Θεωρία και Αλγόριθμοι Γράφων

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Θεωρία και Αλγόριθμοι Γράφων"

Transcript

1 ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα # 11: Κατευθυνόμενοι Γράφοι Ιωάννης Μανωλόπουλος

2 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου άδειας χρήσης, η άδεια χρήσης αναφέρεται ρητώς. 2

3 Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα. Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα στο» έχει χρηματοδοτήσει μόνο τη αναδιαμόρφωση του εκπαιδευτικού υλικού. Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος «Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς πόρους. 3

4 ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Κατευθυνόμενοι Γράφοι

5 Κατευθυνόμενοι γράφοι Κατευθυνόμενος γράφος (directed graph, digraph) ή προσανατολισμένος (oriented) ονομάζεται ένας γράφος D(V,A) που αποτελείται από ένα μη κενό σύνολο κορυφών V και ένα σύνολο A από διατεταγμένα ζεύγη κορυφών που ονομάζονται τόξα (arcs). Σε ένα τόξο (v,w) οι κορυφές v και w ονομάζονται ουρά (tail) και κεφαλή (head) ή ακόμη πηγή (source) και νεροχύτης (sink) αντίστοιχα. 5

6 Γειτνίαση Έσω γειτονιά μιας κορυφής v είναι το σύνολο των κορυφών u που ορίζονται από τη σχέση : N (v)={u V (u, v) A} Έξω γειτονιά μιας κορυφής v είναι το σύνολο των κορυφών u που ορίζονται από τη σχέση N + (v)={u V (v, u) A} Έσω βαθμός μιας κορυφής v, d (v), ονομάζεται ο αριθμός των τόξων με κεφαλή την κορυφή v. Έξω βαθμός μιας κορυφής v, d + (v), ονομάζεται ο αριθμός των τόξων με ουρά την κορυφή v. 6

7 Παράδειγμα Να γραφούν οι ακολουθίες έσω και έξω βαθμών των κορυφών για τους εξής γράφους: a b (a) Ακολουθία έξω βαθμών: (0,1,1,1,1,1,1,1,1) Ακολουθία έσω βαθμών: (0,0,0,0,0,0,1,3,4) (b) Ακολουθία έξω βαθμών: (1,2,2,2,3) Ακολουθία έσω βαθμών: (1,2,2,2,3) 7

8 Ορισμοί I Ισχύουν οι σχέσεις d (v)= N (v) και d + (v)= N + (v). Ο ελάχιστος και ο μέγιστος έσω βαθμός ενός γράφου συμβολίζονται με d (G) και D (G) αντίστοιχα, ενώ ο ελάχιστος και ο μέγιστος έξω βαθμός ενός γράφου συμβολίζονται με d + (G) και D + (G). Ένας κατευθυνόμενος γράφος λέγεται ισορροπημένος (balanced) ή ψευδοσυμμετρικός (pseudosymmetric) ή ισογράφος (isograph), αν για κάθε κορυφή v ισχύει: d (v)=d + (v). 8

9 Λήμμα Χειραψιών Λήμμα: (Το δί-λλημα της χειραψίας): Για κάθε κατευθυνόμενο γράφο ισχύει η σχέση: n i=1 d (v i ) = n i=1 d + (v i ) Δηλαδή το άθροισμα των έσω βαθμών όλων των κορυφών ισούται με το άθροισμα των έξω βαθμών τους 9

10 Ορισμοί II Ο γράφος του σχήματος είναι ένας απλός κατευθυνόμενος γράφος (δεν έχει βρόχους και παράλληλα τόξα). (a) Απλό Συμμετρικό 10

11 Ορισμοί III Αν σε ένα κατευθυνόμενο γράφο επιτρέπεται να υπάρχουν βρόχοι, αλλά δεν επιτρέπεται 2 κορυφές να ενώνονται με περισσότερα από ένα τόξο, τότε ο γράφος αυτός λέγεται ασυμμετρικός (asymmetric) ή αντισυμμετρικός (antisymmetric). 11

12 Ορισμοί IV Συμμετρικό (symmetric) λέγεται ένας κατευθυνόμενος γράφος, όπου για κάθε τόξο (u, w) υπάρχει και το τόξο (w, u). Αν D είναι ένα κατευθυνόμενος γράφος, τότε ο γράφος που προκύπτει από τον D αντικαθιστώντας τα τόξα με ακμές ονομάζεται υποκείμενος (underlying) (d) Αντίστροφο του (a) 12

13 Τουρνουά I Ο αντίστροφος (converse) ενός κατευθυνόμενου γράφου λαμβάνεται αντιστρέφοντας την κατεύθυνση των τόξων του. Πλήρης κατευθυνόμενος γράφος είναι ο γράφος, όπου κάθε ζεύγος κορυφών ενώνεται με ένα μοναδικό τόξο. (b) Συμμετρικό (c) Υποκείμενο του (a) 13

14 Τουρνουά II Ένας πλήρης ασυμμετρικός γράφος χωρίς βρόχους ονομάζεται τουρνουά (tournament) Γράφος τουρνουά 14

15 Συνδεσμικότητα Ι Ένας κατευθυνόμενος γράφος D είναι αδύναμα συνδεδεμένος (weakly connected), αν ο αντίστοιχος υποκείμενος γράφος είναι συνδεδεμένος. Εναλλακτικός ορισμός: ένας κατευθυνόμενος γράφος D είναι αδύναμα συνδεδεμένος (weakly connected), αν από οποιαδήποτε κορυφή μπορούμε να φθάσουμε σε οποιαδήποτε άλλη κορυφή διασχίζοντας τα τόξα προς κάποια κατεύθυνση (όχι αναγκαστικά προς την κατεύθυνσή τους). Με άλλα λόγια, αν μεταξύ 2 οποιωνδήποτε κορυφών v και w υπάρχει ένα μονοπάτι όχι απαραίτητα προσανατολισμένο. Μπορούμε π.χ. να πάμε από την κορυφή 1 στην κορυφή 2 ακόμη και αν δεν υπάρχει το τόξο (1,2) αλλά το (2,1). 15

16 Παράδειγμα Ι Ο κατευθυνόμενος γράφος του Σχήματος (a) είναι αδύναμα συνδεδεμένος, του Σχήματος (b) μονόπλευρα συνδεδεμένος, του Σχήματος (c) ισχυρά συνδεδεμένος. a b c 16

17 Παράδειγμα ΙI Να εξετασθεί αν οι επόμενοι γράφοι είναι αδύναμα ή ισχυρά συνδεδεμένοι a b c a) Αδύναμα συνδεδεμένος, επειδή η κεντρική κορυφή δεν έχει πρόσβαση στις άλλες. b) Ισχυρά συνδεδεμένος. c) Αδύναμα συνδεδεμένος, επειδή η επάνω δεξιά κορυφή δεν έχει πρόσβαση στις άλλες. 17

18 Συνδετότητα ΙΙI Ένας συνδεδεμένος (μη κατευθυνόμενος) γράφος G ονομάζεται προσανατολίσιμος (orientable) αν οι ακμές του μπορούν να προσανατολισθούν (δηλαδή να αποκτήσουν κατεύθυνση) έτσι ώστε ο αντίστοιχος κατευθυνόμενος γράφος να είναι ισχυρά συνδεδεμένος. Θεώρημα: ένα συνδεδεμένος (μη κατευθυνόμενος) γράφος G είναι προσανατολίσιμος αν και μόνο αν κάθε ακμή του περιέχεται σε τουλάχιστον έναν κύκλο. 18

19 Υπενθύμιση Ακολουθία βαθμών (degree sequence) ενός γράφου είναι μια μη αύξουσα ακολουθία ακεραίων που αντιστοιχεί στις τιμές των βαθμών των κορυφών του γράφου. Μια τυχούσα ακολουθία βαθμών S λέγεται γραφική (graphic) αν πράγματι αντιστοιχεί σε κάποιο γράφο G. Ο γράφος G που αντιστοιχεί σε δεδομένη ακολουθία S ονομάζεται πραγματοποίηση (realization) της ακολουθίας. Μια ακολουθία λέγεται απλή (simple) αν είναι γραφική και υπάρχει μόνο μία πραγματοποίησή της. 19

20 Γράφοι τουρνουά Πλήρης κατευθυνόμενος γράφος είναι ο γράφος όπου κάθε ζεύγος κορυφών του ενώνεται με ένα και μοναδικό τόξο. Ένας πλήρης ασυμμετρικός γράφος χωρίς βρόχους ονομάζεται τουρνουά (tournament). Η ονομασία τουρνουά οφείλεται στο ότι ο γράφος μπορεί να χρησιμοποιηθεί για την απεικόνιση αποτελεσμάτων αγώνων (βόλεϊ, κλπ.) τύπου roundrobin (δηλαδή, κάθε παίχτης/ομάδα παίζει εναντίον όλων), στους οποίους δεν επιτρέπεται να υπάρχει ισοπαλία. 20

21 Σκορ Το σκορ μιας κορυφής ενός γράφου-τουρνουά ισούται με τον έξω βαθμό της. Είναι ευνόητο ότι οι κορυφές του γράφου κατατάσσονται με βάση το σκορ για να αναδειχθεί η νικήτρια. 21

22 Κάποιες ιδιότητες Επειδή ένας πλήρης γράφος έχει m = n (n 1)/2 ακμές, το ίδιο ισχύει και για ένα τουρνουά. Για ένα τέτοιο γράφο ισχύει : m = v V d (v) = v V d + (v) 22

23 Αποστάσεις I Θεώρημα: Έστω v μια κορυφή με μέγιστο έξω-βαθμό σε ένα τουρνουά. Η απόσταση από την κορυφή αυτή προς κάθε άλλη κορυφή είναι 1 ή 2. Απόδειξη: Έστω ότι η κορυφή v έχει μέγιστο έξω βαθμό d + (v)=k και ας υποθέσουμε ότι είναι γειτονική προς τις κορυφές v 1, v 2,,v k. Συνεπώς η απόσταση της v προς τις κορυφές αυτές είναι dist(v,v i )=1, 1 i k. Επιπλέον, η v είναι γειτονική από τις υπόλοιπες n k 1 κορυφές που τις συμβολίζουμε με u 1, u 2,,u n-k-1. Πρέπει να δειχθεί ότι dist(v,u i )=2, 1 i n k 1. Αν κάθε u i (1 i n k 1) είναι γειτονική (dist(v j,u i )=1) από κάποια v j (1 j k), τότε το ζητούμενο ισχύει. 23

24 Αποστάσεις II Απόδειξη (συνέχεια): Έστω ότι κάποια κορυφή u l (1 l n k 1) δεν είναι γειτονική από καμία κορυφή v i. Τότε η u l είναι γειτονική προς όλες τις κορυφές v 1,v 2,,v k και επίσης είναι γειτονική προς την v. Αλλά τότε θα ίσχυε d + (u l )=k+1 που είναι άτοπο διότι τότε η u l θα είχε μεγαλύτερο έξω βαθμό από την v. Επομένως κάθε κορυφή u l είναι γειτονική από κάποια κορυφή v i. 24

25 Μεταβατικότητα I Ένα τουρνουά λέγεται μεταβατικό (transitive). αν δοθέντων των τόξων (x,y) και (y,z) υπάρχει και το τόξο (x,z). 25

26 Μεταβατικότητα II Στο άνω μέρος του επομένου σχήματος παρουσιάζονται τα τουρνουά τάξης 3 (μία μεταβατική και μία κυκλική τριπλέτα). Στο κάτω μέρος παρουσιάζονται τα τουρνουά τάξης 4 (τo πρώτο είναι μεταβατικό). 26

27 Μεταβατικά τουρνουά Θεώρημα: Ένα τουρνουά είναι μεταβατικό αν και μόνο αν είναι άκυκλο. Απόδειξη: Έστω Τ μεταβατικό τουρνουά με n κορυφές. Έστω ότι το Τ περιέχει τον κύκλο C={x 1,x 2,,x r,x 1 } όπου (r 3). Εφόσον υπάρχουν τα τόξα (x 1,x 2 ) και (x 2,x 3 ) λόγω της μεταβατικότητας υπάρχει και το (x 1,x 3 ). Παρομοίως, προκύπτει ότι υπάρχουν και τα τόξα (x 1,x 4 ),..., (x 1,x r ). Αυτό όμως είναι αντίφαση (λόγω ασυμμετρικότητας) στο γεγονός ότι υπάρχει το τόξο (x r,x 1 ). Άρα το Τ πρέπει να είναι άκυκλο. Αντιθέτως, ας υποθέσουμε ότι το Τ είναι άκυκλο τουρνουά και ότι υπάρχουν τα τόξα (x 1,x 2 ) και (x 2,x 3 ). Εφόσον το Τ είναι άκυκλο, έπεται ότι δεν υπάρχει το τόξο (x 3,x 1 ), άρα υπάρχει το τόξο (x 1,x 3 ), διότι μεταξύ 2 κορυφών υπάρχει ακριβώς ένα τόξο. Συνεπώς το Τ είναι μεταβατικό. 27

28 Γραφική ακολουθία Θεώρημα: Μία μη φθίνουσα ακολουθία μη αρνητικών ακεραίων S: d1,d2,,dn είναι γραφική ακολουθία σκορ ενός μεταβατικού τουρνουά, αν και μόνο αν η ακολουθία S είναι 0,1,2,,n-1. Θεώρημα: Μία μη φθίνουσα ακολουθία μη αρνητικών ακεραίων S: d1,d2,,dn είναι γραφική ακολουθία σκορ, αν και μόνο αν η ακολουθία S1: d1,d2,,ddn,ddn+1 1,, ddn-1 1 είναι μία γραφική ακολουθία S σκορ. 28

29 Γράφοι τουρνουά Θεώρημα (Landau 1953): Μία μη φθίνουσα ακολουθία μη αρνητικών ακεραίων S: d 1,d 2,,d n είναι γραφική ακολουθία σκορ, αν και μόνο αν για κάθε ακέραιο j (1 j n) ισχύει: (η ισότητα ισχύει για j=n): j i=1 d i j 2 Άσκηση: είναι γραφικές οι ακολουθίες 4,4,4,2,1,1 και 5,4,4,1,1,0? 29

30 Διάσχιση Κατά Βάθος (DFS) Αλγόριθμος: DFS αναδρομικός (μη κατευθυνόμενοι γράφοι) Είσοδος: Ένας απλός γράφος G(V,E) με επιγραφές Έξοδος: Ένα σύνολο Τ δενδρικών κορυφών και μια αρίθμηση dfi(v) 1. Θέτουμε i 1 και T. 2. για όλες τις κορυφές v V θέτουμε dfi(v) 0 3. για όλες τις κορυφές v με dfi(v)=0 καλούμε την DFS(v) Διαδικασία DFS(v) 1. Θέτουμε dfi(v) i και i i για όλες τις κορυφές u N(v) ( (v,u) E ) 3. αν dfi(u)=0 τότε {T T {e} (e=(v,u)), DFS(u) } 30

31 Λειτουργία Ο αλγόριθμος παράγει 2 σύνολα ακμών: Το σύνολο Τ των ακμών που περιέχονται στα δένδρα του δάσους και ονομάζονται δενδρικές ακμές (tree edges). To σύνολο B=E T των υπόλοιπων ακμών που ονομάζονται οπίσθιες ακμές (back edges). 31

32 DFS για Κατευθυνόμενους Γράφους Ο αλγόριθμος DFS είναι παρόμοιος για κατευθυνόμενους γράφους με τη διαφορά ότι οι παραγόμενες ακμές κατατάσσονται σε 4 σύνολα: Το σύνολο Τ των ακμών που περιέχονται στα δένδρα του δάσους και ονομάζονται δενδρικές ακμές (tree edges). To σύνολο B των ακμών που ονομάζονται οπίσθιες ακμές (back edges) και ενώνουν κορυφές απογόνους προς κορυφές προγόνους. To σύνολο F των ακμών που ονομάζονται εμπρόσθιες ακμές (forward edges) και ενώνουν κορυφές προγόνους προς κορυφές απογόνους. To σύνολο C των ακμών που ονομάζονται διασταυρωνόμενες ακμές (cross edges) και δεν έχουν σχέση απογόνου προγόνου. 32

33 Παράδειγμα Μαύρο: δενδρική ακμή Κόκκινο: οπίσθια ακμή Μπλε: εμπρόσθια ακμή Πράσινο: διασταυρωνόμενη ακμή Κόκκινα γράμματα: σειρά επίσκεψης κορυφών v 2 v 2 v 3 v 4 v 1 v v v v v 4 v 6 v 9 v 6 v 8 v 7 v v 9 33

34 Εύρεση κύκλων Ένας κατευθυνόμενος γράφος είναι άκυκλος αν δεν έχει προσανατολισμένους (κατευθυνόμενους) κύκλους. Μπορούμε να ελέγξουμε αν ένας γράφος είναι άκυκλος με μια διάσχιση κατά βάθος. Αν ένα δένδρο διάσχισης εμφανίσει ένα οπίσθιο τόξο, συμπεραίνουμε αμέσως ότι ο γράφος έχει κύκλο. Αντίστροφα, αν δεν υπάρχει οπίσθιο τόξο, ο γράφος είναι άκυκλος. 34

35 Διασταυρωνόμενες ακμές Θεώρημα: Αν κατά την αναζήτηση ενός κατευθυνόμενου γράφου με DFS προκύψει μια διασταυρωνόμενη ακμή (u,v), τότε ισχύει η σχέση: dfi(u)>dfi(v). Απόδειξη: Με απαγωγή σε άτοπο. Έστω ότι dfi(u)<dfi(v), δηλαδή ας υποθέσουμε ότι επισκεπτόμαστε την κορυφή u πριν την κορυφή v. Αν δίνουμε τιμή στην dfi(v) όταν ακολουθούμε την ακμή (u,v), τότε η ακμή (u,v) είναι δενδρική. Αλλιώς επισκεπτόμαστε την κορυφή v ως απόγονο της u, αλλά όχι ως γιο της u. Άρα αποκλείεται η ακμή (u,v) να είναι διασταυρωνόμενη και επομένως οδηγούμαστε σε άτοπο. 35

36 Διάσχιση κατά Πλάτος (BFS) Ι Αλγόριθμος: BFS (κατευθυνόμενος ή μη γράφος) Είσοδος: Ένας απλός γράφος G(V,E) με επιγραφές Έξοδος: Ένα δένδρο διάσχισης Τ, η αρίθμηση bfi(v) 1. Θέτουμε i 0 και T. 2. για όλες τις κορυφές v V θέτουμε bfi(v) 0 3. για όλες τις κορυφές v V με bfi(v)=0 καλούμε BFS(v) Διαδικασία BFS(v) 1. Θέτουμε i i+1 και bfi(v) i 2. Q={v} //αρχικοποίηση της ουράς Q με την κορυφή v 3. όσο (Q ) 4. u:=dequeue(q) //αφαίρεση κορυφής από την αρχή της ουράς 5. για όλες τις ακμές (u,w) E 36

37 Διάσχιση κατά Πλάτος (BFS) ΙΙ Αλγόριθμος: BFS (κατευθυνόμενος ή μη γράφος) Είσοδος: Ένας απλός γράφος G(V,E) με επιγραφές Έξοδος: Ένα δένδρο διάσχισης Τ, η αρίθμηση bfi(v) 6. αν bfi(w)=0 τότε θέτουμε 7. θi i+1 8. bfi(w) i 9. T T {e} (όπου e=(u,w)) 10. enqueue(q, w) // προσθήκη κορυφής w στο τέλος της ουράς 37

38 Χαρακτηριστικά Ο αλγόριθμος BFS χρησιμοποιεί ουρά, ενώ ο DFS στοίβα. Ο αλγόριθμος BFS επισκέπτεται τις κορυφές ανά επίπεδο: δηλαδή πρώτα επισκέπτεται τις κορυφές που απέχουν απόσταση 1 (ένα τόξο) από την αρχική κορυφή, έπειτα τις κορυφές που απέχουν 2 κοκ. Ο αλγόριθμος BFS για μη κατευθυνόμενους γράφους παράγει 2 σύνολα ακμών: Το σύνολο Τ των ακμών που περιέχονται στα δένδρα του δάσους και ονομάζονται δενδρικές ακμές (tree edges). To σύνολο C των ακμών που ονομάζονται διασταυρωνόμενες ακμές (cross edges) και δεν έχουν σχέση απογόνου προγόνου. 38

39 BFS για κατευθυνόμενους γράφους Ο αλγόριθμος BFS για κατευθυνόμενους γράφους είναι παρόμοιος με τη διαφορά ότι οι ακμές που παράγονται κατατάσσονται σε 3 σύνολα: Το σύνολο Τ των ακμών που περιέχονται στα δένδρα του δάσους και ονομάζονται δενδρικές ακμές (tree edges). To σύνολο B των ακμών που ονομάζονται οπίσθιες ακμές (back edges) και ενώνουν κορυφές απογόνους προς κορυφές προγόνους. To σύνολο C των ακμών που ονομάζονται διασταυρωνόμενες ακμές (cross edges) και δεν έχουν σχέση απογόνου προγόνου. Σημείωση: δεν υπάρχουν εμπρόσθιες ακμές (forward edges). 39

40 Παράδειγμα Μαύρο: δενδρική ακμή v Κόκκινο: 2 οπίσθια ακμή Πράσινο: διασταυρωνόμενη ακμή Κόκκινα γράμματα: σειρά επίσκεψης κορυφών 5 v 2 v 3 v 4 v 1 v v v v 5 v 4 6 v 6 v 9 v 7 v 8 v v 4 9 v 6 40

41 Έλεγχος συνεκτικότητας Ερώτηση: πως μπορούμε να ελέγξουμε αν ένας γράφος (μη κατευθυνόμενος) είναι αδύναμα συνδεδεμένος (απλά συνεκτικός) εφαρμόζοντας τον αλγόριθμο BFS ή τον DFS; Απάντηση: Για να εξετάσουμε την απλή συνεκτικότητα ενός κατευθυνόμενου γράφου αρκεί να εφαρμόσουμε τον αλγόριθμο BFS ή τον DFS (μόνο τις διαδικασίες BFS ή DFS χωρίς τον εξωτερικό βρόχο για) μια φορά ξεκινώντας από έναν οποιονδήποτε κόμβο. Πρέπει όμως κατά την εξέταση των γειτονικών αμαρκάριστων κόμβων ενός κόμβου v να εξετάζουμε τους κόμβους όπου μπορούμε να φτάσουμε από τον v ακολουθώντας είτε ένα εξερχόμενο είτε ένα εισερχόμενο τόξο του. Στο τέλος του αλγορίθμου αρκεί να εξετάσουμε αν επισκεφθήκαμε όλες τις κορυφές του γράφου. 41

42 DFS Παράδειγμα 42

43 Έλεγχος ισχυρής συνεκτικότητας Ι Ερώτηση: πως μπορούμε να ελέγξουμε αν ένας κατευθυνόμενος γράφος είναι ισχυρά συνδεδεμένος (συνεκτικός) εφαρμόζοντας τον αλγόριθμο BFS ή τον DFS; Απάντηση: Για να εξετάσουμε την ισχυρή συνεκτικότητα ενός κατευθυνόμενου γράφου αρκεί να εφαρμόσουμε τον αλγόριθμο BFS ή τον DFS (μόνο τις διαδικασίες BFS ή DFS χωρίς τον εξωτερικό βρόχο για) 2 φορές ξεκινώντας από έναν οποιονδήποτε κόμβο. Την πρώτη φορά πρέπει για κάθε κόμβο v να εξετάζουμε τους γειτονικούς αμαρκάριστους κόμβους όπου μπορούμε να φτάσουμε από τον v μέσω μόνο εξερχόμενων τόξων. 43

44 Έλεγχος ισχυρής συνεκτικότητας ΙΙ Τη δεύτερη φορά πρέπει για κάθε κόμβο v να εξετάζουμε τους γειτονικούς αμαρκάριστους κόμβους όπου μπορούμε να φτάσουμε από τον v μέσω μόνο εισερχόμενων τόξων. Για να είναι ο γράφος ισχυρά συνεκτικός πρέπει και στην πρώτη και στη δεύτερη εφαρμογή του αλγορίθμου να επισκεφτούμε όλους τους κόμβους του. 44

45 BFS Παράδειγμα : Βήμα 1 45

46 BFS Παράδειγμα : Βήμα 2 46

47 Τοπολογική ταξινόμηση Έστω G=(V,Α) ένας κατευθυνόμενος γράφος n κορυφών χωρίς προσανατολισμένους κύκλους. Ένας τέτοιος γράφος λέγεται ΠΑΓ (Προσανατολισμένος Άκυκλος Γράφος). (DAG) Τοπολογική ταξινόμηση (topological sorting ή topological order) ενός ΠΑΓ είναι μια διάταξη των κορυφών του έτσι ώστε αν ο γράφος G περιέχει το τόξο (v,w), τότε η κορυφή v εμφανίζεται πριν από την κορυφή w στην τοπολογική διάταξη. Με άλλα λόγια κάθε κορυφή στην τοπολογική διάταξη βρίσκεται πριν από όλες τις κορυφές προς τις οποίες έχει εξερχόμενα τόξα. 47

48 Τυπικότερος ορισμός Έστω G ένας κατευθυνόμενος γράφος n κορυφών. Μια τοπολογική ταξινόμηση του G είναι μια διάταξη των κορυφών του (v 1,v 2,,v n ) τέτοια ώστε για κάθε τόξο (v i,v j ) G, να ισχύει i<j (δηλαδή, το i να εμφανίζεται πριν το j στην διάταξη). Ένα ΠΑΓ μπορεί να έχει περισσότερο από μία τοπολογικές ταξινομήσεις. 48

49 Παράδειγμα I Μια τοπολογική ταξινόμηση του επόμενου γράφου είναι: A,B,C,D,F,E,H,G,I. Μια ακόμη τοπολογική ταξινόμηση του ίδιου γράφου είναι: A,C,E,B,D,F,G,H,I. 3 C H 6 E A 1 D G 9 I B 5 F C H 3 E 1 A 5 7 D 9 G I 6 4 B F 49

50 Σχηματικά Ένας κατευθυνόμενος γράφος που έχει τοπολογική ταξινόμηση μπορεί να σχεδιασθεί ως εξής: οι κορυφές του μπορούν να τοποθετηθούν σε μια ευθεία γραμμή και τα τόξα που συνδέουν τις κορυφές να κατευθύνονται όλα από αριστερά προς τα δεξιά. E 5 A B C D 2 4 E 3 D C B A 1 50

51 Ύπαρξη τοπολογικής ταξινόμησης I Θεώρημα: ένας κατευθυνόμενος γράφος έχει τοπολογική ταξινόμηση αν και μόνο αν δεν έχει προσανατολισμένους κύκλους (δηλαδή, είναι ΠΑΓ). Απόδειξη: Έστω ότι το G έχει τοπολογική ταξινόμηση. Θα δείξουμε ότι είναι ΠΑΓ. Έστω ότι δεν είναι ΠΑΓ και ότι έχει έναν προσανατολισμένο κύκλο v 1,v 2,,v k,v 1. Λόγω της ύπαρξης τοπολογικής ταξινόμησης, έστω ότι ξεκινούμε με την κορυφή v 1. Η v 2 πρέπει να ακολουθεί την v 1 στην τοπολογική ταξινόμηση. Η v 3 πρέπει να ακολουθεί την v 2 κοκ. Αλλά η v 1 δεν μπορεί να ακολουθεί την v k. Συνεπώς το G είναι ΠΑΓ. 51

52 Ύπαρξη τοπολογικής ταξινόμησης II Θεώρημα: ένας κατευθυνόμενος γράφος έχει τοπολογική ταξινόμηση αν και μόνο αν δεν έχει προσανατολισμένους κύκλους (δηλαδή, είναι ΠΑΓ). Απόδειξη: Αντίστροφα. Έστω ότι το G είναι ΠΑΓ. Θα περιγράψουμε έναν αλγόριθμο για την κατασκευή μιας τοπολογικής διάταξης. Επειδή το G είναι ΠΑΓ πρέπει να έχει τουλάχιστον μια κορυφή v 1 με έσω βαθμό 0 (d (v 1 )=0). Αυτό συμβαίνει διότι αν όλες οι κορυφές έχουν έσω βαθμό >0, τότε ξεκινώντας από μια τυχαία κορυφή i και ακολουθώντας ένα έσω τόξο (i, j) πηγαίνουμε στην j. Από την j ακολουθώντας ένα έσω τόξο (j, k) πηγαίνουμε στην k. Οπότε κάποτε θα συναντήσουμε πάλι την i και συνεπώς θα έχουμε ακολουθήσει έναν προσανατολισμένο κύκλο (άτοπο λόγω του ότι το G είναι ΠΑΓ). 52

53 Ύπαρξη τοπολογικής ταξινόμησης III Συνέχεια: Έστω λοιπόν v 1 μια κορυφή με έσω βαθμό 0 (d (v 1 )=0). Αφαιρούμε από το G την v 1 και όλα τα εξερχόμενα τόξα της. οπότε ο παραγόμενος γράφος είναι πάλι ΠΑΓ. Επομένως έχει τουλάχιστον μια κορυφή έστω v 2, με έσω βαθμό 0. Αφαιρούμε πάλι από το G την v 2 και όλα τα εξερχόμενα τόξα της, οπότε ο παραγόμενος γράφος είναι πάλι ΠΑΓ. Ακολουθώντας την προηγούμενη διαδικασία μέχρις ότου το G να γίνει κενό παίρνουμε την ταξινόμηση v 1,v 2,,v n των κορυφών του G. Λόγω της κατασκευής της ταξινόμησης αυτής, αν (v i,v j ) είναι ένα τόξο του G, η κορυφή v i διαγράφεται πριν την κορυφή v j και συνεπώς i<j. Άρα η ταξινόμηση αυτή είναι τοπολογική. 53

54 Αλγόριθμος I Ο επόμενος αλγόριθμος παράγει την τοπολογική ταξινόμηση ενός γράφου, την οποία αποθηκεύει στο διάνυσμα σειρά. σειρά(i) είναι η σειρά με την οποία επισκεπτόμαστε την κορυφή i. Αν δεν υπάρχει τοπολογική ταξινόμηση ο αλγόριθμος επιστρέφει ένδειξη ότι υπάρχει προσανατολισμένος κύκλος. Αντί ουράς μπορεί να χρησιμοποιηθεί στοίβα. 54

55 Αλγόριθμος II Αλγόριθμος: Τοπολογική Ταξινόμηση Είσοδος: Ένας κατευθυνόμενος γράφος G(V, Α) Έξοδος: Διάνυσμα τοπολογικής διάταξης σειρά ή ένδειξη κύκλου 1. Υπολόγισε τους έσω βαθμούς d (j), j Α 2. k = 1 3. Q = {j Α : d (j) = 0} // Βάλε στην ουρά Q κόμβους με d (j) = 0 4. όσο Q 5. i = dequeue(q) // Βγάλε τον 1 ο κόμβο από την αρχή της ουράς 6. σειρά(i) = k, k = k για όλα τα τόξα (i, j) Α 8. d (j)= d (j) αν d (j) = 0 τότε enqueue(q, j) 10. αν (k<=n) τότε // οι κορυφές δεν πήραν όλες σειρά 11. Υπάρχει προσανατολισμένος κύκλος 55

56 Παράδειγμα I Να εφαρμοσθεί ο αλγόριθμος της τοπολογικής διάταξης στον επόμενο γράφο

57 Παράδειγμα II

58 Παράδειγμα III Να εφαρμοσθεί ο αλγόριθμος της τοπολογικής διάταξης στον επόμενο γράφο. A B C D E 58

59 Παράδειγμα IV Ο αλγόριθμος παράγει ένδειξη ότι ο γράφος έχει προσανατολισμένους κύκλους 1 A B C 1 D E A B C 2 D E 59

60 Το πρόβλημα του λαβυρίνθου Hampton Court Palace Γουλιέλμος 3ος της Οράνγκης 1690 Πρόβλημα εύρεσης Eulerian κυκλώματος σε γράφο που προκύπτει με Διασταυρώσεις κορυφές Διαδρομές ακμές Αγνοούμε κορυφές με d=2 εκτός εισόδου/εξόδου Θεωρούμε παράλληλες ακμές (κατευθυνόμενος συμμετρικός γράφος) Βάζουμε ειδικά σημάδια όταν φτάνουμε σε κάθε διασταύρωση Κόστος διπλάσιο από το συνολικό μήκος των ακμών 60

61 Κατάταξη αθλητών σε τουρνουά I

62 Κατάταξη αθλητών σε τουρνουά II 1ος τρόπος: με Hamiltonian μονοπάτια

63 Κατάταξη αθλητών σε τουρνουά III 2ος τρόπος: με λιγότερες παραβιάσεις Έχει 2 παραβιάσεις (3,5) (3,6) Έχει 3 παραβιάσεις (1,3) (2,3) (4,3) Έχει 6 παραβιάσεις (1,3) (4,3) (4,2) (6,2) (6,5) (3,5) όμως όχι μοναδική λύση έχει 2 παραβιάσεις Εξαντλητικός αλγόριθμος Ο(n!) 63

64 Κατάταξη αθλητών σε τουρνουά IV 3ος τρόπος: με σύγκριση σκορ Αν ο γράφος είναι ισχυρά συνδεδεμένος και οι αθλητές τουλάχιστον 4, τότε η κατάταξη συγκλίνει ο επίπεδο ο επίπεδο ο επίπεδο ο επίπεδο ο επίπεδο ο επίπεδο 64

65 Αλυσίδες Markov I Markov process, Markov chain: προχωρημένη στατιστική, στοχαστικές διαδικασίες Παριστάνεται με κατευθυνόμενο γράφο ΚΙΝΕΖΙΚΟ ΣΥΡΙΑΚΟ 1/2 10m 1/3 10m 1/6 - Ε (0, 0, 0, 1, 0, 0) (0, 0, 1/2, 1/6, 1/3, 0) (0, 1/4, 1/6, 13/36, 1/9, 1/9) 65

66 Αλυσίδες Markov II Πώς μοντελοποιείται; 1/6 1/6 1/6 1/3 1/3 1/ /2 1/2 1/ ½ 1/6 1/ ½ 1/6 1/3 ½ 1/6 1/3 ½ 1/6 1/3 1 66

67 Αλυσίδες Markov III γράφος μετάβασης πίνακας μετάβασης διάνυσμα πιθανοτήτων Σp ij πιθανότητα μετάβασης p ij κατάσταση πεπερασμένη Markov chain στοχαστικός πίνακας p p k επίσης στοχαστικός 67

68 Αλυσίδες Markov IV Θεώρημα: Η πιθανότητα μετάβασης μετά από k βήματα από το state i j ισούται με το ij-οστό στοιχείο του πίνακα p k Παράδειγμα: Π(0) = (0, 0, 0, 1, 0, 0) Π(1) = Π(0)*P = (0, 0, 1/2, 1/6, 1/3, 0) Π(2) = Π(1)*P = (0, 1/4, 1/6, 13/36, 1/9, 1/9) 68

69 Αλυσίδες Markov V Απορροφώσα κατάσταση, παγιδεύουσα Μη ελαττώσιμη [irreducable] (μετάβαση από οποιαδήποτε προς οποιαδήποτε) Περιοδική κατάσταση με περίοδο t [ απεριοδική] Επίμονη-αναδρομική [ μεταβατική] (πιθανότητα 1 να ξαναγυρίσει) Εργοδική = επίμονη και απεριοδική 69

70 Αλυσίδες Markov VI P= P 15 = P 17 =P 18 =P 19 =P 20 =

71 Αλυσίδες Markov VII Αυτό συμβαίνει για την τακτική (regular) αλυσίδα Markov, που σημαίνει ότι από κάθε ακμή προς κάθε ακμή υπάρχει μονοπάτι μήκους k Τότε φτάνει σε steady state και δεν φαίνεται η επίδραση της αρχικής κατάστασης 71

72 Αλληλουχία εργασιών J 1, J 2,, J n t ij : χρόνος προετοιμασίας αν από J i J j Μορφή TSP και εύρεση Hamiltonian κύκλου με μικρότερο βάρος Ευριστική λύση: γράφος τουρνουά τόξο (i,j) αν t ij <= t ji ο γράφος έχει Hamiltonian μονοπάτι Παράδειγμα: J

73 Κρυπτογραφία Ποιο είναι το μήκος κυκλικής ακολουθίας έτσι ώστε καμία υπακολουθία από r ψηφία να μην εμφανίζεται περισσότερο από μία φορά Σχεδιάζεται γράφος με 2 r-1 κορυφές με labels υποακολουθίες r-1 ψηφία Οι κορυφές αυτές έχουν d - =d + =2: ισορροπημένες Αν α 1 = α 2 = = α r-1 =0/1, τότε βρόχος Υπάρχει Eulerian μονοπάτι 2 r που χαρακτηρίζεται από το πρώτο ψηφίο κάθε κορυφής 73

74 Σημείωμα Αναφοράς Copyright, Ιωάννης Μανωλόπουλος. «Αλγοριθμική Θεωρία Γράφων. Κατευθυνόμενοι Γράφοι». Έκδοση: 1.0. Θεσσαλονίκη Διαθέσιμο από τη δικτυακή διεύθυνση: 74

75 Σημείωμα Αδειοδότησης Το παρόν υλικό διατίθεται με τους όρους της άδειας χρήσης Creative Commons Αναφορά - Παρόμοια Διανομή [1] ή μεταγενέστερη, Διεθνής Έκδοση. Εξαιρούνται τα αυτοτελή έργα τρίτων π.χ. φωτογραφίες, διαγράμματα κ.λ.π., τα οποία εμπεριέχονται σε αυτό και τα οποία αναφέρονται μαζί με τους όρους χρήσης τους στο «Σημείωμα Χρήσης Έργων Τρίτων». Ο δικαιούχος μπορεί να παρέχει στον αδειοδόχο ξεχωριστή άδεια να χρησιμοποιεί το έργο για εμπορική χρήση, εφόσον αυτό του ζητηθεί. [1]

76 ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Τέλος ενότητας Επεξεργασία: Ανδρέας Κοσματόπουλος Θεσσαλονίκη, Μάρτιος 2015

77 ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ Σημειώματα

78 Σημείωμα Ιστορικού Εκδόσεων Έργου Το παρόν έργο αποτελεί την έκδοση

79 Διατήρηση Σημειωμάτων Οποιαδήποτε αναπαραγωγή ή διασκευή του υλικού θα πρέπει να συμπεριλαμβάνει: το Σημείωμα Αναφοράς το Σημείωμα Αδειοδότησης τη δήλωση Διατήρησης Σημειωμάτων το Σημείωμα Χρήσης Έργων Τρίτων (εφόσον υπάρχει) μαζί με τους συνοδευόμενους υπερσυνδέσμους.

ΘΕΩΡΙΑ ΓΡΑΦΩΝ. 10 η Διάλεξη Κατευθυνόμενοι Γράφοι Βασικά χαρακτηριστικά Αλγόριθμοι διάσχισης κατευθυνόμενων γράφων Λίγα Λόγια για Αλυσίδες Markov

ΘΕΩΡΙΑ ΓΡΑΦΩΝ. 10 η Διάλεξη Κατευθυνόμενοι Γράφοι Βασικά χαρακτηριστικά Αλγόριθμοι διάσχισης κατευθυνόμενων γράφων Λίγα Λόγια για Αλυσίδες Markov Πανεπιστήμιο Στερεάς Ελλάδας Τμήμα Πληροφορικής ΘΕΩΡΙΑ ΓΡΑΦΩΝ 10 η Διάλεξη Κατευθυνόμενοι Γράφοι Βασικά χαρακτηριστικά Αλγόριθμοι διάσχισης κατευθυνόμενων γράφων Λίγα Λόγια για Αλυσίδες Markov Βασικά Χαρακτηριστικά

Διαβάστε περισσότερα

Εισαγωγή στους Αλγορίθμους Φροντιστήριο 4

Εισαγωγή στους Αλγορίθμους Φροντιστήριο 4 Εισαγωγή στους Αλγορίθμους Φροντιστήριο 4 Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Εισαγωγή στους Αλγορίθμους Ενότητα 7η

Εισαγωγή στους Αλγορίθμους Ενότητα 7η Εισαγωγή στους Αλγορίθμους Ενότητα 7η Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Γενικά Μαθηματικά Ι. Ενότητα 12: Κριτήρια Σύγκλισης Σειρών. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Γενικά Μαθηματικά Ι. Ενότητα 12: Κριτήρια Σύγκλισης Σειρών. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 2: Κριτήρια Σύγκλισης Σειρών Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 3: ΑΝΑΠΑΡΑΣΤΑΣΗ ΔΕΔΟΜΕΝΩΝ - ΓΡΑΦΗΜΑΤΑ

Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 3: ΑΝΑΠΑΡΑΣΤΑΣΗ ΔΕΔΟΜΕΝΩΝ - ΓΡΑΦΗΜΑΤΑ Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 3: ΑΝΑΠΑΡΑΣΤΑΣΗ ΔΕΔΟΜΕΝΩΝ - ΓΡΑΦΗΜΑΤΑ Δημήτριος Κουκόπουλος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διαχείρισης Πολιτισμικού Περιβάλλοντος και Νέων Τεχνολογιών

Διαβάστε περισσότερα

Εισαγωγή στους Αλγορίθμους Φροντιστήριο 3

Εισαγωγή στους Αλγορίθμους Φροντιστήριο 3 Εισαγωγή στους Αλγορίθμους Φροντιστήριο 3 Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Εισαγωγή στους Αλγορίθμους

Εισαγωγή στους Αλγορίθμους Εισαγωγή στους Αλγορίθμους Ενότητα 6 η Άσκηση - DFS δένδρα Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Εκκλησιαστικό Δίκαιο. Ενότητα 10η: Ιερά Σύνοδος της Ιεραρχίας και Διαρκής Ιερά Σύνοδος Κυριάκος Κυριαζόπουλος Τμήμα Νομικής Α.Π.Θ.

Εκκλησιαστικό Δίκαιο. Ενότητα 10η: Ιερά Σύνοδος της Ιεραρχίας και Διαρκής Ιερά Σύνοδος Κυριάκος Κυριαζόπουλος Τμήμα Νομικής Α.Π.Θ. ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 10η: Ιερά Σύνοδος της Ιεραρχίας και Διαρκής Ιερά Σύνοδος Κυριάκος Κυριαζόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 4: ΑΝΑΠΑΡΑΣΤΑΣΗ ΔΕΔΟΜΕΝΩΝ - ΔΕΝΤΡΑ

Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 4: ΑΝΑΠΑΡΑΣΤΑΣΗ ΔΕΔΟΜΕΝΩΝ - ΔΕΝΤΡΑ Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 4: ΑΝΑΠΑΡΑΣΤΑΣΗ ΔΕΔΟΜΕΝΩΝ - ΔΕΝΤΡΑ Δημήτριος Κουκόπουλος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διαχείρισης Πολιτισμικού Περιβάλλοντος και Νέων Τεχνολογιών

Διαβάστε περισσότερα

ΑΡΙΣΤΟΤΕΛΕΙΟ ΑΝΟΙΚΤΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΚΑΔΗΜΑΪΚΑ ΘΕΣΣΑΛΟΝΙΚΗΣ ΜΑΘΗΜΑΤΑ Γενικά Μαθηματικά Ι Ενότητα 11 : Ακολουθίες και Σειρές Λουκάς Βλάχος Τμήμα Φυσικής

ΑΡΙΣΤΟΤΕΛΕΙΟ ΑΝΟΙΚΤΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΚΑΔΗΜΑΪΚΑ ΘΕΣΣΑΛΟΝΙΚΗΣ ΜΑΘΗΜΑΤΑ Γενικά Μαθηματικά Ι Ενότητα 11 : Ακολουθίες και Σειρές Λουκάς Βλάχος Τμήμα Φυσικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα : Ακολουθίες και Σειρές Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Ceative Commos. Για

Διαβάστε περισσότερα

Ιστορία της μετάφρασης

Ιστορία της μετάφρασης ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 6: Μεταφραστές και πρωτότυπα. Ελένη Κασάπη ΤΜΗΜΑ ΑΓΓΛΙΚΗΣ ΓΛΩΣΣΑΣ ΚΑΙ ΦΙΛΟΛΟΓΙΑΣ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Λογισμός 3. Ενότητα 19: Θεώρημα Πεπλεγμένων (γενική μορφή) Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Λογισμός 3. Ενότητα 19: Θεώρημα Πεπλεγμένων (γενική μορφή) Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 19: Θεώρημα Πεπλεγμένων (γενική μορφή) Μιχ. Γ. Μαριάς Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Θεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας

Θεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Θεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας Ενότητα 7η: Ιερά Σύνοδος Κυριάκος Κυριαζόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Γενικά Μαθηματικά Ι. Ενότητα 15: Ολοκληρώματα Με Ρητές Και Τριγωνομετρικές Συναρτήσεις Λουκάς Βλάχος Τμήμα Φυσικής

Γενικά Μαθηματικά Ι. Ενότητα 15: Ολοκληρώματα Με Ρητές Και Τριγωνομετρικές Συναρτήσεις Λουκάς Βλάχος Τμήμα Φυσικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 5: Ολοκληρώματα Με Ρητές Και Τριγωνομετρικές Συναρτήσεις Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε

Διαβάστε περισσότερα

ΓΕΝΙΚΗ ΚΑΙ ΑΝΟΡΓΑΝΗ ΧΗΜΕΙΑ

ΓΕΝΙΚΗ ΚΑΙ ΑΝΟΡΓΑΝΗ ΧΗΜΕΙΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΓΕΝΙΚΗ ΚΑΙ ΑΝΟΡΓΑΝΗ ΧΗΜΕΙΑ Ενότητα # (5): Δεσμοί και Τροχιακά Ακρίβος Περικλής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε

Διαβάστε περισσότερα

Εισαγωγή στους Αλγορίθμους Φροντιστήριο 8

Εισαγωγή στους Αλγορίθμους Φροντιστήριο 8 Εισαγωγή στους Αλγορίθμους Φροντιστήριο 8 Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Εκκλησιαστικό Δίκαιο

Εκκλησιαστικό Δίκαιο ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 11η: Οργανισμοί της Εκκλησίας της Ελλάδος Κυριάκος Κυριαζόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

Δομές Δεδομένων Ενότητα 6

Δομές Δεδομένων Ενότητα 6 ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 6: Γράφοι Απόστολος Παπαδόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Θεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας

Θεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Θεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας Ενότητα 10η: Απεσταλμένοι του Ρωμαίου Ποντίφικα και Ρωμαϊκή Κουρία Κυριάκος Κυριαζόπουλος

Διαβάστε περισσότερα

Θεωρία και Αλγόριθμοι Γράφων

Θεωρία και Αλγόριθμοι Γράφων ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα # 7: Ελάχιστα Ζευγνύοντα Δένδρα Ιωάννης Μανωλόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης reative

Διαβάστε περισσότερα

Λογισμός 3. Ενότητα 18: Θεώρημα Πεπλεγμένων (Ειδική περίπτωση) Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Λογισμός 3. Ενότητα 18: Θεώρημα Πεπλεγμένων (Ειδική περίπτωση) Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 18: Θεώρημα Πεπλεγμένων (Ειδική περίπτωση) Μιχ. Γ. Μαριάς Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Διακριτά Μαθηματικά. Ενότητα 2: Γραφήματα

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Διακριτά Μαθηματικά. Ενότητα 2: Γραφήματα Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Διακριτά Μαθηματικά Ενότητα 2: Γραφήματα Αν. Καθηγητής Κ. Στεργίου e-mail: kstergiou@uowm.gr Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Άδειες Χρήσης

Διαβάστε περισσότερα

Εισαγωγή στους Αλγορίθμους Ενότητα 9η Άσκηση - Αλγόριθμος Prim

Εισαγωγή στους Αλγορίθμους Ενότητα 9η Άσκηση - Αλγόριθμος Prim Εισαγωγή στους Αλγορίθμους Ενότητα 9η Άσκηση - Αλγόριθμος Prim Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Emil: zro@ei.uptrs.r Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Εισαγωγή στους Αλγορίθμους Ενότητα 9η Άσκηση - Αλγόριθμος Kruskal

Εισαγωγή στους Αλγορίθμους Ενότητα 9η Άσκηση - Αλγόριθμος Kruskal Εισαγωγή στους Αλγορίθμους Ενότητα 9η Άσκηση - Αλγόριθμος Kruskl Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Emil: zro@ei.uptrs.r Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Εκκλησιαστικό Δίκαιο

Εκκλησιαστικό Δίκαιο ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 8η: Ο νέος αντιρατσιστικός νόμος και ο ν.4301/2014 Κυριάκος Κυριαζόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 1: Δικτυωτή Ανάλυση (Θεωρία Γράφων)

Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 1: Δικτυωτή Ανάλυση (Θεωρία Γράφων) Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 1: Δικτυωτή Ανάλυση (Θεωρία Γράφων) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων

Διαβάστε περισσότερα

Γενικά Μαθηματικά Ι. Ενότητα 1: Συναρτήσεις και Γραφικές Παραστάσεις. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Γενικά Μαθηματικά Ι. Ενότητα 1: Συναρτήσεις και Γραφικές Παραστάσεις. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 1: Συναρτήσεις και Γραφικές Παραστάσεις Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Θεωρία Γραφημάτων. Ενότητα: Εισαγωγή σε βασικές έννοιες. Διδάσκων: Λέκτορας Xάρης Παπαδόπουλος. Τμήμα: Μαθηματικών

Τίτλος Μαθήματος: Θεωρία Γραφημάτων. Ενότητα: Εισαγωγή σε βασικές έννοιες. Διδάσκων: Λέκτορας Xάρης Παπαδόπουλος. Τμήμα: Μαθηματικών Τίτλος Μαθήματος: Θεωρία Γραφημάτων Ενότητα: Εισαγωγή σε βασικές έννοιες Διδάσκων: Λέκτορας Xάρης Παπαδόπουλος Τμήμα: Μαθηματικών Θεωρία Γραφημάτων Χάρης Παπαδόπουλος 2012, Διάλεξη Κεφαλαίου 1 Περιεχόμενα

Διαβάστε περισσότερα

Γενικά Μαθηματικά Ι. Ενότητα 9: Κίνηση Σε Πολικές Συντεταγμένες. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Γενικά Μαθηματικά Ι. Ενότητα 9: Κίνηση Σε Πολικές Συντεταγμένες. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 9: Κίνηση Σε Πολικές Συντεταγμένες Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Ceative

Διαβάστε περισσότερα

Ιστορία της μετάφρασης

Ιστορία της μετάφρασης ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 5: Η μετάφραση των εβδομήκοντα, η εκπαίδευση των μεταφραστών κατά Κικέρωνα, η τέχνη της μετάφρασης από την αρχαιότητα μέχρι τα

Διαβάστε περισσότερα

Εισαγωγή στους Αλγορίθμους

Εισαγωγή στους Αλγορίθμους Εισαγωγή στους Αλγορίθμους Ενότητα 5 η Άσκηση Συγχώνευση & απαρίθμηση Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης

Διαβάστε περισσότερα

Μαθηματικά Και Στατιστική Στη Βιολογία

Μαθηματικά Και Στατιστική Στη Βιολογία ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μαθηματικά Και Στατιστική Στη Βιολογία Ενότητα 8 : Μιγαδικοί Αριθμοί & Ακολουθίες Αριθμών Στέφανος Σγαρδέλης Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ ΜΕΤΑΒΑΤΙΚΑ ΦΑΙΝΟΜΕΝΑ ΣΤΑ ΣΗΕ Λαμπρίδης Δημήτρης Κατσανού Βάνα Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ ΜΕΤΑΒΑΤΙΚΑ ΦΑΙΝΟΜΕΝΑ ΣΤΑ ΣΗΕ Λαμπρίδης Δημήτρης Κατσανού Βάνα Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ ΜΕΤΑΒΑΤΙΚΑ ΦΑΙΝΟΜΕΝΑ ΣΤΑ ΣΗΕ Λαμπρίδης Δημήτρης Κατσανού Βάνα Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών

Διαβάστε περισσότερα

Αναζήτηση Κατά Βάθος. ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Αναζήτηση Κατά Βάθος. ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Αναζήτηση Κατά Βάθος ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Άδεια Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Γενικά Μαθηματικά Ι. Ενότητα 5: Παράγωγος Πεπλεγμένης Συνάρτησης, Κατασκευή Διαφορικής Εξίσωσης. Λουκάς Βλάχος Τμήμα Φυσικής

Γενικά Μαθηματικά Ι. Ενότητα 5: Παράγωγος Πεπλεγμένης Συνάρτησης, Κατασκευή Διαφορικής Εξίσωσης. Λουκάς Βλάχος Τμήμα Φυσικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 5: Παράγωγος Πεπλεγμένης Συνάρτησης, Κατασκευή Διαφορικής Εξίσωσης Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Λογιστική Κόστους Ενότητα 12: Λογισμός Κόστους (2)

Λογιστική Κόστους Ενότητα 12: Λογισμός Κόστους (2) Λογιστική Κόστους Ενότητα 12: Λογισμός Κόστους (2) Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για

Διαβάστε περισσότερα

ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Γενικά Μαθηματικά Ι. Ενότητα 6: Ακρότατα Συνάρτησης. Λουκάς Βλάχος Τμήμα Φυσικής

ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Γενικά Μαθηματικά Ι. Ενότητα 6: Ακρότατα Συνάρτησης. Λουκάς Βλάχος Τμήμα Φυσικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 6: Ακρότατα Συνάρτησης Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για

Διαβάστε περισσότερα

Γενικά Μαθηματικά Ι. Ενότητα 14: Ολοκλήρωση Κατά Παράγοντες, Ολοκλήρωση Ρητών Συναρτήσεων Λουκάς Βλάχος Τμήμα Φυσικής

Γενικά Μαθηματικά Ι. Ενότητα 14: Ολοκλήρωση Κατά Παράγοντες, Ολοκλήρωση Ρητών Συναρτήσεων Λουκάς Βλάχος Τμήμα Φυσικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 1: Ολοκλήρωση Κατά Παράγοντες, Ολοκλήρωση Ρητών Συναρτήσεων Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Εκκλησιαστικό Δίκαιο

Εκκλησιαστικό Δίκαιο ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 6η: Ελληνική νομολογία Κυριάκος Κυριαζόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Εισαγωγή στους Αλγορίθμους

Εισαγωγή στους Αλγορίθμους Εισαγωγή στους Αλγορίθμους Ενότητα 5 η Άσκηση - Συγχώνευση Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Εισαγωγή στους Η/Υ. Ενότητα 2β: Αντίστροφο Πρόβλημα. Δημήτρης Σαραβάνος, Καθηγητής Πολυτεχνική Σχολή Τμήμα Μηχανολόγων & Αεροναυπηγών Μηχανικών

Εισαγωγή στους Η/Υ. Ενότητα 2β: Αντίστροφο Πρόβλημα. Δημήτρης Σαραβάνος, Καθηγητής Πολυτεχνική Σχολή Τμήμα Μηχανολόγων & Αεροναυπηγών Μηχανικών Εισαγωγή στους Η/Υ Ενότητα 2β: Δημήτρης Σαραβάνος, Καθηγητής Πολυτεχνική Σχολή Τμήμα Μηχανολόγων & Αεροναυπηγών Μηχανικών Σκοποί ενότητας Εύρεση συνάρτησης Boole όταν είναι γνωστός μόνο ο πίνακας αληθείας.

Διαβάστε περισσότερα

Εισαγωγή στους Αλγορίθμους Φροντιστήριο 5

Εισαγωγή στους Αλγορίθμους Φροντιστήριο 5 Εισαγωγή στους Αλγορίθμους Φροντιστήριο 5 Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Θεωρία Υπολογισμού. Ενότητα 3 : Γραφήματα & Αποδείξεις. Αλέξανδρος Τζάλλας

Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Θεωρία Υπολογισμού. Ενότητα 3 : Γραφήματα & Αποδείξεις. Αλέξανδρος Τζάλλας 1 Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Θεωρία Υπολογισμού Ενότητα 3 : Γραφήματα & Αποδείξεις Αλέξανδρος Τζάλλας 2 Ανοιχτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ηπείρου Τμήμα Μηχανικών Πληροφορικής

Διαβάστε περισσότερα

Θεωρία και Αλγόριθμοι Γράφων

Θεωρία και Αλγόριθμοι Γράφων ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα # 12: Αντιστοιχίσεις και καλύμματα Ιωάννης Μανωλόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Αξιολόγηση μεταφράσεων ιταλικής ελληνικής γλώσσας

Αξιολόγηση μεταφράσεων ιταλικής ελληνικής γλώσσας ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Αξιολόγηση μεταφράσεων ιταλικής ελληνικής γλώσσας Ενότητα 1: Αυτοαξιολόγηση μεταφραστών Κασάπη Ελένη Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 10: ΤΕΧΝΙΚΕΣ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΑΝΑΛΥΣΗΣ ΑΛΓΟΡΙΘΜΩΝ ΓΙΑ ΠΡΟΒΛΗΜΑΤΑ ΜΕ ΑΠΑΓΟΡΕΥΤΙΚΟ ΑΡΙΘΜΟ ΠΕΡΙΠΤΩΣΕΩΝ

Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 10: ΤΕΧΝΙΚΕΣ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΑΝΑΛΥΣΗΣ ΑΛΓΟΡΙΘΜΩΝ ΓΙΑ ΠΡΟΒΛΗΜΑΤΑ ΜΕ ΑΠΑΓΟΡΕΥΤΙΚΟ ΑΡΙΘΜΟ ΠΕΡΙΠΤΩΣΕΩΝ Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 10: ΤΕΧΝΙΚΕΣ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΑΝΑΛΥΣΗΣ ΑΛΓΟΡΙΘΜΩΝ ΓΙΑ ΠΡΟΒΛΗΜΑΤΑ ΜΕ ΑΠΑΓΟΡΕΥΤΙΚΟ ΑΡΙΘΜΟ ΠΕΡΙΠΤΩΣΕΩΝ Δημήτριος Κουκόπουλος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων

Διαβάστε περισσότερα

Οδοποιία IΙ. Ενότητα 14: Υπόδειγμα σύνταξης τευχών θέματος Οδοποιίας. Γεώργιος Μίντσης ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ

Οδοποιία IΙ. Ενότητα 14: Υπόδειγμα σύνταξης τευχών θέματος Οδοποιίας. Γεώργιος Μίντσης ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Οδοποιία IΙ Ενότητα 14: Υπόδειγμα σύνταξης τευχών θέματος Οδοποιίας Γεώργιος Μίντσης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Γενικά Μαθηματικά Ι. Ενότητα 16: Ολοκλήρωση Τριγωνομετρικών Συναρτήσεων, Γενικευμένα Ολοκληρώματα Λουκάς Βλάχος Τμήμα Φυσικής

Γενικά Μαθηματικά Ι. Ενότητα 16: Ολοκλήρωση Τριγωνομετρικών Συναρτήσεων, Γενικευμένα Ολοκληρώματα Λουκάς Βλάχος Τμήμα Φυσικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 16: Ολοκλήρωση Τριγωνομετρικών Συναρτήσεων, Γενικευμένα Ολοκληρώματα Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Εισαγωγή στους Αλγόριθμους

Εισαγωγή στους Αλγόριθμους Εισαγωγή στους Αλγόριθμους Εύη Παπαϊωάννου Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διαχείρισης Πολιτισμικού Περιβάλλοντος και Νέων Τεχνολογιών Σκοποί ενότητας Παρουσίαση και μελέτη αλγορίθμων

Διαβάστε περισσότερα

Ηλεκτρονικοί Υπολογιστές

Ηλεκτρονικοί Υπολογιστές ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 2: Δεδομένα στη C++ Ζαχαρούλα Ανδρεοπούλου Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Αναζήτηση Κατά Πλάτος

Αναζήτηση Κατά Πλάτος Αναζήτηση Κατά Πλάτος ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Άδεια Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Βέλτιστος Έλεγχος Συστημάτων

Βέλτιστος Έλεγχος Συστημάτων Βέλτιστος Έλεγχος Συστημάτων Ενότητα 7: Βέλτιστος έλεγχος συστημάτων διακριτού χρόνου Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σημείωμα

Διαβάστε περισσότερα

Θεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας

Θεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Θεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας Ενότητα 11η: Σύγκριση Ρωσικής Ορθόδοξης Εκκλησίας και Καθολικής Εκκλησίας Κυριάκος Κυριαζόπουλος

Διαβάστε περισσότερα

Οικονομία των ΜΜΕ. Ενότητα 9: Εταιρική διασπορά και στρατηγικές τιμολόγησης

Οικονομία των ΜΜΕ. Ενότητα 9: Εταιρική διασπορά και στρατηγικές τιμολόγησης ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 9: Εταιρική διασπορά και στρατηγικές τιμολόγησης Γιώργος Τσουρβάκας, Αναπληρωτής Καθηγητής Τμήμα Δημοσιογραφίας και ΜΜΕ Σχολή

Διαβάστε περισσότερα

Εισαγωγή στους Αλγορίθμους Φροντιστήριο 7

Εισαγωγή στους Αλγορίθμους Φροντιστήριο 7 Εισαγωγή στους Αλγορίθμους Φροντιστήριο 7 Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία Εικόνων

Ψηφιακή Επεξεργασία Εικόνων ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Επεξεργασία Εικόνων Ενότητα # 14: Τμηματοποίηση με χρήση τυχαίων πεδίων Markov Καθηγητής Γιώργος Τζιρίτας Τμήμα Επιστήμης Υπολογιστών Τμηματοποίηση εικόνων

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Δομές δεδομένων Άσκηση αυτοαξιολόγησης Παναγιώτα Φατούρου Τμήμα Επιστήμης Υπολογιστών ΗΥ2, Ενότητα : Ασκήσεις και Λύσεις Άσκηση 1 Ενότητα : Υλοποίηση Λεξικών µε

Διαβάστε περισσότερα

Εργαστήριο Χημείας Ενώσεων Συναρμογής

Εργαστήριο Χημείας Ενώσεων Συναρμογής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εργαστήριο Χημείας Ενώσεων Συναρμογής Ενότητα 4: Τοποθέτηση d ηλεκτρονίων σε οκτάεδρα Σύμπλοκα Περικλής Ακρίβος Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Βέλτιστος Έλεγχος Συστημάτων

Βέλτιστος Έλεγχος Συστημάτων Βέλτιστος Έλεγχος Συστημάτων Ενότητα 10: Δυναμικός προγραμματισμός Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σημείωμα Αδειοδότησης Το παρόν

Διαβάστε περισσότερα

Βάσεις Περιβαλλοντικών Δεδομένων

Βάσεις Περιβαλλοντικών Δεδομένων Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Βάσεις Περιβαλλοντικών Δεδομένων Ενότητα 2: Εισαγωγή Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά

Διαβάστε περισσότερα

Διπλωματική Ιστορία Ενότητα 2η:

Διπλωματική Ιστορία Ενότητα 2η: ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 2η: Η εμφάνιση των εθνών-κρατών και οι συνέπειες στο διεθνές σύστημα Ιωάννης Στεφανίδης, Καθηγητής Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Θερμοδυναμική. Ανοικτά Ακαδημαϊκά Μαθήματα. Πίνακες Νερού σε κατάσταση Κορεσμού. Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής

Θερμοδυναμική. Ανοικτά Ακαδημαϊκά Μαθήματα. Πίνακες Νερού σε κατάσταση Κορεσμού. Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Πίνακες Νερού σε κατάσταση Κορεσμού Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής Διπλ. Ναυπηγός Μηχανολόγος Μηχανικός M.Sc. Διασφάλιση

Διαβάστε περισσότερα

Ορισμός κανονικής τ.μ.

Ορισμός κανονικής τ.μ. Πιθανότητες και Στατιστική Ενότητα 4: Τυχαίες τυχαίες μεταβλητές Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών Αθήνα 2015 Ορισμός κανονικής τ.μ. Ορισμός κανονικής τ.μ. Μια συνεχής τ.μ.

Διαβάστε περισσότερα

Λογιστική Κόστους Ενότητα 8: Κοστολογική διάρθρωση Κύρια / Βοηθητικά Κέντρα Κόστους.

Λογιστική Κόστους Ενότητα 8: Κοστολογική διάρθρωση Κύρια / Βοηθητικά Κέντρα Κόστους. Λογιστική Κόστους Ενότητα 8: Κοστολογική διάρθρωση Κύρια / Βοηθητικά Κέντρα Κόστους. Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

Συστήματα Αναμονής. Ενότητα 4: Αλυσίδες Markov. Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ

Συστήματα Αναμονής. Ενότητα 4: Αλυσίδες Markov. Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ Συστήματα Αναμονής Ενότητα 4: Αλυσίδες Markov Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,

Διαβάστε περισσότερα

Εισαγωγή στους Αλγορίθμους Ενότητα 10η Άσκηση Αλγόριθμος Dijkstra

Εισαγωγή στους Αλγορίθμους Ενότητα 10η Άσκηση Αλγόριθμος Dijkstra Εισαγωγή στους Αλγορίθμους Ενότητα 1η Άσκηση Αλγόριθμος Dijkra Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upara.gr Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Παράκτια Τεχνικά Έργα

Παράκτια Τεχνικά Έργα ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΔΙΑΘΕΣΗ ΥΓΡΩΝ ΣΤΗ ΘΑΛΑΣΣΑ ΥΠΟΒΡΥΧΙΟΙ ΑΓΩΓΟΙ Ενότητα 5 η : Κατασκευαστικά παραδείγματα Γιάννης Ν. Κρεστενίτης Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη

Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη Ενότητα 8: Η Οικονομική πολιτική της Ευρωπαϊκής Ένωσης Γρηγόριος Ζαρωτιάδης Άδειες Χρήσης Το

Διαβάστε περισσότερα

ΓΕΝΙΚΗ ΚΑΙ ΑΝΟΡΓΑΝΗ ΧΗΜΕΙΑ

ΓΕΝΙΚΗ ΚΑΙ ΑΝΟΡΓΑΝΗ ΧΗΜΕΙΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΓΕΝΙΚΗ ΚΑΙ ΑΝΟΡΓΑΝΗ ΧΗΜΕΙΑ Ενότητα # 17: Ταχύτητα Αντιδράσεων Ακρίβος Περικλής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε

Διαβάστε περισσότερα

Διδακτική της Περιβαλλοντικής Εκπαίδευσης

Διδακτική της Περιβαλλοντικής Εκπαίδευσης ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Διδακτική της Περιβαλλοντικής Εκπαίδευσης Ενότητα 08: Σχεδιασμός και Οργάνωση ενός Προγράμματος Περιβαλλοντικής Εκπαίδευσης Ι Πολυξένη

Διαβάστε περισσότερα

Εργαστήριο Χημείας Ενώσεων Συναρμογής

Εργαστήριο Χημείας Ενώσεων Συναρμογής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εργαστήριο Χημείας Ενώσεων Συναρμογής Ενότητα 9: Μέτρηση Αγωγιμότητας Διαλυμάτων Περικλής Ακρίβος Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

ΑΛΓΟΡΙΘΜΟΙ. Ενότητα 12: Αντιμετώπιση Περιορισμών Αλγοριθμικής Ισχύος

ΑΛΓΟΡΙΘΜΟΙ. Ενότητα 12: Αντιμετώπιση Περιορισμών Αλγοριθμικής Ισχύος ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΛΓΟΡΙΘΜΟΙ Ενότητα 12: Αντιμετώπιση Περιορισμών Αλγοριθμικής Ισχύος Ιωάννης Μανωλόπουλος, Καθηγητής Αναστάσιος Γούναρης, Επίκουρος Καθηγητής

Διαβάστε περισσότερα

Γενικά Μαθηματικά Ι. Ενότητα 17: Αριθμητική Ολοκλήρωση, Υπολογισμός Μήκους Καμπύλης Λουκάς Βλάχος Τμήμα Φυσικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ

Γενικά Μαθηματικά Ι. Ενότητα 17: Αριθμητική Ολοκλήρωση, Υπολογισμός Μήκους Καμπύλης Λουκάς Βλάχος Τμήμα Φυσικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 7: Αριθμητική Ολοκλήρωση, Υπολογισμός Μήκους Καμπύλης Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα

Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα Ενότητα: Ασκήσεις 1 Ανδριανός Ε. Τσεκρέκος Τμήμα Λογιστικής & Χρηματοοικονομικής Σελίδα 2 1. Σκοποί ενότητας... 5 2.

Διαβάστε περισσότερα

Μηχανολογικό Σχέδιο Ι

Μηχανολογικό Σχέδιο Ι ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα # 8: Άτρακτοι και σφήνες Μ. Γρηγοριάδου Μηχανολόγων Μηχανικών Α.Π.Θ. Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 11: ΠΡΟΒΛΗΜΑ ΔΙΑΤΡΕΞΗΣ ΓΡΑΦΗΜΑΤΟΣ

Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 11: ΠΡΟΒΛΗΜΑ ΔΙΑΤΡΕΞΗΣ ΓΡΑΦΗΜΑΤΟΣ Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 11: ΠΡΟΒΛΗΜΑ ΔΙΑΤΡΕΞΗΣ ΓΡΑΦΗΜΑΤΟΣ Δημήτριος Κουκόπουλος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διαχείρισης Πολιτισμικού Περιβάλλοντος και Νέων Τεχνολογιών

Διαβάστε περισσότερα

Μαθηματικά στην Πολιτική Επιστήμη:

Μαθηματικά στην Πολιτική Επιστήμη: ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μαθηματικά στην Πολιτική Επιστήμη: Εισαγωγή Ενότητα 3.2 : Απαρίθμηση Συνδυαστική (ΙΙ). Θεόδωρος Χατζηπαντελής Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Εργαστήριο Χημείας Ενώσεων Συναρμογής

Εργαστήριο Χημείας Ενώσεων Συναρμογής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εργαστήριο Χημείας Ενώσεων Συναρμογής Ενότητα 6: Προσδιορισμός δ0 σε οκτάεδρα σύμπλοκα Περικλής Ακρίβος Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Εκκλησιαστικό Δίκαιο

Εκκλησιαστικό Δίκαιο ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 1η: Εισαγωγή Κυριάκος Κυριαζόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για

Διαβάστε περισσότερα

Γενικά Μαθηματικά Ι. Ενότητα 8: Εφαρμογές Σειρών Taylor. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Γενικά Μαθηματικά Ι. Ενότητα 8: Εφαρμογές Σειρών Taylor. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 8: Εφαρμογές Σειρών Tylor Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Cretive Commons.

Διαβάστε περισσότερα

Οικονομία των ΜΜΕ. Ενότητα 7: Μορφές αγοράς και συγκέντρωση των ΜΜΕ

Οικονομία των ΜΜΕ. Ενότητα 7: Μορφές αγοράς και συγκέντρωση των ΜΜΕ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Οικονομία των ΜΜΕ Ενότητα 7: Μορφές αγοράς και συγκέντρωση των ΜΜΕ Γιώργος Τσουρβάκας, Αναπληρωτής Καθηγητής Τμήμα Δημοσιογραφίας και

Διαβάστε περισσότερα

Εργαστήριο Χημείας Ενώσεων Συναρμογής

Εργαστήριο Χημείας Ενώσεων Συναρμογής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εργαστήριο Χημείας Ενώσεων Συναρμογής Ενότητα 3: Θεωρία του Ligand Περικλής Ακρίβος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Διοικητική Λογιστική

Διοικητική Λογιστική Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Διοικητική Λογιστική Ενότητα 10: Προσφορά και κόστος Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά

Διαβάστε περισσότερα

4 η Διάλεξη. Ενδεικτικές λύσεις ασκήσεων

4 η Διάλεξη. Ενδεικτικές λύσεις ασκήσεων 4 η Διάλεξη Ενδεικτικές λύσεις ασκήσεων 1 Περιεχόμενα 1 η Άσκηση... 3 2 η Άσκηση... 3 3 η Άσκηση... 4 4 η Άσκηση... 5 5 η Άσκηση... 6 6 η Άσκηση... 7 Χρηματοδότηση... 8 Σημείωμα Αναφοράς... 9 Σημείωμα

Διαβάστε περισσότερα

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Λογισμός 3. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Λογισμός 3. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μιχ. Γ. Μαριάς Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες,

Διαβάστε περισσότερα

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Διακριτά Μαθηματικά. Ενότητα 7: Σχέσεις και Συναρτήσεις

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Διακριτά Μαθηματικά. Ενότητα 7: Σχέσεις και Συναρτήσεις Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Διακριτά Μαθηματικά Ενότητα 7: Σχέσεις και Συναρτήσεις Αν. Καθηγητής Κ. Στεργίου e-mail: kstergiou@uowm.gr Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών

Διαβάστε περισσότερα

Στρατηγικό Μάρκετινγκ

Στρατηγικό Μάρκετινγκ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 12: Παρουσίαση νέων προϊόντων στην αγορά (2) Χριστίνα Μπουτσούκη Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

Κβαντική Επεξεργασία Πληροφορίας

Κβαντική Επεξεργασία Πληροφορίας Κβαντική Επεξεργασία Πληροφορίας Ενότητα 11: Είδη και μετασχηματισμοί πινάκων Σγάρμπας Κυριάκος Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Είδη και μετασχηματισμοί

Διαβάστε περισσότερα

Υπολογιστική άλγεβρα Ενότητα 10: Βάσεις Groebner ενός ιδεώδους ΙΙΙ

Υπολογιστική άλγεβρα Ενότητα 10: Βάσεις Groebner ενός ιδεώδους ΙΙΙ Υπολογιστική άλγεβρα Ενότητα 10: Βάσεις Groebner ενός ιδεώδους ΙΙΙ Ράπτης Ευάγγελος Σχολή Θετικών επιστημών Τμήμα Μαθηματικών Κεφάλαιο 10 Βάσεις Groebner ενός ιδεώδους 10.1 Τρίτο μέρος Επαναλαμβάνουμε

Διαβάστε περισσότερα

Διοίκηση Επιχειρήσεων

Διοίκηση Επιχειρήσεων ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 5: Η λήψη των αποφάσεων Ευγενία Πετρίδου Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Φυσική Οπτική (Ε) Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 1: Υπολογισμός εστιακής απόστασης θετικού φακού από την μετατόπισή του. Αθανάσιος Αραβαντινός

Φυσική Οπτική (Ε) Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 1: Υπολογισμός εστιακής απόστασης θετικού φακού από την μετατόπισή του. Αθανάσιος Αραβαντινός Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Φυσική Οπτική (Ε) Ενότητα : Υπολογισμός εστιακής απόστασης θετικού φακού από την μετατόπισή του Αθανάσιος Αραβαντινός Τμήμα Οπτικής και

Διαβάστε περισσότερα

Εισαγωγή στην Διοίκηση Επιχειρήσεων

Εισαγωγή στην Διοίκηση Επιχειρήσεων Εισαγωγή στην Διοίκηση Επιχειρήσεων Ενότητα 7: ΑΣΚΗΣΕΙΣ ΜΕΓΕΘΟΥΣ ΕΠΙΧΕΙΡΗΣΗΣ Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Θεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας

Θεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Θεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας Ενότητα 12η: Αυτόνομες και ημιαυτόνομες εκκλησίες κ.ά. διατάξεις Κυριάκος Κυριαζόπουλος Άδειες

Διαβάστε περισσότερα

Αλγόριθμοι και πολυπλοκότητα Περιήγηση Πανεπιστημίων

Αλγόριθμοι και πολυπλοκότητα Περιήγηση Πανεπιστημίων ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Αλγόριθμοι και πολυπλοκότητα Περιήγηση Πανεπιστημίων Ιωάννης Τόλλης Τμήμα Επιστήμης Υπολογιστών Περιήγηση Πανεπιστημίων 5/8/008 :46 AM Campus Tour Περίληψη και ανάγνωση

Διαβάστε περισσότερα

ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Λογισμός 4. Ενότητα 2: Ορισμός του ολοκληρώματος. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών

ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Λογισμός 4. Ενότητα 2: Ορισμός του ολοκληρώματος. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 2: Ορισμός του ολοκληρώματος. Μιχ. Γ. Μαριάς Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Φ 619 Προβλήματα Βιοηθικής

Φ 619 Προβλήματα Βιοηθικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 3: Ο Πλάτων και ο Αριστοτέλης ως ιατροί. Οι ιατροφιλόσοφοι (Ιπποκράτης, Γαληνός, Κέλσος). Ελένη Καλοκαιρινού Φιλοσοφίας-Παιδαγωγικής

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Ενότητα 10γ: Αλγόριθμοι Γραφημάτων- Διερεύνηση Πρώτα σε Βάθος (DFS)- Τοπολογική Ταξινόμηση Μαρία Σατρατζέμη Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 5: ΚΑΤΗΓΟΡΙΕΣ ΑΛΓΟΡΙΘΜΙΚΩΝ ΠΡΟΒΛΗΜΑΤΩΝ-ΑΝΑΓΩΓΗ

Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 5: ΚΑΤΗΓΟΡΙΕΣ ΑΛΓΟΡΙΘΜΙΚΩΝ ΠΡΟΒΛΗΜΑΤΩΝ-ΑΝΑΓΩΓΗ Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 5: ΚΑΤΗΓΟΡΙΕΣ ΑΛΓΟΡΙΘΜΙΚΩΝ ΠΡΟΒΛΗΜΑΤΩΝ-ΑΝΑΓΩΓΗ Δημήτριος Κουκόπουλος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διαχείρισης Πολιτισμικού Περιβάλλοντος και

Διαβάστε περισσότερα