμετρικά και ασύμμετρα κρυπτοσυστήματα... 4 1.1.2. Κρυπτογραφικές υπηρεσίες και πρωτόκολλα... 9 1.1.3. Αρχές μέτρησης κρυπτογραφικής
ΨΗΦΙΑΚΑ ΠΙΣΤΟΠΟΙΗΤΙΚΑ ΓΙΑ ΑΣΦΑΛΗ ΚΑΙ ΠΙΣΤΟΠΟΙΗΜΕΝΗ ΕΠΙΚΟΙΝΩΝΙΑ ΜΕ ΤΗΝ ΤΡΑΠΕΖΑ ΤΗΣ ΕΛΛΑΔΟΣ. Οδηγίες προς τις Συνεργαζόμενες Τράπεζες
ΨΗΦΙΑΚΑ ΠΙΣΤΟΠΟΙΗΤΙΚΑ ΓΙΑ ΑΣΦΑΛΗ ΚΑΙ ΠΙΣΤΟΠΟΙΗΜΕΝΗ ΕΠΙΚΟΙΝΩΝΙΑ ΜΕ ΤΗΝ ΤΡΑΠΕΖΑ ΤΗΣ ΕΛΛΑΔΟΣ Οδηγίες προς τις Συνεργαζόμενες Τράπεζες 1. Εισαγωγή Γνωριμία με τα Ψηφιακά Πιστοποιητικά Η χρήση ηλεκτρονικών
Θεωρία Πληροφορίας. Διάλεξη 4: Διακριτή πηγή πληροφορίας χωρίς μνήμη. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής
Θεωρία Πληροφορίας Διάλεξη 4: Διακριτή πηγή πληροφορίας χωρίς μνήμη Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Ατζέντα Διακριτή πηγή πληροφορίας χωρίς μνήμη Ποσότητα πληροφορίας της πηγής Κωδικοποίηση
7. O κβαντικός αλγόριθμος του Shor
7. O κβαντικός αλγόριθμος του Shor Σύνοψη Ο κβαντικός αλγόριθμος του Shor μπορεί να χρησιμοποιηθεί για την εύρεση της περιόδου περιοδικών συναρτήσεων και για την ανάλυση ενός αριθμού σε γινόμενο πρώτων
Στοιχεία Θεωρίας Αριθμών Και Εφαρμογές Στην Κρυπτογραφία. Linux Random Number Generator
Στοιχεία Θεωρίας Αριθμών Και Εφαρμογές Στην Κρυπτογραφία Linux Random Number Generator Επιμέλεια Διαφανειών : Ι. Κατσάτος ΦΕΒΡΟΥΑΡΙΟΣ 2013 ΑΘΗΝΑ Ορισμός: Τυχαίοι Αριθμοί Συχνά στην καθομιλουμένη, ο κόσμος
Σχεδίαση & Ανάλυση Αλγορίθμων
Σχεδίαση & Ανάλυση Αλγορίθμων Ενότητα 3 Αλγόριθμοι Επιλογής Σταύρος Δ. Νικολόπουλος Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Ιωαννίνων Webpage: www.cs.uoi.gr/~stavros Αλγόριθμοι Επιλογής Γνωρίζουμε
Πρόβληµα 2 (12 µονάδες)
ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΕΦΑΡΜΟΓΕΣ, 2015-2016 ΔΙΔΑΣΚΟΝΤΕΣ: Ε. Μαρκάκης, Θ. Ντούσκας Λύσεις 2 ης Σειράς Ασκήσεων Πρόβληµα 1 (12 µονάδες) 1) Υπολογίστε τον
ΤΕΛΟΣ 1ΗΣ ΑΠΟ 6 ΣΕΛΙΔΕΣ
ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑΔΑ A ) ΚΑΙ ΜΑΘΗΜΑΤΩΝ ΕΙΔΙΚΟΤΗΤΑΣ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑΔΑ Β ) ΤΕΤΑΡΤΗ 3 ΙΟΥΝΙΟΥ 2015 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ:
Εφαρμοσμένη Κρυπτογραφία Ι
Εφαρμοσμένη Κρυπτογραφία Ι Κωνσταντίνου Ελισάβετ ekonstantinou@aegean.gr http://www.icsd.aegean.gr/ekonstantinou Stream ciphers Η διαδικασία κωδικοποίησης για έναν stream cipher συνοψίζεται παρακάτω: 1.
ΥΠΟΛΟΓΙΣΤΙΚΗ ΚΡΥΠΤΟΓΡΑΦΙΑ
ΥΠΟΛΟΓΙΣΤΙΚΗ ΚΡΥΠΤΟΓΡΑΦΙΑ Εισαγωγή Άρης Παγουρτζής Στάθης Ζάχος Σχολή ΗΜΜΥ ΕΜΠ Διοικητικά του μαθήματος Διδάσκοντες Στάθης Ζάχος Άρης Παγουρτζής Πέτρος Ποτίκας (2017-18) Βοηθοί διδασκαλίας Παναγιώτης Γροντάς
Κατάλογος Σχηµάτων. Κατάλογος Πινάκων. I Κρυπτανάλυση 21
Κατάλογος Σχηµάτων Κατάλογος Πινάκων ix xiv xvi I Κρυπτανάλυση 21 1 Βασικές αρχές κρυπτανάλυσης 23 1.1 Εισαγωγή....................... 24 1.2 Βασικές επιθέσεις................... 25 1.3 Η επίθεση του Hellman-TMTO............
Η Δομή Επανάληψης. Εισαγωγή στην δομή επανάληψης Χρονική διάρκεια: 3 διδακτικές ώρες
Η Δομή Επανάληψης Εισαγωγή στην δομή επανάληψης Χρονική διάρκεια: 3 διδακτικές ώρες Οι 2 πρώτες διδακτικές ώρες στην τάξη Η τρίτη διδακτική ώρα στο εργαστήριο Γενικός Διδακτικός Σκοπός Ενότητας Να εξοικειωθούν
Κεφάλαιο 3 Πολυπλεξία
Κεφάλαιο 3 Πολυπλεξία Μάθημα 3.1: Μάθημα 3.2: Μάθημα 3.3: Πολυπλεξία επιμερισμού συχνότητας χρόνου Συγκριτική αξιολόγηση τεχνικών πολυπλεξίας Στατιστική πολυπλεξία Μετάδοση Δεδομένων Δίκτυα Υπολογιστών
Παραγωγή μεγάλων πρώτων αριθμών
Παραγωγή μεγάλων πρώτων αριθμών Πώς υπολογίζουμε μεγάλους πρώτους αριθμούς? Μεγάλοι πρώτοι αριθμοί χρειάζονται στην πλειοψηφία των αλγορίθμων Δημοσίου κλειδιού Γιαναεξετάσεικανείςανέναςαριθμόςn είναι πρώτος,
ΚΕΦΑΛΑΙΟ 11: Διαδικασία Μετάδοσης Δεδομένων Εισαγωγή
ΚΕΦΑΛΑΙΟ 11: Διαδικασία Μετάδοσης Δεδομένων 11.1. Εισαγωγή Η μετάδοση δεδομένων αναφέρεται στην μεταφορά κάποιας πληροφορίας από ένα σημείο σε κάποιο άλλο, αφού πρώτα έχει μετασχηματισθεί σε ένα ηλεκτρομαγνητικό
Threshold Cryptography Algorithms. Εργασία στα πλαίσια του μαθήματος Τεχνολογίες Υπολογιστικού Νέφους
Threshold Cryptography Algorithms Εργασία στα πλαίσια του μαθήματος Τεχνολογίες Υπολογιστικού Νέφους Ορισμός Το σύστημα το οποίο τεμαχίζει ένα κλειδί k σε n τεμάχια έτσι ώστε οποιοσδήποτε συνδυασμός πλήθους
Παράρτημα Α Περισσότερα για την Ασφάλεια στο Διαδίκτυο
Παράρτημα Α Περισσότερα για την Ασφάλεια στο Διαδίκτυο A.1 Κρυπτογράφηση Δημόσιου Κλειδιού Όπως αναφέρθηκε στην παράγραφο 2.3.2, η πιο διαδεδομένη μέθοδος κρυπτογραφίας στο Διαδίκτυο είναι η κρυπτογράφηση
Σηματοδότηση σηματοδοτήσουν
Σηματοδότηση Στο πρόβλημα Εντολέα-Εντολοδόχου, δεν είναι πάντα επωφελές για τον Εντολοδόχο, τουλάχιστον για κάποιον τύπο αυτού, να διαθέτει περισσότερη πληροφορία από τον Εντολέα. Στη περίπτωση κατά την
Σύγχρονη Κρυπτογραφία
Σύγχρονη Κρυπτογραφία 50 Υπάρχουν μέθοδοι κρυπτογράφησης πρακτικά απαραβίαστες Γιατί χρησιμοποιούμε λιγότερο ασφαλείς μεθόδους; Η μεγάλη ασφάλεια κοστίζει σε χρόνο και χρήμα Πολλές φορές θυσιάζουμε ασφάλεια
ΠΡΟΓΡΑΜΜΑΤΙΣΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΚΥΡΙΑΚΗ 19 ΟΚΤΩΒΡΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ
ΠΡΟΓΡΑΜΜΑΤΙΣΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΚΥΡΙΑΚΗ 19 ΟΚΤΩΒΡΙΟΥ 2014 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ Όνομα/Επίθετο: Ζήτημα 1ο Να γράψετε στη γλώσσα των συνόλων και λεκτικά ποιο ενδεχόμενο παριστάνει κάθε ένα
ΘΕΜΑ Α Να γράψετε στην κόλα σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.
ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ ΕΤΟΥΣ 2017-2018 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΑΠΑΝΤΗΣΕΙΣ (ΕΝΔΕΙΚΤΙΚΕΣ) ΗΜΕΡΟΜΗΝΙΑ: 03/12/2017 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: Καραβοκυρός Χρήστος ΘΕΜΑ Α Να γράψετε στην κόλα σας τον αριθμό καθεμιάς
Παύλος Εφραιμίδης. Κρυπτογραφικά Πρωτόκολλα. Ασφ Υπολ Συστ
Παύλος Εφραιμίδης Κρυπτογραφικά Πρωτόκολλα Ασφ Υπολ Συστ 1 Fair Coin Millionaires Problem Blind Signatures Oblivious Signatures Simultaneous Contract Signing Simultaneous Exchange of Secrets προηγμένα
Ψηφιακές Τηλεπικοινωνίες. Βέλτιστος Δέκτης
Ψηφιακές Τηλεπικοινωνίες Βέλτιστος Δέκτης Σύνδεση με τα Προηγούμενα Επειδή το πραγματικό κανάλι είναι αναλογικό, κατά τη διαβίβαση ψηφιακής πληροφορίας, αντιστοιχίζουμε τα σύμβολα σε αναλογικές κυματομορφές
Δίκτυα Υπολογιστών I Εργαστήρια
Δίκτυα Υπολογιστών I Εργαστήρια Άσκηση 7 η Υποεπίπεδο ελέγχου λογικής σύνδεσης Έλεγχος Σφαλμάτων Πανεπιστήμιο Ιωαννίνων Τμήμα Μηχανικών Η/Υ και Πληροφορικής Διδάσκων: Παπαπέτρου Ευάγγελος 2 1 Εισαγωγή
Κατανεμημένα Συστήματα Ι
Κατανεμημένα Συστήματα Ι Εκλογή αρχηγού και κατασκευή BFS δένδρου σε σύγχρονο γενικό δίκτυο Παναγιώτα Παναγοπούλου Περίληψη Εκλογή αρχηγού σε γενικά δίκτυα Ορισμός του προβλήματος Ο αλγόριθμος FloodMax
Παύλος Εφραιμίδης. προηγμένα κρυπτογραφικά πρωτόκολλα. Ασφ Υπολ Συστ
Παύλος Εφραιμίδης προηγμένα κρυπτογραφικά πρωτόκολλα Ασφ Υπολ Συστ 1 Zero-Knowledge Proofs Zero-Knowledge Proofs of Identity Blind Signatures Oblivious Signatures Simultaneous Contract Signing Simultaneous
ΕΡΓΑΣΤΗΡΙΟ ΑΤΟΜΙΚΗΣ ΦΥΣΙΚΗΣ. Άσκηση 6: Περίθλαση ηλεκτρονίων
ΕΡΓΑΣΤΗΡΙΟ ΑΤΟΜΙΚΗΣ ΦΥΣΙΚΗΣ Άσκηση 6: Περίθλαση ηλεκτρονίων Επώνυμο: Όνομα: Α.Ε.Μ: Ημερομηνία Παράδοσης: ΘΕΩΡΗΤΙΚΗ ΕΙΣΑΓΩΓΗ Η άσκηση αυτή πραγματεύεται την περίθλαση των ηλεκτρονίων. Πιο συγκεκριμένα σκοπός
ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α A ) ΚΑΙ ΜΑΘΗΜΑΤΩΝ ΕΙ ΙΚΟΤΗΤΑΣ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α Β ) ΠΑΡΑΣΚΕΥΗ 13 ΙΟΥΝΙΟΥ 2014 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ:
Επιµέλεια Θοδωρής Πιερράτος
Ερωτήσεις Σωστό - Λάθος 1. Ο αλγόριθµος πρέπει να τερµατίζεται µετά από εκτέλεση πεπερασµένου αριθµού εντολών. 2. Η είσοδος σε έναν αλγόριθµο µπορεί να είναι έξοδος σε έναν άλλο αλγόριθµο. 3. Ένας αλγόριθµος
Ασκήσεις μελέτης της 16 ης διάλεξης
Οικονομικό Πανεπιστήμιο Αθηνών, Τμήμα Πληροφορικής Μάθημα: Τεχνητή Νοημοσύνη, 016 17 Διδάσκων: Ι. Ανδρουτσόπουλος Ασκήσεις μελέτης της 16 ης διάλεξης 16.1. (α) Έστω ένα αντικείμενο προς κατάταξη το οποίο
Αλγόριθµοι δηµόσιου κλειδιού
Αλγόριθµοι δηµόσιου κλειδιού Αλγόριθµοι δηµόσιου κλειδιού Ηδιανοµή του κλειδιού είναι ο πιο αδύναµος κρίκος στα περισσότερα κρυπτογραφικά συστήµατα Diffie και Hellman, 1976 (Stanford Un.) πρότειναν ένα