ΜΕΘΟΔΟΙ ΑΕΡΟΔΥΝΑΜΙΚΗΣ
|
|
- Σεμέλη Σπυρόπουλος
- 7 χρόνια πριν
- Προβολές:
Transcript
1 ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Εργαστήριο Θερμικών Στροβιλομηχανών Μονάδα Παράλληλης ης Υπολογιστικής Ρευστοδυναμικής & Βελτιστοποίησης ΜΕΘΟΔΟΙ ΑΕΡΟΔΥΝΑΜΙΚΗΣ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ (7 ο Εξάμηνο Σχολής Μηχ.Μηχ. ΕΜΠ) Η Συνεχής Συζυγής Μέθοδος για Χρονικά Μη-Μόνιμες Ροές (Unsteady Adjoint) Κυριάκος Χ. Γιαννάκογλου Kαθηγητής ΕΜΠ
2 Εισαγωγή Υλικό από μερικά εξαιρετικά Homeworks που παρέδωσαν σπουδαστές του 7 ου εξαμήνου κατά το ακ. Έτος Υλικό από τις εργασίες των: Σταματίνα Παγουλάτου Γεωργία Νυκτερή Κωνσταντίνου Γκαραγκούνη K.C. Giannakoglou, Parallel CFD & Optimization Unit, NTUA, Greece 2
3 Το Παράδειγμα-Πρόβλημα Σε ένα απομονωμένο νησί ζουν αποκλειστικά λαγοί και αλεπούδες. Λόγω της πυκνής βλάστησης, οι λαγοί βρίσκουν άφθονη τροφή, πρακτικά χωρίς να επηρεάζεται από τον εκάστοτε πληθυσμό τους. Από την άλλη πλευρά,, οι αλεπούδες στηρίζουν τη διατροφή τους, άρα εξαρτούν την ύπαρξή τους (και τον πληθυσμό τους), από το κυνήγι του λαγού. Αν κατά τη χρονική στιγμή t, ο πληθυσμός των λαγών και των αλεπούδων συμβολίζεται αντίστοιχα με N R(t) και N F(t), η χρονική εξέλιξη του οικοσυστήματος λαγών-αλεπούδων περιγράφεται από το σύστημα συνήθων διαφορικών εξισώσεων (σ.δ.ε.): dnr = αnr βnrnf dt dnf = γ NF + εnrnf dt Η φυσική σημασία των44 θετικών συντελεστών (ελληνικά ά γράμματα) ) είναι εύλογη: [α] είναι ο ρυθμός αναπαραγωγής λαγών, [β] είναι ο ρυθμός εξολόθρευσης λαγών από τις αλεπούδες, [γ] είναι ο ρυθμός φυσικού θανάτου των αλεπούδων και [ε] είναι ο συντελεστής επιβίωσης των αλεπούδων. Το μαθηματικό μοντέλο δεν λαμβάνει υπόψη το φυσικό θάνατο των λαγών (αμελητέος μπροστά την εξολόθρευσή τους από τις αλεπούδες) και το ρυθμό αναπαραγωγής αλεπούδων (υπερτίθεται στο [γ] της δεύτερης εξίσωσης). Ο χρόνος t μετράται σε «χρονικές μονάδες», οι οποίες ορίζονται στη συνέχεια. Οι συντελεστές [α], [γ] είναι γνωστοί-σταθεροί αριθμοί (συμβατές μονάδες). K.C. Giannakoglou, Parallel CFD & Optimization Unit, NTUA, Greece 3
4 Βήμα 1: Αναζητήστε στο βιβλίο Αριθμητικής Ανάλυσης σχετικό αλγόριθμο και λογισμικό που λύνει το πρόβλημα με Runge-Kutta. Πρακτικά, το μόνο που έχετε να κάνετε είναι να τροποποιήσετε τα δδ δεδομένα του λογισμικού. Χρησιμοποιήστε αρχικές τιμές N R =1000 και N F =20 και β=600, ε=100 (σε συμβατές μονάδες). Τρέξτε το λογισμικό, καταλάβετε το ρόλο των πολλαπλασιαστών α, β, γ και ε και σχεδιάστε σχήματα όπως αυτά του βιβλίου της Αριθμητικής Ανάλυσης, δηλαδή την εξέλιξη του N R και του Ν F συναρτήσει του χρόνου t αλλά και το διάγραμμα N F =N F (N R ). Πραγματοποιήστε 2500 χρονικάβήματαμεχρονικό βήμα Δt= 0.25x10-6 «χρονικές μονάδες». Ενημερωτικά, τα 2500 «χρονικά βήματα» καλύπτουν μια διετία (έτσι, αν έχετε περιέργεια, μπορείτε να βρείτε με τι ισούται η «χρονική μονάδα»). Για τη συνέχεια, θα συμβολίζουμε με Τ το συνολικό χρόνο μελέτης του οικοσυστήματος (τη διετία, δηλαδή) με βάση τα προηγούμενα δεδομένα. K.C. Giannakoglou, Parallel CFD & Optimization Unit, NTUA, Greece 4
5 Ανάλυση Περί Χρόνου: 2500 χρονικά βήματα Χρονικό βήμα Δt= 0.25x10-6 «χρονικές μονάδες». Διετία=720 μέρες=720x24 ώρες Χρονικό βήμα Δt=7 ώρες (περίπου) K.C. Giannakoglou, Parallel CFD & Optimization Unit, NTUA, Greece 5
6 Ανάλυση Σταθερές: α=12000, γ=90000 Περίπτωση: β=600, ε=100 Αρχικοποίηση: N R =1000, N F =20 K.C. Giannakoglou, Parallel CFD & Optimization Unit, NTUA, Greece 6
7 Ανάλυση Σταθερές: α=12300, γ=84000 Περίπτωση: β=600, ε=100 Αρχικοποίηση: N R =1000, N F =20 K.C. Giannakoglou, Parallel CFD & Optimization Unit, NTUA, Greece 7
8 Βήμα 2: Μπορούμε να ρυθμίσουμε δύο από τις παραμέτρους του συστήματος, τις [β] και [ε] οι άλλες δύο παραμένουν σταθερές) μέσω χημικών ψεκασμών (μην ρωτήσετε με τι!). Με άλλα λόγια, τα [β] και [ε] είναι οι δύο μεταβλητές/άγνωστοι του προβλήματος βλ βελτιστοποίησης που επιθυμούμε να επιλύσουμε. Μας ενδιαφέρει η συμπεριφορά του παραπάνω οικοσυστήματος για το χρονικό διάστημα από t=0 μέχρι t=t. Κατά τη μηδενική χρονική στιγμή, το οικοσύστημα ξεκινά με 1000 λαγούς και 20 αλεπούδες. Συγκεκριμένα, θα θέλαμε, στο παραπάνω διάστημα, κάθε στιγμή το πλήθος λαγών N R (t) να είναι όσο το δυνατόν πλησιέστερα στην τιμή 750. Γράψτε το στη μορφή συνάρτησης στόχου (ως ένα πρόβλημα αντίστροφου σχεδιασμού με σταθερή (στα 750) συνάρτηση-στόχο. στόχο. Διατυπώστε τη συνεχή συζυγή μέθοδο για την εύρεση των παραγώγων (ως προς [β] και [ε]) της προαναφερθείσας συνάρτησης στόχου. Δώστε συζυγείς εξισώσεις (σ.δ.ε. ως προς το χρόνο, φυσικά), συζυγείς οριακές συνθήκες και τις εκφράσεις των δύο παραγώγων. γ Σχολιάστε την ιδιαιτερότητα (με ποια φορά στο χρόνο θα λύνονται σκεφτείτε το λ.χ. με κριτήριο τη χρονική στιγμή στην οποία επιβάλλονται αρχικές συνθήκες στο ευθύ και στο αντίστροφο πρόβλημα) των συζυγών σ.δ.ε. K.C. Giannakoglou, Parallel CFD & Optimization Unit, NTUA, Greece 8
9 Διατύπωση της Συνεχούς Συζυγούς Μεθόδου Να ελαχιστοποιηθεί υπό τους περιορισμούς: K.C. Giannakoglou, Parallel CFD & Optimization Unit, NTUA, Greece 9
10 Διατύπωση της Συνεχούς Συζυγούς Μεθόδου K.C. Giannakoglou, Parallel CFD & Optimization Unit, NTUA, Greece 10
11 Διατύπωση της Συνεχούς Συζυγούς Μεθόδου K.C. Giannakoglou, Parallel CFD & Optimization Unit, NTUA, Greece 11
12 Διατύπωση της Συνεχούς Συζυγούς Μεθόδου K.C. Giannakoglou, Parallel CFD & Optimization Unit, NTUA, Greece 12
13 Διατύπωση Συνεχούς Συζυγούς Μεθόδου K.C. Giannakoglou, Parallel CFD & Optimization Unit, NTUA, Greece 13
14 Διατύπωση Συνεχούς Συζυγούς Μεθόδου Πεδιακές Συζυγείς Εξισώσεις (FAE) Συγκρίνετε με Εξισώσεις Κατάστασης K.C. Giannakoglou, Parallel CFD & Optimization Unit, NTUA, Greece 14
15 Διατύπωση Συνεχούς Συζυγούς Μεθόδου Συζυγείς Οριακές Συνθήκες (ABC) Άρα: Χρ.ολοκλήρωση πρωτεύοντος προβλήματος 0 Τ Χρ.ολοκλήρωση συζυγούς προβλήματος Χρόνος K.C. Giannakoglou, Parallel CFD & Optimization Unit, NTUA, Greece 15
16 Διατύπωση Συνεχούς Συζυγούς Μεθόδου Παράγωγοι ευαισθησίας (SD) K.C. Giannakoglou, Parallel CFD & Optimization Unit, NTUA, Greece 16
17 Βήμα 3: Προγραμματίσετε την επίλυση της χρονικά μη-μόνιμης συζυγούς εξίσωσης με τον ίδιο επιλύτη (Runge-Kutta) όπως και το ευθύ πρόβλημα. Δημιουργήστε και τρέξτε μέθοδο βλ βελτιστοποίησης (μέθοδο δ απότομης καθόδου). ) Βρείτε τα βέλτιστα [β] και [ε]. Ξεκινήστε με β=600 και ε=100 (συμβατές μονάδες). Ενημερωτικά, λόγω ιδιομορφίας του προβλήματος, ίσως χρειαστείτε κάποιες χιλιάδες κύκλων βελτιστοποίησης (γιατί συμβαίνει αυτό;). Σχολιάστε τις ιδιαιτερότητες που έχει η συζυγής μέθοδος σε χρονικά μη-μόνιμαμόνιμα προβλήματα. Σχεδιάστε τις συζυγείς μεταβλητές (λ.χ. στον πρώτο κύκλο της βελτιστοποίησης) συναρτήσει του χρόνου και τη μία ως συνάρτηση της άλλης (όπως κάνατε και για τις πρωτεύουσες μεταβλητές). Θα προκύψουν ενδιαφέροντα σχήματα. Σχολιάστε τα. Κάντε και για τη βέλτιστη λύση τα ίδια διαγράμματα που κάνατε στο πρώτο βήμα. Παρουσιάστε μαζί τα διαγράμματα των λύσεων για την αρχική και την τελική (βέλτιστη) λύση. Σχολιάστε. λά K.C. Giannakoglou, Parallel CFD & Optimization Unit, NTUA, Greece 17
18 Εφαρμογή Συνεχούς Συζυγούς Μεθόδου Συζυγείς Μεταβλητές στον 1 ο Κύκλο Βελτιστοποίησης Σταθερές: α=12000, γ=90000 K.C. Giannakoglou, Parallel CFD & Optimization Unit, NTUA, Greece 18
19 Εφαρμογή Συνεχούς Συζυγούς Μεθόδου Σταθερές: α=12000, γ=90000 K.C. Giannakoglou, Parallel CFD & Optimization Unit, NTUA, Greece 19
20 Εφαρμογή Συνεχούς Συζυγούς Μεθόδου Σταθερές: α=12000, γ=90000 K.C. Giannakoglou, Parallel CFD & Optimization Unit, NTUA, Greece 20
21 Εφαρμογή Συνεχούς Συζυγούς Μεθόδου Σταθερές: α=12000, γ=90000 K.C. Giannakoglou, Parallel CFD & Optimization Unit, NTUA, Greece 21
22 Εφαρμογή Συνεχούς Συζυγούς Μεθόδου Σταθερές: α=12000, γ=90000 K.C. Giannakoglou, Parallel CFD & Optimization Unit, NTUA, Greece 22
23 Εφαρμογή Συνεχούς Συζυγούς Μεθόδου Σταθερές: α=12600, γ=81000 K.C. Giannakoglou, Parallel CFD & Optimization Unit, NTUA, Greece 23
24 Εφαρμογή Συνεχούς Συζυγούς Μεθόδου Σταθερές: α=12600, γ=81000 K.C. Giannakoglou, Parallel CFD & Optimization Unit, NTUA, Greece 24
ΜΕΘΟΔΟΙ ΑΕΡΟΔΥΝΑΜΙΚΗΣ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Εργαστήριο Θερμικών Στροβιλομηχανών Μονάδα Παράλληλης ης Υπολογιστικής Ρευστοδυναμικής & Βελτιστοποίησης ΜΕΘΟΔΟΙ ΑΕΡΟΔΥΝΑΜΙΚΗΣ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ (7 ο Εξάμηνο Σχολής Μηχ.Μηχ. ΕΜΠ)
ΜΕΘΟΔΟΙ ΑΕΡΟΔΥΝΑΜΙΚΗΣ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Εργαστήριο Θερμικών Στροβιλομηχανών Μονάδα Παράλληλης ης Υπολογιστικής Ρευστοδυναμικής & Βελτιστοποίησης ΜΕΘΟΔΟΙ ΑΕΡΟΔΥΝΑΜΙΚΗΣ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ (7 ο Εξάμηνο Σχολής Μηχ.Μηχ. ΕΜΠ)
ΠΑΡΕΜΒΟΛΗ ΜΕΣΩ SPLINES
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Εργαστήριο Θερμικών Στροβιλομηχανών Μονάδα Παράλληλης ης Υπολογιστικής Ρευστοδυναμικής & Βελτιστοποίησης ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ (3 ο Εξάμηνο Σχομής Μηχ.Μηχ. ΕΜΠ) ΠΑΡΕΜΒΟΛΗ ΜΕΣΩ
ΥΒΡΙΔΙΚΑ ΠΛΕΓΜΑΤΑ. Κυριάκος Χ. Γιαννάκογλου Kαθηγητής ΕΜΠ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Εργαστήριο Θερμικών Στροβιλομηχανών Μονάδα Παράλληλης ης Υπολογιστικής Ρευστοδυναμικής & Βελτιστοποίησης ΥΒΡΙΔΙΚΑ ΠΛΕΓΜΑΤΑ Κυριάκος Χ. Γιαννάκογλου Kαθηγητής ΕΜΠ kgianna@central.ntua.gr
ΓΕΝΕΣΗ ΕΠΙΦΑΝΕΙΑΚΩΝ ΠΛΕΓΜΑΤΩΝ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Εργαστήριο Θερμικών Στροβιλομηχανών Μονάδα Παράλληλης ης Υπολογιστικής Ρευστοδυναμικής & Βελτιστοποίησης ΓΕΝΕΣΗ ΕΠΙΦΑΝΕΙΑΚΩΝ ΠΛΕΓΜΑΤΩΝ Κυριάκος Χ. Γιαννάκογλου Kαθηγητής ΕΜΠ
ΘΕΡΜΙΚΕΣ ΡΕΥΣΤΟΜΗΧΑΝΙΚΗΣ. Κυριάκος Χ. Γιαννάκογλου Kαθηγητής ΕΜΠ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Εργαστήριο Θερμικών Στροβιλομηχανών Μονάδα Παράλληλης ης Υπολογιστικής Ρευστοδυναμικής & Βελτιστοποίησης ΘΕΡΜΙΚΕΣ ΣΤΡΟΒΙΛΟΜΗΧΑΝΕΣ (5 ο Εξάμηνο Σχολής Μηχ.Μηχ. ΕΜΠ) ΥΠΕΝΘΥΜΙΣΗ
ΟΛΟΚΛΗΡΩΜΑΤΙΚΕΣ ΜΕΘΟΔΟΙ ΥΠΟΛΟΓΙΣΜΟΥ ΣΥΝΕΚΤΙΚΩΝ ΣΤΡΩΜΑΤΩΝ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Εργαστήριο Θερμικών Στροβιλομηχανών Μονάδα Παράλληλης ης Υπολογιστικής Ρευστοδυναμικής & Βελτιστοποίησης ΣΥΝΕΚΤΙΚΕΣ ΡΟΕΣ ΣΤΙΣ ΣΤΡΟΒΙΛΟΜΗΧΑΝΕΣ (9 ο Εξάμηνο Σχολής Μηχ.Μηχ. ΕΜΠ)
ΔΙΑΜΕΡΙΣΜΟΣ ΜΗ_ΔΟΜΗΜΕΝΩΝ ΠΛΕΓΜΑΤΩΝ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Εργαστήριο Θερμικών Στροβιλομηχανών Μονάδα Παράλληλης ης Υπολογιστικής Ρευστοδυναμικής & Βελτιστοποίησης ΔΙΑΜΕΡΙΣΜΟΣ ΜΗ_ΔΟΜΗΜΕΝΩΝ ΠΛΕΓΜΑΤΩΝ ΓΙΑ ΠΑΡΑΛΛΗΛΗ ΕΠΕΞΕΡΓΑΣΙΑ Κυριάκος
ΓΝΩΣΕΩΝ ΘΕΡΜΟΔΥΝΑΜΙΚΗΣ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Εργαστήριο Θερμικών Στροβιλομηχανών Μονάδα Παράλληλης ης Υπολογιστικής Ρευστοδυναμικής & Βελτιστοποίησης ΘΕΡΜΙΚΕΣ ΣΤΡΟΒΙΛΟΜΗΧΑΝΕΣ (5 ο Εξάμηνο Σχολής Μηχ.Μηχ. ΕΜΠ) ΣΥΝΟΨΗ ΕΠΑΝΑΛΗΨΗ
ΣΦΑΛΜΑΤΑ ΑΡΙΘΜΗΤΙΚΩΝ ΥΠΟΛΟΓΙΣΜΩΝ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Εργαστήριο Θερμικών Στροβιλομηχανών Μονάδα Παράλληλης Υπολογιστικής Ρευστοδυναμικής & Βελτιστοποίησης ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ (4 ο Εξάμηνο Σχολής Μηχ.Μηχ. ΕΜΠ) ΣΦΑΛΜΑΤΑ ΑΡΙΘΜΗΤΙΚΩΝ
ΑΚΤΙΝΙΚΟΣ ΣΥΜΠΙΕΣΤΗΣ. ΘΕΡΜΙΚΕΣ ΣΤΡΟΒΙΛΟΜΗΧΑΝΕΣ (5 ο Εξάμηνο Σχολής Μηχ.Μηχ. ΕΜΠ) Κυριάκος Χ. Γιαννάκογλου Kαθηγητής ΕΜΠ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Εργαστήριο Θερμικών Στροβιλομηχανών Μονάδα Παράλληλης ης Υπολογιστικής Ρευστοδυναμικής & Βελτιστοποίησης ΘΕΡΜΙΚΕΣ ΣΤΡΟΒΙΛΟΜΗΧΑΝΕΣ (5 ο Εξάμηνο Σχολής Μηχ.Μηχ. ΕΜΠ) Ο ΦΥΓΟΚΕΝΤΡΙΚΟΣ
Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών
Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Οι παρούσες σημειώσεις αποτελούν βοήθημα στο μάθημα Αριθμητικές Μέθοδοι του 5 ου εξαμήνου του ΤΜΜ ημήτρης Βαλουγεώργης Καθηγητής Εργαστήριο Φυσικών
Συστήματα Αυτομάτου Ελέγχου ΙΙ Ασκήσεις Πράξης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΑΤΤΙΚΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΒΙΟΜΗΧΑΝΙΚΗΣ ΣΧΕΔΙΑΣΗΣ & ΠΑΡΑΓΩΓΗΣ ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΙΙ ΑΣΚΗΣΕΙΣ ΠΡΑΞΗΣ Αν Καθ: Δ ΔΗΜΟΓΙΑΝΝΟΠΟΥΛΟΣ Επικ Καθ: Σ ΒΑΣΙΛΕΙΑΔΟΥ Συστήματα
Προσαρμογή 2Δ και 3Δ πλεγμάτων σε μεταβαλλόμενα όρια με τη μέθοδο των κινούμενων ελάχιστων τετράγωνων (MLS)
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΥΠΟΛΟΓΙΣΤΙΚΗ ΜΗΧΑΝΙΚΗ Mεταπτυχιακή εργασία με θέμα: Προσαρμογή 2Δ και 3Δ πλεγμάτων σε μεταβαλλόμενα όρια με τη μέθοδο των κινούμενων
Δυναμική Μηχανών I. Επίλυση Προβλημάτων Αρχικών Συνθηκών σε Συνήθεις. Διαφορικές Εξισώσεις με Σταθερούς Συντελεστές
Δυναμική Μηχανών I Επίλυση Προβλημάτων Αρχικών Συνθηκών σε Συνήθεις 5 3 Διαφορικές Εξισώσεις με Σταθερούς Συντελεστές 2015 Δημήτριος Τζεράνης, Ph.D Τμήμα Μηχανολόγων Μηχανικών Ε.Μ.Π. tzeranis@gmail.com
3 η ΕΝΟΤΗΤΑ ΜΗ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΕΝΟΣ ΚΡΙΤΗΡΙΟΥ
ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΜΠ ΕΙΣΑΓΩΓΗ ΣΤΗN ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ 3 η ΕΝΟΤΗΤΑ ΜΗ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΕΝΟΣ ΚΡΙΤΗΡΙΟΥ Μ. Καρλαύτης Ν. Λαγαρός Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό
min f(x) x R n b j - g j (x) = s j - b j = 0 g j (x) + s j = 0 - b j ) min L(x, s, λ) x R n λ, s R m L x i = 1, 2,, n (1) m L(x, s, λ) = f(x) +
KΕΦΑΛΑΙΟ 4 Κλασσικές Μέθοδοι Βελτιστοποίησης Με Περιορισµούς Ανισότητες 4. ΠΡΟΒΛΗΜΑΤΑ ΜΕ ΠΕΡΙΟΡΙΣΜΟΥΣ ΑΝΙΣΟΤΗΤΕΣ Ζητούνται οι τιµές των µεταβλητών απόφασης που ελαχιστοποιούν την αντικειµενική συνάρτηση
Μέθοδοι Αεροδυναμικής Βελτιστοποίησης
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Εργαστήριο Θερμικών Στροβιλομηχανών Μονάδα Παράλληλης ης Υπολογιστικής Ρευστοδυναμικής & Βελτιστοποίησης Μέθοδοι Αεροδυναμικής Βελτιστοποίησης 7 ο Εξάμηνο Σχολής Μηχανολόγων
Μέθοδοι πολυδιάστατης ελαχιστοποίησης
Μέθοδοι πολυδιάστατης ελαχιστοποίησης με παραγώγους Μέθοδοι πολυδιάστατης ελαχιστοποίησης Δ. Γ. Παπαγεωργίου Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων dpapageo@cc.uoi.gr http://pc64.materials.uoi.gr/dpapageo
ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ
ΥΠΕΥΘΥΝΟΣ ΚΑΘΗΓΗΤΗΣ Α. Ντούνης ΔΙΔΑΣΚΩΝ Χ. Τσιρώνης ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ - Αναλυτικές τεχνικές - Ειδικά θέματα θεωρίας - Λύση ασκήσεων πράξης ΑΝΑΛΥΤΙΚΕΣ ΤΕΧΝΙΚΕΣ Τι μάθαμε μέχρι τώρα: Να επιλύουμε
6. Στατιστικές μέθοδοι εκπαίδευσης
6. Στατιστικές μέθοδοι εκπαίδευσης Μία διαφορετική μέθοδος εκπαίδευσης των νευρωνικών δικτύων χρησιμοποιεί ιδέες από την Στατιστική Φυσική για να φέρει τελικά το ίδιο αποτέλεσμα όπως οι άλλες μέθοδοι,
Λύσεις Εξετάσεων Φεβρουαρίου Ακ. Έτους
ΜΑΘΗΜΑΤΙΚΑ, 6-7 ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΕΠΙΚ. ΚΑΘ. ΣΤΑΥΡΟΣ ΤΟΥΜΠΗΣ Λύσεις Εξετάσεων Φεβρουαρίου Ακ. Έτους 6-7. Περιοδικές Συναρτήσεις) Έστω συνεχής συνάρτηση f : R R περιοδική
Εξομάλυνση Συναρτησιακών Βελτιστοποίησης σε Μη-Δομημένα Επιφανειακά Πλέγματα
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΔΠΜΣ ΥΠΟΛΟΓΙΣΤΙΚΗ ΜΗΧΑΝΙΚΗ Εξομάλυνση Συναρτησιακών Βελτιστοποίησης σε Μη-Δομημένα Επιφανειακά Πλέγματα Μεταπτυχιακή Διπλωματική Εργασία του ΕΛΕΥΘΕΡΙΟΥ Ι. ΦΟΥΝΤΗ Επιβλέπων :
ΦΥΣ 145 Μαθηµατικές Μέθοδοι στη Φυσική. 10 Μαίου 2010
ΦΥΣ 145 Μαθηµατικές Μέθοδοι στη Φυσική 10 Μαίου 2010 Συµπληρώστε τα στοιχεία σας στο παρακάτω πίνακα τώρα Ονοµατεπώνυµο Αρ. Ταυτότητας Username Password Δηµιουργήστε ένα φάκελο στο home directory σας µε
ΧΡΟΝΙΚΗ ΟΛΟΚΛΗΡΩΣΗ. Για την επίλυση χρονομεταβαλλόμενων προβλημάτων η διακριτοποίηση στο χώρο γίνεται με πεπερασμένα στοιχεία και είναι της μορφής:
ΧΡΟΝΙΚΗ ΟΛΟΚΛΗΡΩΣΗ Για την επίλυση χρονομεταβαλλόμενων προβλημάτων η διακριτοποίηση στο χώρο γίνεται με πεπερασμένα στοιχεία και είναι της μορφής: (,)(,)()() h 1 u x t u x t u t x (1) e Η διαφορά με τα
f x και τέσσερα ζευγάρια σημείων
ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, 014 015, 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #: ΑΡΙΘΜΗΤΙΚΗ ΠΑΡΕΜΒΟΛΗ Ημερομηνία ανάρτησης εργασίας στην ιστοσελίδα του μαθήματος: 1 11 014 Ημερομηνία παράδοσης εργασίας: 18 11 014 Επιμέλεια απαντήσεων:
Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος
Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Χιωτίδης Γεώργιος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΡΕΥΣΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΘΕΡΜΙΚΩΝ ΣΤΡΟΒΙΛΟΜΗΧΑΝΩΝ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΡΕΥΣΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΘΕΡΜΙΚΩΝ ΣΤΡΟΒΙΛΟΜΗΧΑΝΩΝ Η Μέθοδος της Διαφορικής Εξέλιξης στη Μονοκριτηριακή και Πολυκριτηριακή Αεροδυναμική Βελτιστοποίηση,
Κεφ. 7: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών
Κεφ. 7: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών 7. Εισαγωγή (ορισμός προβλήματος, αριθμητική ολοκλήρωση ΣΔΕ, αντικατάσταση ΣΔΕ τάξης n με n εξισώσεις ης τάξης) 7. Μέθοδος Euler 7.3
Σχεδιασμός Χημικών Διεργασιών και Βιομηχανιών Διάλεξη 6
Σχεδιασμός Χημικών Διεργασιών και Βιομηχανιών Διάλεξη 6 Δευτέρα, 14 Απριλίου 008 Οικονομική Ανάλυση Βιομηχανιών και Διεργασιών 1 Εισαγωγή Αριστοποίηση: ενός κριτηρίου (αντικειμενικής συνάρτησης) πολυκριτηριακή
η απόσταση d γίνεται ελάχιστη. Τα αντίστοιχα σημεία των καμπυλών είναι: P, P, , P, P, ( 2) ,
Λύσεις Ασκήσεων ου Κεφαλαίου 45 και επειδή d x x = / = 7.5649 > η απόσταση d γίνεται ελάχιστη. Τα αντίστοιχα σημεία των καμπυλών είναι: και ( x ) = ( x x ) = P P, P,.58975,.478 x =.58975 x =.58975 ( x
Βέλτιστος Έλεγχος Συστημάτων
Βέλτιστος Έλεγχος Συστημάτων Ενότητα 9: Αρχή της Βελτιστοποίησης-Θεωρία Hamilton Jacobi Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σημείωμα
ΠΑΡΑΛΛΗΛΗ ΕΠΕΞΕΡΓΑΣΙΑ
ΠΑΡΑΛΛΗΛΗ ΕΠΕΞΕΡΓΑΣΙΑ ΜΕΤΡΑ ΑΠΟΔΟΣΗΣ ΕΡΓΑΣΤΗΡΙΟ ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΥΨΗΛΩΝ ΕΠΙΔΟΣΕΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΥΨΗΛΩΝ ΕΠΙΔΟΣΕΩΝ Η
Συστήματα Αυτομάτου Ελέγχου Ι Ασκήσεις Πράξης
ΑΝΩΤΑΤΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΠΕΙΡΑΙΑ ΤΕΧΝΟΛΟΓΙΚΟΥ ΤΟΜΕΑ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΑΥΤΟΜΑΤΙΣΜΟΥ ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ Ι ΑΣΚΗΣΕΙΣ ΠΡΑΞΗΣ Καθηγητς: Δ. ΔΗΜΟΓΙΑΝΝΟΠΟΥΛΟΣ Καθ. Εφαρμ: Σ. ΒΑΣΙΛΕΙΑΔΟΥ
Θέματα Εξετάσεων Σεπτεμβρίου 2012:
ο ΕΞΑΜΗΝΟ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΜΠ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ: ΣΕΠΤΕΜΒΡΙΟΣ Θέματα Εξετάσεων Σεπτεμβρίου : ΘΕΜΑ (μονάδες ) Καμπύλη Bezier δημιουργείται από σημεία ελέγχου, που κατά σειρά είναι τα: (,), (?,?),
Μέθοδοι μονοδιάστατης ελαχιστοποίησης
Βασικές αρχές μεθόδων ελαχιστοποίησης Μέθοδοι μονοδιάστατης ελαχιστοποίησης Οι μέθοδοι ελαχιστοποίησης είναι επαναληπτικές. Ξεκινώντας από μια αρχική προσέγγιση του ελαχίστου (την συμβολίζουμε ) παράγουν
Συμβολή στην οικονομική εφαρμογή της συνεχούς συζυγούς μεθόδου για χρονικά μη-μόνιμα προβλήματα ροής
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Μηχανολόγων Μηχανικών Τομέας Ρευστών Εργαστήριο Θερμικών Στροβιλομηχανών Μονάδα Παράλληλης Υπολογιστικής Ρευστοδυναμικής & Βελτιστοποίησης (ΜΠΥΡ&Β) Συμβολή στην οικονομική
Συστήματα Αυτομάτου Ελέγχου Ι Ασκήσεις Πράξης
ΑΝΩΤΑΤΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΠΕΙΡΑΙΑ ΤΕΧΝΟΛΟΓΙΚΟΥ ΤΟΜΕΑ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΑΥΤΟΜΑΤΙΣΜΟΥ Τ.Ε. ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ Ι ΑΣΚΗΣΕΙΣ ΠΡΑΞΗΣ Καθηγητής: Δ. ΔΗΜΟΓΙΑΝΝΟΠΟΥΛΟΣ Καθ. Εφαρμ:
Θεωρία Δυαδικότητας ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ. Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου. Επιχειρησιακή Έρευνα
Θεωρία Δυαδικότητας Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Επιχειρησιακή Έρευνα Περιεχόμενα Παρουσίασης 1. Βασικά Θεωρήματα 2. Παραδείγματα 3. Οικονομική Ερμηνεία
Συστήματα Αυτομάτου Ελέγχου Ι Ασκήσεις Πράξης - Τεστ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΑΤΤΙΚΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΒΙΟΜΗΧΑΝΙΚΗΣ ΣΧΕΔΙΑΣΗΣ & ΠΑΡΑΓΩΓΗΣ ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ Ι ΑΣΚΗΣΕΙΣ ΠΡΑΞΗΣ Αν Καθ: Δ ΔΗΜΟΓΙΑΝΝΟΠΟΥΛΟΣ Επικ Καθ: Σ ΒΑΣΙΛΕΙΑΔΟΥ Συστήματα
5269: Υπολογιστικές Μέθοδοι για Μηχανικούς. Συνήθεις Διαφορικές Εξισώσεις Πρόβλημα Αρχικών τιμών (B)
569: Υπολογιστικές Μέθοδοι για Μηχανικούς Συνήθεις Διαφορικές Εξισώσεις Πρόβλημα Αρχικών τιμών B ttp://ecoursescemengntuagr/courses/computational_metods_or_engineers/ Επίλυση διαφορικών εξισώσεων Α Επίλυση
Λύσεις θεμάτων Α εξεταστικής περιόδου χειμερινού εξαμήνου 2013-14 (Ιούνιος 2014)
Λύσεις θεμάτων Α εξεταστικής περιόδου χειμερινού εξαμήνου 201314 (Ιούνιος 2014) ΘΕΜΑ 1 Ο (3,0 μονάδες) Στο παρακάτω σχήμα δίνεται το δομικό λειτουργικό διάγραμμα που περιγράφει ένα αναγνωριστικό αυτοκινούμενο
Στοχαστικές Στρατηγικές. διαδρομής (1)
Στοχαστικές Στρατηγικές η ενότητα: Το γενικό πρόβλημα ελάχιστης διαδρομής () Τμήμα Μαθηματικών, ΑΠΘ Ακαδημαϊκό έτος 08-09 Χειμερινό Εξάμηνο Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ & Πανεπιστήμιο
ΔΙΑΧΕΙΡΙΣΗ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΔΙΑΧΕΙΡΙΣΗ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ Συνδυασμένη χρήση μοντέλων προσομοίωσης βελτιστοποίησης. Η μέθοδος του μητρώου μοναδιαίας απόκρισης Νικόλαος
ΥΠΟΛΟΓΙΣΤΙΚΗ ΡΕΥΣΤΟΔΥΝΑΜΙΚΗ ΜΕ ΤΗ ΜΕΘΟΔΟ ΤΩΝ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ
ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΥΠΟΛΟΓΙΣΤΙΚΗ ΡΕΥΣΤΟΔΥΝΑΜΙΚΗ ΜΕ ΤΗ ΜΕΘΟΔΟ ΤΩΝ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ Εαρινό Εξάμηνο 2017 Διδάσκουσα: Δρ. Βλαχομήτρου Μαρία ΠΡΟΤΕΙΝΟΜΕΝΗ ΒΙΒΛΙΟΓΡΑΦΙΑ 1.
ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΜΑΘΗΜΑΤΙΚΗ ΔΙΑΤΥΠΩΣΗ, Διαλ. 2. Ανωτάτη Σχολή Παιδαγωγικής και Τεχνολογικής Εκπαίδευσης 8/4/2017
ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΜΑΘΗΜΑΤΙΚΗ ΔΙΑΤΥΠΩΣΗ, Διαλ. 2 Ανωτάτη Σχολή Παιδαγωγικής και Τεχνολογικής Εκπαίδευσης 8/4/2017 Αντικειμενικοί στόχοι Η μελέτη των βασικών στοιχείων που συνθέτουν ένα πρόβλημα βελτιστοποίησης
Αντικείμενο του κεφαλαίου είναι: Ανάλυση συσχέτισης μεταξύ δύο μεταβλητών. Εξίσωση παλινδρόμησης. Πρόβλεψη εξέλιξης
Γραμμική Παλινδρόμηση και Συσχέτιση Αντικείμενο του κεφαλαίου είναι: Ανάλυση συσχέτισης μεταξύ δύο μεταβλητών Εξίσωση παλινδρόμησης Πρόβλεψη εξέλιξης Διμεταβλητές συσχετίσεις Πολλές φορές χρειάζεται να
Κεφ. 6Β: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών
Κεφ. 6Β: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών. Εισαγωγή (ορισμός προβλήματος, αριθμητική ολοκλήρωση ΣΔΕ, αντικατάσταση ΣΔΕ τάξης n με n εξισώσεις ης τάξης). Μέθοδος Euler 3. Μέθοδοι
Εφαρμοσμένη Βελτιστοποίηση
Εφαρμοσμένη Βελτιστοποίηση Ενότητα 1: Το πρόβλημα της βελτιστοποίησης Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σημείωμα Αδειοδότησης Το
Θέματα Εξετάσεων Σεπτεμβρίου 2010:
ο ΕΞΑΜΗΝΟ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΜΠ ΕΞΕΑΣΙΚΗ ΠΕΡΙΟΔΟΣ: ΣΕΠΕΜΒΡΙΟΣ Θέματα Εξετάσεων Σεπτεμβρίου : ΘΕΜΑ μονάδες Στο επίπεδο, ορίζεται χωρίο που περικλείεται από τον άξονα των δηλ. την οριζόντια ευθεία που
ΑΞΙΟΠΙΣΤΙΑ ΚΑΙ ΣΥΝΤΗΡΗΣΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής. Pr T T0
ΑΞΙΟΠΙΣΤΙΑ ΚΑΙ ΣΥΝΤΗΡΗΣΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής Δεσμευμένη αξιοπιστία Η δεσμευμένη αξιοπιστία R t είναι η πιθανότητα το σύστημα να λειτουργήσει για χρονικό
ΟΜΑΔΑ Ε ΓΕΩΡΓΙΟΥ ΦΩΤΕΙΝΗ ΗΛΙΟΥΔΗ ΑΦΡΟΔΙΤΗ ΜΕΤΑΛΛΙΔΟΥ ΧΡΥΣΗ ΝΙΖΑΜΗΣ ΑΛΕΞΑΝΔΡΟΣ ΤΖΗΚΑΛΑΓΙΑΣ ΑΝΔΡΕΑΣ ΤΡΙΓΚΑΣ ΑΓΓΕΛΟΣ
ΟΜΑΔΑ Ε ΓΕΩΡΓΙΟΥ ΦΩΤΕΙΝΗ ΗΛΙΟΥΔΗ ΑΦΡΟΔΙΤΗ ΜΕΤΑΛΛΙΔΟΥ ΧΡΥΣΗ ΝΙΖΑΜΗΣ ΑΛΕΞΑΝΔΡΟΣ ΤΖΗΚΑΛΑΓΙΑΣ ΑΝΔΡΕΑΣ ΤΡΙΓΚΑΣ ΑΓΓΕΛΟΣ Η ΔΙΔΑΣΚΑΛΙΑ ΤΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΣΤΟ ΛΥΚΕΙΟ Εισαγωγή Η μεγάλη ανάπτυξη και ο ρόλος που
Εργαστήριο Δημογραφικών & Κοινωνικών Αναλύσεων
ΥΠΟΔΕΙΓΜΑΤΑ ΣΤΑΣΙΜΟΥ ΚΑΙ ΣΤΑΘΕΡΟΥ ΠΛΗΘΥΣΜΟΥ (ΕΛΕΥΘΕΡΙΑ ΑΝΔΡΟΥΛΑΚΗ) Η εξέταση των πολύπλοκων δεσμών που συνδέουν τα δημογραφικά φαινόμενα με τους πληθυσμούς από τους οποίους προέρχονται και τους οποίους
Αριθμητική Επίλυση Συνήθων Διαφορίκών Εξισώσεων 3ο Εργαστήριο 27/03/2015 1
Αριθμητική Επίλυση Συνήθων Διαφορίκών Εξισώσεων 3ο Εργαστήριο 7/3/5 Σκοπός αυτού του εργαστηρίου είναι να δούμε πως μπορούμε να επιλύσουμε συστήματα διαφορικών εξισώσεων, με την χρήση του Matlab. Συστήματα
Εισαγωγή στην υδροπληροφορική και βελτιστοποίηση συστημάτων υδατικών πόρων
Σημειώσεις στα πλαίσια του μαθήματος: Βελτιστοποίηση Συστημάτων Υδατικών Πόρων Υδροπληροφορική Εισαγωγή στην υδροπληροφορική και βελτιστοποίηση συστημάτων υδατικών πόρων Ανδρέας Ευστρατιάδης, Χρήστος Μακρόπουλος
Μέθοδοι μονοδιάστατης ελαχιστοποίησης
Βασικές αρχές μεθόδων ελαχιστοποίησης Μέθοδοι μονοδιάστατης ελαχιστοποίησης Οι μέθοδοι ελαχιστοποίησης είναι επαναληπτικές. Ξεκινώντας από μια αρχική προσέγγιση του ελαχίστου (την συμβολίζουμε ) παράγουν
Βέλτιστος Έλεγχος Συστημάτων
Βέλτιστος Έλεγχος Συστημάτων Ενότητα 12: Αρχή ελαχίστου του Pontryagin Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σημείωμα Αδειοδότησης Το
Προσαρμογή καμπύλης με τη μέθοδο των ελαχίστων τετραγώνων
Σχολή Χημικών Μηχανικών ΕΜΠ Ανάλυση Συστημάτων Χημικής Μηχανικής, ο εξάμηνο Προσαρμογή καμπύλης με τη μέθοδο των ελαχίστων τετραγώνων Διδάσκοντες: Χ. Κυρανούδης, Γ. Μαυρωτάς Εισαγωγή Με βάση κάποιο δείγμα
Εισαγωγή στην υδροπληροφορική και βελτιστοποίηση συστημάτων υδατικών πόρων
Σημειώσεις στα πλαίσια του μαθήματος: Βελτιστοποίηση Συστημάτων Υδατικών Πόρων Υδροπληροφορική Εισαγωγή στην υδροπληροφορική και βελτιστοποίηση συστημάτων υδατικών πόρων Ανδρέας Ευστρατιάδης, Χρήστος Μακρόπουλος
Εισαγωγή στην επιστήμη των υπολογιστών. Λογισμικό Υπολογιστών Κεφάλαιο 8ο Αλγόριθμοι
Εισαγωγή στην επιστήμη των υπολογιστών Λογισμικό Υπολογιστών Κεφάλαιο 8ο Αλγόριθμοι 1 Έννοια Ανεπίσημα, ένας αλγόριθμος είναι μια βήμα προς βήμα μέθοδος για την επίλυση ενός προβλήματος ή την διεκπεραίωση
ΒΕΛΤΙΣΤΟΣ ΣΧΕΔΙΑΣΜΟΣ ΤΩΝ ΚΑΤΑΣΚΕΥΩΝ. Δρ. Πολ. Μηχ. Κόκκινος Οδυσσέας
ΒΕΛΤΙΣΤΟΣ ΣΧΕΔΙΑΣΜΟΣ ΤΩΝ ΚΑΤΑΣΚΕΥΩΝ Δρ. Πολ. Μηχ. Κόκκινος Οδυσσέας Σχεδιασμός αντικειμένων, διεργασιών, δραστηριοτήτων (π.χ. τεχνικά έργα, έπιπλα, σκεύη κτλ) ΠΡΟΚΑΤΑΡΚΤΙΚΗ ΜΕΛΕΤΗ (conceptual design) ΠΡΟΜΕΛΕΤΗ
Μάθημα Επιλογής 8 ου εξαμήνου
EΘNIKO ΜEΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΙΙ: Ανάλυσης, Σχεδιασμού & Ανάπτυξης Διεργασιών & Συστημάτων Υπολογιστικές Μέθοδοι Ανάλυσης και Σχεδιασμού Μάθημα Επιλογής 8 ου εξαμήνου Διδάσκων:
Αστικά υδραυλικά έργα
Εθνικό Μετσόβιο Πολυτεχνείο Τομέας Υδατικών Πόρων και Περιβάλλοντος Αστικά υδραυλικά έργα Υδραυλική ανάλυση δικτύων διανομής Δημήτρης Κουτσογιάννης, Καθηγητής ΕΜΠ Σχολή Πολιτικών Μηχανικών Άδεια Χρήσης
Λύσεις θεμάτων Επιχειρησιακής Έρευνας (17/09/2014)
Λύσεις θεμάτων Επιχειρησιακής Έρευνας (17/09/2014) Θέμα 1 Μια επιχείρηση χρησιμοποιεί 3 πρώτες ύλες Α, Β, Γ για να παράγει 2 προϊόντα Π1 και Π2. Για την παραγωγή μιας μονάδας προϊόντος Α απαιτούνται 1
Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D.
Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D. Μη γραμμικός προγραμματισμός: βελτιστοποίηση χωρίς περιορισμούς Πανεπιστήμιο Θεσσαλίας Σχολή Θετικών Επιστημών ΤμήμαΠληροφορικής Διάλεξη 7-8 η /2017 Τι παρουσιάστηκε
Τα περισσότερα προβλήματα βελτιστοποίησης είναι με περιορισμούς, αλλά οι μέθοδοι επίλυσης χωρίς περιορισμούς έχουν γενικό ενδιαφέρον.
ΜΗ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΧΩΡΙΣ ΠΕΡΙΟΡΙΣΜΟΥΣ Τα περισσότερα προβλήματα βελτιστοποίησης είναι με περιορισμούς, αλλά οι μέθοδοι επίλυσης χωρίς περιορισμούς έχουν γενικό ενδιαφέρον. Μέθοδοι που απαιτούν
Kεφάλαιο 4. Συστήματα διαφορικών εξισώσεων. F : : F = F r, όπου r xy
4 Εισαγωγή Kεφάλαιο 4 Συστήματα διαφορικών εξισώσεων Εστω διανυσματικό πεδίο F : : F = Fr, όπου r x, και είναι η ταχύτητα στο σημείο πχ ενός ρευστού στο επίπεδο Εστω ότι ψάχνουμε τις τροχιές κίνησης των
f(x) = και στην συνέχεια
ΕΡΩΤΗΣΕΙΣ ΜΑΘΗΤΩΝ Ερώτηση. Στις συναρτήσεις μπορούμε να μετασχηματίσουμε πρώτα τον τύπο τους και μετά να βρίσκουμε το πεδίο ορισμού τους; Όχι. Το πεδίο ορισμού της συνάρτησης το βρίσκουμε πριν μετασχηματίσουμε
Τμήμα Διοίκησης Επιχειρήσεων
Τμήμα Διοίκησης Επιχειρήσεων ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΤΗ ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ Ενότητα 2: Γραφική επίλυση προβληµάτων γραµµικού προγραµµατισµού(γ.π.) ιδάσκων: Βασίλειος Ισµυρλής Τηλ:6979948174, e-mail: vasismir@gmail.com
Συστήματα Αυτομάτου Ελέγχου
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτομάτου Ελέγχου Ενότητα Α: Γραμμικά Συστήματα Όνομα Καθηγητή: Ραγκούση Μαρία Τμήμα: Ηλεκτρονικών Μηχανικών Τ.Ε. Άδειες
Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D.
Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D. Μη γραμμικός προγραμματισμός: μέθοδοι μονοδιάστατης ελαχιστοποίησης Πανεπιστήμιο Θεσσαλίας Σχολή Θετικών Επιστημών ΤμήμαΠληροφορικής Διάλεξη 6 η /2017 Τι παρουσιάστηκε
Αριθμητική Ανάλυση και Εφαρμογές
Αριθμητική Ανάλυση και Εφαρμογές Διδάσκων: Δημήτριος Ι. Φωτιάδης Τμήμα Μηχανικών Επιστήμης Υλικών Ιωάννινα 07-08 Αριθμητική Παραγώγιση Εισαγωγή Ορισμός 7. Αν y f x είναι μια συνάρτηση ορισμένη σε ένα διάστημα
2g z z f k k z z f k k z z V D 2g 2g 2g D 2g f L ka D
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΟΜΕΑΣ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ & ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΜΑΘΗΜΑ: ΥΔΡΑΥΛΙΚΗ ΚΑΙ ΥΔΡΑΥΛΙΚΑ ΕΡΓΑ ΕΞΕΤΑΣΗ ΠΡΟΟΔΟΥ ΝΟΕΜΒΡΙΟΥ 017 Άσκηση 1 1. Οι δεξαμενές Α και Β, του Σχήματος 1, συνδέονται με σωλήνα
Πληροφορική ΙΙ Ενότητα 1
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Πληροφορική ΙΙ Ενότητα 1: Εισαγωγή Θεματική Ενότητα: Εισαγωγή στον Προγραμματισμό Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός
Φ. Δογάνης I. Bafumba Χ. Σαρίμβεης. Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Χημικών Μηχανικών Μονάδα Αυτόματης Ρύθμισης και Πληροφορικής
Αριστοποίηση παραγωγής ηλεκτρικής ενέργειας από συντονισμένη αξιοποίηση υδροηλεκτρικών και συμβατικών μονάδων ηλεκτροπαραγωγής με χρήση μικτού ακέραιου τετραγωνικού προγραμματισμού. Φ. Δογάνης I. Bafumba
Επίλυση Προβλημάτων Βελτιστοποίησης με Χρήση της Μεθόδου του Διαδοχικού Τετραγωνικού Προγραμματισμού (SQP) και Εφαρμογές. Διπλωματική Εργασία
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Μηχανολόγων Μηχανικών Τομέας Ρευστών Εργαστήριο Θερμικών Στροβιλομηχανών Μονάδα Παράλληλης Υπολογιστικής Ρευστοδυναμικής & Βελτιστοποίησης Επίλυση Προβλημάτων Βελτιστοποίησης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 3: Περιγραφή αριθμητικών μεθόδων (συνέχεια)
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ Διάλεξη 3: Περιγραφή αριθμητικών μεθόδων (συνέχεια) Χειμερινό εξάμηνο 2008 Προηγούμενη παρουσίαση... Εξετάσαμε
Βελτιστοποίηση εναλλακτών θερμότητας
Βελτιστοποίηση εναλλακτών θερμότητας Το πρώτο βήμα για την εύρεση των βέλτιστων διαστάσεων ή/και συνθηκών λειτουργίας, είναι ο καθορισμός του μεγέθους που θα βελτιστοποιηθεί, δηλαδή της αντικειμενικής
«Τεχνολογία και Προοπτικές εξέλιξης μικρών υδροστροβίλων» Δημήτριος Παπαντώνης και Ιωάννης Αναγνωστόπουλος
Τα μικρά Υδροηλεκτρικά Εργα γνωρίζουν τα τελευταία χρόνια σημαντική ανάπτυξη, τόσο στην Ευρώπη όσο και στον κόσμο ολόκληρο, είτε με την κατασκευή νέων ή με την ανανέωση του εξοπλισμού των υπαρχόντων σταθμών
ΥΠΟΛΟΓΙΣΤΙΚΗ ΜΕΛΕΤΗ ΤΗΣ ΧΩΡΟ-ΧΡΟΝΙΚΗΣ ΑΠΟΚΡΙΣΗΣ ΤΑΛΑΝΤΟΥΜΕΝΩΝ ΗΛΕΚΤΡΟΧΗΜΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΣΕ ΔΙΑΜΟΡΦΩΣΕΙΣ ΔΥΟ ΚΑΙ ΤΡΙΩΝ ΗΛΕΚΤΡΟΔΙΩΝ
ΥΠΟΛΟΓΙΣΤΙΚΗ ΜΕΛΕΤΗ ΤΗΣ ΧΩΡΟ-ΧΡΟΝΙΚΗΣ ΑΠΟΚΡΙΣΗΣ ΤΑΛΑΝΤΟΥΜΕΝΩΝ ΗΛΕΚΤΡΟΧΗΜΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΣΕ ΔΙΑΜΟΡΦΩΣΕΙΣ ΔΥΟ ΚΑΙ ΤΡΙΩΝ ΗΛΕΚΤΡΟΔΙΩΝ Παναγιώτης Σταματόπουλος, Αντώνης Καραντώνης Τομέας Επιστήμης και Τεχνικής
ενεργειακών απαιτήσεων πρώτης ύλης, ενεργειακού περιεχομένου παραπροϊόντων, τρόπους αξιοποίησής
Πίνακας. Πίνακας προτεινόμενων πτυχιακών εργασιών για το εαρινό εξάμηνο 03-4 ΤΜΗΜΑ: MHXANIKΩN ΕΝΕΡΓΕΙΑΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΤΟΜΕΑΣ: ΕΝΕΡΓΕΙΑΚΗΣ ΜΗΧΑΝΟΛΟΓΙΑΣ Α/Α Τίτλος θέματος Μέλος Ε.Π Σύντομη περιγραφή Προαπαιτούμενα
οµηµένος Εξελικτικός Αλγόριθµος
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΘΕΡΜΙΚΩΝ ΣΤΡΟΒΙΛΟΜΗΧΑΝΩΝ ιπλωµατική Εργασία: οµηµένος Εξελικτικός Αλγόριθµος του Ιωάννη Μ. Κλωνάρη Επιβλέπων: Κυριάκος Χ. Γιαννάκογλου
Γενικά Μαθηματικά (Φυλλάδιο 1 ο )
ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ Γενικά Μαθηματικά (Φυλλάδιο 1 ο ) Επιμέλεια Φυλλαδίου : Δρ. Σ. Σκλάβος Περιλαμβάνει: ΚΕΦΑΛΑΙΟ 1: ΣΥΝΑΡΤΗΣΕΙΣ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ ΚΕΦΑΛΑΙΟ : ΠΑΡΑΓΩΓΙΣΗ ΣΥΝΑΡΤΗΣΕΩΝ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ
ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΤΗΣ ΜΕΘΟΔΟΥ SIMPLEX
ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΤΗΣ ΜΕΘΟΔΟΥ SIMPLEX Θεμελιώδης αλγόριθμος επίλυσης προβλημάτων Γραμμικού Προγραμματισμού που κάνει χρήση της θεωρίας της Γραμμικής Άλγεβρας Προτάθηκε από το Dantzig (1947) και πλέον
ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟ ΟΙ
ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟ ΟΙ Σηµειώσεις µαθήµατος ηµήτρης Βαλουγεώργης Αναπληρωτής Καθηγητής Τµήµα Μηχανολόγων Μηχανικών Βιοµηχανίας Εργαστήριο Φυσικών και Χηµικών ιεργασιών Πολυτεχνική Σχολή Πανεπιστήµιο Θεσσαλίας
Υδραυλική των Υπόγειων Ροών
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 5: Αριθμητικά μοντέλα υπόγειων υδροορέων Καθηγητής Κωνσταντίνος Λ. Κατσιαράκης Αναπληρωτής Καθηγητής Νικόλαος Θεοδοσίου Καθηγητής
ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΔΙΑΚΡΙΤΩΝ ΕΝΑΛΛΑΚΤΙΚΩΝ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΣΥΝΘΕΣΗΣ ΔΙΕΡΓΑΣΙΩΝ
ΜΕΡΟΣ ΙΙ ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΔΙΑΚΡΙΤΩΝ ΕΝΑΛΛΑΚΤΙΚΩΝ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΣΥΝΘΕΣΗΣ ΔΙΕΡΓΑΣΙΩΝ 36 ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΔΙΑΚΡΙΤΩΝ ΕΝΑΛΛΑΚΤΙΚΩΝ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΣΥΝΘΕΣΗΣ ΔΙΕΡΓΑΣΙΩΝ Πολλές από τις αποφάσεις
(Γραμμικές) Αναδρομικές Σχέσεις
(Γραμμικές) Αναδρομικές Σχέσεις ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Αναδρομικές Σχέσεις Αναπαράσταση
Κεφάλαιο 3: Εισαγωγή στους αλγορίθμους - διαγράμματα ροής
Κεφάλαιο 3: Εισαγωγή στους αλγορίθμους - διαγράμματα ροής Αλγόριθμος (algorithm) λέγεται μία πεπερασμένη διαδικασία καλά ορισμένων βημάτων που ακολουθείται για τη λύση ενός προβλήματος. Το διάγραμμα ροής
Επιστημονικοί Υπολογισμοί (ή Υπολογιστική Επιστήμη)
Επιστημονικοί Υπολογισμοί (ή Υπολογιστική Επιστήμη) Ασχολoύνται με την κατασκευή μαθηματικών μοντέλων και με τεχνικές ποσοτικής ανάλυσης και τη χρήση υπολογιστών για την ανάλυση και την επίλυση επιστημονικών
Εισαγωγή στις Τηλεπικοινωνίες / Εργαστήριο
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Εισαγωγή στις Τηλεπικοινωνίες / Εργαστήριο Εργαστηριακή Άσκηση 4: Πειραματική μελέτη συστημάτων διαμόρφωσης συχνότητας (FΜ) Δρ.
Τυπικά θέματα εξετάσεων. ΠΡΟΣΟΧΗ: Οι ερωτήσεις που παρατίθενται ΔΕΝ καλύπτουν την πλήρη ύλη του μαθήματος και παρέχονται απλά ενδεικτικά
ΤΕΙ Κεντρικής Μακεδονίας Τμήμα Μηχανικών Πληροφορικής ΤΕ Μεταπτυχιακό Πρόγραμμα Τηλεπικοινωνιών & Πληροφορικής Μάθημα : 204a Υπολογιστική Ευφυία Μηχανική Μάθηση Καθηγητής : Σπύρος Καζαρλής Ενότηα : Εξελικτική
Π Α Ν Ε Π Ι Σ Τ Η Μ Ι Ο Θ Ε Σ Σ Α Λ Ι Α Σ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ Τμήμα Μηχανολόγων Μηχανικών Βιομηχανίας. Εργαστήριο Φυσικών και Χημικών Διεργασιών
Π Α Ν Ε Π Ι Σ Τ Η Μ Ι Ο Θ Ε Σ Σ Α Λ Ι Α Σ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ Τμήμα Μηχανολόγων Μηχανικών Βιομηχανίας Εργαστήριο Φυσικών και Χημικών Διεργασιών Αντίστροφος Σχεδιασμός και Βελτιστοποίηση Δικτύων Σωληνώσεων
ΚΕΦΑΛΑΙΟ 3. Περιγραφή της Μεθόδου ΠΕΡΙΓΡΑΦΗ ΤΗΣ ΜΕΘΟΔΟΥ
ΚΕΦΑΛΑΙΟ 3 Περιγραφή της Μεθόδου Το αντικείμενο αυτής της εργασίας είναι η χρήση μιας μεθόδου προσέγγισης συναρτήσεων που έχει προταθεί από τον hen-ha huang και ονομάζεται Ασαφώς Σταθμισμένη Παλινδρόμηση
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 7: Εξίσωση μη-μόνιμης διάχυσης (συνέχεια)
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ Διάλεξη 7: Εξίσωση μη-μόνιμης διάχυσης (συνέχεια) Χειμερινό εξάμηνο 2008 Προηγούμενη παρουσίαση... Είδαμε
Θέματα Προγραμματισμού Η/Υ
Πρόγραμμα Μεταπτυχιακών Σπουδών Πληροφορική και Υπολογιστική Βιοϊατρική Θέματα Προγραμματισμού Η/Υ Ενότητα 1: Εισαγωγή Θεματική Ενότητα: Εισαγωγή στον Προγραμματισμό ΘΕΜΑΤΑ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ Η/Υ Θεματική
Δυναμική Μηχανών I. Διάλεξη 11. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ
Δυναμική Μηχανών I Διάλεξη 11 Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ 1 Περιεχόμενα Γραμμικοποίηση Ευστάθεια Απόκριση Συστημάτων 1 Β.Ε. που περιγράφονται από ΣΔΕ 1 ης τάξης 2 Πρόβλημα/Ερώτημα
Βέλτιστος Έλεγχος Συστημάτων
Βέλτιστος Έλεγχος Συστημάτων Ενότητα 10: Δυναμικός προγραμματισμός Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σημείωμα Αδειοδότησης Το παρόν
Γραμμικά και μη γραμμικά συστήματα Αριθμητική προσέγγιση
Γραμμικά και μη γραμμικά συστήματα Αριθμητική προσέγγιση k m F(t)=F o cos(ωt) K=σταθερά ή όχι c Θέση ισορροπίας Ιδιοσυχνότητα του συστήματος ω 0 x Συχνότητα εξωτερικής διέγερσης Ω Παραδείγματα (γραμμικά
Δημήτριος Γ. Αγγέλης ΜΟΝΑΔΑ ΠΑΡΑΛΛΗΛΗΣ ΥΠΟΛΟΓΙΣΤΙΚΗΣ ΡΕΥΣΤΟΔΥΝΑΜΙΚΗΣ & ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ
Βελτιστοποίηση Τοπολογίας στη Μηχανική των Ρευστών με χρήση της Συνεχούς Συζυγούς Μεθόδου. Παραμετρική Μελέτη & Εφαρμογές «Topology Optimization in Fluid Mechanics using Continuous Adjoint Method. Parametric