1o Φροντιστήριο ΗΥ240

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "1o Φροντιστήριο ΗΥ240"

Transcript

1 1o Φροντιστήριο ΗΥ240 Άσκηση 1 Αποδείξτε τη μεταβατική και τη συμμετρική ιδιότητα του Θ Μεταβατική Ιδιότητα (ορισμός): Αν f(n) = Θ(g(n)) και g(n) = Θ(h(n)) τότε f(n)=θ(h(n)) Για να ισχύει f(n)= Θ(h(n)) πρέπει να δείξουμε ότι f(n)= Ο(h(n)) και ότι f(n)= Ω(h(n)) Αποδεικνύω πρώτα ότι f(n)= Ο(h(n)) Αφού f(n) = Θ(g(n)) f(n)= Ο(g(n)), άρα Ǝ c 1 R + και n 1 0 τω f(n) c 1 g(n), n n 1 (1) Αφού g(n) = Θ(h(n)) g(n)= Ο(h(n)), άρα Ǝ c 2 R + και n 2 0 τω g(n) c 2 h(n), n n 2 (2) Επιλέγω n 0 = max{n 1,n 2 } και τότε (1) + (2) f(n) c 1 g(n) c 1 c 2 h(n), n n 0 Επιλέγω c= c 1 c 2 και τότε c (=c 1 c 2 ) και n 0 = max{n 1,n 2 } τω f(n) c h(n), n n 0, Άρα f(n) = O(h(n)) Αποδεικνύω τώρα ότι f(n)= Ω(h(n)) Αφού f(n) = Θ(g(n)) f(n)= Ω(g(n)), άρα Ǝ c 1 R + και n 1 0 τω f(n) c 1 g(n), n n 1 (1) Αφού g(n) = Θ(h(n)) g(n)= Ω(h(n)), άρα Ǝ c 2 R + και n 2 0 τω g(n) c 2 h(n), n n 2 (2) Επιλέγω n 0 = max{n 1,n 2 } και τότε (1) + (2) f(n) c 1 g(n) c 1 c 2 h(n), n n 0 Επιλέγω c= c 1 c 2 και τότε c (=c 1 c 2 ) και n 0 = max{n 1,n 2 } τω f(n) c h(n), n n 0, Άρα f(n) = Ω(h(n))

2 Συμμετρική ιδιότητα (ορισμός): f(n) = Θ(g(n)) αν και μόνο αν g(n) = Θ(f(n)) Αν f(n) = Θ(g(n)) τότε πρέπει g(n) = Θ(f(n)) ( Αν g(n) = Θ(f(n)) τότε πρέπει f(n) = Θ(g(n)), είναι συμμετρική!) Για να δείξω ότι g(n) = Θ(f(n)) πρέπει να δείξω ότι g(n) = Ο(f(n)) και g(n) = Ω(f(n)) (1) Αφού f(n) = Θ(g(n)) τότε f(n) = Ο(g(n)) Άρα c 1 R + και n 1 0 τω f(n) c 1 g(n), n n 1 g(n) 1/c 1 f(n), n n 1 Άρα αν επιλέξω c = 1/c 1 και n 0 = n 1 προκύπτει ότι g(n) c f(n), n n 0 Άρα g(n) = Ω(f(n)) (2) Αφού f(n) = Θ(g(n)) τότε f(n) = Ω(g(n)) Άρα c 2 R + και n 2 0 τω f(n) c 2 g(n), n n 2 g(n) 1/c 2 f(n), n n 2 Άρα αν επιλέξω c = 1/c 2 και n 0 = n 2 προκύπτει ότι g(n) c f(n), n n 0 Άρα g(n) = Ο(f(n)) (3) (2) + (3) g(n) = Θ(f(n)) (όπως ζητείται ) (απόδειξη του ομοίως και για το αντίστροφο) Άσκηση 2 i) Ισχύει ότι log ( = O(n 3 )? ii) Ισχύει ότι log ( = Θ( log(n) )? i) Εξετάζω εάν log ( O(n 3 ) Αναζητώ c R + και ακέραιο n 0 0 τω log ( c n 3, n n 0 n 5/2 logn 5/2 c n 3 n log(n) c n 3 25 n 25 log(n) 25 n 25 = 25 n 3, n 4 Αν επιλέξω c = 25 και n 0 = 4 προκύπτει ότι log ( c n 3, n n 0 Άρα log ( Ο(n 3 )

3 ii) Εξετάζω εάν log ( O(log(n)) Αναζητώ c R + και ακέραιο n 0 0 τω log ( c log(n), n n 0 log n 1/2 c log(n) ½ log(n) c log(n) 1/2 c Αν επιλέξω c = 1/2 και n 0 = 1 προκύπτει ότι log ( c log(n), n n 0 Άρα log ( Ο(log(n)) (Ομοίως εξετάζω και το εάν log ( Ω(log(n)) ) Άσκηση 3 a) Αποδείξτε επαγωγικά ότι αν Τ(0) = 0 και Τ(n) = 2Τ(n-1) + 1, n>0 τότε Τ(n) = 2 n - 1 b) Θεωρήστε τη συνάρτηση f : N N που ορίζεται ως εξής : f(0) =1, f(1)= 2 και f(n)= 4 f(n-2) +2 n αν n>1 Αποδείξτε επαγωγικά ότι για κάθε ακέραιο n 3 ισχύει f(n) 3 n 2 n-2 a) Βάση επαγωγής: για n=1, Τ(1)= 2Τ(1-1) + 1 = 2Τ(0) +1 = 0+1=1 Τ(1) = = 2-1 =1, άρα ισχύει για n=1 Επαγωγική Υπόθεση: έστω ότι ισχύει για n= k-1 Θα δείξω ότι ισχύει για n = k Επαγωγικό Βήμα: T(k) = 2T(k-1) +1 = 2(2 k-1 1) +1 = 2 k = 2 k -1 (απεδείχθη) b) Βάση επαγωγής: για n=3, f(3) = 4 f(1) +2 3 = =16 f(3) =18,άρα ισχύει αφού 16<18 Επαγωγική Υπόθεση: έστω ότι ισχύει για κάθε 3 n k-1θα δείξω ότι ισχύει για n=k Επαγωγικό Βήμα: f(k)= 4 f(k-2) +2 k 4(3(k-2) 2 k-4 ) +2 k = 2 2 (3(k-2) 2 k-4 ) +2 2 k (3(k-2) 2 k-4 ) +3 2 k-1 = 2 2 (3(k-2) 2 k-4 ) k-2 = 3 2 k-2 (k-2) +3 2 k-2 2 = 3 2 k-2 k = 3 k 2 k-2 (απεδείχθη)

4 Άσκηση 4 Βρείτε την τάξη (βάσει των συμβολισμών Ο,Ω,Θ) της χρονικής πολυπλοκότητας Τ(n) του ακόλουθου αλγόριθμου } Procedure f (integer n){ for(i=1; i n; i++) for(k=n; k n+5; k++) x=x+1; Για i=1: k =n k=n+1 k=n+2 k=n+3 k=n+4 k=n+5 Για i=2 k =n k=n+1 k=n+2 k=n+3 k=n+4 k=n+5 Για i=n k =n k=n+1 k=n+2 k=n+3 k=n+4 k=n+5 Οπότε η εντολή «x=x+1» εκτελείται : Τ(n) = n * 6 = Θ(n)

5 Άσκηση 5 Δίνεται ο αλγόριθμος Binary Search, ο οποίος χρησιμοποιείται για την αναζήτηση ενός στοιχείου σε έναν ήδη ταξινομημένο πίνακα Integer BinarySearch(A[0 N-1], value, low, high) { if( high < low) return -1; //not found mid = low+(high-low)/2; if (A[mid] > value) return BinarySearch(A, value, low, mid-1); else if (A[mid] < value) return BinarySearch(A, value, mid+1, high); else return mid; //found } a) Παρουσιάστε σύντομη περιγραφή του τρόπου λειτουργίας του αλγορίθμου b) Ιχνηλατήστε την BinarySearch (Α,6,0,9) για την περίπτωση που Α= [0,1,2,3,4,5,6,7,8,9] Πρέπει να παρουσιαστούν όλες οι αναδρομικές κλήσεις της BinarySearch με τη σειρά που καλούνται καθώς και οι τιμές των παραμέτρων Α, value, low,high σε κάθε κλήση Πρέπει επίσης να παρουσιαστεί ο χώρος στη μνήμη που κατανέμεται για την εκτέλεση των αναδρομικών κλήσεων της BinarySearch c) Παρουσιάστε αναδρομική σχέση που να περιγράφει τη χρονική πολυπλοκότητα Τ(n) της BinarySearch για την περίπτωση που n = 2 k, για κάποιο k (δηλαδή για την περίπτωση που το n είναι μια δύναμη του 2) Τι τάξης είναι η πολυπλοκότητα της BinarySearch, αποδείξτε τον ισχυρισμό σας a) Η BinarySearch ακολουθεί την ιδέα του διαίρει και κυρίευε i)το πρόβλημα διαιρείται σε μικρότερα υποπροβλήματα, ii) το πρόβλημα επιλύεται στα υποπροβλήματα (και πάλι υποδιαιρούνται σε μικρότερα υποπροβλήματα) η διαίρεση αυτή σταματά,στη BinarySearch, όταν βρεθεί το στοιχείο που έχει δοθεί προς αναζήτηση(value), iii) οι λύσεις των υποπροβλημάτων συνδυάζονται ώστε να παραχθεί η τελική λύση Η συνάρτηση λειτουργεί ως εξής, παίρνει ορίσματα ένα ταξινομημένο πίνακα Α, μία τιμή προς αναζήτηση value,ένα κάτω όριο low και ένα πάνω όριο high τα δύο όρια αυτά υποδηλώνουν τα όρια του πίνακα όπου θα γίνει η αναζήτηση,(δηλαδή «ψάξε» στον Α[low high] το value) Μέσα στη συνάρτηση βρίσκει το μεσαίο στοιχείο του πίνακα A[low high], το mid,και ελέγχει αν το στοιχείο στη θέση Α[mid] είναι μεγαλύτερο ή μικρότερο από το valueστην περίπτωση που είναι μικρότερο κάνει αναδρομική κλήση της BinarySearch(A, value, mid+1, high) δηλαδή ψάχνει το value στο άνω μισό του πίνακα Α, ενώ αν είναι μεγαλύτερο κάνει αναδρομική κλήση της BinarySearch(A, value, low, mid-1) δηλαδή ψάχνει το value στο κάτω μισό του πίνακα Α Αν το στοιχείο δε βρεθεί στον πίνακα(δηλαδή φτάνουμε στο σημείο

6 όπου high < low τότε η συνάρτηση επιστρέφει -1, αν το στοιχείο βρεθεί τότε επιστρέφεται η θέση του πίνακα που βρέθηκε, δηλαδή mid b) Η ιχνηλάτηση: Sorted Array: [0,1,2,3,4,5,6,7,8,9] BinarySearch ([0,1,2,3,4,5,6,7,8,9], 6, 0,9): if (9 < 0) --> False-Not Found value=6 low=0 high=9 mid = 0+(9-0)/2 = 4 if(4>6)--> FALSE else if(4<6)--> TRUE BinarySearch ([0,1,2,3,4,5,6,7,8,9], 6, 5, 9): if (9 < 5) --> False-Not Found value=6 low=5 high=9 mid = 5+(9-5)/2 = 7 if(7>6)--> TRUE BinarySearch ([0,1,2,3,4,5,6,7,8,9], 6, 5, 6): if (6 < 5) --> False-Not Found value=6 low=5 high=6 mid = 5+(6-5)/2 = 5 if(5>6)--> FALSE else if(5<6)--> TRUE BinarySearch ([0,1,2,3,4,5,6,7,8,9], 6, 6, 6): if (6 < 6) --> False-Not Found value=6 low=6 high=6 mid = 6+(6-6)/2 = 6 if (6>6)--> TRUE else if(6<6)--> FALSE else return 6 //Found το στοιχείο βρίσκεται στη θέση 6 του πίνακα A[0,1,2,3,4,5,6,7,8,9] -->A[6]=6

7 Για τη μνήμη: Α= [0,1,2,3,4,5,6,7,8,9] σε όλες τις περιπτώσεις Value : 6 Low: 0 BinarySearch(A,6,0,9) High: 9 Mid: 4 Value : 6 Low: 5 BinarySearch(A,6,5,9) High: 9 Mid: 7 Value : 6 Low: 5 BinarySearch(A,6,5,5) High: 6 Mid: 5 Value : 6 Low: 6 BinarySearch(A,6,6,6) High: 6 Mid: 6 c) T(1)=1 T(n) = T(n/2) + c 1 = T(n/2 2 ) + c 1 +c 2 = (προσθέτω τον όρο Τα(n/2) +c log n φορές) = T(n/2 3 ) + c 1 +c 2 + c 3 = = T(n/2 logn ) + c 1 +c 2 + c c logn ( T(n/2 logn ) = T(n/n) =T(1) =1) = 1 + c 1 +c 2 + c c logn Επιλέγω c = max{ c 1,c 2, c 3,,c logn } T(n) 1+ c(1+1++1) = [((1+1++1) logn φορές )] =1+ c * logn, άρα Τ(n) O(logn) (1)

8 Επιλέγω c = min{ c 1,c 2, c 3,,c logn } T(n) 1+ c(1+1++1) = [((1+1++1) logn φορές )] =1+ c * logn, άρα Τ(n) Ω(logn) (2) (1) + (2) Τ(n) Θ(logn)

Ενότητα 1: Εισαγωγή Ασκήσεις και Λύσεις

Ενότητα 1: Εισαγωγή Ασκήσεις και Λύσεις Ενότητα 1: Εισαγωγή Ασκήσεις και Λύσεις Άσκηση 1 Αποδείξτε τη µεταβατική και τη συµµετρική ιδιότητα του Θ. Λύση Μεταβατική Ιδιότητα (ορισµός): Αν f(n) = Θ(g(n)) και g(n) = Θ(h(n)) τότε f(n)=θ(h(n)). Για

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Δομές δεδομένων Άσκηση αυτοαξιολόγησης 1 Παναγιώτα Φατούρου Τμήμα Επιστήμης Υπολογιστών Ενότητα 1: Εισαγωγή Ασκήσεις και Λύσεις Άσκηση 1 Αποδείξτε τη µεταβατική

Διαβάστε περισσότερα

οµές εδοµένων 3 ο Εξάµηνο Τµήµα Πανεπιστήµιο Πληροφορικής Ιωαννίνων ΟΜΕΣ Ε ΟΜΕΝΩΝ

οµές εδοµένων 3 ο Εξάµηνο Τµήµα Πανεπιστήµιο Πληροφορικής Ιωαννίνων ΟΜΕΣ Ε ΟΜΕΝΩΝ Τµήµα Πανεπιστήµιο Πληροφορικής Ιωαννίνων ΟΜΕΣ Ε ΟΜΕΝΩΝ ΕΝΟΤΗΤΑ 1 ΕΙΣΑΓΩΓΗ 1 εδοµένα Σύνολο από πληροφορίες που πρέπει να αποθηκευτούν σε έναν υπολογιστή Υπολογιστικό Μοντέλο ένας επεξεργαστής και µεγάλος

Διαβάστε περισσότερα

Δομές Δεδομένων & Αλγόριθμοι

Δομές Δεδομένων & Αλγόριθμοι - Πίνακες 1 Πίνακες Οι πίνακες έχουν σταθερό μέγεθος και τύπο δεδομένων. Βασικά πλεονεκτήματά τους είναι η απλότητα προγραμματισμού τους και η ταχύτητα. Ωστόσο δεν παρέχουν την ευελιξία η οποία απαιτείται

Διαβάστε περισσότερα

Δομές Δεδομένων & Αλγόριθμοι

Δομές Δεδομένων & Αλγόριθμοι Δομές Δεδομένων & Αναζήτηση & Ταξινόμηση 1 Αναζήτηση Έχω έναν πίνακα Α με Ν στοιχεία. Πρόβλημα: Βρες αν το στοιχείο x ανήκει στον πίνακα Αν ο πίνακας είναι αταξινόμητος τότε μόνη λύση σειριακή αναζήτηση

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Ενότητα 2: Ασυμπτωτικός συμβολισμός Μαρία Σατρατζέμη Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Τηλ , Fax: , URL:

Τηλ , Fax: , URL: Τµήµα Πανεπιστήµιο Πληροφορικής Ιωαννίνων ΟΜΕΣ Ε ΟΜΕΝΩΝ Παναγιώτα Φατούρου faturu@cs.uoi.gr Σεπτέµβριος, 2005 Τµήµα Πληροφορικής, Πανεπιστήµιο Ιωαννίνων, Τ.Θ. 1186, Γραφείο Α26, Τηλ. +30 26510 98808, Fax:

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΜΑΘΗΜΑ: ΑΛΓΟΡΙΘΜΟΙ ΚΑΙ ΠΟΛΥΠΛΟΚΟΤΗΤΑ 1. α. Να βάλετε σε αύξουσα σειρά μεγέθους τις παρακάτω συναρτήσεις χρονικής πολυπλοκότητας αλγορίθμων: nlogn, n logn,

Διαβάστε περισσότερα

Δομές Δεδομένων & Αλγόριθμοι

Δομές Δεδομένων & Αλγόριθμοι Δομές Δεδομένων & Αναζήτηση & Ταξινόμηση 1 Αναζήτηση Έχω έναν πίνακα Α με Ν στοιχεία. Πρόβλημα: Βρες αν το στοιχείο x ανήκει στον πίνακα Αν ο πίνακας είναι αταξινόμητος τότε μόνη λύση σειριακή αναζήτηση

Διαβάστε περισσότερα

Εισαγωγή στην Ανάλυση Αλγορίθμων (2-3)

Εισαγωγή στην Ανάλυση Αλγορίθμων (2-3) Εισαγωγή στην Ανάλυση Αλγορίθμων (2-3) 3.1 Ασυμπτωτικός συμβολισμός (Ι) Οι ορισμοί που ακολουθούν μας επιτρέπουν να επιχειρηματολογούμε με ακρίβεια για την ασυμπτωτική συμπεριφορά. Οι f(n) και g(n) συμβολίζουν

Διαβάστε περισσότερα

Γ7.5 Αλγόριθμοι Αναζήτησης. Γ Λυκείου Κατεύθυνσης

Γ7.5 Αλγόριθμοι Αναζήτησης. Γ Λυκείου Κατεύθυνσης Γ7.5 Αλγόριθμοι Αναζήτησης Γ Λυκείου Κατεύθυνσης Εισαγωγή Αλγόριθμος αναζήτησης θεωρείται ένας αλγόριθμος, ο οποίος προσπαθεί να εντοπίσει ένα στοιχείο με συγκεκριμένες ιδιότητες, μέσα σε μία συλλογή από

Διαβάστε περισσότερα

Ορισµός. Εστω συναρτήσεις: f : N R και g : N R. η f(n) είναι fi( g(n) ) αν υπάρχουν σταθερές C 1, C 2 και n 0, τέτοιες ώστε:

Ορισµός. Εστω συναρτήσεις: f : N R και g : N R. η f(n) είναι fi( g(n) ) αν υπάρχουν σταθερές C 1, C 2 και n 0, τέτοιες ώστε: Συµβολισµός Ω( ) Τάξη των Συναρτήσεων () Εκτίµηση Πολυπλοκότητας Αλγορίθµων Ορέστης Τελέλης telelis@unipi.gr Ορισµός. Εστω συναρτήσεις: f : N R και g : N R η f(n) είναι Ω( g(n) ) αν υπάρχουν σταθερές C

Διαβάστε περισσότερα

Πολυπλοκότητα Αλγορίθµων

Πολυπλοκότητα Αλγορίθµων Πολυπλοκότητα Αλγορίθµων Στην ενότητα αυτή θα µελετηθούν τα εξής επιµέρους θέµατα: Πρόβληµα, Στιγµιότυπο, Αλγόριθµος Εµπειρική Θεωρητική Ανάλυση Αλγορίθµων Εργαλεία εκτίµησης πολυπλοκότητας: οι τάξεις

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ 1 ΛΥΣΕΙΣ Ανάλυση Πολυπλοκότητας

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ 1 ΛΥΣΕΙΣ Ανάλυση Πολυπλοκότητας ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 231: Δομές Δεδομένων και Αλγόριθμοι ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ 1 ΛΥΣΕΙΣ Ανάλυση Πολυπλοκότητας ΠΕΡΙΓΡΑΦΗ Σε αυτή την άσκηση καλείστε να αναλύσετε και να υπολογίσετε το

Διαβάστε περισσότερα

Αλγόριθµοι και Πολυπλοκότητα

Αλγόριθµοι και Πολυπλοκότητα Αλγόριθµοι και Πολυπλοκότητα Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: Πρόβληµα, Στιγµιότυπο, Αλγόριθµος Εργαλεία εκτίµησης πολυπλοκότητας: οι τάξεις Ο(n), Ω(n), Θ(n) Ανάλυση Πολυπλοκότητας Αλγορίθµων

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 5: Αλγόριθµοι

ΚΕΦΑΛΑΙΟ 5: Αλγόριθµοι ΚΕΦΑΛΑΙΟ 5: Αλγόριθµοι 5.1 Η έννοια του αλγορίθµου 5.2 Αναπαράσταση αλγορίθµων 5.3 Επινόηση αλγορίθµων 5.4 Δοµές επανάληψης 5.5 Αναδροµικές δοµές 1 Αλγόριθµος: Ορισµός Ένας αλγόριθµος είναι ένα διατεταγµένο

Διαβάστε περισσότερα

Δομές Δεδομένων Ενότητα 2

Δομές Δεδομένων Ενότητα 2 ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 2: Θέματα Απόδοσης Απόστολος Παπαδόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Σχεδίαση και Ανάλυση Αλγορίθμων

Σχεδίαση και Ανάλυση Αλγορίθμων Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 2.0 Πολυπλοκότητα Αλγορίθμων Ασυμπτωτική Πολυπλοκότητα Αναδρομικές Σχέσεις Σταύρος Δ. Νικολόπουλος 2016-17 Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Ιωαννίνων

Διαβάστε περισσότερα

Ασυμπτωτικός Συμβολισμός

Ασυμπτωτικός Συμβολισμός Ασυμπτωτικός Συμβολισμός Επιμέλεια διαφανειών: Δημήτρης Φωτάκης (λίγες προσθήκες: Άρης Παγουρτζής) Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Υπολογιστική Πολυπλοκότητα

Διαβάστε περισσότερα

Στοιχεία Αλγορίθµων και Πολυπλοκότητας

Στοιχεία Αλγορίθµων και Πολυπλοκότητας Στοιχεία Αλγορίθµων και Πολυπλοκότητας Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Ο. Τελέλης Πανεπιστήµιο Πειραιώς Πολυπλοκότητα 1 / 16 «Ζέσταµα» Να γράψετε τις συναρτήσεις

Διαβάστε περισσότερα

Διακριτά Μαθηματικά [Rosen, κεφ. 3] Γιάννης Εμίρης Τμήμα Πληροφορικής & Τηλεπικοινωνιών, ΕΚΠΑ Οκτώβριος 2018

Διακριτά Μαθηματικά [Rosen, κεφ. 3] Γιάννης Εμίρης Τμήμα Πληροφορικής & Τηλεπικοινωνιών, ΕΚΠΑ Οκτώβριος 2018 Διακριτά Μαθηματικά [Rosen, κεφ. 3] Γιάννης Εμίρης Τμήμα Πληροφορικής & Τηλεπικοινωνιών, ΕΚΠΑ Οκτώβριος 2018 Αλγόριθμοι Ρυθμός αύξησης συναρτήσεων [Rosen 3.2] Αριθμητικές συναρτήσεις Τάξη αριθμητικών συναρτήσεων

Διαβάστε περισσότερα

Ορθότητα Χωρική αποδοτικότητα. Βελτιστότητα. Θεωρητική ανάλυση Εμπειρική ανάλυση. Αλγόριθμοι - Τμήμα Πληροφορικής ΑΠΘ -4ο εξάμηνο 1

Ορθότητα Χωρική αποδοτικότητα. Βελτιστότητα. Θεωρητική ανάλυση Εμπειρική ανάλυση. Αλγόριθμοι - Τμήμα Πληροφορικής ΑΠΘ -4ο εξάμηνο 1 Ανάλυση Αλγορίθμων Θέματα Θέματα: Ορθότητα Χρονική αποδοτικότητα Χωρική αποδοτικότητα Βελτιστότητα Προσεγγίσεις: Θεωρητική ανάλυση Εμπειρική ανάλυση Αλγόριθμοι - Τμήμα Πληροφορικής ΑΠΘ -4ο εξάμηνο 1 Θεωρητική

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ 1 ΛΥΣΕΙΣ Ανάλυση Πολυπλοκότητας

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ 1 ΛΥΣΕΙΣ Ανάλυση Πολυπλοκότητας ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 231: Δομές Δεδομένων και Αλγόριθμοι Εαρινό Εξάμηνο 2013 ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ 1 ΛΥΣΕΙΣ Ανάλυση Πολυπλοκότητας Διδάσκων Καθηγητής: Παναγιώτης Ανδρέου Ημερομηνία Υποβολής:

Διαβάστε περισσότερα

ΗΥ240: οµές εδοµένων. ιδάσκουσα: Παναγιώτα Φατούρου ΗΥ240 - Παναγιώτα Φατούρου 2

ΗΥ240: οµές εδοµένων. ιδάσκουσα: Παναγιώτα Φατούρου ΗΥ240 - Παναγιώτα Φατούρου 2 ΗΥ240: οµές εδοµένων ιδάσκουσα: Παναγιώτα Φατούρου Υποχρεωτικό Μάθηµα 2ου έτους Τµήµα Επιστήµης Υπολογιστών Πανεπιστήµιο Κρήτης Ενότητα 1 Εισαγωγή ΗΥ240 - Παναγιώτα Φατούρου 2 Εισαγωγικά Θέµατα Αντικείµενο

Διαβάστε περισσότερα

ΗΥ240: οµές εδοµένων

ΗΥ240: οµές εδοµένων ΗΥ240: οµές εδοµένων ιδάσκουσα: Παναγιώτα Φατούρου Υποχρεωτικό Μάθηµα 2ου έτους Τµήµα Επιστήµης Υπολογιστών Πανεπιστήµιο Κρήτης Ενότητα 1 Εισαγωγή ΗΥ240 - Παναγιώτα Φατούρου 2 Εισαγωγικά Θέµατα Αντικείµενο

Διαβάστε περισσότερα

Αλγόριθμοι και Δομές Δεδομένων (Ι) (εισαγωγικές έννοιες)

Αλγόριθμοι και Δομές Δεδομένων (Ι) (εισαγωγικές έννοιες) Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 2015-16 Αλγόριθμοι και Δομές Δεδομένων (Ι) (εισαγωγικές έννοιες) http://di.ionio.gr/~mistral/tp/csintro/ Μ.Στεφανιδάκης Τι είναι

Διαβάστε περισσότερα

Υπολογιστική Πολυπλοκότητα

Υπολογιστική Πολυπλοκότητα Υπολογιστική Πολυπλοκότητα Υπολογιστική πολυπλοκότητα αλγόριθµου Α: Ποσότητα υπολογιστικών πόρων που απαιτεί Α ως αύξουσα συνάρτηση µεγέθους στιγµιότυπου εισόδου. Χρόνος, µνήµη, επεξεργαστές, επικοινωνία,

Διαβάστε περισσότερα

Τι είναι αλγόριθμος; Υποπρογράμματα (υποαλγόριθμοι) Βασικές αλγοριθμικές δομές

Τι είναι αλγόριθμος; Υποπρογράμματα (υποαλγόριθμοι) Βασικές αλγοριθμικές δομές Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 2015-16 Αλγόριθμοι και Δομές Δεδομένων (Ι) (εισαγωγικές έννοιες) http://di.ionio.gr/~mistral/tp/csintro/ Μ.Στεφανιδάκης Τι είναι

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Δομές δεδομένων. Ενότητα 1η: Εισαγωγή Παναγιώτα Φατούρου Τμήμα Επιστήμης Υπολογιστών

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Δομές δεδομένων. Ενότητα 1η: Εισαγωγή Παναγιώτα Φατούρου Τμήμα Επιστήμης Υπολογιστών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Δομές δεδομένων Ενότητα 1η: Εισαγωγή Παναγιώτα Φατούρου Τμήμα Επιστήμης Υπολογιστών ΗΥ240: Δομές Δεδομένων Διδάσκουσα: Παναγιώτα Φατούρου Υποχρεωτικό Μάθημα 2ου

Διαβάστε περισσότερα

Ασυμπτωτικός Συμβολισμός

Ασυμπτωτικός Συμβολισμός Ασυμπτωτικός Συμβολισμός ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Υπολογιστική Πολυπλοκότητα Υπολογιστική πολυπλοκότητα αλγόριθμου Α: Ποσότητα

Διαβάστε περισσότερα

ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ. Αρχές Ανάλυσης Αλγορίθµων Κεφάλαιο 2. Ε. Μαρκάκης Επικ. Καθηγητής

ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ. Αρχές Ανάλυσης Αλγορίθµων Κεφάλαιο 2. Ε. Μαρκάκης Επικ. Καθηγητής ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ Αρχές Ανάλυσης Αλγορίθµων Κεφάλαιο 2 Ε. Μαρκάκης Επικ. Καθηγητής Περίληψη Εµπειρική ανάλυση αλγορίθµων Μαθηµατική ανάλυση αλγορίθµων Αύξηση συναρτήσεων Συµβολισµός µεγάλου όµικρον Παραδείγµατα

Διαβάστε περισσότερα

Εργαστήριο 6: Αναζήτηση, Ανάλυση Πολυπλοκότητας

Εργαστήριο 6: Αναζήτηση, Ανάλυση Πολυπλοκότητας Εργαστήριο 6: Αναζήτηση, Ανάλυση Πολυπλοκότητας Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Αναζήτηση με linearsearch, binarysearch, ternarysearch - Ανάλυση Πολυπλοκότητας ternarysearch

Διαβάστε περισσότερα

Δομές Δεδομένων (Data Structures)

Δομές Δεδομένων (Data Structures) Δομές Δεδομένων (Data Structures) Ανάλυση - Απόδοση Αλγορίθμων Έλεγχος Αλγορίθμων. Απόδοση Προγραμμάτων. Χωρική/Χρονική Πολυπλοκότητα. Ασυμπτωτικός Συμβολισμός. Παραδείγματα. Αλγόριθμοι: Βασικές Έννοιες

Διαβάστε περισσότερα

ΑΛΓΟΡΙΘΜΟΙ. Ενότητα 2: Ανάλυση Αλγορίθμων. Ιωάννης Μανωλόπουλος, Καθηγητής Αναστάσιος Γούναρης, Επίκουρος Καθηγητής Τμήμα Πληροφορικής ΑΠΘ

ΑΛΓΟΡΙΘΜΟΙ. Ενότητα 2: Ανάλυση Αλγορίθμων. Ιωάννης Μανωλόπουλος, Καθηγητής Αναστάσιος Γούναρης, Επίκουρος Καθηγητής Τμήμα Πληροφορικής ΑΠΘ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΛΓΟΡΙΘΜΟΙ Ενότητα 2: Ανάλυση Αλγορίθμων Ιωάννης Μανωλόπουλος, Καθηγητής Αναστάσιος Γούναρης, Επίκουρος Καθηγητής Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Ασυμπτωτικός Συμβολισμός

Ασυμπτωτικός Συμβολισμός Ασυμπτωτικός Συμβολισμός ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Υπολογιστική Πολυπλοκότητα Υπολογιστική

Διαβάστε περισσότερα

Αλγόριθµοι και Πολυπλοκότητα

Αλγόριθµοι και Πολυπλοκότητα Αλγόριθµοι και Πολυπλοκότητα Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Πανεπιστήµιο Αθηνών Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα 25 Φεβρουαρίου 2015 1 / 53 Περιεχόµενα

Διαβάστε περισσότερα

Εισαγωγή στην Ανάλυση Αλγορίθμων

Εισαγωγή στην Ανάλυση Αλγορίθμων Εισαγωγή στην Ανάλυση Αλγορίθμων (4) Μεθοδολογία αναδρομικών σχέσεων (Ι) Με επανάληψη της αναδρομής Έστω όπου r και a είναι σταθερές. Βρίσκουμε τη σχέση που εκφράζει την T(n) συναρτήσει της T(n-) την T(n)

Διαβάστε περισσότερα

Επιμέλεια διαφανειών: Δ. Φωτάκης Τροποποιήσεις-προσθήκες: Α. Παγουρτζής. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Επιμέλεια διαφανειών: Δ. Φωτάκης Τροποποιήσεις-προσθήκες: Α. Παγουρτζής. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Διαίρει-και-Βασίλευε Επιμέλεια διαφανειών: Δ. Φωτάκης Τροποποιήσεις-προσθήκες: Α. Παγουρτζής Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Διαίρει-και-Βασίλευε Γενική

Διαβάστε περισσότερα

Σχεδίαση και Ανάλυση Αλγορίθμων

Σχεδίαση και Ανάλυση Αλγορίθμων Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 4.0 Επιλογή Αλγόριθμοι Επιλογής Select και Quick-Select Σταύρος Δ. Νικολόπουλος 2016-17 Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Ιωαννίνων Webpage: www.cs.uoi.gr/~stavros

Διαβάστε περισσότερα

Διάλεξη 04: Παραδείγματα Ανάλυσης

Διάλεξη 04: Παραδείγματα Ανάλυσης Διάλεξη 04: Παραδείγματα Ανάλυσης Πολυπλοκότητας/Ανάλυση Αναδρομικών Αλγόριθμων Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Παραδείγματα Ανάλυσης Πολυπλοκότητας : Μέθοδοι, παραδείγματα

Διαβάστε περισσότερα

ΔΥΑΔΙΚΗ ΑΝΑΖΗΤΗΣΗ & ΤΑΞΙΝΟΜΗΣΗ ΜΕ ΣΥΓΧΩΝΕΥΣΗ

ΔΥΑΔΙΚΗ ΑΝΑΖΗΤΗΣΗ & ΤΑΞΙΝΟΜΗΣΗ ΜΕ ΣΥΓΧΩΝΕΥΣΗ ΔΥΑΔΙΚΗ ΑΝΑΖΗΤΗΣΗ & ΤΑΞΙΝΟΜΗΣΗ ΜΕ ΣΥΓΧΩΝΕΥΣΗ (ΑΛΓΟΡΙΘΜΟΙ, Sanjoy Dasgupta, Christos Papadimitriou, Umesh Vazirani, σελ. 55-62 ΣΧΕΔΙΑΣΜΟΣ ΑΛΓΟΡΙΘΜΩΝ, Jon Kleinberg, Eva Tardos, Κεφάλαιο 5) Δυαδική αναζήτηση

Διαβάστε περισσότερα

Διάλεξη 09: Αλγόριθμοι Ταξινόμησης I

Διάλεξη 09: Αλγόριθμοι Ταξινόμησης I Διάλεξη 09: Αλγόριθμοι Ταξινόμησης I Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Οι αλγόριθμοι ταξινόμησης: Α. SelectionSort Ταξινόμηση με Επιλογή Β. InsertionSort Ταξινόμηση με Εισαγωγή

Διαβάστε περισσότερα

Διαίρει-και-Βασίλευε. Αλγόριθµοι & Πολυπλοκότητα (Χειµώνας 2011) Διαίρει-και-Βασίλευε 2

Διαίρει-και-Βασίλευε. Αλγόριθµοι & Πολυπλοκότητα (Χειµώνας 2011) Διαίρει-και-Βασίλευε 2 Διαίρει-και-Βασίλευε Αλγόριθµοι & Πολυπλοκότητα (Χειµώνας 2011) Διαίρει-και-Βασίλευε 2 Διαίρει-και-Βασίλευε Γενική µέθοδος σχεδιασµού αλγορίθµων: Διαίρεση σε ( 2) υποπροβλήµατα (σηµαντικά) µικρότερου µεγέθους.

Διαβάστε περισσότερα

Ενότητα 1 Εισαγωγή. ΗΥ240: Δοµές Δεδοµένων. Διδάσκουσα: Παναγιώτα Φατούρου

Ενότητα 1 Εισαγωγή. ΗΥ240: Δοµές Δεδοµένων. Διδάσκουσα: Παναγιώτα Φατούρου ΗΥ240: Δοµές Δεδοµένων Διδάσκουσα: Παναγιώτα Φατούρου Υποχρεωτικό Μάθηµα 2ου έτους Τµήµα Επιστήµης Υπολογιστών Πανεπιστήµιο Κρήτης Ενότητα 1 Εισαγωγή ΗΥ240 - Παναγιώτα Φατούρου 2 Εισαγωγικά Θέµατα Αντικείµενο

Διαβάστε περισσότερα

Κεφάλαιο 2 Ανάλυση Αλγορίθμων

Κεφάλαιο 2 Ανάλυση Αλγορίθμων Κεφάλαιο Ανάλυση Αλγορίθμων Περιεχόμενα.1 Εισαγωγή... 0. Εμπειρική και Θεωρητική Ανάλυση Αλγορίθμων.....1 Εμπειρική Πολυπλοκότητα..... Θεωρητική Πολυπλοκότητα... 3.3 Ανάλυση Χειρότερης και Αναμενόμενης

Διαβάστε περισσότερα

Διάλεξη 04: Παραδείγματα Ανάλυσης Πολυπλοκότητας/Ανάλυση Αναδρομικών Αλγόριθμων

Διάλεξη 04: Παραδείγματα Ανάλυσης Πολυπλοκότητας/Ανάλυση Αναδρομικών Αλγόριθμων Διάλεξη 04: Παραδείγματα Ανάλυσης Πολυπλοκότητας/Ανάλυση Αναδρομικών Αλγόριθμων Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Παραδείγματα Ανάλυσης Πολυπλοκότητας : Μέθοδοι, παραδείγματα

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Ενότητα 4: Αναδρομικές σχέσεις και ανάλυση αλγορίθμων Μαρία Σατρατζέμη Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 4. Παραδείγματα Ανάλυσης Πολυπλοκότητας Ανάλυση Αναδρομικών Αλγόριθμων

ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 4. Παραδείγματα Ανάλυσης Πολυπλοκότητας Ανάλυση Αναδρομικών Αλγόριθμων ΕΠΛ31 Δομές Δεδομένων και Αλγόριθμοι 4. Παραδείγματα Ανάλυσης Πολυπλοκότητας Ανάλυση Αναδρομικών Αλγόριθμων Διάλεξη 04: Παραδείγματα Ανάλυσης Πολυπλοκότητας/Ανάλυση Αναδρομικών Αλγόριθμων Στην ενότητα

Διαβάστε περισσότερα

Διδάσκων: Παναγιώτης Ανδρέου

Διδάσκων: Παναγιώτης Ανδρέου Διάλεξη 6: ΠαραδείγματαΑνάλυσης Πολυπλοκότητας/Ανάλυση Αναδρομικών Αλγόριθμων Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: -Παραδείγματα Ανάλυσης Πολυπλοκότητας : Μέθοδοι, παραδείγματα -Γραμμική

Διαβάστε περισσότερα

Σχεδίαση και Ανάλυση Αλγορίθμων

Σχεδίαση και Ανάλυση Αλγορίθμων Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 3.0 Σταύρος Δ. Νικολόπουλος 0-7 Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Ιωαννίνων Webpage: www.cs.uoi.gr/~stavros Διαίρει και Βασίλευε Quick-sort και Merge-sort

Διαβάστε περισσότερα

Διδάσκων: Κωνσταντίνος Κώστα Διαφάνειες: Δημήτρης Ζεϊναλιπούρ ΕΠΛ 035 Δομές Δεδομένων και Αλγόριθμοι για Ηλ. Μηχ. και Μηχ. Υπολ.

Διδάσκων: Κωνσταντίνος Κώστα Διαφάνειες: Δημήτρης Ζεϊναλιπούρ ΕΠΛ 035 Δομές Δεδομένων και Αλγόριθμοι για Ηλ. Μηχ. και Μηχ. Υπολ. Διάλεξη : Παραδείγματα Ανάλυσης Πολυπλοκότητας / Ανάλυση Αναδρομικών Αλγόριθμων Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Παραδείγματα Ανάλυσης Πολυπλοκότητας : Μέθοδοι, 6 παραδείγματα

Διαβάστε περισσότερα

Ασυμπτωτικός Συμβολισμός

Ασυμπτωτικός Συμβολισμός Ασυμπτωτικός Συμβολισμός ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Άδεια Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Εισαγωγή στους Αλγορίθμους

Εισαγωγή στους Αλγορίθμους Εισαγωγή στους Αλγορίθμους Ενότητα 5η Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Η Μέθοδος «Διαίρει & Βασίλευε» Η Μέθοδος

Διαβάστε περισσότερα

Διαίρει-και-Βασίλευε. Διαίρει-και-Βασίλευε. MergeSort. MergeSort. Πρόβλημα Ταξινόμησης: Είσοδος : ακολουθία n αριθμών (α 1

Διαίρει-και-Βασίλευε. Διαίρει-και-Βασίλευε. MergeSort. MergeSort. Πρόβλημα Ταξινόμησης: Είσοδος : ακολουθία n αριθμών (α 1 Διαίρει-και-Βασίλευε Διδάσκοντες: Σ. Ζάχος, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Διαίρει-και-Βασίλευε Γενική μέθοδος

Διαβάστε περισσότερα

Διακριτά Μαθηματικά. Γιάννης Εμίρης. Τμήμα Πληροφορικής & Τηλεπικοινωνιών ΕΚΠΑ. Οκτώβριος

Διακριτά Μαθηματικά. Γιάννης Εμίρης. Τμήμα Πληροφορικής & Τηλεπικοινωνιών ΕΚΠΑ. Οκτώβριος ΔιακριτάΜαθηματικά Γιάννης Εμίρης http://eclass.uoa.gr/ Τμήμα Πληροφορικής & Τηλεπικοινωνιών ΕΚΠΑ Οκτώβριος 2016 Διακριτά Μαθηματικά Αλγόριθμοι Ρυθμόςαύξησηςσυναρτήσεων[Rosen 3.2] Διακριτά Μαθηματικά Ορισμοί

Διαβάστε περισσότερα

ιαίρει-και-βασίλευε ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο

ιαίρει-και-βασίλευε ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο ιαίρει-και-βασίλευε ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο ιαίρει-και-βασίλευε Γενική μέθοδος σχεδιασμού αλγορίθμων: ιαίρεση σε ( 2) υποπροβλήματα

Διαβάστε περισσότερα

Αλγόριθμοι Αναζήτησης

Αλγόριθμοι Αναζήτησης Αλγόριθμοι Αναζήτησης ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

ΜΥΥ105: Εισαγωγή στον Προγραμματισμό. Αναζήτηση και Ταξινόμηση Χειμερινό Εξάμηνο 2016

ΜΥΥ105: Εισαγωγή στον Προγραμματισμό. Αναζήτηση και Ταξινόμηση Χειμερινό Εξάμηνο 2016 ΜΥΥ105: Εισαγωγή στον Προγραμματισμό Αναζήτηση και Ταξινόμηση Χειμερινό Εξάμηνο 2016 Αναζήτηση και Ταξινόμηση Βασικές λειτουργίες σε προγράμματα Αναζήτηση (searching): Βρες ένα ζητούμενο στοιχείο σε μια

Διαβάστε περισσότερα

auth Αλγόριθμοι - Τμήμα Πληροφορικής ΑΠΘ - Εξάμηνο 4ο

auth Αλγόριθμοι - Τμήμα Πληροφορικής ΑΠΘ - Εξάμηνο 4ο Σχεδίαση Αλγορίθμων Διαίρει και Βασίλευε http://delab.csd.auth.gr/courses/algorithms/ auth 1 Διαίρει και Βασίλευε Η γνωστότερη ρημέθοδος σχεδιασμού αλγορίθμων: 1. Διαιρούμε το στιγμιότυπο του προβλήματος

Διαβάστε περισσότερα

Κεφάλαιο 5 Ανάλυση Αλγορίθμων

Κεφάλαιο 5 Ανάλυση Αλγορίθμων Κεφάλαιο 5 Ανάλυση Αλγορίθμων 5.1 Επίδοση αλγορίθμων Τα πρωταρχικά ερωτήματα που προκύπτουν είναι: 1. πώς υπολογίζεται ο χρόνος εκτέλεσης ενός αλγορίθμου; 2. πώς μπορούν να συγκριθούν μεταξύ τους οι διάφοροι

Διαβάστε περισσότερα

Σχεδίαση Αλγορίθμων -Τμήμα Πληροφορικής ΑΠΘ - Εξάμηνο 4ο

Σχεδίαση Αλγορίθμων -Τμήμα Πληροφορικής ΑΠΘ - Εξάμηνο 4ο Πολλαπλασιασμός μεγάλων ακεραίων (1) Για να πολλαπλασιάσουμε δύο ακεραίους με n 1 και n 2 ψηφία με το χέρι, θα εκτελέσουμε n 1 n 2 πράξεις πολλαπλασιασμού Πρόβλημα ρβημ όταν έχουμε πολλά ψηφία: A = 12345678901357986429

Διαβάστε περισσότερα

Θεωρητικό Μέρος. int rec(int n) { int n1, n2; if (n <= 5) then return n; else { n1 = rec(n-5); n2 = rec(n-3); return (n1+n2); } }

Θεωρητικό Μέρος. int rec(int n) { int n1, n2; if (n <= 5) then return n; else { n1 = rec(n-5); n2 = rec(n-3); return (n1+n2); } } Πανεπιστήµιο Ιωαννίνων, Τµήµα Πληροφορικής 2 Νοεµβρίου 2005 Η/Υ 432: οµές εδοµένων Χειµερινό Εξάµηνο Ακαδηµαϊκού Έτους 2005-2006 Παναγιώτα Φατούρου Ηµεροµηνία Παράδοσης 1 ο Σετ Ασκήσεων Θεωρητικό Μέρος:

Διαβάστε περισσότερα

Μάντεψε τον Αριθμό. Έχω Ένα Μυστικό. Το Βρήκα;

Μάντεψε τον Αριθμό. Έχω Ένα Μυστικό. Το Βρήκα; Μάντεψε τον Αριθμό Ένα από τα πρώτα προγράμματα που συνηθίζεται να φτιάχνουν οι μαθητευόμενοι προγραμματιστές είναι ένα παιχνίδι στο οποίο ο παίκτης προσπαθεί να μαντέψει τον μυστικό αριθμό που έχει σκεφτεί

Διαβάστε περισσότερα

Ανάλυση αλγορίθμων. Χρόνος εκτέλεσης: Αναμενόμενη περίπτωση. - απαιτεί γνώση της κατανομής εισόδου

Ανάλυση αλγορίθμων. Χρόνος εκτέλεσης: Αναμενόμενη περίπτωση. - απαιτεί γνώση της κατανομής εισόδου Ανάλυση αλγορίθμων Παράμετροι απόδοσης ενός αλγόριθμου: Χρόνος εκτέλεσης Απαιτούμενοι πόροι, π.χ. μνήμη, επικοινωνία (π.χ. σε κατανεμημένα συστήματα) Προσπάθεια υλοποίησης Ανάλυση της απόδοσης Θεωρητική

Διαβάστε περισσότερα

Ασκήσεις (2) Άσκηση 1

Ασκήσεις (2) Άσκηση 1 Άσκηση 1 Ασκήσεις () Εισαγωγή στην Ανάλυση Αλγορίθμων Υποθέστε ότι συγκρίνουμε την υλοποίηση της ταξινόμησης με εισαγωγή και της ταξινόμησης με συγχώνευση στον ίδιο υπολογιστή. Για εισόδους μεγέθους n,

Διαβάστε περισσότερα

Ενότητα: Δυαδική Αναζήτηση Σχέδιο Δραστηριότητας: Παιχνίδι: Βρες τον αριθμό

Ενότητα: Δυαδική Αναζήτηση Σχέδιο Δραστηριότητας: Παιχνίδι: Βρες τον αριθμό Ενότητα: Δυαδική Αναζήτηση Σχέδιο Δραστηριότητας: Παιχνίδι: Βρες τον αριθμό 1 Εισαγωγή Σκεφτείτε έναν αριθμό από το 1 έως το 1000 και απαντήστε στην ερώτηση: Ο αριθμός που σκεφτήκατε είναι μεγαλύτερος

Διαβάστε περισσότερα

Κατ οίκον Εργασία 1 Σκελετοί Λύσεων

Κατ οίκον Εργασία 1 Σκελετοί Λύσεων ΕΠΛ Δομές Δεδομένων και Αλγόριθμοι Σεπτέμβριος 008 Κατ οίκον Εργασία Σκελετοί Λύσεων Άσκηση Παρατηρούμε ότι ο χρόνος εκτέλεσης μέσης περίπτωσης της κάθε εντολής if ξεχωριστά: if (c mod 0) for (k ; k

Διαβάστε περισσότερα

Διάλεξη 19: Αλγόριθμοι ΤαξινόμησηςII. Διδάσκων: Παναγιώτης Ανδρέου

Διάλεξη 19: Αλγόριθμοι ΤαξινόμησηςII. Διδάσκων: Παναγιώτης Ανδρέου Διάλεξη 19: Αλγόριθμοι ΤαξινόμησηςII Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Οι αλγόριθμοι ταξινόμησης: Γ. MergeSort Ταξινόμηση με Συγχώνευση Δ. BucketSort Ταξινόμηση με Κάδους Διδάσκων:

Διαβάστε περισσότερα

Διδάσκων: Παναγιώτης Ανδρέου

Διδάσκων: Παναγιώτης Ανδρέου Διάλεξη 04: ΠαραδείγματαΑνάλυσης Πολυπλοκότητας/Ανάλυση Αναδρομικών Αλγόριθμων Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: -Παραδείγματα Ανάλυσης Πολυπλοκότητας : Μέθοδοι, παραδείγματα -Γραμμική

Διαβάστε περισσότερα

Σχεδίαση & Ανάλυση Αλγορίθμων

Σχεδίαση & Ανάλυση Αλγορίθμων Σχεδίαση & Ανάλυση Αλγορίθμων Ενότητα 3 Αλγόριθμοι Επιλογής Σταύρος Δ. Νικολόπουλος Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Ιωαννίνων Webpage: www.cs.uoi.gr/~stavros Αλγόριθμοι Επιλογής Γνωρίζουμε

Διαβάστε περισσότερα

Διδάσκων: Κωνσταντίνος Κώστα Διαφάνειες: Δημήτρης Ζεϊναλιπούρ

Διδάσκων: Κωνσταντίνος Κώστα Διαφάνειες: Δημήτρης Ζεϊναλιπούρ Διάλεξη 14: Αλγόριθμοι Ταξινόμησης Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Οι αλγόριθμοι ταξινόμησης 3) Mergesort Ταξινόμηση με Συγχώνευση 4) BucketSort Ταξινόμηση με Κάδους Διδάσκων:

Διαβάστε περισσότερα

Αναδρομικές Σχέσεις «ιαίρει-και-βασίλευε»

Αναδρομικές Σχέσεις «ιαίρει-και-βασίλευε» Αναδρομικές Σχέσεις «ιαίρει-και-βασίλευε» ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο ιαίρει-και-βασίλευε

Διαβάστε περισσότερα

Αλγόριθµοι και Πολυπλοκότητα

Αλγόριθµοι και Πολυπλοκότητα Αλγόριθµοι και Πολυπλοκότητα Ενότητα 1 Εισαγωγικές έννοιες Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Καθηγητής: Ν. Μ. Μισυρλής Αλγόριθµοι και Πολυπλοκότητα - Ενότητα 1 1 / 57 Περιεχόµενα 1.

Διαβάστε περισσότερα

Quicksort [Hoare, 62] Αλγόριθµοι & Πολυπλοκότητα (Χειµώνας 2011) Quicksort 1

Quicksort [Hoare, 62] Αλγόριθµοι & Πολυπλοκότητα (Χειµώνας 2011) Quicksort 1 Quicksort [Hoare, 62] Αλγόριθµοι & Πολυπλοκότητα (Χειµώνας 2011) Quicksort 1 Quicksort [Hoare, 62] Στοιχείο διαχωρισµού (pivot), π.χ. πρώτο, τυχαίο, Αναδιάταξη και διαίρεση εισόδου σε δύο υπο-ακολουθίες:

Διαβάστε περισσότερα

Αλγόριθμοι και Πολυπλοκότητα

Αλγόριθμοι και Πολυπλοκότητα Αλγόριθμοι και Πολυπλοκότητα Ανάλυση Αλγορίθμων Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ανάλυση Αλγορίθμων Η ανάλυση αλγορίθμων περιλαμβάνει τη διερεύνηση του τρόπου

Διαβάστε περισσότερα

Επαγωγή και αναδρομή για άκυκλα συνεκτικά γραφήματα

Επαγωγή και αναδρομή για άκυκλα συνεκτικά γραφήματα ΘΕ4 Αναδρομή και Επαγωγή για Γραφήματα Επαγωγή και αναδρομή για άκυκλα συνεκτικά γραφήματα Επαγωγή για άκυκλα συνεκτικά γραφήματα (με αφαίρεση κορυφής) Η αρχή της επαγωγής, με αφαίρεση κορυφής, για δεδομένη

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 5: Αλγόριθμοι

ΚΕΦΑΛΑΙΟ 5: Αλγόριθμοι ΚΕΦΑΛΑΙΟ 5: Αλγόριθμοι Αρχικές έννοιες Αναπαράσταση αλγορίθμων Διαγράμματα ροής και δομές επανάληψης Αλγόριθμος σειριακής αναζήτησης Αλγόριθμος αλφαβητικής ταξινόμησης Αναδρομικοί αλγόριθμοι Αλγόριθμος

Διαβάστε περισσότερα

Επαγωγή και αναδρομή για συνεκτικά γραφήματα

Επαγωγή και αναδρομή για συνεκτικά γραφήματα ΘΕ4 Αναδρομή και Επαγωγή για Γραφήματα Επαγωγή και αναδρομή για συνεκτικά γραφήματα Επαγωγή για συνεκτικά γραφήματα (με αφαίρεση κορυφής) Η αρχή της επαγωγής, με αφαίρεση κορυφής, για δεδομένη προτασιακή

Διαβάστε περισσότερα

Αναζήτηση. 1. Σειριακή αναζήτηση 2. Δυαδική Αναζήτηση. Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη

Αναζήτηση. 1. Σειριακή αναζήτηση 2. Δυαδική Αναζήτηση. Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη Αναζήτηση. Σειριακή αναζήτηση. Δυαδική Αναζήτηση Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη Παραδοχή Στη συνέχεια των διαφανειών (διαλέξεων) η ασυμπτωτική έκφραση (συμβολισμός Ο, Ω, Θ) του χρόνου

Διαβάστε περισσότερα

Προγραμματισμός Η/Υ (ΤΛ2007 )

Προγραμματισμός Η/Υ (ΤΛ2007 ) Τμήμα Ηλεκτρονικών Μηχανικών Τ.Ε.Ι. Κρήτης Προγραμματισμός Η/Υ (ΤΛ00 ) Δρ. Μηχ. Νικόλαος Πετράκης (npet@chania.teicrete.gr) Ιστοσελίδα Μαθήματος: https://eclass.chania.teicrete.gr/ Εξάμηνο: Εαρινό 01-15

Διαβάστε περισσότερα

Αν ένα πρόβλημα λύνεται από δύο ή περισσότερους αλγόριθμους, ποιος θα είναι ο καλύτερος; Με ποια κριτήρια θα τους συγκρίνουμε;

Αν ένα πρόβλημα λύνεται από δύο ή περισσότερους αλγόριθμους, ποιος θα είναι ο καλύτερος; Με ποια κριτήρια θα τους συγκρίνουμε; Αν ένα πρόβλημα λύνεται από δύο ή περισσότερους αλγόριθμους, ποιος θα είναι ο καλύτερος; Με ποια κριτήρια θα τους συγκρίνουμε; Πως θα υπολογίσουμε το χρόνο εκτέλεσης ενός αλγόριθμου; Για να απαντήσουμε

Διαβάστε περισσότερα

Μεταγλωττιστές Βελτιστοποίηση

Μεταγλωττιστές Βελτιστοποίηση Μεταγλωττιστές Βελτιστοποίηση Νίκος Παπασπύρου nickie@softlab.ntua.gr Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχ. και Μηχ. Υπολογιστών Εργαστήριο Τεχνολογίας Λογισμικού Πολυτεχνειούπολη, 15780

Διαβάστε περισσότερα

Επιλογή. Πρόβλημα Επιλογής. Μέγιστο / Ελάχιστο. Εφαρμογές

Επιλογή. Πρόβλημα Επιλογής. Μέγιστο / Ελάχιστο. Εφαρμογές Επιλογή Διδάσκοντες: Σ. Ζάχος, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Πρόβλημα Επιλογής Πίνακας Α[]με n στοιχεία (όχι ταξινομημένος). Αριθμός

Διαβάστε περισσότερα

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων

Διαβάστε περισσότερα

Επιλογή. Επιμέλεια διαφανειών: Δ. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. Εθνικό Μετσόβιο Πολυτεχνείο

Επιλογή. Επιμέλεια διαφανειών: Δ. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. Εθνικό Μετσόβιο Πολυτεχνείο Επιλογή Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Πρόβλημα Επιλογής Πίνακας Α[ ] με n στοιχεία (όχι ταξινομημένος). Αριθμός k,

Διαβάστε περισσότερα

TO ΥΠΟΠΡΟΓΡΑΜΜΑ ΣΥΝΑΡΤΗΣΗ

TO ΥΠΟΠΡΟΓΡΑΜΜΑ ΣΥΝΑΡΤΗΣΗ Μάθημα 7 - Υποπρογράμματα Εργαστήριο 11 Ο TO ΥΠΟΠΡΟΓΡΑΜΜΑ ΣΥΝΑΡΤΗΣΗ Βασικές Έννοιες: Υποπρόγραμμα, Ανάλυση προβλήματος, top down σχεδίαση, Συνάρτηση, Διαδικασία, Παράμετρος, Κλήση συνάρτησης, Μετάβαση

Διαβάστε περισσότερα

Εισαγωγή στους Αλγορίθμους Ενότητα 11η

Εισαγωγή στους Αλγορίθμους Ενότητα 11η Εισαγωγή στους Αλγορίθμους Ενότητα 11η Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Δυναμικός Προγραμματισμός Σταθμισμένος Χρονοπρογραμματισμός

Διαβάστε περισσότερα

ΜΥΥ105: Εισαγωγή στον Προγραµµατισµό. Αναζήτηση και Ταξινόµηση Χειµερινό Εξάµηνο 2014

ΜΥΥ105: Εισαγωγή στον Προγραµµατισµό. Αναζήτηση και Ταξινόµηση Χειµερινό Εξάµηνο 2014 ΜΥΥ105: Εισαγωγή στον Προγραµµατισµό Αναζήτηση και Ταξινόµηση Χειµερινό Εξάµηνο 2014 Αναζήτηση και Ταξινόµηση Βασικές λειτουργίες σε προγράµµατα Αναζήτηση (searching): Βρες ένα ζητούµενο στοιχείο σε µια

Διαβάστε περισσότερα

Αλγόριθµοι και Πολυπλοκότητα

Αλγόριθµοι και Πολυπλοκότητα Αλγόριθµοι και Πολυπλοκότητα Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Πανεπιστήµιο Αθηνών Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα 23 Μαρτίου 2017 1 / 170 Αναδροµή ιαίρει

Διαβάστε περισσότερα

Δομές Δεδομένων & Αλγόριθμοι

Δομές Δεδομένων & Αλγόριθμοι Απόδοση Αλγορίθμων Πληροφορικής 1 Απόδοση Αλγορίθμων Συνήθως υπάρχουν πολλοί τρόποι (αλγόριθμοι) για την επίλυση ενός προβλήματος. Πώς επιλέγουμε μεταξύ αυτών; Πρέπει να ικανοποιηθούν δύο (αντικρουόμενοι)

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 23: οµές εδοµένων και Αλγόριθµοι Ενδιάµεση Εξέταση Ηµεροµηνία : ευτέρα, 3 Νοεµβρίου 2008 ιάρκεια : 2.00-4.00 ιδάσκουσα : Άννα Φιλίππου Ονοµατεπώνυµο: ΣΚΕΛΕΤΟΙ

Διαβάστε περισσότερα

Quicksort. Πρόβλημα Ταξινόμησης. Μέθοδοι Ταξινόμησης. Συγκριτικοί Αλγόριθμοι

Quicksort. Πρόβλημα Ταξινόμησης. Μέθοδοι Ταξινόμησης. Συγκριτικοί Αλγόριθμοι Πρόβλημα Ταξινόμησης Quicksort Διδάσκοντες: Σ. Ζάχος, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Είσοδος : ακολουθία n αριθμών (α 1, α 2,..., α n

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΕΠΛ 231 ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΑΛΓΟΡΙΘΜΟΙ ΚΑΤ ΟΙΚΟΝ ΕΡΓΑΣΙΑ 1 ΗΜΕΡΟΜΗΝΙΑ ΠΑΡΑΔΟΣΗΣ: 22/02/10

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΕΠΛ 231 ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΑΛΓΟΡΙΘΜΟΙ ΚΑΤ ΟΙΚΟΝ ΕΡΓΑΣΙΑ 1 ΗΜΕΡΟΜΗΝΙΑ ΠΑΡΑΔΟΣΗΣ: 22/02/10 ΠΑΝΕΠΙΣΤΗΜΙΟΚΥΠΡΟΥ ΕΠΛ231 ΔΟΜΕΣΔΕΔΟΜΕΝΩΝΚΑΙΑΛΓΟΡΙΘΜΟΙ ΚΑΤ ΟΙΚΟΝΕΡΓΑΣΙΑ1 ΗΜΕΡΟΜΗΝΙΑΠΑΡΑΔΟΣΗΣ:22/02/10 1.Νααποφασίσετεποιεςαπότιςπιοκάτωπροτάσειςείναιαληθείςαποδεικνύοντας τιςαπαντήσειςσας. (i)αν και,τότε

Διαβάστε περισσότερα

Δυναμικός προγραμματισμός για δέντρα

Δυναμικός προγραμματισμός για δέντρα ΘΕ5 Ιδιότητες Δέντρων και Αναδρομή για Δέντρα Δυναμικός προγραμματισμός για δέντρα Έστω ότι, για k=1,..., m, το γράφημα Γ k = (V k, E k ) είναι δέντρο. Έστω w V 1... V m, z k V k, για k=1,..., m. Συμβολίζουμε

Διαβάστε περισσότερα

Quicksort. Επιμέλεια διαφανειών: Δ. Φωτάκης Μικροαλλαγές: Α. Παγουρτζής. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Quicksort. Επιμέλεια διαφανειών: Δ. Φωτάκης Μικροαλλαγές: Α. Παγουρτζής. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Quicksort Επιμέλεια διαφανειών: Δ. Φωτάκης Μικροαλλαγές: Α. Παγουρτζής Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Quicksort [Hoare, 6] Στοιχείο διαχωρισμού (pivot),

Διαβάστε περισσότερα

1 Ανάλυση αλγορίθµων. 2 Συµβολισµοί O, Ω και Θ. 3 Αναδροµικές εξισώσεις

1 Ανάλυση αλγορίθµων. 2 Συµβολισµοί O, Ω και Θ. 3 Αναδροµικές εξισώσεις Γενικό πλάνο Μαθηµατικά για Πληροφορική 6ο Μάθηµα 1 Ανάλυση αλγορίθµων Ηλίας Κουτσουπιάς, Γιάννης Εµίρης 2 Συµβολισµοί O, Ω και Θ Τµήµα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήµιο Αθηνών 27/11/2008 3

Διαβάστε περισσότερα

Αναδρομή Ανάλυση Αλγορίθμων

Αναδρομή Ανάλυση Αλγορίθμων Αναδρομή Ανάλυση Αλγορίθμων Παράδειγμα: Υπολογισμός του παραγοντικού Ορισμός του n! n! = n x (n - 1) x x 2 x 1 Ο παραπάνω ορισμός μπορεί να γραφεί ως n! = 1 αν n = 0 n x (n -1)! αλλιώς Παράδειγμα (συνέχ).

Διαβάστε περισσότερα

Δομές Δεδομένων και Αλγόριθμοι

Δομές Δεδομένων και Αλγόριθμοι Δομές Δεδομένων και Αλγόριθμοι Χρήστος Γκόγκος ΤΕΙ Ηπείρου, Τμήμα Μηχανικών Πληροφορικής ΤΕ Χειμερινό Εξάμηνο 2014-2015 (Παρουσίαση 6) 1 / 20 Ρυθμοί αύξησης Γραμμικός ρυθμός αύξησης: n, 2n, Πολυωνυμικός

Διαβάστε περισσότερα

Quicksort. ημήτρης Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. Εθνικό Μετσόβιο Πολυτεχνείο

Quicksort. ημήτρης Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. Εθνικό Μετσόβιο Πολυτεχνείο Quicksort ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Quicksort [Hoare, 62] Στοιχείο διαχωρισμού (pivot), π.χ. πρώτο, τυχαίο, Αναδιάταξη και διαίρεση

Διαβάστε περισσότερα

Αλγόριθµοι και Πολυπλοκότητα

Αλγόριθµοι και Πολυπλοκότητα Αλγόριθµοι και Πολυπλοκότητα Ενότητα 2 ιαίρει και Βασίλευε Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Καθηγητής: Ν. Μ. Μισυρλής Αλγόριθµοι και Πολυπλοκότητα - Ενότητα 2 1 / 140 ιαίρει και Βασίλευε

Διαβάστε περισσότερα