1o Φροντιστήριο ΗΥ240
|
|
- Παναγιώτα Αλιβιζάτος
- 8 χρόνια πριν
- Προβολές:
Transcript
1 1o Φροντιστήριο ΗΥ240 Άσκηση 1 Αποδείξτε τη μεταβατική και τη συμμετρική ιδιότητα του Θ Μεταβατική Ιδιότητα (ορισμός): Αν f(n) = Θ(g(n)) και g(n) = Θ(h(n)) τότε f(n)=θ(h(n)) Για να ισχύει f(n)= Θ(h(n)) πρέπει να δείξουμε ότι f(n)= Ο(h(n)) και ότι f(n)= Ω(h(n)) Αποδεικνύω πρώτα ότι f(n)= Ο(h(n)) Αφού f(n) = Θ(g(n)) f(n)= Ο(g(n)), άρα Ǝ c 1 R + και n 1 0 τω f(n) c 1 g(n), n n 1 (1) Αφού g(n) = Θ(h(n)) g(n)= Ο(h(n)), άρα Ǝ c 2 R + και n 2 0 τω g(n) c 2 h(n), n n 2 (2) Επιλέγω n 0 = max{n 1,n 2 } και τότε (1) + (2) f(n) c 1 g(n) c 1 c 2 h(n), n n 0 Επιλέγω c= c 1 c 2 και τότε c (=c 1 c 2 ) και n 0 = max{n 1,n 2 } τω f(n) c h(n), n n 0, Άρα f(n) = O(h(n)) Αποδεικνύω τώρα ότι f(n)= Ω(h(n)) Αφού f(n) = Θ(g(n)) f(n)= Ω(g(n)), άρα Ǝ c 1 R + και n 1 0 τω f(n) c 1 g(n), n n 1 (1) Αφού g(n) = Θ(h(n)) g(n)= Ω(h(n)), άρα Ǝ c 2 R + και n 2 0 τω g(n) c 2 h(n), n n 2 (2) Επιλέγω n 0 = max{n 1,n 2 } και τότε (1) + (2) f(n) c 1 g(n) c 1 c 2 h(n), n n 0 Επιλέγω c= c 1 c 2 και τότε c (=c 1 c 2 ) και n 0 = max{n 1,n 2 } τω f(n) c h(n), n n 0, Άρα f(n) = Ω(h(n))
2 Συμμετρική ιδιότητα (ορισμός): f(n) = Θ(g(n)) αν και μόνο αν g(n) = Θ(f(n)) Αν f(n) = Θ(g(n)) τότε πρέπει g(n) = Θ(f(n)) ( Αν g(n) = Θ(f(n)) τότε πρέπει f(n) = Θ(g(n)), είναι συμμετρική!) Για να δείξω ότι g(n) = Θ(f(n)) πρέπει να δείξω ότι g(n) = Ο(f(n)) και g(n) = Ω(f(n)) (1) Αφού f(n) = Θ(g(n)) τότε f(n) = Ο(g(n)) Άρα c 1 R + και n 1 0 τω f(n) c 1 g(n), n n 1 g(n) 1/c 1 f(n), n n 1 Άρα αν επιλέξω c = 1/c 1 και n 0 = n 1 προκύπτει ότι g(n) c f(n), n n 0 Άρα g(n) = Ω(f(n)) (2) Αφού f(n) = Θ(g(n)) τότε f(n) = Ω(g(n)) Άρα c 2 R + και n 2 0 τω f(n) c 2 g(n), n n 2 g(n) 1/c 2 f(n), n n 2 Άρα αν επιλέξω c = 1/c 2 και n 0 = n 2 προκύπτει ότι g(n) c f(n), n n 0 Άρα g(n) = Ο(f(n)) (3) (2) + (3) g(n) = Θ(f(n)) (όπως ζητείται ) (απόδειξη του ομοίως και για το αντίστροφο) Άσκηση 2 i) Ισχύει ότι log ( = O(n 3 )? ii) Ισχύει ότι log ( = Θ( log(n) )? i) Εξετάζω εάν log ( O(n 3 ) Αναζητώ c R + και ακέραιο n 0 0 τω log ( c n 3, n n 0 n 5/2 logn 5/2 c n 3 n log(n) c n 3 25 n 25 log(n) 25 n 25 = 25 n 3, n 4 Αν επιλέξω c = 25 και n 0 = 4 προκύπτει ότι log ( c n 3, n n 0 Άρα log ( Ο(n 3 )
3 ii) Εξετάζω εάν log ( O(log(n)) Αναζητώ c R + και ακέραιο n 0 0 τω log ( c log(n), n n 0 log n 1/2 c log(n) ½ log(n) c log(n) 1/2 c Αν επιλέξω c = 1/2 και n 0 = 1 προκύπτει ότι log ( c log(n), n n 0 Άρα log ( Ο(log(n)) (Ομοίως εξετάζω και το εάν log ( Ω(log(n)) ) Άσκηση 3 a) Αποδείξτε επαγωγικά ότι αν Τ(0) = 0 και Τ(n) = 2Τ(n-1) + 1, n>0 τότε Τ(n) = 2 n - 1 b) Θεωρήστε τη συνάρτηση f : N N που ορίζεται ως εξής : f(0) =1, f(1)= 2 και f(n)= 4 f(n-2) +2 n αν n>1 Αποδείξτε επαγωγικά ότι για κάθε ακέραιο n 3 ισχύει f(n) 3 n 2 n-2 a) Βάση επαγωγής: για n=1, Τ(1)= 2Τ(1-1) + 1 = 2Τ(0) +1 = 0+1=1 Τ(1) = = 2-1 =1, άρα ισχύει για n=1 Επαγωγική Υπόθεση: έστω ότι ισχύει για n= k-1 Θα δείξω ότι ισχύει για n = k Επαγωγικό Βήμα: T(k) = 2T(k-1) +1 = 2(2 k-1 1) +1 = 2 k = 2 k -1 (απεδείχθη) b) Βάση επαγωγής: για n=3, f(3) = 4 f(1) +2 3 = =16 f(3) =18,άρα ισχύει αφού 16<18 Επαγωγική Υπόθεση: έστω ότι ισχύει για κάθε 3 n k-1θα δείξω ότι ισχύει για n=k Επαγωγικό Βήμα: f(k)= 4 f(k-2) +2 k 4(3(k-2) 2 k-4 ) +2 k = 2 2 (3(k-2) 2 k-4 ) +2 2 k (3(k-2) 2 k-4 ) +3 2 k-1 = 2 2 (3(k-2) 2 k-4 ) k-2 = 3 2 k-2 (k-2) +3 2 k-2 2 = 3 2 k-2 k = 3 k 2 k-2 (απεδείχθη)
4 Άσκηση 4 Βρείτε την τάξη (βάσει των συμβολισμών Ο,Ω,Θ) της χρονικής πολυπλοκότητας Τ(n) του ακόλουθου αλγόριθμου } Procedure f (integer n){ for(i=1; i n; i++) for(k=n; k n+5; k++) x=x+1; Για i=1: k =n k=n+1 k=n+2 k=n+3 k=n+4 k=n+5 Για i=2 k =n k=n+1 k=n+2 k=n+3 k=n+4 k=n+5 Για i=n k =n k=n+1 k=n+2 k=n+3 k=n+4 k=n+5 Οπότε η εντολή «x=x+1» εκτελείται : Τ(n) = n * 6 = Θ(n)
5 Άσκηση 5 Δίνεται ο αλγόριθμος Binary Search, ο οποίος χρησιμοποιείται για την αναζήτηση ενός στοιχείου σε έναν ήδη ταξινομημένο πίνακα Integer BinarySearch(A[0 N-1], value, low, high) { if( high < low) return -1; //not found mid = low+(high-low)/2; if (A[mid] > value) return BinarySearch(A, value, low, mid-1); else if (A[mid] < value) return BinarySearch(A, value, mid+1, high); else return mid; //found } a) Παρουσιάστε σύντομη περιγραφή του τρόπου λειτουργίας του αλγορίθμου b) Ιχνηλατήστε την BinarySearch (Α,6,0,9) για την περίπτωση που Α= [0,1,2,3,4,5,6,7,8,9] Πρέπει να παρουσιαστούν όλες οι αναδρομικές κλήσεις της BinarySearch με τη σειρά που καλούνται καθώς και οι τιμές των παραμέτρων Α, value, low,high σε κάθε κλήση Πρέπει επίσης να παρουσιαστεί ο χώρος στη μνήμη που κατανέμεται για την εκτέλεση των αναδρομικών κλήσεων της BinarySearch c) Παρουσιάστε αναδρομική σχέση που να περιγράφει τη χρονική πολυπλοκότητα Τ(n) της BinarySearch για την περίπτωση που n = 2 k, για κάποιο k (δηλαδή για την περίπτωση που το n είναι μια δύναμη του 2) Τι τάξης είναι η πολυπλοκότητα της BinarySearch, αποδείξτε τον ισχυρισμό σας a) Η BinarySearch ακολουθεί την ιδέα του διαίρει και κυρίευε i)το πρόβλημα διαιρείται σε μικρότερα υποπροβλήματα, ii) το πρόβλημα επιλύεται στα υποπροβλήματα (και πάλι υποδιαιρούνται σε μικρότερα υποπροβλήματα) η διαίρεση αυτή σταματά,στη BinarySearch, όταν βρεθεί το στοιχείο που έχει δοθεί προς αναζήτηση(value), iii) οι λύσεις των υποπροβλημάτων συνδυάζονται ώστε να παραχθεί η τελική λύση Η συνάρτηση λειτουργεί ως εξής, παίρνει ορίσματα ένα ταξινομημένο πίνακα Α, μία τιμή προς αναζήτηση value,ένα κάτω όριο low και ένα πάνω όριο high τα δύο όρια αυτά υποδηλώνουν τα όρια του πίνακα όπου θα γίνει η αναζήτηση,(δηλαδή «ψάξε» στον Α[low high] το value) Μέσα στη συνάρτηση βρίσκει το μεσαίο στοιχείο του πίνακα A[low high], το mid,και ελέγχει αν το στοιχείο στη θέση Α[mid] είναι μεγαλύτερο ή μικρότερο από το valueστην περίπτωση που είναι μικρότερο κάνει αναδρομική κλήση της BinarySearch(A, value, mid+1, high) δηλαδή ψάχνει το value στο άνω μισό του πίνακα Α, ενώ αν είναι μεγαλύτερο κάνει αναδρομική κλήση της BinarySearch(A, value, low, mid-1) δηλαδή ψάχνει το value στο κάτω μισό του πίνακα Α Αν το στοιχείο δε βρεθεί στον πίνακα(δηλαδή φτάνουμε στο σημείο
6 όπου high < low τότε η συνάρτηση επιστρέφει -1, αν το στοιχείο βρεθεί τότε επιστρέφεται η θέση του πίνακα που βρέθηκε, δηλαδή mid b) Η ιχνηλάτηση: Sorted Array: [0,1,2,3,4,5,6,7,8,9] BinarySearch ([0,1,2,3,4,5,6,7,8,9], 6, 0,9): if (9 < 0) --> False-Not Found value=6 low=0 high=9 mid = 0+(9-0)/2 = 4 if(4>6)--> FALSE else if(4<6)--> TRUE BinarySearch ([0,1,2,3,4,5,6,7,8,9], 6, 5, 9): if (9 < 5) --> False-Not Found value=6 low=5 high=9 mid = 5+(9-5)/2 = 7 if(7>6)--> TRUE BinarySearch ([0,1,2,3,4,5,6,7,8,9], 6, 5, 6): if (6 < 5) --> False-Not Found value=6 low=5 high=6 mid = 5+(6-5)/2 = 5 if(5>6)--> FALSE else if(5<6)--> TRUE BinarySearch ([0,1,2,3,4,5,6,7,8,9], 6, 6, 6): if (6 < 6) --> False-Not Found value=6 low=6 high=6 mid = 6+(6-6)/2 = 6 if (6>6)--> TRUE else if(6<6)--> FALSE else return 6 //Found το στοιχείο βρίσκεται στη θέση 6 του πίνακα A[0,1,2,3,4,5,6,7,8,9] -->A[6]=6
7 Για τη μνήμη: Α= [0,1,2,3,4,5,6,7,8,9] σε όλες τις περιπτώσεις Value : 6 Low: 0 BinarySearch(A,6,0,9) High: 9 Mid: 4 Value : 6 Low: 5 BinarySearch(A,6,5,9) High: 9 Mid: 7 Value : 6 Low: 5 BinarySearch(A,6,5,5) High: 6 Mid: 5 Value : 6 Low: 6 BinarySearch(A,6,6,6) High: 6 Mid: 6 c) T(1)=1 T(n) = T(n/2) + c 1 = T(n/2 2 ) + c 1 +c 2 = (προσθέτω τον όρο Τα(n/2) +c log n φορές) = T(n/2 3 ) + c 1 +c 2 + c 3 = = T(n/2 logn ) + c 1 +c 2 + c c logn ( T(n/2 logn ) = T(n/n) =T(1) =1) = 1 + c 1 +c 2 + c c logn Επιλέγω c = max{ c 1,c 2, c 3,,c logn } T(n) 1+ c(1+1++1) = [((1+1++1) logn φορές )] =1+ c * logn, άρα Τ(n) O(logn) (1)
8 Επιλέγω c = min{ c 1,c 2, c 3,,c logn } T(n) 1+ c(1+1++1) = [((1+1++1) logn φορές )] =1+ c * logn, άρα Τ(n) Ω(logn) (2) (1) + (2) Τ(n) Θ(logn)
Ενότητα 1: Εισαγωγή Ασκήσεις και Λύσεις
Ενότητα 1: Εισαγωγή Ασκήσεις και Λύσεις Άσκηση 1 Αποδείξτε τη µεταβατική και τη συµµετρική ιδιότητα του Θ. Λύση Μεταβατική Ιδιότητα (ορισµός): Αν f(n) = Θ(g(n)) και g(n) = Θ(h(n)) τότε f(n)=θ(h(n)). Για
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Δομές δεδομένων Άσκηση αυτοαξιολόγησης 1 Παναγιώτα Φατούρου Τμήμα Επιστήμης Υπολογιστών Ενότητα 1: Εισαγωγή Ασκήσεις και Λύσεις Άσκηση 1 Αποδείξτε τη µεταβατική
οµές εδοµένων 3 ο Εξάµηνο Τµήµα Πανεπιστήµιο Πληροφορικής Ιωαννίνων ΟΜΕΣ Ε ΟΜΕΝΩΝ
Τµήµα Πανεπιστήµιο Πληροφορικής Ιωαννίνων ΟΜΕΣ Ε ΟΜΕΝΩΝ ΕΝΟΤΗΤΑ 1 ΕΙΣΑΓΩΓΗ 1 εδοµένα Σύνολο από πληροφορίες που πρέπει να αποθηκευτούν σε έναν υπολογιστή Υπολογιστικό Μοντέλο ένας επεξεργαστής και µεγάλος
Δομές Δεδομένων & Αλγόριθμοι
- Πίνακες 1 Πίνακες Οι πίνακες έχουν σταθερό μέγεθος και τύπο δεδομένων. Βασικά πλεονεκτήματά τους είναι η απλότητα προγραμματισμού τους και η ταχύτητα. Ωστόσο δεν παρέχουν την ευελιξία η οποία απαιτείται
Δομές Δεδομένων & Αλγόριθμοι
Δομές Δεδομένων & Αναζήτηση & Ταξινόμηση 1 Αναζήτηση Έχω έναν πίνακα Α με Ν στοιχεία. Πρόβλημα: Βρες αν το στοιχείο x ανήκει στον πίνακα Αν ο πίνακας είναι αταξινόμητος τότε μόνη λύση σειριακή αναζήτηση
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Ενότητα 2: Ασυμπτωτικός συμβολισμός Μαρία Σατρατζέμη Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Τηλ , Fax: , URL:
Τµήµα Πανεπιστήµιο Πληροφορικής Ιωαννίνων ΟΜΕΣ Ε ΟΜΕΝΩΝ Παναγιώτα Φατούρου faturu@cs.uoi.gr Σεπτέµβριος, 2005 Τµήµα Πληροφορικής, Πανεπιστήµιο Ιωαννίνων, Τ.Θ. 1186, Γραφείο Α26, Τηλ. +30 26510 98808, Fax:
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΜΑΘΗΜΑ: ΑΛΓΟΡΙΘΜΟΙ ΚΑΙ ΠΟΛΥΠΛΟΚΟΤΗΤΑ 1. α. Να βάλετε σε αύξουσα σειρά μεγέθους τις παρακάτω συναρτήσεις χρονικής πολυπλοκότητας αλγορίθμων: nlogn, n logn,
Δομές Δεδομένων & Αλγόριθμοι
Δομές Δεδομένων & Αναζήτηση & Ταξινόμηση 1 Αναζήτηση Έχω έναν πίνακα Α με Ν στοιχεία. Πρόβλημα: Βρες αν το στοιχείο x ανήκει στον πίνακα Αν ο πίνακας είναι αταξινόμητος τότε μόνη λύση σειριακή αναζήτηση
Εισαγωγή στην Ανάλυση Αλγορίθμων (2-3)
Εισαγωγή στην Ανάλυση Αλγορίθμων (2-3) 3.1 Ασυμπτωτικός συμβολισμός (Ι) Οι ορισμοί που ακολουθούν μας επιτρέπουν να επιχειρηματολογούμε με ακρίβεια για την ασυμπτωτική συμπεριφορά. Οι f(n) και g(n) συμβολίζουν
Γ7.5 Αλγόριθμοι Αναζήτησης. Γ Λυκείου Κατεύθυνσης
Γ7.5 Αλγόριθμοι Αναζήτησης Γ Λυκείου Κατεύθυνσης Εισαγωγή Αλγόριθμος αναζήτησης θεωρείται ένας αλγόριθμος, ο οποίος προσπαθεί να εντοπίσει ένα στοιχείο με συγκεκριμένες ιδιότητες, μέσα σε μία συλλογή από
Ορισµός. Εστω συναρτήσεις: f : N R και g : N R. η f(n) είναι fi( g(n) ) αν υπάρχουν σταθερές C 1, C 2 και n 0, τέτοιες ώστε:
Συµβολισµός Ω( ) Τάξη των Συναρτήσεων () Εκτίµηση Πολυπλοκότητας Αλγορίθµων Ορέστης Τελέλης telelis@unipi.gr Ορισµός. Εστω συναρτήσεις: f : N R και g : N R η f(n) είναι Ω( g(n) ) αν υπάρχουν σταθερές C
Πολυπλοκότητα Αλγορίθµων
Πολυπλοκότητα Αλγορίθµων Στην ενότητα αυτή θα µελετηθούν τα εξής επιµέρους θέµατα: Πρόβληµα, Στιγµιότυπο, Αλγόριθµος Εµπειρική Θεωρητική Ανάλυση Αλγορίθµων Εργαλεία εκτίµησης πολυπλοκότητας: οι τάξεις
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ 1 ΛΥΣΕΙΣ Ανάλυση Πολυπλοκότητας
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 231: Δομές Δεδομένων και Αλγόριθμοι ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ 1 ΛΥΣΕΙΣ Ανάλυση Πολυπλοκότητας ΠΕΡΙΓΡΑΦΗ Σε αυτή την άσκηση καλείστε να αναλύσετε και να υπολογίσετε το
Αλγόριθµοι και Πολυπλοκότητα
Αλγόριθµοι και Πολυπλοκότητα Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: Πρόβληµα, Στιγµιότυπο, Αλγόριθµος Εργαλεία εκτίµησης πολυπλοκότητας: οι τάξεις Ο(n), Ω(n), Θ(n) Ανάλυση Πολυπλοκότητας Αλγορίθµων
ΚΕΦΑΛΑΙΟ 5: Αλγόριθµοι
ΚΕΦΑΛΑΙΟ 5: Αλγόριθµοι 5.1 Η έννοια του αλγορίθµου 5.2 Αναπαράσταση αλγορίθµων 5.3 Επινόηση αλγορίθµων 5.4 Δοµές επανάληψης 5.5 Αναδροµικές δοµές 1 Αλγόριθµος: Ορισµός Ένας αλγόριθµος είναι ένα διατεταγµένο
Δομές Δεδομένων Ενότητα 2
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 2: Θέματα Απόδοσης Απόστολος Παπαδόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Σχεδίαση και Ανάλυση Αλγορίθμων
Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 2.0 Πολυπλοκότητα Αλγορίθμων Ασυμπτωτική Πολυπλοκότητα Αναδρομικές Σχέσεις Σταύρος Δ. Νικολόπουλος 2016-17 Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Ιωαννίνων
Ασυμπτωτικός Συμβολισμός
Ασυμπτωτικός Συμβολισμός Επιμέλεια διαφανειών: Δημήτρης Φωτάκης (λίγες προσθήκες: Άρης Παγουρτζής) Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Υπολογιστική Πολυπλοκότητα
Στοιχεία Αλγορίθµων και Πολυπλοκότητας
Στοιχεία Αλγορίθµων και Πολυπλοκότητας Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Ο. Τελέλης Πανεπιστήµιο Πειραιώς Πολυπλοκότητα 1 / 16 «Ζέσταµα» Να γράψετε τις συναρτήσεις
Διακριτά Μαθηματικά [Rosen, κεφ. 3] Γιάννης Εμίρης Τμήμα Πληροφορικής & Τηλεπικοινωνιών, ΕΚΠΑ Οκτώβριος 2018
Διακριτά Μαθηματικά [Rosen, κεφ. 3] Γιάννης Εμίρης Τμήμα Πληροφορικής & Τηλεπικοινωνιών, ΕΚΠΑ Οκτώβριος 2018 Αλγόριθμοι Ρυθμός αύξησης συναρτήσεων [Rosen 3.2] Αριθμητικές συναρτήσεις Τάξη αριθμητικών συναρτήσεων
Ορθότητα Χωρική αποδοτικότητα. Βελτιστότητα. Θεωρητική ανάλυση Εμπειρική ανάλυση. Αλγόριθμοι - Τμήμα Πληροφορικής ΑΠΘ -4ο εξάμηνο 1
Ανάλυση Αλγορίθμων Θέματα Θέματα: Ορθότητα Χρονική αποδοτικότητα Χωρική αποδοτικότητα Βελτιστότητα Προσεγγίσεις: Θεωρητική ανάλυση Εμπειρική ανάλυση Αλγόριθμοι - Τμήμα Πληροφορικής ΑΠΘ -4ο εξάμηνο 1 Θεωρητική
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ 1 ΛΥΣΕΙΣ Ανάλυση Πολυπλοκότητας
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 231: Δομές Δεδομένων και Αλγόριθμοι Εαρινό Εξάμηνο 2013 ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ 1 ΛΥΣΕΙΣ Ανάλυση Πολυπλοκότητας Διδάσκων Καθηγητής: Παναγιώτης Ανδρέου Ημερομηνία Υποβολής:
ΗΥ240: οµές εδοµένων. ιδάσκουσα: Παναγιώτα Φατούρου ΗΥ240 - Παναγιώτα Φατούρου 2
ΗΥ240: οµές εδοµένων ιδάσκουσα: Παναγιώτα Φατούρου Υποχρεωτικό Μάθηµα 2ου έτους Τµήµα Επιστήµης Υπολογιστών Πανεπιστήµιο Κρήτης Ενότητα 1 Εισαγωγή ΗΥ240 - Παναγιώτα Φατούρου 2 Εισαγωγικά Θέµατα Αντικείµενο
ΗΥ240: οµές εδοµένων
ΗΥ240: οµές εδοµένων ιδάσκουσα: Παναγιώτα Φατούρου Υποχρεωτικό Μάθηµα 2ου έτους Τµήµα Επιστήµης Υπολογιστών Πανεπιστήµιο Κρήτης Ενότητα 1 Εισαγωγή ΗΥ240 - Παναγιώτα Φατούρου 2 Εισαγωγικά Θέµατα Αντικείµενο
Αλγόριθμοι και Δομές Δεδομένων (Ι) (εισαγωγικές έννοιες)
Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 2015-16 Αλγόριθμοι και Δομές Δεδομένων (Ι) (εισαγωγικές έννοιες) http://di.ionio.gr/~mistral/tp/csintro/ Μ.Στεφανιδάκης Τι είναι
Υπολογιστική Πολυπλοκότητα
Υπολογιστική Πολυπλοκότητα Υπολογιστική πολυπλοκότητα αλγόριθµου Α: Ποσότητα υπολογιστικών πόρων που απαιτεί Α ως αύξουσα συνάρτηση µεγέθους στιγµιότυπου εισόδου. Χρόνος, µνήµη, επεξεργαστές, επικοινωνία,
Τι είναι αλγόριθμος; Υποπρογράμματα (υποαλγόριθμοι) Βασικές αλγοριθμικές δομές
Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 2015-16 Αλγόριθμοι και Δομές Δεδομένων (Ι) (εισαγωγικές έννοιες) http://di.ionio.gr/~mistral/tp/csintro/ Μ.Στεφανιδάκης Τι είναι
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Δομές δεδομένων. Ενότητα 1η: Εισαγωγή Παναγιώτα Φατούρου Τμήμα Επιστήμης Υπολογιστών
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Δομές δεδομένων Ενότητα 1η: Εισαγωγή Παναγιώτα Φατούρου Τμήμα Επιστήμης Υπολογιστών ΗΥ240: Δομές Δεδομένων Διδάσκουσα: Παναγιώτα Φατούρου Υποχρεωτικό Μάθημα 2ου
Ασυμπτωτικός Συμβολισμός
Ασυμπτωτικός Συμβολισμός ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Υπολογιστική Πολυπλοκότητα Υπολογιστική πολυπλοκότητα αλγόριθμου Α: Ποσότητα
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ. Αρχές Ανάλυσης Αλγορίθµων Κεφάλαιο 2. Ε. Μαρκάκης Επικ. Καθηγητής
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ Αρχές Ανάλυσης Αλγορίθµων Κεφάλαιο 2 Ε. Μαρκάκης Επικ. Καθηγητής Περίληψη Εµπειρική ανάλυση αλγορίθµων Μαθηµατική ανάλυση αλγορίθµων Αύξηση συναρτήσεων Συµβολισµός µεγάλου όµικρον Παραδείγµατα
Εργαστήριο 6: Αναζήτηση, Ανάλυση Πολυπλοκότητας
Εργαστήριο 6: Αναζήτηση, Ανάλυση Πολυπλοκότητας Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Αναζήτηση με linearsearch, binarysearch, ternarysearch - Ανάλυση Πολυπλοκότητας ternarysearch
Δομές Δεδομένων (Data Structures)
Δομές Δεδομένων (Data Structures) Ανάλυση - Απόδοση Αλγορίθμων Έλεγχος Αλγορίθμων. Απόδοση Προγραμμάτων. Χωρική/Χρονική Πολυπλοκότητα. Ασυμπτωτικός Συμβολισμός. Παραδείγματα. Αλγόριθμοι: Βασικές Έννοιες
ΑΛΓΟΡΙΘΜΟΙ. Ενότητα 2: Ανάλυση Αλγορίθμων. Ιωάννης Μανωλόπουλος, Καθηγητής Αναστάσιος Γούναρης, Επίκουρος Καθηγητής Τμήμα Πληροφορικής ΑΠΘ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΛΓΟΡΙΘΜΟΙ Ενότητα 2: Ανάλυση Αλγορίθμων Ιωάννης Μανωλόπουλος, Καθηγητής Αναστάσιος Γούναρης, Επίκουρος Καθηγητής Άδειες Χρήσης Το παρόν
Ασυμπτωτικός Συμβολισμός
Ασυμπτωτικός Συμβολισμός ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Υπολογιστική Πολυπλοκότητα Υπολογιστική
Αλγόριθµοι και Πολυπλοκότητα
Αλγόριθµοι και Πολυπλοκότητα Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Πανεπιστήµιο Αθηνών Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα 25 Φεβρουαρίου 2015 1 / 53 Περιεχόµενα
Εισαγωγή στην Ανάλυση Αλγορίθμων
Εισαγωγή στην Ανάλυση Αλγορίθμων (4) Μεθοδολογία αναδρομικών σχέσεων (Ι) Με επανάληψη της αναδρομής Έστω όπου r και a είναι σταθερές. Βρίσκουμε τη σχέση που εκφράζει την T(n) συναρτήσει της T(n-) την T(n)
Επιμέλεια διαφανειών: Δ. Φωτάκης Τροποποιήσεις-προσθήκες: Α. Παγουρτζής. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών
Διαίρει-και-Βασίλευε Επιμέλεια διαφανειών: Δ. Φωτάκης Τροποποιήσεις-προσθήκες: Α. Παγουρτζής Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Διαίρει-και-Βασίλευε Γενική
Σχεδίαση και Ανάλυση Αλγορίθμων
Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 4.0 Επιλογή Αλγόριθμοι Επιλογής Select και Quick-Select Σταύρος Δ. Νικολόπουλος 2016-17 Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Ιωαννίνων Webpage: www.cs.uoi.gr/~stavros
Διάλεξη 04: Παραδείγματα Ανάλυσης
Διάλεξη 04: Παραδείγματα Ανάλυσης Πολυπλοκότητας/Ανάλυση Αναδρομικών Αλγόριθμων Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Παραδείγματα Ανάλυσης Πολυπλοκότητας : Μέθοδοι, παραδείγματα
ΔΥΑΔΙΚΗ ΑΝΑΖΗΤΗΣΗ & ΤΑΞΙΝΟΜΗΣΗ ΜΕ ΣΥΓΧΩΝΕΥΣΗ
ΔΥΑΔΙΚΗ ΑΝΑΖΗΤΗΣΗ & ΤΑΞΙΝΟΜΗΣΗ ΜΕ ΣΥΓΧΩΝΕΥΣΗ (ΑΛΓΟΡΙΘΜΟΙ, Sanjoy Dasgupta, Christos Papadimitriou, Umesh Vazirani, σελ. 55-62 ΣΧΕΔΙΑΣΜΟΣ ΑΛΓΟΡΙΘΜΩΝ, Jon Kleinberg, Eva Tardos, Κεφάλαιο 5) Δυαδική αναζήτηση
Διάλεξη 09: Αλγόριθμοι Ταξινόμησης I
Διάλεξη 09: Αλγόριθμοι Ταξινόμησης I Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Οι αλγόριθμοι ταξινόμησης: Α. SelectionSort Ταξινόμηση με Επιλογή Β. InsertionSort Ταξινόμηση με Εισαγωγή
Διαίρει-και-Βασίλευε. Αλγόριθµοι & Πολυπλοκότητα (Χειµώνας 2011) Διαίρει-και-Βασίλευε 2
Διαίρει-και-Βασίλευε Αλγόριθµοι & Πολυπλοκότητα (Χειµώνας 2011) Διαίρει-και-Βασίλευε 2 Διαίρει-και-Βασίλευε Γενική µέθοδος σχεδιασµού αλγορίθµων: Διαίρεση σε ( 2) υποπροβλήµατα (σηµαντικά) µικρότερου µεγέθους.
Ενότητα 1 Εισαγωγή. ΗΥ240: Δοµές Δεδοµένων. Διδάσκουσα: Παναγιώτα Φατούρου
ΗΥ240: Δοµές Δεδοµένων Διδάσκουσα: Παναγιώτα Φατούρου Υποχρεωτικό Μάθηµα 2ου έτους Τµήµα Επιστήµης Υπολογιστών Πανεπιστήµιο Κρήτης Ενότητα 1 Εισαγωγή ΗΥ240 - Παναγιώτα Φατούρου 2 Εισαγωγικά Θέµατα Αντικείµενο
Κεφάλαιο 2 Ανάλυση Αλγορίθμων
Κεφάλαιο Ανάλυση Αλγορίθμων Περιεχόμενα.1 Εισαγωγή... 0. Εμπειρική και Θεωρητική Ανάλυση Αλγορίθμων.....1 Εμπειρική Πολυπλοκότητα..... Θεωρητική Πολυπλοκότητα... 3.3 Ανάλυση Χειρότερης και Αναμενόμενης
Διάλεξη 04: Παραδείγματα Ανάλυσης Πολυπλοκότητας/Ανάλυση Αναδρομικών Αλγόριθμων
Διάλεξη 04: Παραδείγματα Ανάλυσης Πολυπλοκότητας/Ανάλυση Αναδρομικών Αλγόριθμων Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Παραδείγματα Ανάλυσης Πολυπλοκότητας : Μέθοδοι, παραδείγματα
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Ενότητα 4: Αναδρομικές σχέσεις και ανάλυση αλγορίθμων Μαρία Σατρατζέμη Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 4. Παραδείγματα Ανάλυσης Πολυπλοκότητας Ανάλυση Αναδρομικών Αλγόριθμων
ΕΠΛ31 Δομές Δεδομένων και Αλγόριθμοι 4. Παραδείγματα Ανάλυσης Πολυπλοκότητας Ανάλυση Αναδρομικών Αλγόριθμων Διάλεξη 04: Παραδείγματα Ανάλυσης Πολυπλοκότητας/Ανάλυση Αναδρομικών Αλγόριθμων Στην ενότητα
Διδάσκων: Παναγιώτης Ανδρέου
Διάλεξη 6: ΠαραδείγματαΑνάλυσης Πολυπλοκότητας/Ανάλυση Αναδρομικών Αλγόριθμων Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: -Παραδείγματα Ανάλυσης Πολυπλοκότητας : Μέθοδοι, παραδείγματα -Γραμμική
Σχεδίαση και Ανάλυση Αλγορίθμων
Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 3.0 Σταύρος Δ. Νικολόπουλος 0-7 Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Ιωαννίνων Webpage: www.cs.uoi.gr/~stavros Διαίρει και Βασίλευε Quick-sort και Merge-sort
Διδάσκων: Κωνσταντίνος Κώστα Διαφάνειες: Δημήτρης Ζεϊναλιπούρ ΕΠΛ 035 Δομές Δεδομένων και Αλγόριθμοι για Ηλ. Μηχ. και Μηχ. Υπολ.
Διάλεξη : Παραδείγματα Ανάλυσης Πολυπλοκότητας / Ανάλυση Αναδρομικών Αλγόριθμων Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Παραδείγματα Ανάλυσης Πολυπλοκότητας : Μέθοδοι, 6 παραδείγματα
Ασυμπτωτικός Συμβολισμός
Ασυμπτωτικός Συμβολισμός ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Άδεια Χρήσης Το παρόν εκπαιδευτικό
Εισαγωγή στους Αλγορίθμους
Εισαγωγή στους Αλγορίθμους Ενότητα 5η Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Η Μέθοδος «Διαίρει & Βασίλευε» Η Μέθοδος
Διαίρει-και-Βασίλευε. Διαίρει-και-Βασίλευε. MergeSort. MergeSort. Πρόβλημα Ταξινόμησης: Είσοδος : ακολουθία n αριθμών (α 1
Διαίρει-και-Βασίλευε Διδάσκοντες: Σ. Ζάχος, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Διαίρει-και-Βασίλευε Γενική μέθοδος
Διακριτά Μαθηματικά. Γιάννης Εμίρης. Τμήμα Πληροφορικής & Τηλεπικοινωνιών ΕΚΠΑ. Οκτώβριος
ΔιακριτάΜαθηματικά Γιάννης Εμίρης http://eclass.uoa.gr/ Τμήμα Πληροφορικής & Τηλεπικοινωνιών ΕΚΠΑ Οκτώβριος 2016 Διακριτά Μαθηματικά Αλγόριθμοι Ρυθμόςαύξησηςσυναρτήσεων[Rosen 3.2] Διακριτά Μαθηματικά Ορισμοί
ιαίρει-και-βασίλευε ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο
ιαίρει-και-βασίλευε ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο ιαίρει-και-βασίλευε Γενική μέθοδος σχεδιασμού αλγορίθμων: ιαίρεση σε ( 2) υποπροβλήματα
Αλγόριθμοι Αναζήτησης
Αλγόριθμοι Αναζήτησης ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
ΜΥΥ105: Εισαγωγή στον Προγραμματισμό. Αναζήτηση και Ταξινόμηση Χειμερινό Εξάμηνο 2016
ΜΥΥ105: Εισαγωγή στον Προγραμματισμό Αναζήτηση και Ταξινόμηση Χειμερινό Εξάμηνο 2016 Αναζήτηση και Ταξινόμηση Βασικές λειτουργίες σε προγράμματα Αναζήτηση (searching): Βρες ένα ζητούμενο στοιχείο σε μια
auth Αλγόριθμοι - Τμήμα Πληροφορικής ΑΠΘ - Εξάμηνο 4ο
Σχεδίαση Αλγορίθμων Διαίρει και Βασίλευε http://delab.csd.auth.gr/courses/algorithms/ auth 1 Διαίρει και Βασίλευε Η γνωστότερη ρημέθοδος σχεδιασμού αλγορίθμων: 1. Διαιρούμε το στιγμιότυπο του προβλήματος
Κεφάλαιο 5 Ανάλυση Αλγορίθμων
Κεφάλαιο 5 Ανάλυση Αλγορίθμων 5.1 Επίδοση αλγορίθμων Τα πρωταρχικά ερωτήματα που προκύπτουν είναι: 1. πώς υπολογίζεται ο χρόνος εκτέλεσης ενός αλγορίθμου; 2. πώς μπορούν να συγκριθούν μεταξύ τους οι διάφοροι
Σχεδίαση Αλγορίθμων -Τμήμα Πληροφορικής ΑΠΘ - Εξάμηνο 4ο
Πολλαπλασιασμός μεγάλων ακεραίων (1) Για να πολλαπλασιάσουμε δύο ακεραίους με n 1 και n 2 ψηφία με το χέρι, θα εκτελέσουμε n 1 n 2 πράξεις πολλαπλασιασμού Πρόβλημα ρβημ όταν έχουμε πολλά ψηφία: A = 12345678901357986429
Θεωρητικό Μέρος. int rec(int n) { int n1, n2; if (n <= 5) then return n; else { n1 = rec(n-5); n2 = rec(n-3); return (n1+n2); } }
Πανεπιστήµιο Ιωαννίνων, Τµήµα Πληροφορικής 2 Νοεµβρίου 2005 Η/Υ 432: οµές εδοµένων Χειµερινό Εξάµηνο Ακαδηµαϊκού Έτους 2005-2006 Παναγιώτα Φατούρου Ηµεροµηνία Παράδοσης 1 ο Σετ Ασκήσεων Θεωρητικό Μέρος:
Μάντεψε τον Αριθμό. Έχω Ένα Μυστικό. Το Βρήκα;
Μάντεψε τον Αριθμό Ένα από τα πρώτα προγράμματα που συνηθίζεται να φτιάχνουν οι μαθητευόμενοι προγραμματιστές είναι ένα παιχνίδι στο οποίο ο παίκτης προσπαθεί να μαντέψει τον μυστικό αριθμό που έχει σκεφτεί
Ανάλυση αλγορίθμων. Χρόνος εκτέλεσης: Αναμενόμενη περίπτωση. - απαιτεί γνώση της κατανομής εισόδου
Ανάλυση αλγορίθμων Παράμετροι απόδοσης ενός αλγόριθμου: Χρόνος εκτέλεσης Απαιτούμενοι πόροι, π.χ. μνήμη, επικοινωνία (π.χ. σε κατανεμημένα συστήματα) Προσπάθεια υλοποίησης Ανάλυση της απόδοσης Θεωρητική
Ασκήσεις (2) Άσκηση 1
Άσκηση 1 Ασκήσεις () Εισαγωγή στην Ανάλυση Αλγορίθμων Υποθέστε ότι συγκρίνουμε την υλοποίηση της ταξινόμησης με εισαγωγή και της ταξινόμησης με συγχώνευση στον ίδιο υπολογιστή. Για εισόδους μεγέθους n,
Ενότητα: Δυαδική Αναζήτηση Σχέδιο Δραστηριότητας: Παιχνίδι: Βρες τον αριθμό
Ενότητα: Δυαδική Αναζήτηση Σχέδιο Δραστηριότητας: Παιχνίδι: Βρες τον αριθμό 1 Εισαγωγή Σκεφτείτε έναν αριθμό από το 1 έως το 1000 και απαντήστε στην ερώτηση: Ο αριθμός που σκεφτήκατε είναι μεγαλύτερος
Κατ οίκον Εργασία 1 Σκελετοί Λύσεων
ΕΠΛ Δομές Δεδομένων και Αλγόριθμοι Σεπτέμβριος 008 Κατ οίκον Εργασία Σκελετοί Λύσεων Άσκηση Παρατηρούμε ότι ο χρόνος εκτέλεσης μέσης περίπτωσης της κάθε εντολής if ξεχωριστά: if (c mod 0) for (k ; k
Διάλεξη 19: Αλγόριθμοι ΤαξινόμησηςII. Διδάσκων: Παναγιώτης Ανδρέου
Διάλεξη 19: Αλγόριθμοι ΤαξινόμησηςII Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Οι αλγόριθμοι ταξινόμησης: Γ. MergeSort Ταξινόμηση με Συγχώνευση Δ. BucketSort Ταξινόμηση με Κάδους Διδάσκων:
Διδάσκων: Παναγιώτης Ανδρέου
Διάλεξη 04: ΠαραδείγματαΑνάλυσης Πολυπλοκότητας/Ανάλυση Αναδρομικών Αλγόριθμων Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: -Παραδείγματα Ανάλυσης Πολυπλοκότητας : Μέθοδοι, παραδείγματα -Γραμμική
Σχεδίαση & Ανάλυση Αλγορίθμων
Σχεδίαση & Ανάλυση Αλγορίθμων Ενότητα 3 Αλγόριθμοι Επιλογής Σταύρος Δ. Νικολόπουλος Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Ιωαννίνων Webpage: www.cs.uoi.gr/~stavros Αλγόριθμοι Επιλογής Γνωρίζουμε
Διδάσκων: Κωνσταντίνος Κώστα Διαφάνειες: Δημήτρης Ζεϊναλιπούρ
Διάλεξη 14: Αλγόριθμοι Ταξινόμησης Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Οι αλγόριθμοι ταξινόμησης 3) Mergesort Ταξινόμηση με Συγχώνευση 4) BucketSort Ταξινόμηση με Κάδους Διδάσκων:
Αναδρομικές Σχέσεις «ιαίρει-και-βασίλευε»
Αναδρομικές Σχέσεις «ιαίρει-και-βασίλευε» ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο ιαίρει-και-βασίλευε
Αλγόριθµοι και Πολυπλοκότητα
Αλγόριθµοι και Πολυπλοκότητα Ενότητα 1 Εισαγωγικές έννοιες Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Καθηγητής: Ν. Μ. Μισυρλής Αλγόριθµοι και Πολυπλοκότητα - Ενότητα 1 1 / 57 Περιεχόµενα 1.
Quicksort [Hoare, 62] Αλγόριθµοι & Πολυπλοκότητα (Χειµώνας 2011) Quicksort 1
Quicksort [Hoare, 62] Αλγόριθµοι & Πολυπλοκότητα (Χειµώνας 2011) Quicksort 1 Quicksort [Hoare, 62] Στοιχείο διαχωρισµού (pivot), π.χ. πρώτο, τυχαίο, Αναδιάταξη και διαίρεση εισόδου σε δύο υπο-ακολουθίες:
Αλγόριθμοι και Πολυπλοκότητα
Αλγόριθμοι και Πολυπλοκότητα Ανάλυση Αλγορίθμων Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ανάλυση Αλγορίθμων Η ανάλυση αλγορίθμων περιλαμβάνει τη διερεύνηση του τρόπου
Επαγωγή και αναδρομή για άκυκλα συνεκτικά γραφήματα
ΘΕ4 Αναδρομή και Επαγωγή για Γραφήματα Επαγωγή και αναδρομή για άκυκλα συνεκτικά γραφήματα Επαγωγή για άκυκλα συνεκτικά γραφήματα (με αφαίρεση κορυφής) Η αρχή της επαγωγής, με αφαίρεση κορυφής, για δεδομένη
ΚΕΦΑΛΑΙΟ 5: Αλγόριθμοι
ΚΕΦΑΛΑΙΟ 5: Αλγόριθμοι Αρχικές έννοιες Αναπαράσταση αλγορίθμων Διαγράμματα ροής και δομές επανάληψης Αλγόριθμος σειριακής αναζήτησης Αλγόριθμος αλφαβητικής ταξινόμησης Αναδρομικοί αλγόριθμοι Αλγόριθμος
Επαγωγή και αναδρομή για συνεκτικά γραφήματα
ΘΕ4 Αναδρομή και Επαγωγή για Γραφήματα Επαγωγή και αναδρομή για συνεκτικά γραφήματα Επαγωγή για συνεκτικά γραφήματα (με αφαίρεση κορυφής) Η αρχή της επαγωγής, με αφαίρεση κορυφής, για δεδομένη προτασιακή
Αναζήτηση. 1. Σειριακή αναζήτηση 2. Δυαδική Αναζήτηση. Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη
Αναζήτηση. Σειριακή αναζήτηση. Δυαδική Αναζήτηση Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη Παραδοχή Στη συνέχεια των διαφανειών (διαλέξεων) η ασυμπτωτική έκφραση (συμβολισμός Ο, Ω, Θ) του χρόνου
Προγραμματισμός Η/Υ (ΤΛ2007 )
Τμήμα Ηλεκτρονικών Μηχανικών Τ.Ε.Ι. Κρήτης Προγραμματισμός Η/Υ (ΤΛ00 ) Δρ. Μηχ. Νικόλαος Πετράκης (npet@chania.teicrete.gr) Ιστοσελίδα Μαθήματος: https://eclass.chania.teicrete.gr/ Εξάμηνο: Εαρινό 01-15
Αν ένα πρόβλημα λύνεται από δύο ή περισσότερους αλγόριθμους, ποιος θα είναι ο καλύτερος; Με ποια κριτήρια θα τους συγκρίνουμε;
Αν ένα πρόβλημα λύνεται από δύο ή περισσότερους αλγόριθμους, ποιος θα είναι ο καλύτερος; Με ποια κριτήρια θα τους συγκρίνουμε; Πως θα υπολογίσουμε το χρόνο εκτέλεσης ενός αλγόριθμου; Για να απαντήσουμε
Μεταγλωττιστές Βελτιστοποίηση
Μεταγλωττιστές Βελτιστοποίηση Νίκος Παπασπύρου nickie@softlab.ntua.gr Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχ. και Μηχ. Υπολογιστών Εργαστήριο Τεχνολογίας Λογισμικού Πολυτεχνειούπολη, 15780
Επιλογή. Πρόβλημα Επιλογής. Μέγιστο / Ελάχιστο. Εφαρμογές
Επιλογή Διδάσκοντες: Σ. Ζάχος, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Πρόβλημα Επιλογής Πίνακας Α[]με n στοιχεία (όχι ταξινομημένος). Αριθμός
Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά
Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων
Επιλογή. Επιμέλεια διαφανειών: Δ. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. Εθνικό Μετσόβιο Πολυτεχνείο
Επιλογή Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Πρόβλημα Επιλογής Πίνακας Α[ ] με n στοιχεία (όχι ταξινομημένος). Αριθμός k,
TO ΥΠΟΠΡΟΓΡΑΜΜΑ ΣΥΝΑΡΤΗΣΗ
Μάθημα 7 - Υποπρογράμματα Εργαστήριο 11 Ο TO ΥΠΟΠΡΟΓΡΑΜΜΑ ΣΥΝΑΡΤΗΣΗ Βασικές Έννοιες: Υποπρόγραμμα, Ανάλυση προβλήματος, top down σχεδίαση, Συνάρτηση, Διαδικασία, Παράμετρος, Κλήση συνάρτησης, Μετάβαση
Εισαγωγή στους Αλγορίθμους Ενότητα 11η
Εισαγωγή στους Αλγορίθμους Ενότητα 11η Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Δυναμικός Προγραμματισμός Σταθμισμένος Χρονοπρογραμματισμός
ΜΥΥ105: Εισαγωγή στον Προγραµµατισµό. Αναζήτηση και Ταξινόµηση Χειµερινό Εξάµηνο 2014
ΜΥΥ105: Εισαγωγή στον Προγραµµατισµό Αναζήτηση και Ταξινόµηση Χειµερινό Εξάµηνο 2014 Αναζήτηση και Ταξινόµηση Βασικές λειτουργίες σε προγράµµατα Αναζήτηση (searching): Βρες ένα ζητούµενο στοιχείο σε µια
Αλγόριθµοι και Πολυπλοκότητα
Αλγόριθµοι και Πολυπλοκότητα Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Πανεπιστήµιο Αθηνών Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα 23 Μαρτίου 2017 1 / 170 Αναδροµή ιαίρει
Δομές Δεδομένων & Αλγόριθμοι
Απόδοση Αλγορίθμων Πληροφορικής 1 Απόδοση Αλγορίθμων Συνήθως υπάρχουν πολλοί τρόποι (αλγόριθμοι) για την επίλυση ενός προβλήματος. Πώς επιλέγουμε μεταξύ αυτών; Πρέπει να ικανοποιηθούν δύο (αντικρουόμενοι)
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 23: οµές εδοµένων και Αλγόριθµοι Ενδιάµεση Εξέταση Ηµεροµηνία : ευτέρα, 3 Νοεµβρίου 2008 ιάρκεια : 2.00-4.00 ιδάσκουσα : Άννα Φιλίππου Ονοµατεπώνυµο: ΣΚΕΛΕΤΟΙ
Quicksort. Πρόβλημα Ταξινόμησης. Μέθοδοι Ταξινόμησης. Συγκριτικοί Αλγόριθμοι
Πρόβλημα Ταξινόμησης Quicksort Διδάσκοντες: Σ. Ζάχος, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Είσοδος : ακολουθία n αριθμών (α 1, α 2,..., α n
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΕΠΛ 231 ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΑΛΓΟΡΙΘΜΟΙ ΚΑΤ ΟΙΚΟΝ ΕΡΓΑΣΙΑ 1 ΗΜΕΡΟΜΗΝΙΑ ΠΑΡΑΔΟΣΗΣ: 22/02/10
ΠΑΝΕΠΙΣΤΗΜΙΟΚΥΠΡΟΥ ΕΠΛ231 ΔΟΜΕΣΔΕΔΟΜΕΝΩΝΚΑΙΑΛΓΟΡΙΘΜΟΙ ΚΑΤ ΟΙΚΟΝΕΡΓΑΣΙΑ1 ΗΜΕΡΟΜΗΝΙΑΠΑΡΑΔΟΣΗΣ:22/02/10 1.Νααποφασίσετεποιεςαπότιςπιοκάτωπροτάσειςείναιαληθείςαποδεικνύοντας τιςαπαντήσειςσας. (i)αν και,τότε
Δυναμικός προγραμματισμός για δέντρα
ΘΕ5 Ιδιότητες Δέντρων και Αναδρομή για Δέντρα Δυναμικός προγραμματισμός για δέντρα Έστω ότι, για k=1,..., m, το γράφημα Γ k = (V k, E k ) είναι δέντρο. Έστω w V 1... V m, z k V k, για k=1,..., m. Συμβολίζουμε
Quicksort. Επιμέλεια διαφανειών: Δ. Φωτάκης Μικροαλλαγές: Α. Παγουρτζής. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών
Quicksort Επιμέλεια διαφανειών: Δ. Φωτάκης Μικροαλλαγές: Α. Παγουρτζής Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Quicksort [Hoare, 6] Στοιχείο διαχωρισμού (pivot),
1 Ανάλυση αλγορίθµων. 2 Συµβολισµοί O, Ω και Θ. 3 Αναδροµικές εξισώσεις
Γενικό πλάνο Μαθηµατικά για Πληροφορική 6ο Μάθηµα 1 Ανάλυση αλγορίθµων Ηλίας Κουτσουπιάς, Γιάννης Εµίρης 2 Συµβολισµοί O, Ω και Θ Τµήµα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήµιο Αθηνών 27/11/2008 3
Αναδρομή Ανάλυση Αλγορίθμων
Αναδρομή Ανάλυση Αλγορίθμων Παράδειγμα: Υπολογισμός του παραγοντικού Ορισμός του n! n! = n x (n - 1) x x 2 x 1 Ο παραπάνω ορισμός μπορεί να γραφεί ως n! = 1 αν n = 0 n x (n -1)! αλλιώς Παράδειγμα (συνέχ).
Δομές Δεδομένων και Αλγόριθμοι
Δομές Δεδομένων και Αλγόριθμοι Χρήστος Γκόγκος ΤΕΙ Ηπείρου, Τμήμα Μηχανικών Πληροφορικής ΤΕ Χειμερινό Εξάμηνο 2014-2015 (Παρουσίαση 6) 1 / 20 Ρυθμοί αύξησης Γραμμικός ρυθμός αύξησης: n, 2n, Πολυωνυμικός
Quicksort. ημήτρης Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. Εθνικό Μετσόβιο Πολυτεχνείο
Quicksort ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Quicksort [Hoare, 62] Στοιχείο διαχωρισμού (pivot), π.χ. πρώτο, τυχαίο, Αναδιάταξη και διαίρεση
Αλγόριθµοι και Πολυπλοκότητα
Αλγόριθµοι και Πολυπλοκότητα Ενότητα 2 ιαίρει και Βασίλευε Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Καθηγητής: Ν. Μ. Μισυρλής Αλγόριθµοι και Πολυπλοκότητα - Ενότητα 2 1 / 140 ιαίρει και Βασίλευε