HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems. Parallel and Distributed IR Παράλληλη και Κατανεμημένη ΑΠ
|
|
- Λυσιμάχη Βυζάντιος
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Άνοιξη 2009 HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems Parallel and Distributed IR Παράλληλη και Κατανεμημένη ΑΠ Ενοποίηση Αποτελεσμάτων ( Results Merging, Fusion, Rank Aggregation,...) Γιάννης Τζίτζικας άλ ιάλεξη : Ημερομηνία : CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 65 Ενοποίηση Αποτελεσμάτων Διάρθρωση Κατηγορίες Τεχνικών Ενοποίησης: Απομονωμένες και Ολοκληρωμένες Τεχνικές Ενοποίησης Round Robin interleaving Score-based Weighted Score-based Global-statistics Μετα-Μηχανές Αναζήτησης Ενοποίηση Διατάξεων (Rank-Aggregation) Επιθυμητές Ιδιότητες Ενοποίηση κατά Borda Ενοποίηση κατά Condorcet Το Θεώρημα του Ανέφικτου του Κ. Arrow (Arrow s Impossibility theorem) Ενοποίηση κατά Kemeny Αποδοτικοί αλγόριθμοι υπολογισμού των κορυφαίων κ στοιχείων της ενοποιημένης ης διάταξης (Top-K Rank Aggregation) CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 66
2 Ενοποίηση Αποτελεσμάτων answer =? ans1 ans2 ans3 ans4 ans5 IRS1 IRS2 IRS3 IRS4 IRS5 UofCrete UofAthens UofPatras CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 67 Περιπτώσεις Ενοποίηση Συνόλων (π.χ. απαντήσεων σε Exact Match Queries) answer(q) = ans1(q) ansk(q) Άρα η ενοποίηση αποτελεσμάτων για το Boolean model είναι εύκολη Ενοποίηση Διατάξεων (απαντήσεων Partial Match Queries) H ενοποίηση αποτελεσμάτων είναι πιο δύσκολη οι διατάξεις/σκορ δεν είναι πάντα συγκρίσημες (αφού εξαρτώνται από τα στατιστικά της συλλογής του κάθε συστήματος (e.g. idf) υπάρχουν πολλοί διαφορετικοί τρόποι συνάθροισης διατάξεων Συχνά μας αρκεί η εύρεση των κορυφαίων στοιχείων της ενοποιημένης διάταξης CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 68
3 Κατηγορίες Στρατηγικών Ενοποίησης Διατάξεων (A) Ολοκληρωμένες Τεχνικές (Integrated) Οι πηγές παρέχουν επιπρόσθετη πληροφορία που χρησιμοποιείται κατά την ενοποίηση Αδυναμίες: Στενό πεδίο εφαρμογής - απαιτούν συμφωνία μεταξύ των πηγών (e.g. protocol) Συχνά λαμβάνουν υπόψη τους μέτρα όπως Precision/Recall, τα οποία δεν είναι πάντα «αντικειμενικά» ή συγκρίσιμα. (B) Απομονωμένες Μέθοδοι (Isolated) Δεν απαιτούν καμία επιπλέον πληροφορία από τις πηγές (μπορούν να εφαρμοστούν και στις μετα-μηχανές αναζήτησης) Είναι ανεξάρτητες των τεχνικών ευρετηρίασης και των μοντέλων ανάκτησης των υποκείμενων συστημάτων Άρα κατάλληλες για δυναμικά περιβάλλοντα όπου υπάρχουν πολλά συστήματα των οποίων η λειτουργία εξελίσσεται συχνά και απρόβλεπτα Σχετικές τεχνικές: round robin interleaving, score-based, Borda, Condorcet, download and re-index the contents of the objects (web pages) CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 69 Ενοποίηση Διατάξεων: Round Robin interleaving (isolated) (δηλαδή merge sort) Παράδειγμα: ans1(q) = <d10,d2, d30, d7> ans2(q) = <d4, d12, d5, d9> ANS(q) = < {d10,d4}, {d2,d12}, {d30,d5}, {d7,d9}> Προβλήματα στην πραγματικότητα όλα τα έγγραφα του ans1(q) μπορεί να είναι καλύτερα (πιο συναφή) από το 1ο στοιχείο της ans2(q) CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 70
4 Ενοποίηση Διατάξεων: Score-based (isolated) Παράδειγμα: ans1(q) = < (d3,0.8), (d2,0.7) > ans2(q) = < (d5,0.6), (d6,0.3) > ans3(q) = < (d4,0.9) > ANS(q) = < d4, d3, d2, d5, d6> Προβλήματα τα σκορ διαφορετικών συστημάτων δεν είναι συγκρίσιμα (κανονικοποιημένα), αφού εξαρτώνται από τα στατιστικά της συλλογής του κάθε συστήματος (e.g. idf). CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 71 Ενοποίηση Διατάξεων: Weighted Score-based Λαμβάνουμε υπόψη το σκορ της πηγής που υπολογίσαμε όταν κάναμε Επιλογή Πηγής (source selection) Πχ Score(IRS1) = 0.9 // υπολογίστηκε στη φάση επιλογής πηγής Score(IRS2) = 0.5 // υπολογίστηκε στη φάση επιλογής πηγής ans1(q) = <(d1, 0.7)> ans2(q) = <(d2, 0.9)> ANS(q) = < (d1, 0.63), (d2, 0.45)> // 0.63 = 0.9*0.7 Εδώ πολλαπλασιάσαμε το σκορ της πηγής με το σκορ των εγγράφων. Υπάρχουν και άλλες παραλλαγές (π.χ. [Callan94,95]) CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 72
5 Ενοποίηση Διατάξεων: Downlοad and re-index/re-score (isolated) ans1 ans2 Vector Space Model IRS1 Extended Boolean Model IRS4 Εδώ ανακτούμε τα έγγραφα των απαντήσεων κάθε πηγής, τα επαναευρετηριάζουμε και επαναυπολογίζουμε το βαθμό συνάφειας τους Μειονέκτημα Χρονοβόρα διαδικασία CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 73 Ενοποίηση Διατάξεων: Global term statistics (integrated) Μπορούμε να κάνουμε συγκρίσιμα τα σκορ διαφορετικών συστημάτων αν επιβάλουμε τα ίδια στατιστικά στοιχεία σε όλα τα συστήματα (global statistics) Τα στατιστικά αυτά στοιχεία μπορούν να αποκτηθούν στη φάση της επιλογής πηγής (πχ Διανύσματα Πηγής, Probe Queries, ) Αποτίμηση Επερωτήσεων σε 2 φάσεις στην 1η συλλέγονται τα στατιστικά (o server στέλνει την επερώτηση και οι πηγές απαντούν με τα στατιστικά των όρων που περιέχονται στην επερώτηση) στην 2η η ο server στέλνει σε κάθε πηγή την επερώτηση η μαζί με τα καθολικά στατιστικά των όρων της κάθε πηγή αποτιμά την επερώτηση με τα καθολικά στατιστικά και επιστρέφει την απάντηση Ο server λαμβάνει έτοιμα σκορ και απλά τα ενοποιεί (merge sort) CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 74
6 Ενοποίηση Διατάξεων: Global term statistics Παράδειγμα q= Hotels Crete idf(hotels)= log(2000/400) idf(crete)= log(2000/105) ans = score-based merging of ans1 ans2 ans1 ans2 S1 S2 S1 S2 S1 S2 S1 S2 N1 = 1000 N2 = 1000 N1Hotels = 300 N2Hotels = 100 N1Crete = 100 N2Crete = 5 CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 75 Μέτα-μηχανές Αναζήτησης
7 Μετα-Μηχανές Αναζήτησης Server: receives requests, initiates a thread for each request, combines the intermediate results into the final answer «Search Protocol»: HTTP/HTML TCP/IP IRS1 IRS2 IRS3 IRS4 IRS5 Google AltaVista Lycos Μετα-Μηχανή Αναζήτησης: Μηχανή αναζήτησης που προωθεί την επερώτηση σε πολλές μηχανές αναζήτησης και ενοποιεί τα αποτελέσματα που επιστρέφουν CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 77 Γιατί φτιάχνουμε μετα-μηχανές αναζήτησης; Καλύτερη κάλυψη: Το σύνολο των σελίδων που είναι γνωστές (ευρετηριασμένες) σε κάθε μηχανή είναι διαφορετικό Διάταξη Πλειοψηφούσας Γνώμης (consensus ranking) Η διαθεσιμότητα πολλών μηχανών μας δίνει την δυνατότητα να ορίσουμε ένα αθροιστικό (πλειοψηφικό) μέτρο συνάφειας Ενοποίηση αποτελεσμάτων = Πρόβλημα απόφασης ομάδας (group decision problem) Μείωση spam: Δύσκολα μια spam σελίδα μπορεί να ξεγελάσει όλες τις μηχανές CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 78
8 Μετα-Μηχανές Αναζήτησης Ενδεικτικές μηχανές: Dogpile ( over Google, Yahoo!, msn, Ask Jeaves SurfWax ( Metacrawler, SavvySearch, Βήματα Λειτουργίας Submit queries to host sites. Parse resulting HTML pages to extract search results. Integrate multiple rankings into a consensus ranking. Present integrated results to user. Διαφορές με την Κατανεμημένη Ανάκτηση Πληροφοριών οι υποκείμενες μηχανές δεν παρέχουν term-statistics, άρα μπορούμε να χρησιμοποιήσουμε μόνο απομονωμένες (isolated) τεχνικές ενοποίησης αποτελεσμάτων οι υποκείμενες μηχανές δεν υποστηρίζουν την ίδια ερωτηματική γλώσσα CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 79 Ενοποίηση Διατάξεων: Rank Aggregation (or Meta-Ranking) (isolated) Διατύπωση του Προβλήματος D: ένα σύνολο αντικειμένων (π.χ. χ εγγράφων) ) S1, Sk: ένα σύνολο διατάξεων του D Σκοπός: Ενοποίηση των διατάξεων S1,..Sk σε μία The metaphor: elections Objects Candidates Sources Electors Ordering by a system Elector s voting ticket Fused ordering Election list CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 80
9 Διάρθρωση Ενοποίηση κατά Borda κατά Condorcet κατά Kemeny Επιθυμητές Ιδιότητες Τεχνικών Ενοποίησης Διατάξεων Το Θεώρημα του Ανέφικτου του Arrow Αποδοτικοί αλγόριθμοι λό υπολογισμού των κορυφαίων κ στοιχείων της ενοποιημένης διάταξης (Top-K Rank Aggregation) CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 81 Plurality Ranking (Απλή Πλειοψηφία) O υποψήφιος με τις περισσότερες πρώτες θέσεις είναι ο νικητής. Έστω 6 πηγές (S1,,S6) και 4 σελίδες a,b,c,d. Κάθε σύστημα επιστρέφει μια γραμμική διάταξη των σελίδων: S1: <a,c,d,b> S2: <a,b,c,d> S3: <b,c,a,b> b S4: <b,a,d,c> S5: <a,d,c,b> S6: <c,a,b,d> Μετράμε πόσες πρώτες θέσεις κατέλαβε κάθε σελίδα a: 3 b: 2 c: 1 d: 0 Άρα η τελική κατάταξη είναι η <a,b,c,d> CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 82
10 Plurality Ranking (Απλή Πλειοψηφία) Κάποια προβλήματα 3 συστήματα <a,c,d,b> 6 συστήματα <a,d,c,b> 3 συστήματα <b,c,d,a> 5 συστήματα <b,d, c, a> 2 συστήματα <c,b,d,a> 5 συστήματα <c,d,b,a> 2 συστήματα <d,b,c,a> 4 συστήματα <d,c,b,a> Απόσυρση του d (που ήταν τελευταίο στην ενοποιημένη διάταξη) 3 συστήματα <a,c,b> 6 συστήματα <a,c,b> 3 συστήματα <b,c,a> 5 συστήματα <b,c, a> 2 συστήματα <c,b,a> 5 συστήματα <c,b,a> 2 συστήματα <b,c,a> 4 συστήματα <c,b,a> a:9 b:8 c:7 d:6 Τελική διάταξη: <a,b,c,d> a:9 b:10 c:11 Τελική διάταξη: <c,b,a> Αντίστροφη της αρχικής! CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 83 Plurality Ranking (Απλή Πλειοψηφία) Κάποια προβλήματα 3 συστήματα <a,c,d,b> 6 συστήματα <a,d,c,b> 3 συστήματα <b,c,d,a> 5 συστήματα <b,d, c, a> 2 συστήματα <c,b,d,a> 5 συστήματα <c,d,b,a> 2 συστήματα <d,b,c,a> 4 συστήματα <d,c,b,a> a:9 b:8 c:7 d:6 Τελική διάταξη: <a,b,c,d> Απόσυρση του d Τελική διάταξη: <c,b,a> Απόσυρση του a Τελική διάταξη: <d,c,b> Απόσυρση του b Τελική διάταξη: <d,c,a>, Απόσυρση του c Τελική διάταξη: <d,b,a> CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 84
11 Ενοποίηση Διατάξεων κατά Borda [Jean-Charles Borda 1770] The votes of an object o V ( o) = r i ( o) i= i 1....kk r ( o) : the position of the object The fused ordering Μ is derived by ordering the objects in ascending order wrt to their votes Reinvented (for the context of Meta-Searching) in [Tzitzikas 2001] o in the ordering of system i S i Example: S1 : < o1, o2, o S2 : < o1, o3, o S : < o, o, o > > > V ( o V ( o V ( o ) = = 4 ) = = 8 ) = = 6 M : o < o1, o3, 2 > If each source S r ( o i j i returns an ordered subset i i, if o j Oi position of o j in O ) = F + 1 otherwise O of Obj. where F = max{ O1,..., Ok } Γιατί; CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 85 Ενοποίηση Διατάξεων κατά Borda [Tzitzikas, 2001] Βαθμός Συμφωνίας The distance between two orderings i and j: dist( i, j) = ri ( o) rj ( o) The mean distance of the fused ordering 0 Dem The level lof agreement of the fused ordering 0: = i =.. o O dist(0, i) 1 k k linear transformation C Dem LA = C Dem inversion transformation LA = C C > 1,e.g.C = 2 High level may drive the user to read only the very first documents since probably they are the more relevant Low level may drive the user to read more documents CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 86
12 Ενοποίηση Διατάξεων κατά Condorcet [1785] Condorcet: the winner is a candidate that defeats every other candidate in pairwise majority-rule election S1: <a,b,c> S2: <b,a,c> S2: <c,a,b> a:b 2:1 a:c 2:1 // τo a νικά το b δύο φορές (και χάνει μία) // τo a νικά το c δύο φορές (και χάνει μία) Αρα η τελική κατάταξη κατά Condorset είναι: <a,b,c> CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 87 Ενοποίηση Διατάξεων κατά Condorcet [1785] S1: <a,b,c>, S2: <b,c,a> S3: <c,a,b> a:b 2:1 // άρα το b δεν μπορεί να είναι o νικητής a:c 12 1:2 //ά άρα το a δεν μπορεί να είναι o νικητής c:b 1:2 // άρα το c δεν μπορεί να είναι o νικητής Δεν υπάρχει πάντα Condorset νικητής! CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 88
13 Borda vs Condorcet S1: <a,b,c> S2: <b,a,c>, S2: <c,a,b> Condorset a:b 2:1 a:c 2:1 Condorset ordering: <a,b,c>, Borda a: = 5 b: = 6 c: = 7 Borda ordering: <a,b,c> CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 89 Borda Condorcet Borda (1770) Member of French Academy of Sciences Noted for work in hydraulics, optics, navigation instrument Condorcet (1785) Viewed Borda as an enemy Finding best ordering by hypothesis testing Switch to propose p Condorcet winner Purpose: Reforming the election procedure of French Academy. Criticize plurality method CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 90
14 Borda Condorcet S1: <a,b,c,d,e> S2: <b,c,e,d,a>,,, S3: <e,a,b,c,d> S4: <a,b,d,e,c> S5: <b,a,d,e,c> Borda Condorset a: = 11 a:b 3:2 b: = 9 a:c 4:1 c: =19 a:d 4:1 d: = 19 a:e :3:2 e: = 17 Condorset winner a Borda winner : b CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 91 Prurality Borda Condorcet 49 votes 48 votes 3 votes 1st x y z 2nd y z y 3rd z x x Prurality winner: x Borda winner: y Condorcet: z> x CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 92
15 Condorcet and Order Θεωρείστε την περίπτωση τριών υποψηφίων (a,b,c) και 13 εκλεκτόρων a b c a 5 7 b 8 2 c 6 11 Έχουμε συνοψίσει τις διατάξεις που έδωσαν οι εκλέκτορες κατασκευάζοντας έναν πίνακα C, όπου το C[i,j] εκφράζει πόσες φορές το i νικά το j Μπορούμε να υπολογίσουμε τη στήριξη (support) κάθε πιθανής γραμμικής διάταξης αθροίζοντας τη στήριξη της κάθε συσχέτισής της. <a,b,c>, has support 25 a>b:8, a>c:6, b>c:11 <b,c,a> has support 23 a<b:5, c>a:7, b>c:11 CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 93 Ενοποίηση Διατάξεων κατά Kemeny (1959) (Kemeny developed BASIC language) Απόσταση μεταξύ δυο διατάξεων = πλήθος των διαφωνιών στη διάταξη ζευγαριών Παράδειγμα 1 r1 = <a,b,c> r2 = <b, a, c> K(r1, r2) = 1 (a > r1 b, a < r2 b) Παράδειγμα 2 r1 = <a, b, c, d> r2 = <b, d, a, c> K(r1, r2) = 3 (a > r1 b, a < r2 b) (a > r1 d, a < r2 d) (c > r1 d, c < r2 d) CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 94
16 Ενοποίηση Διατάξεων κατά Kemeny (1959) Kemeny Optimal Aggregation Η καλύτερη ενοποιημένη διάταξη είναι εκείνη που απέχει το λιγότερο από όλες τις διατάξεις Έστω n διατάξεις: r1, r2,, rn Ενοποιημένη διάταξη r = arg min K(r,ri) Η εύρεση της ενοποιημένης διάταξης είναι ακριβή (πρόβλημα NP-hard) Reconciles Borda and Condorcet CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 95 Ενοποίηση Διατάξεων: Επιθυμητές Ιδιότητες Ουδετερότητα (Neutrality) Καμία εναλλακτική δεν πρέπει να ευνοείται Pareto Optimality Αν X > Y (σε όλες τις διατάξεις) τότε X>Y (στην τελική) Μονοτονία (Monotonicity) // Ranking higher should not hurt a candidate Χ νικητής (στην τελική), αλλαγή ενός ψηφοδελτίου YZX YXZ, o Χ παραμένει νικητής (στην τελική) Ανεξαρτησία από άσχετες εναλλακτικές (Independence from Irrelevant Alternatives) X > Y (στην τελική), αλλαγή ενός ψηφοδελτίου XZY ZXY, to X>Y παραμένει στην τελική Συνέπεια (Consistency) Αν οι ψηφοφόροι διαιρεθούν σε δύο ομάδες και κάθε ομάδα αναδείξει τον ίδιο νικητή, τότε ο τελικός νικητής (αν λάβουμε υπόψη τις ψήφους και των 2 ομάδων) πρέπει να είναι ο ίδιος CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 96
17 Arrow s Impossibility Theorem Kenneth J. Arrow, Social Choice and Individual Values (1951). Won Nobel Prize in 1972 No voting scheme over three or more alternatives can satisfy the following conditions Universality (no restriction on individual ordering. All orderings are achievable) Monotonicity Independence of irrelevant alternatives Pareto Optimality Non-dictatorship Συμπέρασμα: δεν υπάρχει μια απολύτως ικανοποιητική συνάρτηση ενοποίησης διατάξεων CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 97 Διάρθρωση Ενοποίηση κατά Borda κατά Condorcet κατά Kemeny Επιθυμητές Ιδιότητες Τεχνικών Ενοποίησης Διατάξεων Το Θεώρημα του Ανέφικτου του Arrow Αποδοτικοί αλγόριθμοι υπολογισμού των κορυφαίων κ στοιχείων της ενοποιημένης διάταξης (Top-K Rank Aggregation) g CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 98
18 Top-k Rank Aggregation Έχουμε Ν αντικείμενα και τους βαθμούς τους βάσει m διαφορετικών κριτηρίων. Έχουμε έναν τρόπο να συνδυάζουμε τα m σκορ κάθε αντικειμένου σε ένα ενοποιημένο σκορ π.χ. min, avg, sum Στόχος: Βρες τα κ αντικείμενα με το υψηλότερο ενοποιημένο σκορ. Εφαρμογές: Υπολογισμός των κορυφαίων-κ στοιχείων της απάντησης ενός ΣΑΠ που βασίζεται στο διανυσματικό μοντέλο (τα m κριτήρια είναι οι m όροι της επερώτησης) ενός μεσίτη (π.χ. μετα-μηχανής αναζήτησης) πάνω από m Συστήματα Ανάκτησης Πληροφοριών μιας επερώτησης ης σε μια Βάση Πολυμέσων κριτήρια (και συνάμα χαρακτηριστικά/features): χρώμα, μορφή, υφή, CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 99 Άλλο ένα παράδειγμα εφαρμογής Ενοποίηση απαντήσεων σε Μεσολαβητές (middleware) πάνω από πηγές που αποθηκεύουν δομημένες πληροφορίες έστω μια υπηρεσία εύρεσης εστιατορίων βάσει τριών κριτηρίων: απόσταση από ένα σημείο κατάταξη εστιατορίου τιμή γεύματος, και άλλα όπου ο χρήστης μπορεί να ορίσει τον επιθυμητό τρόπο υπολογισμού του ενοποιημένου σκορ ενός εστιατορίου π.χ. Σκορ(εστΧ) = Stars(εστΧ)* *DistanceFromHome(εστΧ) η υπηρεσία αυτή υλοποιείται με χρήση τριών απομακρυσμένων υπηρεσιών (α) getrestaurantsbystars επιστρέφει όλα τα εστιατόρια σε φθίνουσα σειρά ως προς τα αστέρια που έχουν (κάθε εστιατόριο συνοδεύεται με ένα σκορ) (β) getrestaurantsbydistance(x,y) επιστρέφει όλα τα εστιατόρια σε φθίνουσα σειρά ως προς την απόσταση τους από ένα συγκεκριμένο σημείο με συντεταγμένες (x,y) // κάθε εστιατόριο συνοδεύεται από την απόσταση του από το (x,y) Πως μπορώ να ελαχιστοποιήσω το πλήθος των στοιχείων που πρέπει να διαβάσω από την απάντηση της κάθε υπηρεσίας, προκειμένου να βρω τα κορυφαία 5 εστιατόρια (βάσει σκορ όπως υπολογίζεται από της συνάρτηση βαθμολόγησης που έδωσε ο χρήστης); CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 100
19 Εύρεση των κ-κορυφαίων Απλοϊκός Αλγόριθμος 1/ Ανέκτησε ολόκληρες τις m λίστες 2/ Υπολόγισε το ενοποιημένο σκορ του κάθε αντικειμένου 3/ Ταξινόμησε τα αντικείμενα βάσει του σκορ και επέλεξε τα πρώτα κ Παρατηρήσεις Κόστος γραμμικό ως προς το μήκος των λιστών Δεν αξιοποιεί το γεγονός ότι οι λίστες είναι ταξινομημένες CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 101 Εύρεση των κ-κορυφαίων Παράδειγμα: Απλοϊκός Τρόπος Έστω οτι θέλουμε να συναθροίσουμε τις διατάξεις που επιστρέφουν 3 πηγές S1, S2, S3 και ο τρόπος συνάθροισης είναι το άθροισμα. S1 = < Α 0.9, C 0.8, E 0.7, B 0.5, F 0.5, G 0.5, H 0.5 > S2 = < B 1.0, E 0.8, F 0.7, Α 0.7, C 0.5, H 0.5, G 0.5 > S3 = < Α , C , E , B , F , G , H 05> 0.5 Ο Απλοϊκός Τρόπος Score(Α) = = Score(B) = = 2 Score(C) = = 2.1 Score(E) = = Score(F) = = 1.7 Score(G) = = 1.5 Score(H) = = Τελική διάταξη: < A, E, C, B, F, G, H> CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 102
20 Εύρεση των κ-κορυφαίων Πιο Αποδοτικοί Αλγόριθμοι Γενική ιδέα: Άρχισε να διαβάζεις τις διατάξεις από την κορυφή. Προσπάθησε να καταλάβεις πότε πρέπει να σταματήσεις. Αλγόριθμοι Fagin Algorithm (FA) [Fagin 1999, J. CSS 58] Threshold Algorithm (ΤΑ) [Fagin et al., PODS 2001] Υποθέσεις Υποθέτουμε ότι έχουμε στη διάθεση μας 2 τρόπους πρόσβασης στα αποτελέσματα μιας πηγής: Σειριακή πρόσβαση στις διατάξεις: φθίνουσα ως προς το σκορ Τυχαία προσπέλαση: Δυνατότητα εύρεσης του σκορ ενός συγκεκριμένου αντικειμένου με μία πρόσβαση Συναρτήσεις βαθμολόγησης (σκορ) Τα σκορ ανήκουν στο διάστημα [0,1] Η συνάρτηση ενοποιημένου σκορ είναι μονότονη αν όλα (m) τα σκορ ενός αντικειμένου Α είναι μεγαλύτερα ή ίσα των αντίστοιχων σκορ ενός αντικειμένου Β, τότε σίγουρα το ενοποιημένο σκορ του Α είναι μεγαλύτερο ή ίσο του σκορ του Β CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 103 Εύρεση των κ-κορυφαίων Ο Αλγόριθμος του Fagin (FA) [1999] 1.α/ Κάνε σειριακή ανάκτηση αντικειμένων από κάθε λίστα (αρχίζοντας από την κορυφή), έως ότου η τομή των αντικειμένων από κάθε λίστα να έχει κ αντικείμενα 1β/Γ 1.β/ Για κάθε αντικείμενο που ανακτήθηκε (στο 1.α) συνέλεξε τα σκορ που λείπουν (με χρήση του μηχανισμού τυχαίας προσπέλασης) 2/ Υπολόγισε το ενοποιημένο σκορ του κάθε αντικειμένου 3/ Ταξινόμησε τα αντικείμενα βάσει του ενοποιημένου σκορ και επέλεξε τα πρώτα κ Σχόλια Αξιοποιεί (α) το γεγονός ότι οι λίστες είναι ταξινομημένες και (β) ότι η συνάρτηση ενοποίησης είναι μονότονη [-] Το πλήθος των αντικειμένων που θα ανακτηθούν μπορεί να είναι μεγάλο CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 104
21 Εύρεση των κ-κορυφαίων Παράδειγμα: Αλγόριθμος του Fagin (FA) S1 = < Α 0.9, C 0.8, E 0.7, B 0.5, F 0.5, G 0.5, H 0.5 > S2 = < B 1.0, E 0.8, F 0.7, Α 0.7, C 0.5, H 0.5, G 0.5 > S3 = < Α 0.8, C 0.8, E 0.7, B 0.5, F 0.5, G 0.5, H 0.5 > Το Ε εμφανίζεται σε όλες Έστω ότι θέλω το Top-1 (μονοτονία => δεν μπορεί κάποιο δεξιότερο του Ε να είναι καλύτερο του Ε Το Ε δεν είναι σίγουρα ο νικητής. Υποψήφιοι νικητές = {A, B, C, E, F}. Κάνουμε τυχαίες προσπελάσεις για vα βρούμε τα σκορ που μας λί λείπουν getscore(s2,a), getscore(s1,b), getscore(s3,b), getscore(s2,c), Πράγματι, top-1= {Α} CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 105 Εύρεση των κ-κορυφαίων Παράδειγμα: Αλγόριθμος του Fagin (FA) S1 = < Α 0.9, C 0.8, E 0.7, B 0.5, F 0.5, G 0.5, H 0.5 > S2 = < B 1.0, E 0.8, F 0.7, Α 0.7, C 0.5, H 0.5, G 0.5 > S3 = < Α 0.8, C 0.8, E 0.7, B 0.5, F 0.5, G 0.5, H 0.5 > Έστω ότι θέλω το Top-2 Το Ε, B (και το Α) εμφανίζονται σε όλες (μονοτονία => δεν μπορεί κάποιο δεξιότερο του Β να είναι καλύτερο του Β CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 106
22 Εύρεση των κ-κορυφαίων Ο Αλγόριθμος ΤΑ (Threshold Algorithm) [Fagin et al. 2001] Ιδέα: Υπολόγισε το μέγιστο σκορ που μπορεί να έχει ένα αντικείμενο που δεν έχουμε συναντήσει ακόμα. 1/ Κάνε σειριακή ανάκτηση αντικειμένων από κάθε λίστα (αρχίζοντας από την κορυφή) και με χρήση τυχαίας προσπέλασης βρες όλα τα σκορ κάθε αντικειμένου 2/ Ταξινόμησε τα αντικείμενα (βάσει του ενοποιημένου σκορ) και κράτησε τα καλύτερα κ 3/ Σταμάτησε την σειριακή ανάκτηση όταν τα σκορ των παραπάνω κ αντικειμένων δεν μπορεί να είναι μικρότερα του μέγιστου πιθανού σκορ των απαρατήρητων αντικειμένων (threshold). h CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 107 Εύρεση των κ-κορυφαίων Παράδειγμα: Αλγόριθμος TA: S1 = < Α 0.9, C 0.8, E 0.7, B 0.5, F 0.5, G 0.5, H 0.5 > S2 = < B 1.0, E 0.8, F 0.7, Α 0.7, C 0.5, H 0.5, G 0.5 > S3 = < Α 0.8, C 0.8, E 0.7, B 0.5, F 0.5, G 0.5, H 0.5 > Score(A) = = 2.4 Score(B) = = 2 UpperBound = = 2.7 αφού 2.7 > 2.4 συνεχίζω Score(C) = = 2.1 Score(E) = = 2.2 UpperBound = = αφού 2.4 δεν είναι μεγαλύτερο του 2.4 (σκορ του Α) σταματάω. Έστω ότι θέλω το Top-1 CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 108
23 Σύγκριση: Fagin vs. ΤΑ Ο FA ποτέ δεν τερματίζει ενωρίτερα του ΤΑ Ο ΤΑ χρειάζεται μόνο έναν μικρό (k) ενταμιευτή (buffer) Ο ΤΑ μπορεί όμως να κάνει περισσότερες τυχαίες προσπελάσεις Ο ΤA είναι βέλτιστος για όλες τις μονότονες συναρτήσεις ρή σκορ Συγκεκριμένα, είναι instant optimal : είναι καλύτερος πάντα (όχι μόνο στην χειρότερη περίπτωση ή στην μέση περίπτωση) Επεκτάσεις Αλγόριθμος NRA (Non Random Access) Έκδοση του ΤΑ για την περίπτωση που η τυχαία πρόσβαση είναι αδύνατη. α Επίσης instant optimal. Do sequential access until there are k objects whose lower bound no less than the upper bound of all other objects Αλγόριθμος CA (Combined Algorithm) Έκδοση του ΤΑ που θεωρεί τις τυχαίες προσπελάσεις ακριβότερες των σειριακών. CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 109
HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems. Parallel and Distributed IR Παράλληλη και Κατανεμημένη ΑΠ
Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Άνοιξη 2007 HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems Parallel and Distributed IR Παράλληλη και Κατανεμημένη ΑΠ Ενοποίηση
Parallel and Distributed IR Παράλληλη και Κατανεμημένη ΑΠ
Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Άνοιξη 2008 HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems Parallel and Distributed IR Παράλληλη και Κατανεμημένη ΑΠ Γιάννης
Parallel and Distributed IR Παράλληλη και Κατανεμημένη ΑΠ
Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Άνοιξη 2006 HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems Parallel and Distributed IR Παράλληλη και Κατανεμημένη ΑΠ Γιάννης
Information Integration from the
Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Άνοιξη 2009 ΗΥ562 Προχωρημένα Θέματα Βάσεων Δεδομένων Ενότητα Information Integration from the Information Retrieval (IR) perspective Διδάσκων: Γιάννης
Ανάκτηση Πληροφορίας
Το Πιθανοκρατικό Μοντέλο Κλασικά Μοντέλα Ανάκτησης Τρία είναι τα, λεγόμενα, κλασικά μοντέλα ανάκτησης: Λογικό (Boolean) που βασίζεται στη Θεωρία Συνόλων Διανυσματικό (Vector) που βασίζεται στη Γραμμική
4 η Σειρά ασκήσεων (Συμπίεση, Ομαδοποίηση, Ευρετηρίαση Πολυμέσων, Κατανεμημένη Ανάκτηση)
Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών HY463 -Συστήματα Ανάκτησης Πληροφοριών 2005-2006 Εαρινό Εξάμηνο 4 η Σειρά ασκήσεων (Συμπίεση, Ομαδοποίηση, Ευρετηρίαση Πολυμέσων, Κατανεμημένη Ανάκτηση)
Φροντιστήριο 5. Το πρώτο πράγµα λοιπόν που πρέπει να κάνουµε είναι να βρούµε τις πιθανότητες εµφάνισης των συµβόλων. Έτσι έχουµε:
Πανεπιστήµιο Κρήτης, Τµήµα Επιστήµης Υπολογιστών HY463 - Συστήµατα Ανάκτησης Πληροφοριών 2006-2007 Εαρινό Εξάµηνο Φροντιστήριο 5 Άσκηση 1 Θεωρείστε το αλφάβητο {α,β,γ,δ,ε} και την εξής φράση: «α α β γ
Condorcet winner. (1) Αν U j (x) > U j (y) τότε U i (x) > U i (y) και (2) Αν U i (y) > U i (x) τότε U j (y) > U j (x).
Οικονοµικό Πανεπιστήµιο Αθηνών Άνοιξη 2012 Τµήµα Οικονοµικής Επιστήµης ηµόσια Οικονοµική ΙI Η διαδικασία της ψηφοφορίας Ως µεθόδου παροχής των δηµοσίων αγαθών (για τα ιδιωτικά αγαθά, ο µηχανισµός των τιµών).
Ανάκτηση Πληροφορίας
Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Ανάκτηση Πληροφορίας Διδάσκων: Φοίβος Μυλωνάς fmylonas@ionio.gr Διάλεξη #04 Εισαγωγή στα Μοντέλα Ανάκτησης Πληροφορίας Boolean Μοντέλο 1 Άδεια χρήσης Το παρόν εκπαιδευτικό
Parallel and Distributed IR
Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Άνοιξη 2009 HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems Parallel and Distributed IR Παράλληλη η και Κατανεμημένη η ΑΠ Γιάννης
Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών HY463 - Συστήματα Ανάκτησης Πληροφοριών Εαρινό Εξάμηνο. Φροντιστήριο 3.
Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών HY6 - Συστήματα Ανάκτησης Πληροφοριών 007 008 Εαρινό Εξάμηνο Φροντιστήριο Retrieval Models Άσκηση Θεωρείστε μια συλλογή κειμένων που περιέχει τα ακόλουθα
Προτεινόμενες Λύσεις 1 ης Σειράς Ασκήσεων (Αξιολόγηση της Αποτελεσματικότητας της Ανάκτησης & Μοντέλα Ανάκτησης)
Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών ΗΥ463 Συστήματα Ανάκτησης Πληροφοριών 28-29 Εαρινό Εξάμηνο Προτεινόμενες Λύσεις 1 ης Σειράς Ασκήσεων (Αξιολόγηση της Αποτελεσματικότητας της Ανάκτησης &
Ανάκτηση Πληροφορίας
Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Ανάκτηση Πληροφορίας Διδάσκων: Φοίβος Μυλωνάς fmylonas@ionio.gr Διάλεξη #05 Ακρίβεια vs. Ανάκληση Extended Boolean Μοντέλο Fuzzy Μοντέλο 1 Άδεια χρήσης Το παρόν εκπαιδευτικό
ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο
Ανάκτηση Πληροφορίας
Ανάκτηση Πληροφορίας Το μοντέλο Boolean Το μοντέλο Vector Ταξινόμηση Μοντέλων IR Ανάκτηση Περιήγηση Κλασικά Μοντέλα Boolean Vector Probabilistic Δομικά Μοντέλα Non-Overlapping Lists Proximal Nodes Browsing
ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ
ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΕΛΕΝΑ ΦΛΟΚΑ Επίκουρος Καθηγήτρια Τµήµα Φυσικής, Τοµέας Φυσικής Περιβάλλοντος- Μετεωρολογίας ΓΕΝΙΚΟΙ ΟΡΙΣΜΟΙ Πληθυσµός Σύνολο ατόµων ή αντικειµένων στα οποία αναφέρονται
Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Άνοιξη 2009. HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems
Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Άνοιξη 2009 HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems Στατιστικά Κειμένου Text Statistics Γιάννης Τζίτζικας άλ ιάλεξη :
Other Test Constructions: Likelihood Ratio & Bayes Tests
Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :
Μία αξιωματική προσέγγιση για τη διαφοροποίηση των αποτελεσμάτων
Μία αξιωματική προσέγγιση για τη διαφοροποίηση των αποτελεσμάτων ΜΑΘΗΜΑ Ανάκτηση Πληροφορίας Παππάς Χρήστος Ιωάννινα, Ιανουάριος 2010 Διάρθρωση Εισαγωγή Πρόβλημα Σημαντικότητα Ενδιαφέροντα θέματα Τεχνικό
Ανάκτηση Πληροφορίας
Ανάκτηση Πληροφορίας Αποτίμηση Αποτελεσματικότητας Μέτρα Απόδοσης Precision = # σχετικών κειμένων που επιστρέφονται # κειμένων που επιστρέφονται Recall = # σχετικών κειμένων που επιστρέφονται # συνολικών
Ανάκτηση Πληροφορίας
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 8: Λανθάνουσα Σημασιολογική Ανάλυση (Latent Semantic Analysis) Απόστολος Παπαδόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
Ανάκτηση Πληροφορίας
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 5: Μοντελοποίηση: Πιθανοκρατικό Μοντέλο Απόστολος Παπαδόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Θέμα : Retrieval Models. Ημερομηνία : 9 Μαρτίου 2006
ΗΥ-464: Συστήματα Ανάκτησης Πληροφορίας Informaton Retreval Systems Πανεπιστήμιο Κρήτης Άνοιξη 2006 Φροντιστήριο 2 Θέμα : Retreval Models Ημερομηνία : 9 Μαρτίου 2006 Outlne Prevous Semester Exercses Set
Λύση (από: Τσιαλιαμάνης Αναγνωστόπουλος Πέτρος) (α) Το trie του λεξιλογίου είναι
Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών HY463 - Συστήματα Ανάκτησης Πληροφοριών 2006-2007 Εαρινό Εξάμηνο 3 η Σειρά ασκήσεων (Ευρετηρίαση, Αναζήτηση σε Κείμενα και Άλλα Θέματα) (βαθμοί 12: όποιος
Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής
Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής Να γραφεί πρόγραμμα το οποίο δέχεται ως είσοδο μια ακολουθία S από n (n 40) ακέραιους αριθμούς και επιστρέφει ως έξοδο δύο ακολουθίες από θετικούς ακέραιους
HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems. Ανάκτηση Πληροφοριών & Συστήματα Ομοτίμων (Peer-to-Peer Systems) & IR
Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Άνοιξη 2007 HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems Ανάκτηση Πληροφοριών & Συστήματα Ομοτίμων (Peer-to-Peer Systems)
Λύσεις 1 ης Σειράς Ασκήσεων (Αξιολόγηση της Αποτελεσµατικότητας της Ανάκτησης)
Πανεπιστήµιο Κρήτης, Τµήµα Επιστήµης Υπολογιστών ΗΥ-6 Συστήµατα Ανάκτησης Πληροφοριών 7-8 Εαρινό Εξάµηνο Άσκηση Λύσεις ης Σειράς Ασκήσεων (Αξιολόγηση της Αποτελεσµατικότητας της Ανάκτησης) Θεωρείστε µια
EE512: Error Control Coding
EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3
HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems. Μοντέλα Ανάκτησης Ι
Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Άνοιξη 009 HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems Μοντέλα Ανάκτησης Ι (Retrieval Models) Γιάννης Τζίτζικας άλ ιάλεξη
Fractional Colorings and Zykov Products of graphs
Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is
ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Όλοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα μικρότεροι του 10000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Αν κάπου κάνετε κάποιες υποθέσεις
Παλαιότερες ασκήσεις
Πανεπιστήµιο Κρήτης, Τµήµα Επιστήµης Υπολογιστών HY6 - Συστήµατα Ανάκτησης Πληροφοριών Παλαιότερες ασκήσεις η Σειρά Ασκήσεων (Αξιολόγηση της Αποτελεσµατικότητας της Ανάκτησης) Άσκηση ( η σειρά ασκήσεων
Ανάκτηση Πληροφορίας
Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Ανάκτηση Πληροφορίας Διδάσκων: Φοίβος Μυλωνάς fmylonas@ionio.gr Διάλεξη #06 Πιθανοτικό Μοντέλο 1 Άδεια χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Η ακρίβεια ορίζεται σαν το πηλίκο των ευρεθέντων συναφών εγγράφων προς τα ευρεθέντα έγγραφα. Άρα για τα τρία συστήµατα έχουµε τις εξής τιµές:
Πανεπιστήµιο Κρήτης, Τµήµα Επιστήµης Υπολογιστών HY463 - Συστήµατα Ανάκτησης Πληροφοριών 2005-2006 Εαρινό Εξάµηνο 1 η Σειρά Ασκήσεων (Αξιολόγηση Αποτελεσµατικότητας Ανάκτησης) Άσκηση 1 (4 βαθµοί) Θεωρείστε
2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.
EAMCET-. THEORY OF EQUATIONS PREVIOUS EAMCET Bits. Each of the roots of the equation x 6x + 6x 5= are increased by k so that the new transformed equation does not contain term. Then k =... - 4. - Sol.
Διαδικασιακός Προγραμματισμός
Τμήμα ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ ΤΕΙ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ Διαδικασιακός Προγραμματισμός Διάλεξη 12 η Αναζήτηση/Ταξινόμηση Πίνακα Οι διαλέξεις βασίζονται στο βιβλίο των Τσελίκη και Τσελίκα C: Από τη Θεωρία στην
Αλγόριθμοι ταξινόμησης
Αλγόριθμοι Ταξινόμησης Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Οι αλγόριθμοι ταξινόμησης BuubleSort, SelectionSort, InsertionSort, Merger Sort, Quick Soft ΕΠΛ Δομές Δεδομένων και Αλγόριθμοι
Model) Retrieval Model)... 18
Πανεπιστήμιο Πατρών Πολυτεχνική Σχολή Τμήμα Μηχανικών Ηλεκτρονικών Υπολογιστών και Πληροφορικής Αποδοτική Ιεραρχημένη Ανάκτηση Κοινωνικού Περιεχομένου με Χρήση Ταξονομιών Ετικετών Κοντοτάσιου Ιωάννα ΑΜ:
Πληροφοριακά Συστήματα
Πληροφοριακά Συστήματα Ανακτώντας Πληροφορία και Γνώση στον Παγκόσμιο Ιστό Γιάννης Τζίτζικας Επίκουρος Καθηγητής Τμήματος Επιστήμης Υπολογιστών και Συνεργαζόμενος Ερευνητής του ΙΤΕ-ΙΠ 3 Απριλίου 2015 Διάρθρωση
A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics
A Bonus-Malus System as a Markov Set-Chain Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics Contents 1. Markov set-chain 2. Model of bonus-malus system 3. Example 4. Conclusions
Σχεδίαση Αλγορίθμων -Τμήμα Πληροφορικής ΑΠΘ - Εξάμηνο 4ο
Πολλαπλασιασμός μεγάλων ακεραίων (1) Για να πολλαπλασιάσουμε δύο ακεραίους με n 1 και n 2 ψηφία με το χέρι, θα εκτελέσουμε n 1 n 2 πράξεις πολλαπλασιασμού Πρόβλημα ρβημ όταν έχουμε πολλά ψηφία: A = 12345678901357986429
KLEE: A Framework for Distributed top-k Query Algorithms
KLEE: A Framework for Distributed top-k Query Algorithms Sebastian Michel Peter Triantafillou Gerhard Weikum VLDB 2005 Αντικείμενο της εργασίας Η εργασία αναφέρεται στο πρόβλημα των top-k queries που αφορούν
Επεξεργασία Ερωτήσεων
Εισαγωγή Σ Β Σύνολο από προγράμματα για τη διαχείριση της Β Επεξεργασία Ερωτήσεων Αρχεία ευρετηρίου Κατάλογος συστήματος Αρχεία δεδομένων ΒΑΣΗ Ε ΟΜΕΝΩΝ Σύστημα Βάσεων εδομένων (ΣΒ ) Βάσεις Δεδομένων 2007-2008
Κοινωνικά Δίκτυα Κοινωνική Επιλογή
Κοινωνικά Δίκτυα Κοινωνική Επιλογή Ν. Μ. Σγούρος Τμήμα Ψηφιακών Συστημάτων, Παν. Πειραιώς sgouros@unipi.gr Ατομική Απόφαση Το πρόβλημα της απόφασης (decision problem) ορίζεται ως εξής: Υπάρχουν μια σειρά
Κεφάλαιο 4. Διαίρει και Βασίλευε (Divide and Conquer) Παύλος Εφραιμίδης V1.1,
Κεφάλαιο 4 Διαίρει και Βασίλευε (Divide and Conquer) Παύλος Εφραιμίδης V1.1, 2015-01-19 Χρησιμοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. 1 Διαίρει και Βασίλευε (Divide-and-Conquer) Διαίρει-και-βασίλευε
Επερωτήσεις σύζευξης με κατάταξη
Επερωτήσεις σύζευξης με κατάταξη Επερωτήσεις κατάταξης Top-K queries Οι επερωτήσεις κατάταξης επιστρέφουν τις k απαντήσεις που ταιριάζουν καλύτερα με τις προτιμήσεις του χρήστη. Επερωτήσεις κατάταξης Top-K
Στόχοι και αντικείμενο ενότητας. Πέρασμα Πίνακα σε Συνάρτηση (συν.) Πέρασμα Πίνακα σε Συνάρτηση. #8.. Ειδικά Θέματα Αλγορίθμων
Στόχοι και αντικείμενο ενότητας Πέρασμα Πίνακα σε Συνάρτηση #8.. Ειδικά Θέματα Αλγορίθμων Προβλήματα Αναζήτησης Γραμμική Αναζήτηση (Linear Search) Ενημέρωση Μέτρηση Δυαδική Αναζήτηση (Binary Search) Προβλήματα
Ενότητα 3: ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΑΛΓΟΡΙΘΜΟΙ
Ενότητα 3: ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΑΛΓΟΡΙΘΜΟΙ ΔΕΔΟΜΕΝΑ ΑΛΓΟΡΙΘΜΟΙ -ΠΛΗΡΟΦΟΡΙΑ: Δεδομένα: Αναπαράσταση της Πραγματικότητας Μπορούν να γίνουν αντιληπτά με μια από τις αισθήσεις μας Πληροφορία: Προκύπτει από
ΑΛΓΟΡΙΘΜΟΙ Άνοιξη I. ΜΗΛΗΣ
ΑΛΓΟΡΙΘΜΟΙ http://eclass.aueb.gr/courses/inf161/ Άνοιξη 216 - I. ΜΗΛΗΣ ΔΥΝΑΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΑΛΓΟΡΙΘΜΟΙ - ΑΝΟΙΞΗ 216 - Ι. ΜΗΛΗΣ 9 DP II 1 Dynamic Programming ΓΕΝΙΚΗ ΙΔΕΑ 1. Ορισμός υπο-προβλήματος/ων
Πιθανοκρατικό μοντέλο
Πιθανοκρατικό μοντέλο Το μοντέλο MAP Αλέξανδρος Γκιμπερίτης Βασίλης Μπούργος Δημήτρης Σουραβλιάς 1 Εισαγωγικές έννοιες Κάθε έγγραφο d της συλλογής παριστάνεται από το δυαδικό διάνυσμα x = (x 1, x 2,...,
HY380 Αλγόριθμοι και πολυπλοκότητα Hard Problems
HY380 Αλγόριθμοι και πολυπλοκότητα Hard Problems Ημερομηνία Παράδοσης: 0/1/017 την ώρα του μαθήματος ή με email: mkarabin@csd.uoc.gr Γενικές Οδηγίες α) Επιτρέπεται η αναζήτηση στο Internet και στην βιβλιοθήκη
Επεξεργασία Ερωτήσεων
Εισαγωγή Επεξεργασία Ερωτήσεων ΜΕΡΟΣ 1 Γενική Εικόνα του Μαθήματος 1. Μοντελοποίηση (Μοντέλο Ο/Σ, Σχεσιακό, Λογικός Σχεδιασμός) 2. Προγραμματισμός (Σχεσιακή Άλγεβρα, SQL) ημιουργία/κατασκευή Εισαγωγή εδομένων
The Simply Typed Lambda Calculus
Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and
Query-Driven Indexing for Scalable Peer-to-Peer Text Retrieval. Gleb Skobeltsyn, Toan Luu, Ivana Podnar Zarko, Martin Rajman, Karl Aberer
Query-Driven Indexing for Scalable Peer-to-Peer Text Retrieval Gleb Skobeltsyn, Toan Luu, Ivana Podnar Zarko, Martin Rajman, Karl Aberer Περιγραφή του προβλήματος Ευρετηριοποίηση μεγάλων συλλογών εγγράφων
Math 6 SL Probability Distributions Practice Test Mark Scheme
Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry
Επεξεργασία Ερωτήσεων
Εισαγωγή Επεξεργασία Ερωτήσεων Σ Β Βάση εδομένων Η ομή ενός ΣΒ Βάσεις Δεδομένων 2006-2007 Ευαγγελία Πιτουρά 1 Βάσεις Δεδομένων 2006-2007 Ευαγγελία Πιτουρά 2 Εισαγωγή Εισαγωγή ΜΕΡΟΣ 1 (Χρήση Σ Β ) Γενική
Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in
Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that
Gemini, FastMap, Applications. Εαρινό Εξάμηνο Τμήμα Μηχανικών Η/Υ και Πληροϕορικής Πολυτεχνική Σχολή, Πανεπιστήμιο Πατρών
Gemini,, Applications Τμήμα Μηχανικών Η/Υ και Πληροϕορικής Πολυτεχνική Σχολή, Πανεπιστήμιο Πατρών Εαρινό Εξάμηνο 2011-2012 Table of contents 1 Table of contents 1 2 Table of contents 1 2 3 Table of contents
Ψηφιακή ανάπτυξη. Course Unit #1 : Κατανοώντας τις βασικές σύγχρονες ψηφιακές αρχές Thematic Unit #1 : Τεχνολογίες Web και CMS
Ψηφιακή ανάπτυξη Course Unit #1 : Κατανοώντας τις βασικές σύγχρονες ψηφιακές αρχές Thematic Unit #1 : Τεχνολογίες Web και CMS Learning Objective : SEO και Analytics Fabio Calefato Department of Computer
ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή
Statistical Inference I Locally most powerful tests
Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided
auth Αλγόριθμοι - Τμήμα Πληροφορικής ΑΠΘ - Εξάμηνο 4ο
Σχεδίαση Αλγορίθμων Διαίρει και Βασίλευε http://delab.csd.auth.gr/courses/algorithms/ auth 1 Διαίρει και Βασίλευε Η γνωστότερη ρημέθοδος σχεδιασμού αλγορίθμων: 1. Διαιρούμε το στιγμιότυπο του προβλήματος
Με βάση τα παραπάνω ορίζουμε την αναμενόμενη χρησιμότητα (expected utility) EU(A) μιας επιλογής A ως εξής:
ΚΟΙΝΩΝΙΚΗ ΕΠΙΛΟΓΗ Στην παρούσα ενότητα θα ασχοληθούμε με την περιγραφή και ανάλυση των μηχανισμών με τους οποίους κοινωνικές ομάδες μπορούν να επιλέγουν μεταξύ εναλλακτικών προτάσεων. Απόρροια κάθε τέτοιας
Reminders: linear functions
Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U
ΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ. Χειµερινό Εξάµηνο ΔΙΑΛΕΞΗ 3: Αλγοριθµική Ελαχιστοποίηση (Quine-McCluskey, tabular method)
ΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Χειµερινό Εξάµηνο 2016 ΔΙΑΛΕΞΗ 3: Αλγοριθµική Ελαχιστοποίηση (Quine-McCluskey, tabular method) ΧΑΡΗΣ ΘΕΟΧΑΡΙΔΗΣ Επίκουρος Καθηγητής, ΗΜΜΥ (ttheocharides@ucy.ac.cy)
ΜΥΥ105: Εισαγωγή στον Προγραμματισμό. Αναζήτηση και Ταξινόμηση Χειμερινό Εξάμηνο 2016
ΜΥΥ105: Εισαγωγή στον Προγραμματισμό Αναζήτηση και Ταξινόμηση Χειμερινό Εξάμηνο 2016 Αναζήτηση και Ταξινόμηση Βασικές λειτουργίες σε προγράμματα Αναζήτηση (searching): Βρες ένα ζητούμενο στοιχείο σε μια
3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β
3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle
Αντισταθμιστική ανάλυση
Αντισταθμιστική ανάλυση Θεωρήστε έναν αλγόριθμο Α που χρησιμοποιεί μια δομή δεδομένων Δ : Κατά τη διάρκεια εκτέλεσης του Α η Δ πραγματοποιεί μία ακολουθία από πράξεις. Παράδειγμα: Θυμηθείτε το πρόβλημα
ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 4. Παραδείγματα Ανάλυσης Πολυπλοκότητας Ανάλυση Αναδρομικών Αλγόριθμων
ΕΠΛ31 Δομές Δεδομένων και Αλγόριθμοι 4. Παραδείγματα Ανάλυσης Πολυπλοκότητας Ανάλυση Αναδρομικών Αλγόριθμων Διάλεξη 04: Παραδείγματα Ανάλυσης Πολυπλοκότητας/Ανάλυση Αναδρομικών Αλγόριθμων Στην ενότητα
Approximation Algorithms for the k-median problem
Approximation Algorithms for the k-median problem Ζακυνθινού Λυδία Παυλάκος Γεώργιος Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Θεωρία Υπολογισμού 2011-2012 Το πρόβλημα
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal
Εισαγωγή στην Επεξεργασία Ερωτήσεων. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1
Εισαγωγή στην Επεξεργασία Ερωτήσεων Βάσεις Δεδομένων 2013-2014 Ευαγγελία Πιτουρά 1 Επεξεργασία Ερωτήσεων Θα δούμε την «πορεία» μιας SQL ερώτησης (πως εκτελείται) Ερώτηση SQL Ερώτηση ΣΒΔ Αποτέλεσμα Βάσεις
SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions
SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)
Λυσεις προβλημάτων τελικής φάσης Παγκύπριου Μαθητικού Διαγωνισμού Πληροφορικής 2007
Λυσεις προβλημάτων τελικής φάσης Παγκύπριου Μαθητικού Διαγωνισμού Πληροφορικής 2007 Πρόβλημα 1 Το πρώτο πρόβλημα λύνεται με τη μέθοδο του Δυναμικού Προγραμματισμού. Για να το λύσουμε με Δυναμικό Προγραμματισμό
EFFICIENT TOP-K QUERYING OVER SOCIAL-TAGGING NETWORKS
EFFICIENT TOP-K QUERYING OVER SOCIAL-TAGGING NETWORKS Ralf Schenkel, Tom Crecelious, Mouna Kacimi, Sebastian Michel, Thomas Neumann, Josiane Xavier Parreira, Gerhard Weikum ΠΡΟΒΛΗΜΑ Εύρεση ενός αποτελεσματικού
Approximation of distance between locations on earth given by latitude and longitude
Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth
k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +
Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b
Homework 8 Model Solution Section
MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx
Εισαγωγή στην. Εισαγωγή Σ Β. Αρχεία ευρετηρίου Κατάλογος. συστήματος. Αρχεία δεδομένων
Εισαγωγή στην Επεξεργασία Ερωτήσεων 1 Εισαγωγή Σ Β Σύνολο από προγράμματα για τη διαχείριση της Β Αρχεία ευρετηρίου Κατάλογος ΒΑΣΗ Ε ΟΜΕΝΩΝ Αρχεία δεδομένων συστήματος Σύστημα Βάσεων εδομένων (ΣΒ ) 2 :
The challenges of non-stable predicates
The challenges of non-stable predicates Consider a non-stable predicate Φ encoding, say, a safety property. We want to determine whether Φ holds for our program. The challenges of non-stable predicates
Διάλεξη 10: Αλγόριθμοι Ταξινόμησης II
ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 1 Διάλεξη 10: Αλγόριθμοι Ταξινόμησης II Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Οι αλγόριθμοι ταξινόμησης: Δ. QuickSort Γρήγορη Ταξινόμηση Ε. BucketSort
ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011
Διάρκεια Διαγωνισμού: 3 ώρες Απαντήστε όλες τις ερωτήσεις Μέγιστο Βάρος (20 Μονάδες) Δίνεται ένα σύνολο από N σφαιρίδια τα οποία δεν έχουν όλα το ίδιο βάρος μεταξύ τους και ένα κουτί που αντέχει μέχρι
Εισαγωγή. Γενική Εικόνα του Μαθήµατος. Το εσωτερικό ενός Σ Β. Εισαγωγή. Εισαγωγή Σ Β Σ Β. Αρχεία ευρετηρίου Κατάλογος συστήµατος Αρχεία δεδοµένων
Βάσεις εδοµένων 2003-2004 Ευαγγελία Πιτουρά 1 ΜΕΡΟΣ 1 Γενική Εικόνα του Μαθήµατος Επεξεργασία Ερωτήσεων Μοντελοποίηση (Μοντέλο Ο/Σ, Σχεσιακό, Λογικός Σχεδιασµός) Προγραµµατισµός (Σχεσιακή Άλγεβρα, SQL)
5. Απλή Ταξινόμηση. ομές εδομένων. Χρήστος ουλκερίδης. Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων
Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων 5. Απλή Ταξινόμηση 2 ομές εδομένων 4 5 Χρήστος ουλκερίδης Τμήμα Ψηφιακών Συστημάτων 11/11/2016 Εισαγωγή Η
Παλεπηζηήκην Πεηξαηώο Τκήκα Πιεξνθνξηθήο Πξόγξακκα Μεηαπηπρηαθώλ Σπνπδώλ «Πξνεγκέλα Σπζηήκαηα Πιεξνθνξηθήο»
Παλεπηζηήκην Πεηξαηώο Τκήκα Πιεξνθνξηθήο Πξόγξακκα Μεηαπηπρηαθώλ Σπνπδώλ «Πξνεγκέλα Σπζηήκαηα Πιεξνθνξηθήο» Μεηαπηπρηαθή Γηαηξηβή Τίηινο Γηαηξηβήο Ανάπτυξη διαδικτυακού εκπαιδευτικού παιχνιδιού για τη
Εισαγωγή στην Επεξεργασία Ερωτήσεων. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1
Εισαγωγή στην Επεξεργασία Ερωτήσεων 1 Επεξεργασία Ερωτήσεων Θα δούμε την «πορεία» μιας SQL ερώτησης (πως εκτελείται) Ερώτηση SQL Ερώτηση ΣΒΔ Αποτέλεσμα 2 Βήματα Επεξεργασίας Τα βασικά βήματα στην επεξεργασία
ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ
ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ 2015-2016 Θέμα Α Α1. Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις προτάσεις 1-4 και δίπλα τη λέξη ΣΩΣΤΟ,
IIT JEE (2013) (Trigonomtery 1) Solutions
L.K. Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 677 (+) PAPER B IIT JEE (0) (Trigoomtery ) Solutios TOWARDS IIT JEE IS NOT A JOURNEY, IT S A BATTLE, ONLY THE TOUGHEST WILL SURVIVE
Ανάκτηση Πληροφορίας
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 4: Μοντελοποίηση: Διανυσματικό μοντέλο Απόστολος Παπαδόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Cable Systems - Postive/Negative Seq Impedance
Cable Systems - Postive/Negative Seq Impedance Nomenclature: GMD GMR - geometrical mead distance between conductors; depends on construction of the T-line or cable feeder - geometric mean raduius of conductor
On the Galois Group of Linear Difference-Differential Equations
On the Galois Group of Linear Difference-Differential Equations Ruyong Feng KLMM, Chinese Academy of Sciences, China Ruyong Feng (KLMM, CAS) Galois Group 1 / 19 Contents 1 Basic Notations and Concepts
Cambridge International Examinations Cambridge International General Certificate of Secondary Education
Cambridge International Examinations Cambridge International General Certificate of Secondary Education *3148288373* GREEK 0543/04 Paper 4 Writing May/June 2016 1 hour Candidates answer on the Question
PARTIAL NOTES for 6.1 Trigonometric Identities
PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot
Αλγόριθμοι και Πολυπλοκότητα
Αλγόριθμοι και Πολυπλοκότητα Ανάλυση Αλγορίθμων Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ανάλυση Αλγορίθμων Η ανάλυση αλγορίθμων περιλαμβάνει τη διερεύνηση του τρόπου
Notes. Notes. Notes. Notes. A B C x y z y z x z x y
Κοινωνική επιλογή και Ευημερία Κώστας Ρουμανιάς Ο.Π.Α. Τμήμα Δ. Ε. Ο. Σ. 3 Δεκεμβρίου 01 Κώστας Ρουμανιάς (Δ.Ε.Ο.Σ.) Κοινωνική επιλογή και Ευημερία 3 Δεκεμβρίου 01 1 / 50 Κοινωνική επιλογή. Κοινωνική επιλογή.
Chapter 6: Systems of Linear Differential. be continuous functions on the interval
Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations
Σχεδίαση & Ανάλυση Αλγορίθμων
Σχεδίαση & Ανάλυση Αλγορίθμων Ενότητα 3 Αλγόριθμοι Επιλογής Σταύρος Δ. Νικολόπουλος Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Ιωαννίνων Webpage: www.cs.uoi.gr/~stavros Αλγόριθμοι Επιλογής Γνωρίζουμε
Διάλεξη 04: Παραδείγματα Ανάλυσης
Διάλεξη 04: Παραδείγματα Ανάλυσης Πολυπλοκότητας/Ανάλυση Αναδρομικών Αλγόριθμων Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Παραδείγματα Ανάλυσης Πολυπλοκότητας : Μέθοδοι, παραδείγματα
Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Άνοιξη HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems
Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Άνοιξη 2007 HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems Στατιστικά Κειμένου Text Statistics Γιάννης Τζίτζικας ιάλεξη : 14a
Διάλεξη 09: Αλγόριθμοι Ταξινόμησης I
Διάλεξη 09: Αλγόριθμοι Ταξινόμησης I Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Οι αλγόριθμοι ταξινόμησης: Α. SelectionSort Ταξινόμηση με Επιλογή Β. InsertionSort Ταξινόμηση με Εισαγωγή