ΣΧΟΛΗ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΜΠ ΜΕΘΟΔΟΙ ΑΕΡΟΔΥΝΑΜΙΚΗΣ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ (7 ου ) Εργασία για το Σπίτι ( Ε1)
|
|
- Φαίδρα Κούνδουρος
- 8 χρόνια πριν
- Προβολές:
Transcript
1 ΣΧΟΛΗ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΜΠ ΜΕΘΟΔΟΙ ΑΕΡΟΔΥΝΑΜΙΚΗΣ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ (7 ου ) Εργασία για το Σπίτι ( Ε1) Προκαταρκτικός Σχεδιασμός Υπερηχητικού Αεροσκάφους (Supersonic Business Jet, SBJ) με Εξελικτικούς Αλγορίθμους (λογισμικό EASY) Ως μηχανικός-σχεδιαστής μιας εταιρίας κατασκευής επιβατικών υπερηχητικών αεροσκαφών (SBJ, αεροσκαφών δηλαδή που μπορούν να εκτελούν γρήγορα πτήσεις μεγάλων αποστάσεων μεταφέροντας ένα μικρό αριθμό επιβατών, λχ. 10 με 15 επιβάτες) καλείστε να ανταποκριθείτε στις απαιτήσεις μιας μεγάλης εταιρίας-πελάτη. Ο πελάτης καθορίζει τις βασικές επιχειρησιακές απαιτήσεις (βασικά δεδομένα, στόχους, περιορισμούς) για το αεροσκάφος που επιθυμεί και οφείλετε να προτείνετε τη/τις βέλτιστη/στες λύση/σεις. Τα υπολογιστικά εργαλεία που διαθέτετε είναι (α) ένα «κλειστό» λογισμικό προκαταρκτικής ανάλυσης SBJ που θα χρησιμοποιηθεί ως το βασικό λογισμικό αξιολόγησης και (β) ένα λογισμικό βελτιστοποίησης βασισμένο στους εξελικτικούς αλγορίθμους, συγκεκριμένα το λογισμικό EASY που αναπτύχθηκε στη Μονάδα Παράλληλης Υπολογιστικής Ρευστοδυναμικής & Βελτιστοποίησης του Τομέα Ρευστών του ΕΜΠ. Το πρόβλημα είναι αντιμετωπίσιμο από μηχανικούς που γνωρίζουν μεθόδους βελτιστοποίησης, χωρίς εξειδικευμένες γνώσεις αεροναυπηγικής! Εισαγωγή στο Βασικό Λογισμικό Αξιολόγησης (sbj2015.exe): Το λογισμικό που θα σας δοθεί σε μορφή εκτελέσιμου αρχείου (sbj2015.exe) αποτελείται από απλά μοντέλα, που όντως χρησιμοποιούνται για την προκαταρκτική ανάλυση και σχεδιασμό τέτοιων αεροσκαφών. Πρόκειται για μια εξειδικευμένη εκδοχή λογισμικού που έχει αναπτυχθεί στο πλαίσιο ολοκληρωθείσας διδακτορικής διατριβής στη Μονάδα μας. Σε σχέση με το πλήρες λογισμικό, το οποίο δέχεται μια μεγάλη γκάμα δεδομένων, το sbj2015.exe δέχεται ως δεδομένα ένα μικρό υποσύνολο αυτών (όσα χρειάζονται για τη μελέτη σας) ενώ τα υπόλοιπα ορίζονται μέσα στον κώδικα (είναι δηλαδή «hardcoded») και δεν μπορείτε, ούτε χρειάζεται, να τα μεταβάλετε. Λ.χ. το sbj2015.exe αφορά πτήση με αριθμό Mach 1.8, υψόμετρο πτήσης 17 km και αυτά δεν μπορείτε να τα αλλάξετε. Επίσης, αφορά αυστηρά δικινητήριο SBJ. Οι 6 ποσότητες δεδομένα πινακοποιούνται στη συνέχεια: Το βάρος καυσίμου (W fuel ) κατά την απογείωση WFUEL, σε kg Το εμβαδόν της πτέρυγας (S wing, είναι το εμβαδόν της κάτοψης και των δύο τμημάτων της πτέρυγας μαζί) SWING, σε m 2 Η γωνία οπισθόκλισης (a LE ) στην ακμή πρόσπτωσης της (οπισθοκλινούς) πτέρυγας (βλέπε σχήμα) ALE, σε μοίρες Ο λόγος της χορδής στο ακροπτερύγιο (C tip ) προς τη χορδή στη «ρίζα» CTCR, καθαρός (επίπεδο συμμετρίας) (C root ) της πτέρυγας. αριθμός Η γωνία οπισθόκλισης (a TE ) στην ακμή εκφυγής της (οπισθοκλινούς) ΑTE, σε μοίρες πτέρυγας (βλέπε σχήμα) Ο λόγος του βάρους προσγείωσης προς το βάρος απογείωσης του SBJ RATWEI, καθαρός αριθμός ΜΕΘΟΔΟΙ ΑΕΡΟΔΥΝΑΜΙΚΗΣ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ - Κ. ΓΙΑΝΝΑΚΟΓΛΟΥ 1/7
2 To SBJ σχεδιάζεται με οπισθοκλινή πτέρυγα, την κάτοψη (planform) της οποίας βλέπετε στο σχήμα. Ο σχεδιασμός της βέλτιστης μορφής αυτής της οπισθοκλινούς πτέρυγας είναι ουσιώδες τμήμα του συνολικού σχεδιασμού. Από τις γεωμετρικές ποσότητες που βλέπετε στο σχήμα, τα δύο μήκη χορδής (C root και C tip ) δεν καθορίζονται άμεσα από το σχεδιαστή, ο οποίος όμως είναι ελεύθερος να καθορίσει το λόγο τους (C tip /C root CTCR), το συνολικό εμβαδόν της κάτοψης της πτέρυγας (SWING), τις δύο γωνίες (α LE ALE και α TE ATE). Αυτές είναι οι 4 (από τις 6) μεταβλητές σχεδιασμού, οι οποίες αφορούν καθαρά τη γεωμετρία της πτέρυγας. a LE C root C tip a TE Λάβετε υπόψη σας ότι, στην έκδοση sbj2015.exe του λογισμικού, η αεροτομή της πτέρυγας θεωρείται γνωστή και δεν μεταβάλλεται κατά τη βελτιστοποίηση. Επίσης, το ουραίο πτερύγιο του Α/Φ είναι σταθερό. Τέλος, η άτρακτος έχει απλό κυλινδρικό σχήμα, στο βασικό της μήκος, και έχει σταθερή διάμετρο. Το μήκος της όμως αυξομειώνεται όσο αυξομειώνεται το βάρος του καυσίμου (θεωρείται ότι το καύσιμο καταλαμβάνει τμήμα της ατράκτου). Οι υπόλοιπες 2 μεταβλητές σχεδιασμού αφορούν το βάρος καυσίμου κατά την απογείωση (WFUEL) και το βάρος του αεροσκάφους κατά την προσγείωση, το τελευταίο εκφραζόμενο όμως στη μορφή λόγου (RATWEI) με παρονομαστή το βάρος απογείωσης του SBJ. Να γίνει σαφές ότι, έτσι όπως είναι προγραμματισμένο το λογισμικό sbj2015.exe, το ωφέλιμο φορτίο, το συνολικό βάρος του SBJ κατά την απογείωση (TOW, Take-Off Weight) και το βεληνεκές πτήσης (RANGE) προκύπτουν από κάθε τρέξιμο του λογισμικού με τα παραπάνω 6 δεδομένα. Αν λ.χ. επιθυμείται συγκεκριμένο ωφέλιμο φορτίο, ο υπολογισμός θα απαιτήσει δοκιμές για να επιτευχθεί. Μια τελευταία σημαντική παρατήρηση που θα σας χρειαστεί για την επίλυση του θέματος είναι η εξής: Τρέχοντας το λογισμικό για κάποιες τιμές των 6 δεδομένων προκύπτει μια τιμή του RANGE. Αυτό είναι το βεληνεκές που θα κάλυπτε το αεροσκάφος αν κατανάλωνε «πλήρως» το δεδομένο WFUEL. «Πλήρως» σημαίνει ότι (με βάση το απλοποιημένο μοντέλο που έχει προγραμματισθεί) η απογείωση δαπανά πάντα το 5% του TOW ενώ το αεροσκάφος (Α/Φ) προσγειώνεται διατηρώντας, για ασφάλεια, στη δεξαμενή του, πάντα το 5% του WFUEL. Συνεπώς, το παραπάνω Α/Φ, αν πρέπει να καλύψει κάποιο μικρότερο βεληνεκές πτήσης R(<RANGE) τότε το καύσιμο WF R (<WFUEL) που θα δαπανηθεί/χρεωθεί θα είναι ίσο με R WF R ( 0.95 WFUEL 0.05 TOW ) TOW RANGE ΜΕΘΟΔΟΙ ΑΕΡΟΔΥΝΑΜΙΚΗΣ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ - Κ. ΓΙΑΝΝΑΚΟΓΛΟΥ 2/7
3 Λίγα Στοιχεία Θεωρίας στην οποία Βασίζεται το sbj2015.exe (Προαιρετικό ανάγνωσμα, για να μην χρησιμοποιείτε το λογισμικό χωρίς να καταλαβαίνετε τα πολύ βασικά!) Η εξίσωση του Breguet: V C L W start R ln g sfc C D W end δίνει το βεληνεκές κάθε Α/Φ, άρα και του SBJ, όπου: R (m) είναι το βεληνεκές πτήσης (RANGE) V (m/s) είναι η ταχύτητα πτήσης που καθορίζεται από τον αριθμό Mach (εδώ 1.4) και το υψόμετρο της πτήσης (εδώ, αυτό είναι επίσης σταθερό και, προφανώς, καθορίζει την ταχύτητα του ήχου) g (m/s 2 ) είναι η επιτάχυνση της βαρύτητας sfc (kg/n/s) είναι η ειδική κατανάλωση καυσίμου που και αυτή καθορίζεται από τον αριθμό Mach και το υψόμετρο της πτήσης C L /C D είναι ο λόγος των συντελεστών άνωσης και οπισθέλκουσας που, μεταξύ άλλων, σχετίζεται με την (άγνωστη, εδώ) γεωμετρία της πτέρυγας. Η συσχέτιση είναι εμπειρική και προγραμματισμένη στο λογισμικό που σας δίνεται W start (kg) είναι το βάρος του Α/Φ κατά την έναρξη της ευθείας πτήσης (cruise), που είναι ένα σταθερό ποσοστό (λ.χ. 95%) του βάρους απογείωσης W end (kg) είναι το βάρος του Α/Φ κατά το τέλος της ευθείας πτήσης, που εξαρτάται, μεταξύ άλλων, από το βάρους καυσίμου κατά την απογείωση. Μεταξύ άλλων, το λογισμικό που δίνεται, περιέχει εμπειρικές σχέσεις για: Μοντέλο ατμόσφαιρας. Μοντέλο κινητήρα (ώση, βάρος, βασική γεωμετρία). Τρόπο υπολογισμού επιμέρους βαρών (πτέρυγας που συναρτάται της γεωμετρίας της, ουραίου τμήματος, ατράκτου, κλπ). Μοντέλο αεροδυναμικής ανάλυσης (εμπειρικές σχέσεις για τους συντελεστές άνωσης και οπισθέλκουσας, συναρτήσει της γεωμετρίας της πτέρυγας και της ταχύτητας πτήσης). Αρχείο Δεδομένων του Βασικού Λογισμικό Αξιολόγησης (sbj2015.exe): Το αρχείο δεδομένων του sbj2015.exe ονομάζεται (υποχρεωτικά) task.dat και, έτσι, είναι απόλυτα συμβατό με τον EASY. Για παράδειγμα, η λύση που περιγράφεται από τις τιμές WFUEL=30000 kg, SWING=120.0 m 2, ALE=65.0 ο, CTCR=0.05, ΑTE=20.0 ο, RATWEI=0.78 (βάρος προσγείωσης= 78% του βάρους απογείωσης του Α/Φ), τότε το αντίστοιχο αρχείο task.dat θα έχει τη μορφή που φαίνεται δίπλα ΜΕΘΟΔΟΙ ΑΕΡΟΔΥΝΑΜΙΚΗΣ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ - Κ. ΓΙΑΝΝΑΚΟΓΛΟΥ 3/7
4 Αρχείο Αποτελεσμάτων του Βασικού Λογισμικό Αξιολόγησης (sbj2015.exe): Το αποτέλεσμα της ανάλυσης (ενός δηλαδή τρεξίματος) του sbj2015.exe είναι το αρχείο results.dat με την παρακάτω δομή: ============= Engine Characteristics ============= E-005 SFC [kg/n/s] Thrust / engine [N] ==================== Geometry ==================== Fuselage Length [m] Wing span [m] Wing root chord [m] ===================== Weights ==================== Fuel Weight [kg] Wing Weight [kg] Tail Weight [kg] Fuselage Weight [kg] Landing Gear Weight [kg] Propulsion System Weight [kg] Other Weights [kg] Zero Fuel Weight [kg] Take Off Weight [kg] =================== Performance ================== Range [km] L1: Take-off Length [m] L2: Landing Length [m] Όπως καταλαβαίνετε, επειδή ο EASY «περιμένει» ως «επιστροφή» ένα αρχείο με όνομα task.res (με τόσες γραμμές όσοι οι στόχοι, χωρίς επικεφαλίδα με το ακέραιο πλήθος τους, δεν την χρειάζεται, ο EASY γνωρίζει πόσοι είναι οι στόχοι) και ένα αρχείο με όνομα task.cns με τις τιμές των περιορισμών (το αρχείο έχει τόσες γραμμές όσοι είναι οι περιορισμοί, κάθε γραμμή έχει την τιμή της συνάρτησης περιορισμού που πρέπει να κρατηθεί μικρότερη από ένα όριο που έδωσε ο χρήστης), πρέπει να γράψετε ένα πρόγραμμα (postprocessor=πρόγραμμα μετεπεξεργασίας) που θα διαβάσει το αρχείο results.dat, θα εκτελέσει πράξεις (αν χρειάζεται) και θα τυπώσει τα δύο αρχεία task.res και task.cns. Ειδικά για το ωφέλιμο φορτίο (Lweight=Load Weight), ισχύει ότι: Lweight = Other Weights 0.6 * [Wing Weight + Tail Weight + Fuselage Weight + Landing Gear Weight + Propulsion System Weight] Διευκρινίζεται ότι Lweight είναι το βάρος των μεταφερόμενων επιβατών (συμπεριλαμβάνεται το πλήρωμα) και των μεταφερόμενων αποσκευών. Ενδεικτική Μορφή του Post-Processor Έστω ότι (άσχετα με την υπόψη εργασία), έχουμε θέσει δύο στόχους (α) μέγιστο βεληνεκές και (β) ελάχιστο μήκος διαδρόμου απογείωσης. Επειδή ο EASY ελαχιστοποιεί (και δεν μεγιστοποιεί!) συναρτήσεις, τότε πρέπει ο post-processor που θα προγραμματίσετε να παράξει το παρακάτω αρχείο task.res ΜΕΘΟΔΟΙ ΑΕΡΟΔΥΝΑΜΙΚΗΣ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ - Κ. ΓΙΑΝΝΑΚΟΓΛΟΥ 4/7
5 Με βάση τα προηγούμενα, το λογισμικό (postprocessor.for, ακολουθεί δείγμα σε Fortran 77- γράψτε το σε όποια γλώσσα προγραμματισμού γνωρίζετε, αρκεί να παράγει εκτελέσιμο αρχείο) που να δημιουργεί τα αρχεία task.res (υποχρεωτικά) και task.cns (αν χρειάζεται). Στο παραπάνω εικονικό παράδειγμα (δεν ζητείται αυτό στην περίπτωσή μας), ο κώδικας αυτός θα είχε την παρακάτω μορφή. Μπορείτε να τον αλλάξετε ώστε να επιλέξει εκείνες τις ποσότητες τις οποίες θέλετε να βελτιστοποιήσετε και τους κατά περίπτωση περιορισμούς. program postprocessor implicit double precision(a-h,o-z) dimension f(20) open(1,file='results.dat') do 1 i=1,2 1 read(1,*)f(i) do 2 i=3,5 2 read(1,*)f(i) do 3 i=6,14 3 read(1,*)f(i) do 4 i=15,17 4 read(1,*)f(i) close(1) open(1,file='task.res') write(1,*)-f(15)! max -> min write(1,*)f(16) close(1) open(1,file='task.cns') write(1,*)f(2) write(1,*)f(17) close(1) end Δείτε και καταλάβετε τι κάνει στις τελευταίες του γραμμές, σε σχέση με τους περιορισμούς, για ένα υποθετικό σενάριο δύο περιορισμών). Θα χρειαστεί να το προσαρμόσετε στο πρόβλημά σας. Το Αρχείο Εντολών task.bat Για να κληθεί το λογισμικό αξιολόγησης από τον EASY οφείλετε να γράψετε το παρακάτω αρχείο εντολών, με το όνομα task.bat. Δείτε ης ότι αυτό καλείται μέσα από το task.bat ως τελευταία off erase results.dat sbj2015.exe >nul postprocessor.exe >nul Δεν χρειάζεται να διαγράφετε τα αρχεία task.res και task.cns. Αυτό γίνεται αυτόματα από τον EASY. Παρόλα αυτά, είναι ακίνδυνο να προσθέσετε στο task.bat και αυτές τις εντολές διαγραφής. ΜΕΘΟΔΟΙ ΑΕΡΟΔΥΝΑΜΙΚΗΣ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ - Κ. ΓΙΑΝΝΑΚΟΓΛΟΥ 5/7
6 Τα Προβλήματα προς Επίλυση Οι τεχνικές δυνατότητες της εταιρίας σας ως προς την κατασκευή της πτέρυγας αλλά και δεδομένα βάρους καυσίμου που συζητήσατε και συμφωνήσατε με τον πελάτη καθορίζουν τα εξής όρια των 6 μεταβλητών σχεδιασμού: WFUEL, σε kg [22000, 35000] SWING, σε m 2 [110, 190] ALE, σε μοίρες [45 ο, 65 ο ] CTCR, καθαρός αριθμός [0.05, 0.50] ΑTE, σε μοίρες [0 ο, 20 ο ] RATWEI, καθαρός αριθμός [0.7, 0.7] Προσέξτε ότι, πρακτικά, το RATWEI τίθεται σταθερό στην υπόψη μελέτη. (1) Σχεδιάστε SBJ για βεληνεκές πτήσης R= *(Κ/10) km (όπου Κ το τελευταίο ψηφίο του Αριθμού Μητρώου σας στη Σχολή) το οποίο θα εξασφαλίζει ελάχιστη κατανάλωση καυσίμου ανά tn ωφέλιμου φορτίου (Lweight) και ανά km διανυόμενης απόστασης (R). Προσοχή, δείτε προηγούμενη παρατήρηση ως προς την εμβέλεια: το ζητούμενο R μπορεί ασφαλώς να είναι μικρότερο από τη μέγιστη εμβέλεια πτήσης RANGE. Με βάση αυτό, σκεφτείτε μήπως πρέπει η βελτιστοποίηση να έχει τον περιορισμό RANGE R. Θα ήταν λ.χ. να πραγματοποιήσετε τη βελτιστοποίηση δύο φορές, με και χωρίς τον περιορισμό αυτό, και να δείτε μόνοι σας αν συμφέρει ή όχι να επιβληθεί. (2) Σχεδιάστε ένα (νέο) SBJ για βεληνεκές πτήσης ίσο με το προηγούμενο αλλά με τον περιορισμό να είναι το ωφέλιμο φορτίο μεγαλύτερο του 4100 kg. (3) Πραγματοποιήστε δικριτηριακή βελτιστοποίηση (two-objective optimization), με επιπλέον (δεύτερο) στόχο μέγιστο ωφέλιμο φορτίο (Lweight). Διατηρήστε τον περιορισμό του ερωτήματος (2) (ώστε να περιοριστεί το μέτωπο Pareto) και σχεδιάστε το προκύπτον μέτωπο Pareto. (4) Πραγματοποιήστε τρικριτηριακή βελτιστοποίηση (three-objective optimization), με επιπλέον (τρίτο) στόχο το ελάχιστο βάρος κατά την απογείωση (TOW). Διατηρήστε τον περιορισμό του ερωτήματος (2) (ώστε να περιοριστεί το μέτωπο Pareto) και σχεδιάστε το προκύπτον μέτωπο Pareto στον 3Δ χώρο των συναρτήσεων στόχων. (5) Επαναλάβετε το ερώτημα (2) χρησιμοποιώντας μεταπρότυπα για την υποβοήθηση του ΕΑ. Συγκρίνετε με βάση τον αριθμό των αξιολογήσεων και όχι με βάση το χρόνο υπολογισμού (ο οποίος θα μεγαλώσει γιατί το λογισμικό αξιολόγησης είναι πολύ γρήγορο και, επί της ουσίας, δεν έχετε να κερδίσετε κάτι από τα μεταπρότυπα σε ένα τέτοιο πρόβλημα). (6) Επαναλάβετε το ερώτημα (2) χρησιμοποιώντας κατανεμημένο ΕΑ. Συγκρίνετε με βάση τον αριθμό των αξιολογήσεων. (7) Επαναλάβετε το ερώτημα (3) χρησιμοποιώντας μεταπρότυπα για την υποβοήθηση του ΕΑ. ΜΕΘΟΔΟΙ ΑΕΡΟΔΥΝΑΜΙΚΗΣ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ - Κ. ΓΙΑΝΝΑΚΟΓΛΟΥ 6/7
7 Οδηγίες για τον Τρόπο Εργασίας και το Κείμενο που θα Παραδώσετε Γενικά: Οι προθεσμίες παράδοσης θα ανακοινωθούν στην τάξη. Το θέμα είναι προαιρετικό. Αξίζει όμως να το κάνετε ακόμη και αν δεχθείτε βοήθεια για τον ελάχιστο προγραμματισμό που απαιτείται. Σκοπός είναι να μάθετε μεθόδους βελτιστοποίησης, όχι προγραμματισμό. Προσμετράται στο βαθμό του μαθήματος. Όπως και στα επόμενα θέματα, ισχύει ότι κάθε εργασία που θα παραδοθεί βαθμολογείται εκ προοιμίου με 10 αλλά καθορίζεται (ανάλογα με την ποιότητά της) το ποσοστό συμμετοχής στον τελικό βαθμό. Από όλα τα θέματα, μπορείτε να συγκεντρώσετε, κατά μέγιστο, το 50% του τελικού βαθμού σας. Για τα τρεξίματα: Υιοθετήστε δυαδική ή πραγματική κωδικοποίηση, κατά βούληση. Δεν χρειάζεται σε κάθε τρέξιμο να κάνετε και τα δύο. Θα ήταν καλό όμως να χρησιμοποιήσετε και τις δύο κωδικοποιήσεις στο πρώτο ερώτημα, ώστε να αποκτήσετε άποψη από τη σύγκρισή τους. Χρησιμοποιείστε ως μέγιστο αριθμό αξιολογήσεων τις Αυτοσχεδιάστε σε ότι δεν σας καθορίζει η εκφώνηση. Παραδώστε τις εργασίες σε μορφή PDF, δεν χρειάζονται εκτυπώσεις σε χαρτί. Μην στέλνετε s με την εργασία στον κωδικό του διδάσκοντος, θα σας δοθούν οδηγίες για την παράδοση. Μην γράφετε στοιχεία από τη θεωρία. Να είστε σαφείς αλλά σύντομοι. Να δώσετε πριν από κάθε τρέξιμο τα βασικά δεδομένα του ΕΑ (κωδικοποίηση, τιμές πληθυσμών μ και λ, τύπος διασταύρωσης και μετάλλαξης και με τι πιθανότητες υιοθετήστε ένα πινακάκι το οποίο να συμπληρώνετε και να συνοδεύει κάθε τρέξιμο που παρουσιάζετε). Σκεφτείτε, είστε ο σχεδιαστής και πρέπει να δείξετε στον (πείσετε τον) πελάτη για το «τι πρέπει να κάνει»! Σε όλα τα σχήματα να υπάρχει σαφής λεζάντα που ο αναγνώστης να καταλαβαίνει τι βλέπει και από ποιο τρέξιμο προέκυψαν τα αποτελέσματα αυτά. Μην βάζετε στην τεχνική σας έκθεση print-screen οθόνες από τον EASY. Σχεδιάστε το σχήμα με δικούς σας άξονες, με όποιο λογισμικό θέλετε. Κάθε άξονας να γράφει ξεκάθαρα την ποσότητα που παριστάνει. Αν μια ποσότητα βελτιστοποιείται λ.χ. με ένα μείον μπροστά (ελαχιστοποίηση αντί μεγιστοποίησης), να παρουσιάζεται την «κανονική» ποσότητα, χωρίς το μείον! Δώστε από ένα διάγραμμα σύγκλισης ανά τρέξιμο. Αλλιώς, αυτός που διαβάζει την τεχνική έκθεσή σας δεν καταλαβαίνει αν έχει συγκλίνει ή όχι ο κώδικας σας. Προαιρετικό: Με κάποιο πακέτο CAD (όποιο ξέρετε), σχεδιάστε τη μορφή του βέλτιστου αεροσκάφους του ερωτήματος (1). Η άτρακτος είναι κύλινδρος (ας τελειώνει κωνικά στο μπροστινό της τμήμα). ΑΠΟΦΥΓΕΤΕ ΤΟ ΣΥΝΗΘΙΣΜΕΝΟ ΛΑΘΟΣ: Τελειώνοντας ένα τρέξιμο με τον EASY, το τελευταίο αρχείο results.dat που θα έχει μείνει στον κατάλογο στον οποίον τρέχετε δεν αντιστοιχεί στη βέλτιστη λύση!! Είναι, απλά, το τελευταίο άτομο που αξιολογήθηκε στην τελευταία γενιά. Αν θέλετε το results.dat της βέλτιστης λύσης πρέπει να φτιάξετε το αντίστοιχο task.dat και να τρέξετε το task.bat ειδικά για αυτό (εκτός EASY). ΜΕΘΟΔΟΙ ΑΕΡΟΔΥΝΑΜΙΚΗΣ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ - Κ. ΓΙΑΝΝΑΚΟΓΛΟΥ 7/7
ΣΧΟΛΗ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΜΠ ΜΕΘΟΔΟΙ ΑΕΡΟΔΥΝΑΜΙΚΗΣ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ (7 ου ) Εργασία για το Σπίτι ( Ε1)
ΣΧΟΛΗ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΜΠ ΜΕΘΟΔΟΙ ΑΕΡΟΔΥΝΑΜΙΚΗΣ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ (7 ου ) Εργασία για το Σπίτι (2016-17-Ε1) Προκαταρκτικός Σχεδιασμός Υπερηχητικού Αεροσκάφους (Supersonic Business Jet, SBJ) με Εξελικτικούς
Εργασία για το Σπίτι ( Ε1) ΠΡΟΑΙΡΕΤΙΚΗ ΑΣΚΗΣΗ: Προκαταρκτικός Σχεδιασμός Υπερηχητικού Αεροσκάφους. Μέθοδος: Εξελικτικοί Αλγόριθμοι
Εργασία για το Σπίτι (2010-11-Ε1) ΠΡΟΑΙΡΕΤΙΚΗ ΑΣΚΗΣΗ: Προκαταρκτικός Σχεδιασμός Υπερηχητικού Αεροσκάφους Μέθοδος: Εξελικτικοί Αλγόριθμοι Καλείστε να σχεδιάσετε ένα δικινητήριο υπερηχητικό αεροσκάφος (Α/Φ)
Εργασία για το Σπίτι ( Ε1) ΠΡΟΑΙΡΕΤΙΚΗ ΑΣΚΗΣΗ: Προκαταρκτικός Σχεδιασμός Υπερηχητικού Αεροσκάφους. Μέθοδος: Εξελικτικοί Αλγόριθμοι
Εργασία για το Σπίτι (2017-18-Ε1) ΠΡΟΑΙΡΕΤΙΚΗ ΑΣΚΗΣΗ: Προκαταρκτικός Σχεδιασμός Υπερηχητικού Αεροσκάφους Μέθοδος: Εξελικτικοί Αλγόριθμοι Σχεδιάζετε δικινητήριο υπερηχητικό αεροσκάφος (Α/Φ) με σκοπό να
Εργασία για το Σπίτι ( Ε1) ΠΡΟΑΙΡΕΤΙΚΗ ΑΣΚΗΣΗ: Προκαταρκτικός Σχεδιασμός Υπερηχητικού Αεροσκάφους. Μέθοδος: Εξελικτικοί Αλγόριθμοι
Εργασία για το Σπίτι (2018-19-Ε1) ΠΡΟΑΙΡΕΤΙΚΗ ΑΣΚΗΣΗ: Προκαταρκτικός Σχεδιασμός Υπερηχητικού Αεροσκάφους Μέθοδος: Εξελικτικοί Αλγόριθμοι Καλείστε να σχεδιάσετε ένα δικινητήριο υπερηχητικό αεροσκάφος (Α/Φ)
Εργασία για το Σπίτι ( Ε1) Πρόβλημα: Προκαταρκτικός Σχεδιασμός Υπερηχητικού Αεροσκάφους. Μέθοδος: Εξελικτικοί Αλγόριθμοι
Εργασία για το Σπίτι (2014-15-Ε1) Πρόβλημα: Προκαταρκτικός Σχεδιασμός Υπερηχητικού Αεροσκάφους Μέθοδος: Εξελικτικοί Αλγόριθμοι Καλείστε να σχεδιάσετε ένα δικινητήριο υπερηχητικό αεροσκάφος (Α/Φ) με σκοπό
Βελτιστοποίηση Υπερηχητικού Επιβατικού Αεροσκάφους με Χρήση της Μεθόδου Μιγαδικών Μεταβλητών
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΡΕΥΣΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΘΕΡΜΙΚΩΝ ΣΤΡΟΒΙΛΟΜΗΧΑΝΩΝ Βελτιστοποίηση Υπερηχητικού Επιβατικού Αεροσκάφους με Χρήση της Μεθόδου Μιγαδικών Μεταβλητών Διπλωματική
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΡΕΥΣΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΘΕΡΜΙΚΩΝ ΣΤΡΟΒΙΛΟΜΗΧΑΝΩΝ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΡΕΥΣΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΘΕΡΜΙΚΩΝ ΣΤΡΟΒΙΛΟΜΗΧΑΝΩΝ Η Μέθοδος της Διαφορικής Εξέλιξης στη Μονοκριτηριακή και Πολυκριτηριακή Αεροδυναμική Βελτιστοποίηση,
ΜΕΘΟΔΟΙ ΑΕΡΟΔΥΝΑΜΙΚΗΣ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Εργαστήριο Θερμικών Στροβιλομηχανών Μονάδα Παράλληλης ης Υπολογιστικής Ρευστοδυναμικής & Βελτιστοποίησης ΜΕΘΟΔΟΙ ΑΕΡΟΔΥΝΑΜΙΚΗΣ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ (7 ο Εξάμηνο Σχολής Μηχ.Μηχ. ΕΜΠ)
Γ-ΓΥΜΝΑΣΙΟΥ (1) ΣΕΛ 1 / 6
Γ-ΓΥΜΝΑΣΙΟΥ (1) ΣΕΛ 1 / 6 1) ΘΕΜΑ : Ποιο αποτέλεσμα εμφανίζετε στην οθόνη όταν εκτελούμε τις παρακάτω εντολές στην LOGO ; (Στις περιπτώσεις που ανοίγει παράθυρο επικοινωνίας να το ζωγραφίσετε. Στις περιπτώσεις
Τίτλος: Αεροπλοΐα- Ανάγκες Αεροσκαφών σε καύσιμα
Τίτλος: Αεροπλοΐα- Ανάγκες Αεροσκαφών σε καύσιμα Θέματα: ποσοστά, μοντελοποίηση, ταχύτητα, απόσταση, χρόνος, μάζα, πυκνότητα Διάρκεια: 90 λεπτά Ηλικία: 13-14 Διαφοροποίηση: Ανώτερο επίπεδο: αντίσταση αέρα
Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης. Λογισμός 3 Ασκήσεις. Μιχάλης Μαριάς Τμήμα Α.Π.Θ.
Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Λογισμός 3 Μιχάλης Μαριάς Τμήμα Α.Π.Θ. Θεσσαλονίκη, 2015 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΒΙΟΜΗΧΑΝΙΚΗΣ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΒΙΟΜΗΧΑΝΙΚΗΣ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ ΑΕΡΟΔΥΝΑΜΙΚΗ Διδάσκων: Δρ. Ριζιώτης Βασίλης Θεωρία αεροτομών Άδεια Χρήσης Το παρόν εκπαιδευτικό
με Τέλος πάντων, έστω ότι ξεκινάει ένα άλλο υποθετικό σενάριο που απλά δεν διευκρινίζεται. Για το i) θα έχουμε , 2
Άσκηση 75 Σε έναν οργανισμό, αρχικά υπάρχουν 04800 βακτήρια. Μετά από 1 ώρα υπάρχουν 10400 βακτήρια, μετά από ώρες 5100 βακτήρια, και γενικά ο αριθμός των βακτηρίων υποδιπλασιάζεται κάθε μια ώρα. α) Πόσα
Β Γραφικές παραστάσεις - Πρώτο γράφημα Σχεδιάζοντας το μήκος της σανίδας συναρτήσει των φάσεων της σελήνης μπορείτε να δείτε αν υπάρχει κάποιος συσχετισμός μεταξύ των μεγεθών. Ο συνήθης τρόπος γραφικής
Εργαστήριο 9 Συναρτήσεις στη PASCAL. Η έννοια του κατακερματισμού. Συναρτήσεις. Σκοπός
Εργαστήριο 9 Συναρτήσεις στη PASCAL Η έννοια του κατακερματισμού. Συναρτήσεις. Σκοπός 7.1 ΕΠΙΔΙΩΞΗ ΤΗΣ ΕΡΓΑΣΙΑΣ Η έννοια της συνάρτησης ως υποπρογράμματος είναι τόσο βασική σε όλες τις γλώσσες προγραμματισμού,
Ε Μ Π Σ Χ Ο Λ Η Μ Η Χ Α Ν Ο Λ Ο Γ Ω Ν Μ Η Χ Α Ν Ι Κ Ω Ν Ι Ω Α Ν Ν Η Σ Α Ν Τ Ω Ν Ι Α Δ Η Σ 1: ΕΙΣΑΓΩΓΗ
ΔΥΝΑΜΙΚΗ ΚΑΙ ΕΛΕΓΧΟΣ ΠΤΗΣΗΣ Ε Μ Π Σ Χ Ο Λ Η Μ Η Χ Α Ν Ο Λ Ο Γ Ω Ν Μ Η Χ Α Ν Ι Κ Ω Ν Ι Ω Α Ν Ν Η Σ Α Ν Τ Ω Ν Ι Α Δ Η Σ 1: ΕΙΣΑΓΩΓΗ Εισαγωγή Το μάθημα πραγματεύεται τα εξής βασικά θέματα: τη διαμόρφωση των
Μαθηματική Εισαγωγή Συναρτήσεις
Φυσικός Ραδιοηλεκτρολόγος (MSc) ο Γενικό Λύκειο Καστοριάς A. Μαθηματική Εισαγωγή Πράξεις με αριθμούς σε εκθετική μορφή Επίλυση βασικών μορφών εξισώσεων Συναρτήσεις Στοιχεία τριγωνομετρίας Διανύσματα Καστοριά,
ΚΕΦΑΛΑΙΟ 10 ΥΠΟΠΡΟΓΡΑΜΜΑΤΑ
ΚΕΦΑΛΑΙΟ 10 Όπως είδαμε και σε προηγούμενο κεφάλαιο μια από τις βασικότερες τεχνικές στον Δομημένο Προγραμματισμό είναι ο Τμηματικός Προγραμματισμός. Τμηματικός προγραμματισμός ονομάζεται η τεχνική σχεδίασης
Σκοπός. Εργαστήριο 6 Εντολές Επανάληψης Τα Εργαστηριακά Προγράμματα. Η δομή Επιλογής στη PASCAL. H δομή Επανάληψης στη PASCAL. Η εντολή επανάληψης for
Εργαστήριο 6 Εντολές Επανάληψης Τα Εργαστηριακά Προγράμματα Η δομή Επιλογής στη PASCAL H δομή Επανάληψης στη PASCAL Η εντολή επανάληψης for Σκοπός Η εντολή επανάληψης while. 1 ΕΡΓΑΣΤΗΡΙΟ 6 Εισαγωγή στο
5 ΕΙΣΑΓΩΓΗ ΣΤΗ ΘΕΩΡΙΑ ΑΛΓΟΡΙΘΜΩΝ
5 ΕΙΣΑΓΩΓΗ ΣΤΗ ΘΕΩΡΙΑ ΑΛΓΟΡΙΘΜΩΝ 5.1 Εισαγωγή στους αλγορίθμους 5.1.1 Εισαγωγή και ορισμοί Αλγόριθμος (algorithm) είναι ένα πεπερασμένο σύνολο εντολών οι οποίες εκτελούν κάποιο ιδιαίτερο έργο. Κάθε αλγόριθμος
max & min Μεθοδολογία - 1 Τα βήματα που συνήθως ακολουθούμε στις τεχνικές εύρεσης max & min είναι τα εξής:
Μεθοδολογία - 1 Τα βήματα που συνήθως ακολουθούμε στις τεχνικές εύρεσης είναι τα εξής: 1. Υπόθεση Ξεκινάμε με μια αυθαίρετη παραδοχή ότι κάποιος από τους αριθμούς που εξετάζουμε είναι ο μέγιστος (ή ο ελάχιστος
ΔΥΝΑΜΙΚΗ ΚΑΙ ΕΛΕΓΧΟΣ ΠΤΗΣΗΣ
ΔΥΝΑΜΙΚΗ ΚΑΙ ΕΛΕΓΧΟΣ ΠΤΗΣΗΣ ΕΜΠ ΣΧΟΛΗ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΙΩΑΝΝΗΣ ΑΝΤΩΝΙΑΔΗΣ ΑΝΔΡΕΑΣ ΠΑΡΑΔΕΙΣΙΩΤΗΣ 1: ΕΙΣΑΓΩΓΗ Υλικό-Πληροφορίες Ιστοσελίδα Μαθήματος: http://courseware.mech.ntua.gr/ml23229/ Παρουσιάσεις
Γ.Κονδύλη 1 & Όθωνος-Μαρούσι Τηλ. Κέντρο: ,
ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ 2013 ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Γ ΛΥΚΕΙΟΥ Επιμέλεια θεμάτων : Οικονομόπουλος Σπύρος ΘΕΜΑ Α: Α1. Να γράψετε στο τετράδιο σας τον αριθµό κάθε πρότασης και δίπλα
Ένωση Ελλήνων Φυσικών ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ 2014 Πανεπιστήμιο Αθηνών Εργαστήριο Φυσικών Επιστημών, Τεχνολογίας, Περιβάλλοντος
Β Γυμνασίου 29 Μαρτίου 2013 Θεωρητικό Μέρος Θέμα 1 ο Α. Όταν μετατρέπουμε την τιμή ενός μήκους από km σε m προκύπτει: α) αριθμός πάντοτε μεγαλύτερος του αρχικού β) αριθμός πάντοτε μικρότερος του αρχικού
ΠΘ/ΤΜΜΒ/ΕΘΘΜ - ΜΜ802 Γραπτή Δοκιμασία ώρα 12:00-14:30
ΠΘ/ΤΜΜΒ/ΕΘΘΜ - ΜΜ80 Γραπτή Δοκιμασία.06.07 ώρα 1:00-14:30 Επισυνάπτεται διάγραμμα με ισουψείς ειδικής κατανάλωσης καυσίμου [g/psh] στο πεδίο λειτουργίας του κινητήρα Diesel με προθάλαμο καύσης, OM61 της
Βελτιστοποίηση κατανομής πόρων συντήρησης οδοστρωμάτων Πανεπιστήμιο Πατρών - Πολυτεχνική Σχολή Τμήμα Πολιτικών Μηχανικών
Βελτιστοποίηση κατανομής πόρων συντήρησης οδοστρωμάτων Πανεπιστήμιο Πατρών - Πολυτεχνική Σχολή Τμήμα Πολιτικών Μηχανικών Πάτρα 17 - Μαΐου - 2017 Παναγιώτης Τσίκας Σκοπός του προβλήματος Σκοπός του προβλήματος,
2 η ΕΝΟΤΗΤΑ ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΜΠ ΕΙΣΑΓΩΓΗ ΣΤΗN ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ 2 η ΕΝΟΤΗΤΑ ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Μ. Καρλαύτης Ν. Λαγαρός Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες Χρήσης Creative
ΓΕΝΙΚΕΣ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2009
1 ΘΕΜΑ 1 Α. Σχολικό βιβλίο Σελ. 251. Β. Σχολικό βιβλίο Σελ. 213. Γ. α. Σωστό β. Σωστό γ. Λάθος δ. Λάθος ε. Λάθος ΘΕΜΑ 2 Α. α. Έστω η εικόνα του στο μιγαδικό επίπεδο. Τότε θα έχουμε: η οποία είναι η ζητούμενη
M m l B r mglsin mlcos x ml 2 1) Να εισαχθεί το µοντέλο στο simulink ορίζοντας από πριν στο MATLAB τις µεταβλητές Μ,m,br
ΑΣΚΗΣΗ 1 Έστω ένα σύστηµα εκκρεµούς όπως φαίνεται στο ακόλουθο σχήµα: Πάνω στη µάζα Μ επιδρά µια οριζόντια δύναµη F l την οποία και θεωρούµε σαν είσοδο στο σύστηµα. Έξοδος του συστήµατος θεωρείται η απόσταση
Εργαστήριο 10 Πίνακες. Πίνακες. Η έννοια της δόμησης δεδομένων στη PASCAL. Σκοπός
Εργαστήριο 10 Πίνακες Πίνακες. Η έννοια της δόμησης δεδομένων στη PASCAL. Σκοπός 10.1 ΕΠΙΔΙΩΞΗ ΤΗΣ ΕΡΓΑΣΙΑΣ Σ αυτή την άσκηση, εξετάζουμε μία βασική δομή του προγραμματισμού, το πίνακα. Στις μέχρι τώρα
Μαθηματική Εισαγωγή Συναρτήσεις
Φυσικός Ραδιοηλεκτρολόγος (MSc) ο Γενικό Λύκειο Καστοριάς Καστοριά, Ιούλιος 14 A. Μαθηματική Εισαγωγή Πράξεις με αριθμούς σε εκθετική μορφή Επίλυση βασικών μορφών εξισώσεων Συναρτήσεις Στοιχεία τριγωνομετρίας
και είναι παραγωγισιμη στο σημειο αυτό, τότε : f ( x 0
ΚΕΦΑΛΑΙΟ Ο 7 ΤΟΠΙΚΑ ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ ΘΕΩΡΗΜΑ FERMAT ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ (Θεώρημα Frmat) Εστω μια συναρτηση ορισμενη σ ένα διαστημα Δ και ένα εσωτερικο σημειο του Δ Αν η παρουσιάζει τοπικό ακρότατο στο
ΑΣΚΗΣΕΙΣ ΓΙΑ ΕΠΑΝΑΛΗΨΗ Ασκήσεις σχολικού βιβλίου σελίδας
ΑΣΚΗΣΕΙΣ ΓΙΑ ΕΠΑΝΑΛΗΨΗ Ασκήσεις σχολικού βιβλίου σελίδας 07 3. Να αποδείξετε την ταυτότητα + + αβ βγ γα = Να αποδείξετε ότι για όλους τους α, β, γ ισχύει + + αβ + βγ + γα Πότε ισχύει ισότητα; = = + + =
Αλγόριθμος. Αλγόριθμο ονομάζουμε τη σαφή και ακριβή περιγραφή μιας σειράς ξεχωριστών οδηγιών βημάτων με σκοπό την επίλυση ενός προβλήματος.
Αλγόριθμος Αλγόριθμο ονομάζουμε τη σαφή και ακριβή περιγραφή μιας σειράς ξεχωριστών οδηγιών βημάτων με σκοπό την επίλυση ενός προβλήματος. Εντολές ή οδηγίες ονομάζονται τα βήματα που αποτελούν έναν αλγόριθμο.
1.1 ΥΝΑΡΤΗΣΕΙΣ ΟΡΙΑ ΣΥΝΕΧΕΙΑ
. ΥΝΑΡΤΗΣΕΙΣ ΟΡΙΑ ΣΥΝΕΧΕΙΑ Α. ΣΥΝΑΡΤΗΣΕΙΣ ΜΕΘΟΔΟΛΟΓΙΑ : ΕΥΡΕΣΗ ΠΕΔΙΟΥ ΟΡΙΣΜΟΥ ΣΥΝΑΡΤΗΣΗΣ ΠΡΑΞΕΙΣ ΜΕ ΣΥΝΑΡΤΗΣΕΙΣ ΣΥΝΑΡΤΗΣΗ ΠΕΡΙΟΡΙΣΜΟΣ P Q Q v P P ln P P P P, P P, Q P P Ποιο είναι το πεδίο ορισμού των
ΕΝΟΤΗΤΑ 1: ΟΡΙΣΜΟΣ ΠΕΔΙΟ ΟΡΙΣΜΟΥ ΠΡΑΞΕΙΣ ΣΥΝΑΡΤΗΣΕΩΝ ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΘΕΜΑ Α
ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 1: ΟΡΙΣΜΟΣ ΠΕΔΙΟ ΟΡΙΣΜΟΥ ΠΡΑΞΕΙΣ ΣΥΝΑΡΤΗΣΕΩΝ ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ ΛΥΜΕΝΑ ΘΕΜΑΤΑ Ερώτηση θεωρίας 1 ΘΕΜΑ Α Τι ονομάζουμε πραγματική συνάρτηση
Αστικά υδραυλικά έργα
Εθνικό Μετσόβιο Πολυτεχνείο Τομέας Υδατικών Πόρων και Περιβάλλοντος Αστικά υδραυλικά έργα Υδραυλική ανάλυση δικτύων διανομής Δημήτρης Κουτσογιάννης, Καθηγητής ΕΜΠ Σχολή Πολιτικών Μηχανικών Άδεια Χρήσης
Ενότητα 2. Ζωγραφίζοντας με το ΒΥΟΒ
Ενότητα 2 : Ζωγραφίζοντας με το ΒΥΟΒ -1- Ενότητα 2. Ζωγραφίζοντας με το ΒΥΟΒ Κεφάλαιο 1: Κίνηση και γεωμετρικά σχήματα α. Θέση και προσανατολισμός της μορφής Η θέση της κάθε μορφής στο σκηνικό προσδιορίζεται
Προβλήματα, αλγόριθμοι, ψευδοκώδικας
Προβλήματα, αλγόριθμοι, ψευδοκώδικας October 11, 2011 Στο μάθημα Αλγοριθμική και Δομές Δεδομένων θα ασχοληθούμε με ένα μέρος της διαδικασίας επίλυσης υπολογιστικών προβλημάτων. Συγκεκριμένα θα δούμε τι
Διδάσκων: Νίκος Λαγαρός
ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΜΠ 5 η Σειρά Ασκήσεων του Μαθήματος «ΕΙΣΑΓΩΓΗ ΣΤΗN ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ» Διδάσκων: Νίκος Λαγαρός Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες Χρήσης Creative
Αιολική Ενέργεια & Ενέργεια του Νερού
Αιολική Ενέργεια & Ενέργεια του Νερού Ενότητα 5: Σχεδίαση Πτερυγίων 1 Γεώργιος Λευθεριώτης, Επίκουρος Καθηγητής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοποί ενότητας Στοιχείο πτέρυγας ανάλυση ασκούμενων
Πτέρυγα Θεωρία γραμμής άνωσης Αριθμητική επίλυση
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΒΙΟΜΗΧΑΝΙΚΗΣ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ ΑΕΡΟΔΥΝΑΜΙΚΗ Διδάσκων: Δρ. Ριζιώτης Βασίλης Πτέρυγα Θεωρία γραμμής άνωσης Αριθμητική επίλυση
ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Α ΛΥΚΕΙΟΥ
ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Α ΛΥΚΕΙΟΥ Ευθύγραμμη Ομαλή Κίνηση Επιμέλεια: ΑΓΚΑΝΑΚΗΣ.ΠΑΝΑΓΙΩΤΗΣ, Φυσικός https://physicscorses.wordpress.com/ Βασικές Έννοιες Ένα σώμα καθώς κινείται περνάει από διάφορα σημεία.
1 ο Φροντιστήριο Υπολογιστική Νοημοσύνη 2
1 ο Φροντιστήριο Υπολογιστική Νοημοσύνη 2 Άσκηση Δίνεται ο αρχικός πληθυσμός, στην 1 η στήλη στον παρακάτω πίνακα και οι αντίστοιχες καταλληλότητες (στήλη 2). Υποθέστε ότι, το ζητούμενο είναι η μεγιστοποίηση
Θεωρητικό Μέρος Θέμα 1 ο Α. Για την ταχύτητα υυ και την επιτάχυνση αα ενός κινούμενου σώματος δίνονται οι ακόλουθοι συνδυασμοί τιμών:
Α Λυκείου 7 Μαρτίου 2015 ΟΔΗΓΙΕΣ: 1. Η επεξεργασία των θεμάτων θα γίνει γραπτώς σε χαρτί Α4 ή σε τετράδιο που θα σας δοθεί (το οποίο θα παραδώσετε στο τέλος της εξέτασης). Εκεί θα σχεδιάσετε και όσα γραφήματα
Φύλλο Εργασίας. Εξ ορισμού το Foilsim κατά την έναρξή του έχει τις ακόλουθες τιμές προεπιλεγμένες:
Φύλλο Εργασίας Σημείωση: Δίπλα από το κάθε ερώτημα του φύλλου εργασίας και με υπογραμμισμένη γραμματοσειρά, δίνεται για τους σκοπούς του παρόντος διδακτικού σεναρίου και από μία σύντομη ενδεικτική απάντηση.
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΕΝΙΟ Σχολή Μηχανολόγων Μηχανικών ΤΟΜΕΑΣ ΘΕΡΜΙΚΩΝ ΣΤΡΟΒΙΛΟΜΗΧΑΝΩΝ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΕΝΙΟ Σχολή Μηχανολόγων Μηχανικών ΤΟΜΕΑΣ ΘΕΡΜΙΚΩΝ ΣΤΡΟΒΙΛΟΜΗΧΑΝΩΝ Υπολογιστικό Θέµα Σχεδίαση υπερηχητικής αεροτοµής µε ελαχιστοποίηση του υπερηχητικού κρότου Υπεύθυνος καθ/της:κ.χ.γιαννάκογλου
ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ. Επιμέλεια: Γ. Π. Βαξεβάνης (Γ. Π. Β.
ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ Γ. Π. Β. ΦΡΟΝΤΙΣΤΗΡΙΑΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ Επιμέλεια: Γ. Π. Βαξεβάνης (Γ. Π. Β.) (Μαθηματικός) ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ
Εργ.Αεροδυναμικής,ΕΜΠ. Καθ. Γ.Μπεργελές
Η Τεχνολογία των Ελικοπτέρων Τι είναι τα ελικόπτερα Κατηγορίες Ελικοπτέρων Τυπικό ελικόπτερο Υβριδικό αεροσκάφος Tilt-rotor Πως λειτουργεί μιά έλικα Ι U = ταχύτητα πτήσης η σχετική ταχύτητα του αέρα ως
Η εντολή «επανέλαβε Χ»
Η εντολή «επανέλαβε Χ» Όπως είδαμε πιο πάνω, η εντολή για πάντα είναι χρήσιμη σε διάφορα προγράμματα όταν π.χ. θέλουμε να δείξουμε την κίνηση της γης γύρω από τον ήλιο ή για να αναπαραστήσουμε το δίλημμα
Η ΔΟΜΗ ΕΠΑΝΑΛΗΨΗΣ Εντολές Επανάληψης REPEAT UNTIL, FOR, WHILE
ΕΡΓΑΣΤΗΡΙΟ 7 Ο Η ΔΟΜΗ ΕΠΑΝΑΛΗΨΗΣ Εντολές Επανάληψης REPEAT UNTIL, FOR, WHILE Βασικές Έννοιες: Δομή Επανάληψης, Εντολές Επανάληψης (For, While do, Repeat until), Αλγόριθμος, Αθροιστής, Μετρητής, Παράσταση
ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8
ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ Άλγεβρα 1 ο Κεφάλαιο 1. Τι ονομάζουμε αριθμητική και τι αλγεβρική παράσταση; Να δώσετε από ένα παράδειγμα. Μια παράσταση που περιέχει πράξεις με αριθμούς, καλείται αριθμητική παράσταση,
8.4. Δραστηριότητες - ασκήσεις
8.4. Δραστηριότητες - ασκήσεις ΣΤΗΝ ΤΑΞΗ ΔΤ1. ΔΤ2. ΔΤ3. ΔΤ4. Αν η μεταβλητή Α έχει την τιμή 10, η μεταβλητή Β έχει την τιμή 5 και η μεταβλητή Γ έχει την τιμή 3, ποιες από τις παρακάτω εκφράσεις είναι αληθείς
Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον
Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον 2.4.5 8.2 Βασικές Ασκήσεις στις Δομές Επανάληψης Έλεγχος Εισαγόμενων Τιμών Εύρεση Αθροισμάτων - Μέσων όρων Εύρεση Μέγιστου- Ελάχιστου Εύρεση Πλήθους Ποσοστών
Ένωση Ελλήνων Φυσικών ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ 2015 Πανεπιστήμιο Αθηνών, Εργαστήριο Φυσικών Επιστημών, Τεχνολογίας, Περιβάλλοντος
Β Λυκείου 7 Μαρτίου 2015 ΟΔΗΓΙΕΣ: 1. Η επεξεργασία των θεμάτων θα γίνει γραπτώς σε χαρτί Α4 ή σε τετράδιο που θα σας δοθεί (το οποίο θα παραδώσετε στο τέλος της εξέτασης). Εκεί θα σχεδιάσετε και όσα γραφήματα
ΚΑΤΑΣΚΕΥΗ ΠΑΡΑΛΛΗΛΟΓΡΑΜΜΩΝ ΜΕ ΧΡΗΣΗ LOGO
1 ΚΑΤΑΣΚΕΥΗ ΠΑΡΑΛΛΗΛΟΓΡΑΜΜΩΝ ΜΕ ΧΡΗΣΗ LOGO ΦΥΛΛΑ ΕΡΓΑΣΙΑΣ ΜΑΘΗΤΗ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ 1 1. Τοποθέτησε μια χελώνα στην επιφάνεια εργασίας. 2. Με ποια εντολή γράφει η χελώνα μας;.. 3. Γράψε την εντολή για να πάει
5. Σε ορθογώνιο σύστημα αξόνων να σχεδιαστούν οι ευθείες που έχουν εξισώσεις τις: β. y = 4 δ. x = y
. Δύο φίλοι, ο Μάρκος και ο Βασίλης, έχουν άθροισμα ηλικιών 7 χρόνια, και ο Μάρκος είναι μεγαλύτερος από το Βασίλη. Μπορείτε να υπολογίσετε την ηλικία του καθενός; Να δικαιολογήσετε την απάντησή σας. β.
ΘΕΜΑ Α ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ
1ΗΣ ΣΕΛΙΔΑΣ ΘΕΜΑ Α ΑΝΑΚΕΦΑΛΑΙΩΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ Γ' ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 26 ΑΠΡΙΛΙΟΥ 2012 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΥ
ΕΡΓΑΣΙΑ 1 Ημερομηνία Ανάρτησης: 02/02/2017 Ημερομηνία Παράδοσης: 16/02/2017, 09:00 π.μ. Στόχος Ορισμός
ΕΡΓΑΣΙΑ 1 Ημερομηνία Ανάρτησης: 02/02/2017 Ημερομηνία Παράδοσης: 16/02/2017, 09:00 π.μ. Στόχος Στόχος αυτής της εργασίας είναι η χρησιμοποίηση δομών ελέγχου και βρόχων. Διαβάστε προσεχτικά το πρόβλημα
ΑΝΩΤΑΤΟ ΣΥΜΒΟΥΛΙΟ ΕΠΙΛΟΓΗΣ ΠΡΟΣΩΠΙΚΟΥ
Proslipsis.gr ΑΝΩΤΑΤΟ ΣΥΜΒΟΥΛΙΟ ΕΠΙΛΟΓΗΣ ΠΡΟΣΩΠΙΚΟΥ ΔΙΑΓΩΝΙΣΜΟΣ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΕΤΟΥΣ 006 ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΟΥ Κλάδος: ΠΕ 0 ΜΑΘΗΜΑΤΙΚΩΝ ΕΞΕΤΑΣΗ ΣΤΗΝ ΠΡΩΤΗ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ (Γνωστικό αντικείμενο)
ΕΠΛ 003: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΙΣΤΗΜΗ ΤΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ
ΕΠΛ 003: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΙΣΤΗΜΗ ΤΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δρ. Κόννης Γιώργος Πανεπιστήμιο Κύπρου - Τμήμα Πληροφορικής Προγραμματισμός Στόχοι 1 Να περιγράψουμε τις έννοιες του Υπολογιστικού Προβλήματος και του Προγράμματος/Αλγορίθμου
ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 11 ΣΤΡΟΒΙΛΟΚΙΝΗΤΗΡΩΝ
ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΘΕΡΜΟΚΙΝΗΤΗΡΩΝ ΚΑΙ ΘΕΡΜΙΚΩΝ ΣΤΡΟΒΙΛΟΜΗΧΑΝΩΝ ΔΙΔΑΚΤΙΚΗ ΠΕΡΙΟΧΗ: ΕΡΓΑΣΤΗΡΙΟ ΣΤΡΟΒΙΛΟΚΙΝΗΤΗΡΩΝ Υπεύθυνος: Επικ. Καθηγητής Δρ. Α. ΦΑΤΣΗΣ ΕΡΓΑΣΤΗΡΙΑΚΗ
ΚΕΦΑΛΑΙΟ 3 Ο ΡΕΥΣΤΑ ΣΕ ΚΙΝΗΣΗ
166 Α. ΕΡΩΤΗΣΕΙΣ ΑΝΟΙΚΤΟΥ ΤΥΠΟΥ: ΚΕΦΑΛΑΙΟ 3 Ο ΡΕΥΣΤΑ ΣΕ ΚΙΝΗΣΗ 1. Να αναφέρεται παραδείγματα φαινομένων που μπορούν να ερμηνευτούν με την μελέτη των ρευστών σε ισορροπία. 2. Ποια σώματα ονομάζονται ρευστά;
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Πολιτικών Μηχανικών Τοµέας Υδατικών Πόρων Μάθηµα: Αστικά Υδραυλικά Έργα Μέρος Α: Υδρευτικά έργα
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Πολιτικών Μηχανικών Τοµέας Υδατικών Πόρων Μάθηµα: Αστικά Υδραυλικά Έργα Μέρος Α: Υδρευτικά έργα Άσκηση E9: Εκτίµηση παροχών εξόδου κόµβων, υπολογισµός ελάχιστης κατώτατης
αξιοποίηση των ΤΠΕ: Η logo στη διδακτική διδακτική πράξη
Παιδαγωγική αξιοποίηση Δρ. Ι. Μπέλλου, Σχ αξιοποίηση των ΤΠΕ: Η logo στη διδακτική διδακτική πράξη Μια προσέγγιση για τη Γ Γυμνασίου Σχ. Σύμβουλος ΠΕ19 Δρ. Ιωάννα Μπέλλου Σχ. Σύμβουλος ΠΕ19 Μια διδακτική
Ημερομηνία: Τρίτη 27 Δεκεμβρίου 2016 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ
ΤΑΞΗ: ΜΑΘΗΜΑ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΕΠΠ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Ημερομηνία: Τρίτη 27 Δεκεμβρίου 2016 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α1. Να γράψετε στο τετράδιό σας το γράμμα κάθε πρότασης και δίπλα σε
Ο Προγραμματισμός στην Πράξη
Ο Προγραμματισμός στην Πράξη Το περιβάλλον προγραμματισμού MicroWorlds Pro Μενού επιλογών Γραμμή εργαλείων Επιφάνεια εργασίας Περιοχή Καρτελών Κέντρο εντολών Καρτέλες Οι πρώτες εντολές Εντολές εμφάνισης
ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να εξετάσετε αν ισχύουν οι υποθέσεις του Θ.Μ.Τ. για την συνάρτηση στο διάστημα [ 1,1] τέτοιο, ώστε: C στο σημείο (,f( ))
ΚΕΦΑΛΑΙΟ ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 6: ΘΕΩΡΗΜΑ ΜΕΣΗΣ ΤΙΜΗΣ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ (Θ.Μ.Τ.) [Θεώρημα Μέσης Τιμής Διαφορικού Λογισμού του κεφ..5 Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ Παράδειγμα. ΘΕΜΑ
i) Αν (,, ) είναι μια πυθαγόρεια τριάδα και είναι ένας θετικός ακέραιος, να αποδείξετε ότι και η τριάδα (,,
1. i) Να αποδείξετε την ταυτότητα 1 ( ) ( ) ( ) + + = + +. ii) Να αποδείξετε ότι για όλους τους,, ισχύει Πότε ισχύει ισότητα; + + + +.. Λέμε ότι μια τριάδα θετικών ακεραίων (,, ) είναι όταν είναι πλευρές
Στατιστική Ι. Ενότητα 9: Κατανομή t-έλεγχος Υποθέσεων. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών
Στατιστική Ι Ενότητα 9: Κατανομή t-έλεγχος Υποθέσεων Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για
min f(x) x R n b j - g j (x) = s j - b j = 0 g j (x) + s j = 0 - b j ) min L(x, s, λ) x R n λ, s R m L x i = 1, 2,, n (1) m L(x, s, λ) = f(x) +
KΕΦΑΛΑΙΟ 4 Κλασσικές Μέθοδοι Βελτιστοποίησης Με Περιορισµούς Ανισότητες 4. ΠΡΟΒΛΗΜΑΤΑ ΜΕ ΠΕΡΙΟΡΙΣΜΟΥΣ ΑΝΙΣΟΤΗΤΕΣ Ζητούνται οι τιµές των µεταβλητών απόφασης που ελαχιστοποιούν την αντικειµενική συνάρτηση
Πρόβλημα 29 / σελίδα 28
Πρόβλημα 29 / σελίδα 28 Πρόβλημα 30 / σελίδα 28 Αντιμετάθεση / σελίδα 10 Να γράψετε αλγόριθμο, οποίος θα διαβάζει τα περιεχόμενα δύο μεταβλητών Α και Β, στη συνέχεια να αντιμεταθέτει τα περιεχόμενά τους
5.1 Δραστηριότητα: Εισαγωγή στο ορισμένο ολοκλήρωμα
5.1 Δραστηριότητα: Εισαγωγή στο ορισμένο ολοκλήρωμα Θέμα της δραστηριότητας Η δραστηριότητα εισάγει τους μαθητές στο ολοκλήρωμα Riemann μέσω του υπολογισμού του εμβαδού ενός παραβολικού χωρίου. Στόχοι
Έλικες Θεωρία γραμμής άνωσης
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΒΙΟΜΗΧΑΝΙΚΗΣ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ ΑΕΡΟΔΥΝΑΜΙΚΗ Διδάσκων: Δρ. Ριζιώτης Βασίλης Έλικες Θεωρία γραμμής άνωσης Άδεια Χρήσης Το
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΔΙΑΤΜΗΜΑΤΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ «ΣΧΕΔΙΑΣΜΟΣ ΚΑΙ ΚΑΤΑΣΚΕΥΗ ΥΠΟΓΕΙΩΝ ΕΡΓΩΝ»
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΔΙΑΤΜΗΜΑΤΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ «ΣΧΕΔΙΑΣΜΟΣ ΚΑΙ ΚΑΤΑΣΚΕΥΗ ΥΠΟΓΕΙΩΝ ΕΡΓΩΝ» ΜΑΘΗΜΑ: ΗΛΕΚΤΡΟΜΗΧΑΝΟΛΟΓΙΚΕΣ ΕΓΚΑΤΑΣΤΑΣΕΙΣ ΔΙΔΑΣΚΩΝ: Επικ. Καθ. Δ. ΜΑΘΙΟΥΛΑΚΗΣ ΘΕΜΑΤΑ ΤΕΤΡΑΜΗΝΟΥ
Εργαστήριο Βιομηχανικής Πληροφορικής Τμήμα Πληροφορικής και Επικοινωνιών, ΤΕΙ Σερρών
ΑΣΚΗΣΗ 1 Έστω ένας εργοστασιακός φούρνος. Το αν οι αντιστάσεις του φούρνου λειτουργούν ή όχι, εξαρτάται από μια μεταβλητή C η οποία παίρνει τιμές από 0 μέχρι και 10. Με μηδέν σημαίνει ότι δεν περνάει καθόλου
max & min Μεθοδολογία Τα βήματα που ακολουθούμε σε όλες τις τεχνικές εύρεσης max & min είναι τα εξής 2:
max & min Μεθοδολογία Τα βήματα που ακολουθούμε σε όλες τις τεχνικές εύρεσης max & min είναι τα εξής 2: 1. Υπόθεση Ξεκινάμε με μια αυθαίρετη παραδοχή ότι κάποιος από τους αριθμούς που εξετάζουμε είναι
Πώς μπορούμε να δημιουργούμε γεωμετρικά σχέδια με τη Logo;
Κεφάλαιο 2 Εισαγωγή Πώς μπορούμε να δημιουργούμε γεωμετρικά σχέδια με τη Logo; Η Logo είναι μία από τις πολλές γλώσσες προγραμματισμού. Κάθε γλώσσα προγραμματισμού έχει σκοπό τη δημιουργία προγραμμάτων
ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ Τελικές εξετάσεις 3 Ιανουαρίου 27 Διάρκεια εξέτασης: 3 ώρες (2:-5:) ΘΕΜΑ ο
Μαθηματικά. Ενότητα 3: Ολοκληρωτικός Λογισμός Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη)
Μαθηματικά Ενότητα 3: Ολοκληρωτικός Λογισμός Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
1. Ανάλυση Συμπεριφοράς Αεροσκάφους
. Ανάλυση Συμπεριφοράς Αεροσκάφους Στην ανάλυση συμπεριφοράς, που θα διαπραγματευτούμε σε αυτό το κεφάλαιο, αμελούμε την λεπτομερή αεροδυναμική συμπεριφορά του αεροσκάφους, όπως την επίδραση των επιφανειών
. Πρόκειται για ένα σημαντικό βήμα, καθώς η παράμετρος χρόνος υποχρεωτικά μεταβάλλεται σε κάθε είδους κίνηση. Η επιλογή της χρονικής στιγμής t o
Στις ασκήσεις Κινητικής υπάρχουν αρκετοί τρόποι για να δουλέψουμε. Ένας από αυτούς είναι με τη σωστή χρήση των εξισώσεων θέσης (κίνησης) και ταχύτητας των σωμάτων που περιγράφονται. Τα βήματα που ακολουθούμε
2.3 ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ
ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ.ptetragono.gr Σελίδα. ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ Να βρεθεί το μέτρο των μιγαδικών :..... 0 0. 5 5 6.. 0 0. 5. 5 5 0 0 0 0 0 0 0 0 ΜΕΘΟΔΟΛΟΓΙΑ : ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ Αν τότε. Αν χρειαστεί
Μιγαδικοί Αριθμοί. Μαθηματικά Γ! Λυκείου Θετική και Τεχνολογική Κατεύθυνση. Υποδειγματικά λυμένες ασκήσεις Ασκήσεις προς λύση
Μιγαδικοί Αριθμοί Μαθηματικά Γ! Λυκείου Θετική και Τεχνολογική Κατεύθυνση Υποδειγματικά λυμένες ασκήσεις Ασκήσεις προς λύση ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Υποδειγματικά Λυμένες Ασκήσεις Άλυτες Ασκήσεις ΛΑ Να βρείτε
ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΣΠΟΥΔΕΣ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΜΑΪΟΥ
ΑΡΧΗ 1ης ΣΕΛΙ ΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΣΠΟΥΔΕΣ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΜΑΪΟΥ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 7 ΘΕΜΑ Α : Α1. Να
Σκοπός. Εργαστήριο 6 Εντολές Επανάληψης
Εργαστήριο 6 Εντολές Επανάληψης Η δομή Επιλογής στη PASCAL H δομή Επανάληψης στη PASCAL. Ρεύμα Εισόδου / Εξόδου.. Ρεύμα Εισόδου / Εξόδου. To πρόγραμμα γραφικών gnuplot. Γραφικά στη PASCAL. Σκοπός 6.1 ΕΠΙΔΙΩΞΗ
ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ. Ύλη: Ευθύγραμμη Κίνηση
ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ Ον/μο:.. A Λυκείου Ύλη: Ευθύγραμμη Κίνηση 13-11-2016 Θέμα 1 ο : 1) Η έκφραση 2m/s 2 όταν αναφέρεται σε κινητό που εκτελεί ευθύγραμμη κίνηση σημαίνει ότι: α) η θέση του κινητού αλλάζει
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΘΕΜΑ Α Ερώτηση θεωρίας Αν η συνάρτηση f είναι παραγωγίσιμη στο R και c είναι μια πραγματική σταθερά, να δείξετε ότι: ( c f( )) = c f ( ),. Έστω F( )
Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον
Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον ΘΕΜΑ Α Α1. Να χαρακτηρίσετε καθεμιά από τις προτάσεις που ακολουθούν γράφοντας στο τετράδιό σας, δίπλα από τον αριθμό κάθε πρότασης, το γράμμα Σ, αν αυτή
ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι
ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι κ. ΠΕΤΑΛΙΔΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται
ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟΔΕΙΞΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ
ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟΔΕΙΞΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ Κεφάλαιο ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ο ΜΕΡΟΣ Απαντήσεις στις ερωτήσεις του τύπου Σωστό-Λάθος. Σ 6. Λ 8. Λ. Σ 7. Σ 9. Λ 3. Λ 8. Λ 3. Σ 4. Σ 9. Σ 3. α Σ 5. Σ. Σ β Σ 6. Λ.
Θέμα Α(25 Μονάδες) Α1. (5 μονάδες) Α2. (5 μονάδες) Α3. (5 μονάδες) Α4. (5 μονάδες)
ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ ΣΕΠΤΕΜΒΡΙΟΥ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΚΑΙ Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 13 ΣΕΠΤΕΜΒΡΙΟΥ 018 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΞΙ (6) Θέμα
Συναρτήσεις. 5.1 Η έννοια της συνάρτησης. 1. Να συμπληρώσετε τις τιμές των παρακάτω συναρτήσεων : α) ψ = 2χ + 6 o Για χ = -1,5 : ψ =..=..
Συναρτήσεις. 5.1 Η έννοια της συνάρτησης. 1. Να συμπληρώσετε τις τιμές των παρακάτω συναρτήσεων : α) ψ = 2χ + 6 o Για χ = 1 : ψ =..=.. = o Για χ = -1 : ψ =..=.. = o Για χ = 0 : ψ =..=.. = o Για χ = 2 :
ΑΠΑΝΤΗΣΕΙΣ. H διαδικασία ανεύρεσης λογικών λαθών περιλαμβάνει : β- Σωστό. Διαπίστωση του είδους του λάθους γ- Σωστό δ- Λάθος
ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΤΑΞΗ ΕΠΑΛ (ΟΜΑΔΑ Α ) & ΜΑΘΗΜΑΤΩΝ ΕΙΔΙΚΟΤΗΤΑΣ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΤΕΤΑΡΤΗ 08/04/2015 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΟΚΤΩ (8) ΘΕΜΑ Α ΑΠΑΝΤΗΣΕΙΣ Α1. Α2. α-
Υπολογιστές Ι. Άδειες Χρήσης. Μεταβλητές και πράξεις. Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Άδειες Χρήσης Υπολογιστές Ι Μεταβλητές και πράξεις Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης Το παρόν εκπαιδευτικό υλικό υπόκειται
TO ΥΠΟΠΡΟΓΡΑΜΜΑ ΣΥΝΑΡΤΗΣΗ
Μάθημα 7 - Υποπρογράμματα Εργαστήριο 11 Ο TO ΥΠΟΠΡΟΓΡΑΜΜΑ ΣΥΝΑΡΤΗΣΗ Βασικές Έννοιες: Υποπρόγραμμα, Ανάλυση προβλήματος, top down σχεδίαση, Συνάρτηση, Διαδικασία, Παράμετρος, Κλήση συνάρτησης, Μετάβαση
Η επιτάχυνση της βαρύτητας στον Πλανήτη Άρη είναι g=3,7 m/s 2 και τα πλαίσια αποτελούν μεγέθυνση των αντίστοιχων θέσεων.
ΟΔΗΓΙΕΣ: 1. Η επεξεργασία των θεμάτων θα γίνει γραπτώς σε χαρτί Α4 ή σε τετράδιο που θα σας δοθεί (το οποίο θα παραδώσετε στο τέλος της εξέτασης). Εκεί θα σχεδιάσετε και όσα γραφήματα ζητούνται στο Θεωρητικό
ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΥΠΟΛΟΓΙΣΤΩΝ
Εισαγωγή ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΥΠΟΛΟΓΙΣΤΩΝ Όπως για όλες τις επιστήμες, έτσι και για την επιστήμη της Πληροφορικής, ο τελικός στόχος της είναι η επίλυση προβλημάτων. Λύνονται όμως όλα τα προβλήματα;
Βελτίωση Λογισμικού Ανάλυσης Αποστολής Αεροσκαφών
Βελτίωση Λογισμικού Ανάλυσης Αποστολής Αεροσκαφών Διπλωματική Εργασία Σωτήριος Δ. Μπουμπλίνης Επιβλέπων: Ν. Αρετάκης Λέκτορας ΕΜΠ Αθήνα Δεκέμβριος 213 Πρόλογος Από την θέση αυτή θα ήθελα να ευχαριστήσω