Δυναμικός Προγραμματισμός
|
|
- Χθόνιος Νικόλαος Μπουκουβαλαίοι
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Τρίγωνο του Pascal Δυναμικός Προγραμματισμός Διωνυμικοί συντελεστές Διδάσκοντες: Σ. Ζάχος, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο long Binom(int n, int k) { if ((k == 0) (k == n)) return(1); return(binom(n 1, k - 1) + Binom(n 1, k)); } Χρόνος εκτέλεσης δίνεται από την ίδια αναδρομή! Πρόβλημα οι επαναλαμβανόμενοι υπολογισμοί. Όταν έχω επικαλυπτόμενα στιγμιότυπα, χρησιμοποιώ δυναμικό προγραμματισμό. Αλγόριθμοι & Πολυπλοκότητα (Χειμώνας 2009) Δυναμικός Προγραμματισμός 2 Τρίγωνο του Pascal Τρίγωνο του Pascal Όταν επαναλαμβανόμενα στιγμιότυπα, αποθηκεύω τιμές σε πίνακα και τις χρησιμοποιώ χωρίς να τις υπολογίζω πάλι. Θεαματική βελτίωση χρόνου εκτέλεσης! Σημαντικές απαιτήσεις σε μνήμη. n Χρόνος εκτέλεσης Θ(nk) αντί για Ω((n/e) k ). Μνήμη Θ(nk). Μπορεί να μειωθεί σε Θ(k). Αλγόριθμοι & Πολυπλοκότητα (Χειμώνας 2009) Δυναμικός Προγραμματισμός 3 Αλγόριθμοι & Πολυπλοκότητα (Χειμώνας 2009) Δυναμικός Προγραμματισμός 4
2 Δυναμικός Προγραμματισμός Διακριτό Πρόβλημα Σακιδίου Εφαρμόζουμε δυναμικό προγραμματισμό για προβλήματα συνδυαστικής βελτιστοποίησης όπου ισχύει: Αρχή βελτιστότητας (βέλτιστες επιμέρους λύσεις). Κάθε τμήμα βέλτιστης λύσης αποτελεί βέλτιστη λύση για αντίστοιχο υποπρόβλημα. π.χ. κάθε τμήμα μιας συντομότερης διαδρομής είναι συντομότερη διαδρομή μεταξύ των άκρων του. Έστω βέλτιστες λύσεις για «μικρότερα» προβλήματα. Πως συνδυάζονται για βέλτιστη λύση σε «μεγαλύτερα»; Αναδρομική εξίσωση που περιγράφει τιμή βέλτιστης λύσης. Υπολογίζουμε λύση από μικρότερα σε μεγαλύτερα (bottom-up). Δίνονται n αντικείμενα και σακίδιο μεγέθους Β. Αντικείμενο i έχει μέγεθος και αξία: Ζητείται συλλογή μέγιστης αξίας που χωράει στο σακίδιο. Αντικείμενα: { (1, 0.5), (2, 5), (2, 5), (3, 9), (4, 8) } Μέγεθος σακιδίου: 4. Βέλτιστη λύση = { (2, 5), (2, 5) } Αντικείμενα: { (3, 5), (2, 7), (4, 4), (6, 8), (5, 4) } Μέγεθος σακιδίου: 10. Βέλτιστη λύση = { (3, 5), (2, 7), (4, 4) } Αλγόριθμοι & Πολυπλοκότητα (Χειμώνας 2009) Δυναμικός Προγραμματισμός 5 Αλγόριθμοι & Πολυπλοκότητα (Χειμώνας 2009) Δυναμικός Προγραμματισμός 6 Πρόβλημα Σακιδίου Αρχή Βελτιστότητας Πρόβλημα συνδυαστικής βελτιστοποίησης: Συλλογή που χωράει εφικτή λύση. Αντιστοιχεί σε αξία. Ζητούμενο: (βέλτιστη) συλλογή που χωράει με μέγιστη αξία. Εξαντλητική αναζήτηση: #συλλογών = 2 n. Χρόνος Ω(n2 n ) Πρόβλημα Σακιδίου είναι NP-δύσκολο και δεν υπάρχει «γρήγορος» (πολυωνυμικός) αλγόριθμος. Εφαρμογή δυναμικού προγραμματισμού. Χρόνος Θ(n B). Δεν είναι πολυωνυμικός(;)! Αντικείμενα N = {1,, n}, σακίδιο μεγέθους Β. Βέλτιστη λύση Α * {1,, n}. Αγνοούμε αντικείμενο n : Α * \{n}βέλτιστη λύση για Ν \{n}με σακίδιο B (f n s n ). Αγνοούμε αντικείμενα {n, n 1}: Α * \{n, n 1}βέλτιστη λύση για Ν \{n, n 1} με σακίδιο B (f n s n + f n-1 s n-1 ). Αν γνωρίζουμε βέλτιστη αξία για αντικείμενα Ν \{n} και σακίδια μεγέθους Β και Β s n αποφασίζουμε αν αντικείμενο n στη βέλτιστη λύση! Αλγόριθμοι & Πολυπλοκότητα (Χειμώνας 2009) Δυναμικός Προγραμματισμός 7 Αλγόριθμοι & Πολυπλοκότητα (Χειμώνας 2009) Δυναμικός Προγραμματισμός 8
3 Αναδρομική Εξίσωση Παράδειγμα P(n-1, B) βέλτιστη αξία για Ν \{n}σε σακίδιο Β P(n-1, B -s n ) βέλτιστη αξία για Ν \{n} σε σακίδιο Β -s n Βέλτιστη αξία με αντικείμενα {1,, i } και σακίδιο μεγέθους b : Αντικείμενα: { (3, 5), (2, 7), (4, 4), (6, 8), (5, 4) } Μέγεθος σακιδίου: 10. Αλγόριθμοι & Πολυπλοκότητα (Χειμώνας 2009) Δυναμικός Προγραμματισμός 9 Αλγόριθμοι & Πολυπλοκότητα (Χειμώνας 2009) Δυναμικός Προγραμματισμός 10 Υλοποίηση Αναδρομική υλοποίηση; Ψευδοπολυωνυμικοί Αλγόριθμοι Χρόνος Ο(nB) Μνήμη Ο(nB) ΤοπρόβληματουσακιδίουείναιNP-δύσκολο. Αλγόριθμος Ο(nB) δεν είναι πολυωνυμικού χρόνου; Για ναι, πρέπει πολυώνυμο του μεγέθους εισόδου! Μέγεθος εισόδου: Χρόνος πολυωνυμικός στο n αλλά εκθετικός στο log 2 B Αριθμητικά προβλήματα: Μέγεθος αριθμών πολύ μεγαλύτερο (π.χ. εκθετικό) από πλήθος «βασικών συνιστωσών» (ότι συμβολίζουμε με n). Αλγόριθμος πολυωνυμικό χρόνου: Αλγόριθμος ψευδο-πολυωνυμικού χρόνου: Αλγόριθμοι & Πολυπλοκότητα (Χειμώνας 2009) Δυναμικός Προγραμματισμός 11 Αλγόριθμοι & Πολυπλοκότητα (Χειμώνας 2009) Δυναμικός Προγραμματισμός 12
4 Απληστία vs Δυναμικός Προγρ. Απληστία vs Δυναμικός Προγρ. Διακριτό Πρόβλ. Σακιδίου: όχι ιδιότητα άπληστης επιλογής. Π.χ. Αντικείμενα: {(1, 1+ε), (Β, Β)}. Σακίδιο μεγέθους Β. Απληστία και Δυναμικός Προγραμματισμός: Αρχή βελτιστότητας. Δυναμικός Προγραμματισμός: αναδρομή Βέλτιστη λύση σε όλα τα υπο-προβλήματα που εμπλέκονται στην αναδρομή. Διακριτό Σακίδιο: Βέλτιστη λύση με πρώτα i αντικείμενα για όλα τα μεγέθη σακιδίου! Συνδυάζει «κατάλληλες» επιμέρους λύσεις για βέλτιστη. Λύση όλων υπο-προβλημάτων εγγυάται βέλτιστη λύση αλλά κοστίζει σημαντικά σε υπολογιστικό χρόνο. Απληστία: επανάληψη Ταξινόμηση ως προς κάποιο (εύλογο) κριτήριο. Σε κάθε βήμα αμετάκλητη άπληστη επιλογή. Άπληστη επιλογή: φαίνεται καλύτερη με βάση τρέχουσα κατάσταση και κάποιο (απλό) κριτήριο. Λύση μόνο «αναγκαίων» υπο-προβλημάτων: αποδοτικό υπολογιστικά αλλά δεν δίνει πάντα τη βέλτιστη λύση. Γρήγοροι, απλοί και «φυσιολογικοί» αλγόριθμοι! (Καλές) προσεγγιστικές λύσεις σε πολλά προβλήματα. Βέλτιστη λύση μόνο όταν άπληστη επιλογή (ως προς συγκεκριμένο κριτήριο επιλογής). Αλγόριθμοι & Πολυπλοκότητα (Χειμώνας 2009) Δυναμικός Προγραμματισμός 13 Αλγόριθμοι & Πολυπλοκότητα (Άνοιξη 2007) Άπληστοι Αλγόριθμοι 14 Αλυσιδωτός Πολ/μός Πινάκων Πολλαπλασιασμός Πινάκων Γινόμενο πινάκων Α (p q) επί B (q r) σε χρόνο Θ(p q r). (μετράμε μόνο πολ/μούς μεταξύ αριθμών). Συντομότερος τρόπος υπολογισμού γινομένου Πολλαπλασιασμός πινάκων είναι πράξη προσεταιριστική (αποτέλεσμα ανεξάρτητο από υπολογισμό επιμέρους γινομέν.) Ο χρόνος υπολογισμού εξαρτάται από τη σειρά! Αλγόριθμοι & Πολυπλοκότητα (Χειμώνας 2009) Δυναμικός Προγραμματισμός 15 Αλγόριθμοι & Πολυπλοκότητα (Χειμώνας 2009) Δυναμικός Προγραμματισμός 16
5 Πολλαπλασιασμός Πινάκων Εξαντλητική Αναζήτηση Δίνονται n πίνακες: Με ποια σειρά θα υπολογιστεί το γινόμενο Α 1 Α 2 Α n ώστε να ελαχιστοποιηθεί #αριθμ. πολ/μών. Πρόβλημα συνδυαστικής βελτιστοποίησης: Κάθε σειρά υπολογισμού υπολογίζει γινόμενο πινάκων με κάποιο #αριθμ. πολ/μών. Ζητείται η σειρά με ελάχιστο #αριθμ. πολ/μών. Αποδοτικός αλγόριθμος για υπολογισμό καλύτερης σειράς για αλυσιδωτό πολ/μου n πινάκων. δοκιμάζει όλεςτιςσειρέςυπολογισμούκαι βρίσκει καλύτερη. Κάθε σειρά αντιστοιχεί σε δυαδικό δέντρο με n φύλλα. Χρόνος ανάλογος #δυαδικών δέντρων με n φύλλα: Λύση (n-1)-oστός αριθμός Catalan: Θα εφαρμόσουμε δυναμικό προγραμματισμό. Αλγόριθμοι & Πολυπλοκότητα (Χειμώνας 2009) Δυναμικός Προγραμματισμός 17 Αλγόριθμοι & Πολυπλοκότητα (Χειμώνας 2009) Δυναμικός Προγραμματισμός 18 Αρχή Βελτιστότητας Δυναμικός Προγραμματισμός Συμβολίζουμε Βέλτιστη λύση υπολογίζει και για κάποιο και τελειώνει με #πολ/μών = d 0 d i d n +#πολ/μών(α 1..i )+#πολ/μων(a i+1..n ) Επιμέρους γινόμενα Α 1..i και A i+1..n υπολογίζονται βέλτιστα. Συμβολίζουμε Έστω για κάθε γνωρίζουμε Τότε Γενική αναδρομική σχέση: Bottom-up υπολογισμός m[1, n] από αναδρομική σχέση: Υπολογίζω n(n 1) / 2 τιμές m[i, j]. m[i, j] υπολογίζεται σε χρόνο Ο(n) από τιμές για γινόμενα μικρότερου εύρους. Τιμές αποθηκεύονται σε πίνακα. Αλγόριθμοι & Πολυπλοκότητα (Χειμώνας 2009) Δυναμικός Προγραμματισμός 19 Αλγόριθμοι & Πολυπλοκότητα (Χειμώνας 2009) Δυναμικός Προγραμματισμός 20
6 Παράδειγμα Υλοποίηση (bottom-up) j i Χρόνος Ο(n 3 ) και μνήμη O(n 2 ), μειώνεται σε Ο(n). Αλγόριθμοι & Πολυπλοκότητα (Χειμώνας 2009) Δυναμικός Προγραμματισμός 21 Αλγόριθμοι & Πολυπλοκότητα (Χειμώνας 2009) Δυναμικός Προγραμματισμός 22 Υλοποίηση (top-down) Αναδρομή με Μνήμη Χρόνος Ω(2 n )! Ο αναδρομικός αλγόριθμος αποθηκεύει τιμές σε πίνακα. Κάθε τιμή υπολογίζεται μία φορά. Συνδυάζει απλότητα top-down προσέγγισης με ταχύτητα bottom-up. Αλγόριθμοι & Πολυπλοκότητα (Χειμώνας 2009) Δυναμικός Προγραμματισμός 24
7 ΔΠ vs ΔκΒ ΔΠ vs ΔκΒ Δυναμικός Προγραμματισμός και Διαίρει-και-Βασίλευε επιλύουν προβλήματα συνδυάζοντας λύσεις κατάλληλα επιλεγμένων υπο-προβλημάτων. ΔκΒ είναι φύσει αναδρομική μέθοδος (top-down). ΔκΒ επιλύει υπο-προβλήματα ανεξάρτητα. Εφαρμόζεται όταν παράγονται ανεξάρτητα υπο-προβ/τα. Ειδάλλως ίδια υπο-προβλήματα λύνονται πολλές φορές: Σπατάλη υπολογιστικού χρόνου. ΔΠ «κτίζει» βέλτιστη λύση προβ/τος από βέλτιστες λύσεις υπο-προβ/των (bottom-up). ΔΠ ξεκινά με στοιχειώδη στιγμιότυπα. Συνδυάζει λύσεις για να βρει λύσεις σε μεγαλύτερα. ΔΠ εφαρμόζεται όταν υπο-προβ/τα επικαλύπτονται. Αποθηκεύει επιμέρους λύσεις για να μην υπολογίζει πάλι. «Προγραμματισμός» διαδικασία συμπλήρωσης πίνακα με ενδιάμεσα αποτελέσματα (Bellman, 50 s). ΔΠ εφαρμόζεται όταν ισχύει αρχή βελτιστότητας. Διατύπωση αναδρομικής εξίσωσης για βέλτιστη λύση. Αναδρομική εξίσωση λύνεται bottom-up για βέλτιστη τιμή. Επιλογές κατά την επίλυση απαρτίζουν βέλτιστη λύση. Αλγόριθμοι & Πολυπλοκότητα (Χειμώνας 2009) Δυναμικός Προγραμματισμός 25 Αλγόριθμοι & Πολυπλοκότητα (Χειμώνας 2009) Δυναμικός Προγραμματισμός 26 Πρόβλημα Πλανόδιου Πωλητή Πρόβλημα Πλανόδιου Πωλητή Δίνονται n σημεία και αποστάσεις τους Απόσταση i j =, απόσταση j i = Γενική περίπτωση: όχι συμμετρικές αποστάσεις, όχι τριγωνική ανισότητα. Ζητείται μια περιοδεία ελάχιστου συνολικού μήκους. Περιοδεία: κύκλος που διέρχεται από κάθε σημείο μία φορά. Περιοδεία: μετάθεση σημείων Μετάθεση (permutation): 1-1 και επί αντιστοιχία Ν με Ν. Π.χ. Μήκος περιοδείας π: Πρόβλημα συνδυαστικής βελτιστοποίησης: Κάθε περιοδεία εφικτή λύση και αντιστοιχεί σε μήκος. Ζητούμενο: (βέλτιστη) περιοδεία ελάχιστου μήκους. Εξαντλητική αναζήτηση: #περιοδειών = (n 1)! Χρόνος Ω(n!) ΠΠΠ είναι NP-δύσκολο και δεν υπάρχει «γρήγορος» (πολυωνυμικός) αλγόριθμος. Δυναμικός προγραμματισμός λύνει γενική περίπτωση σε χρόνο Θ(n 2 2 n ). Αλγόριθμοι & Πολυπλοκότητα (Χειμώνας 2009) Δυναμικός Προγραμματισμός 27 Αλγόριθμοι & Πολυπλοκότητα (Χειμώνας 2009) Δυναμικός Προγραμματισμός 28
8 Αρχή Βελτιστότητας Αρχή Βελτιστότητας Βέλτιστη περιοδεία ξεκινάει 1 j και συνεχίζει από j όλατασημείαν \{1, j } 1. Αυτό το τμήμα βέλτιστο με αυτή την ιδιότητα. Διαφορετικά, βελτιώνω τμήμα και περιοδεία συνολικά! Έστω L(i, S) ελάχιστο μήκος για να ξεκινήσω από i όλο το S 1, (i S). Αν S N \ {1}, τότε i 1 (το 1 προστίθεται τελευταίο). Εύκολα. Έστω L(i, S) ελάχιστο μήκος για να ξεκινήσω από i όλο το S 1, (i S). Αν S N \ {1}, τότε i 1 (το 1 προστίθεται τελευταίο). Εύκολα για S = 0, 1, 2: Υπολογίζω L(i, S), S = k, αν γνωρίζω όλα τα L(j, S \{j}): Υπολογίζω όλες τις βέλτιστες «υπο-περιοδείες» που τελειώνουν στο 1 και έχουν μήκος 1, 2, 3, 4, Αλγόριθμοι & Πολυπλοκότητα (Χειμώνας 2009) Δυναμικός Προγραμματισμός 29 Αλγόριθμοι & Πολυπλοκότητα (Χειμώνας 2009) Δυναμικός Προγραμματισμός 30 Παράδειγμα Υλοποίηση Μνήμη Θ(n 2 n ) Χρόνος Θ(n 2 2 n ) 20 σημεία: 20! = Βέλτιστη περιοδεία 1, 2, 4, 3 μήκους 35. Αλγόριθμοι & Πολυπλοκότητα (Χειμώνας 2009) Δυναμικός Προγραμματισμός = Αλγόριθμοι & Πολυπλοκότητα (Χειμώνας 2009) Δυναμικός Προγραμματισμός 32
υναμικός Προγραμματισμός
υναμικός Προγραμματισμός ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο ιωνυμικοί Συντελεστές ιωνυμικοί
Δυναμικός Προγραμματισμός
Δυναμικός Προγραμματισμός Επιμέλεια διαφανειών: Δ. Φωτάκης Τροποποιήσεις: Α. Παγουρτζής Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Διωνυμικοί Συντελεστές Διωνυμικοί
υναμικός Προγραμματισμός
υναμικός Προγραμματισμός ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο ιωνυμικοί Συντελεστές ιωνυμικοί
υναμικός Προγραμματισμός
υναμικός Προγραμματισμός ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο ιακριτό Πρόβλημα Σακιδίου ίνονται n αντικείμενα και σακίδιο μεγέθους Β. Αντικείμενο
Δυναμικός Προγραμματισμός
Δυναμικός Προγραμματισμός Επιμέλεια διαφανειών: Δ. Φωτάκης Τροποποιήσεις /προσθήκες: Α. Παγουρτζής Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Διωνυμικοί Συντελεστές
Διωνυµικοί Συντελεστές. Αλγόριθµοι & Πολυπλοκότητα (Χειµώνας 2011) Δυναµικός Προγραµµατισµός 1
Διωνυµικοί Συντελεστές Αλγόριθµοι & Πολυπλοκότητα (Χειµώνας 2011) Δυναµικός Προγραµµατισµός 1 Διωνυµικοί Συντελεστές Διωνυµικοί συντελεστές Αλγόριθµοι & Πολυπλοκότητα (Χειµώνας 2011) Δυναµικός Προγραµµατισµός
Άπληστοι Αλγόριθμοι. ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών
Άπληστοι Αλγόριθμοι ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Άπληστοι Αλγόριθμοι... για προβλήματα
Άπληστοι Αλγόριθμοι. ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών
Άπληστοι Αλγόριθμοι ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Άπληστοι Αλγόριθμοι... για προβλήματα
Άπληστοι Αλγόριθμοι. Επιμέλεια διαφανειών: Δ. Φωτάκης Τροποποιήσεις: Α. Παγουρτζής. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών
Άπληστοι Αλγόριθμοι Επιμέλεια διαφανειών: Δ. Φωτάκης Τροποποιήσεις: Α. Παγουρτζής Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Άπληστοι Αλγόριθμοι... για προβλήματα
Άπληστοι Αλγόριθµοι. Αλγόριθµοι & Πολυπλοκότητα (Χειµώνας 2011) Άπληστοι Αλγόριθµοι 1
Άπληστοι Αλγόριθµοι Αλγόριθµοι & Πολυπλοκότητα (Χειµώνας 2011) Άπληστοι Αλγόριθµοι 1 Άπληστοι Αλγόριθµοι... για προβλήµατα βελτιστοποίησης: Λειτουργούν σε βήµατα. Κάθε βήµα κάνει µια αµετάκλητη επιλογή
για NP-Δύσκολα Προβλήματα
Προσεγγιστικοί Αλγόριθμοι για NP-Δύσκολα Προβλήματα Διδάσκοντες: Σ. Ζάχος, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο
Προσεγγιστικοί Αλγόριθμοι
Πολλά NP-πλήρη προβλήματα έχουν μεγάλο πρακτικό ενδιαφέρον. http://xkcd.com/287/ Πολλά NP-πλήρη προβλήματα έχουν μεγάλο πρακτικό ενδιαφέρον. Πως μπορούμε να αντιμετωπίσουμε το γεγονός ότι είναι απίθανη(;)
Προσεγγιστικοί Αλγόριθμοι για NP- ύσκολα Προβλήματα
Προσεγγιστικοί Αλγόριθμοι για NP- ύσκολα Προβλήματα ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Άδεια
Διαίρει-και-Βασίλευε. Διαίρει-και-Βασίλευε. MergeSort. MergeSort. Πρόβλημα Ταξινόμησης: Είσοδος : ακολουθία n αριθμών (α 1
Διαίρει-και-Βασίλευε Διδάσκοντες: Σ. Ζάχος, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Διαίρει-και-Βασίλευε Γενική μέθοδος
Αναδρομικές Σχέσεις «ιαίρει-και-βασίλευε»
Αναδρομικές Σχέσεις «ιαίρει-και-βασίλευε» ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο ιαίρει-και-βασίλευε
Αλγοριθμικές Τεχνικές
Αλγοριθμικές Τεχνικές Παύλος Εφραιμίδης, Λέκτορας http://pericles.ee.duth.gr Αλγοριθμικές Τεχνικές 1 Τεχνικές Σχεδιασμού Αλγορίθμων Ορισμένες γενικές αρχές για τον σχεδιασμό αλγορίθμων είναι: Διαίρει και
Αλγοριθμικές Τεχνικές. Brute Force. Διαίρει και Βασίλευε. Παράδειγμα MergeSort. Παράδειγμα. Τεχνικές Σχεδιασμού Αλγορίθμων
Τεχνικές Σχεδιασμού Αλγορίθμων Αλγοριθμικές Τεχνικές Παύλος Εφραιμίδης, Λέκτορας http://pericles.ee.duth.gr Ορισμένες γενικές αρχές για τον σχεδιασμό αλγορίθμων είναι: Διαίρει και Βασίλευε (Divide and
Σχεδίαση Αλγορίθμων - Τμήμα Πληροφορικής ΑΠΘ -4ο εξάμηνο 1
Σχεδίαση Αλγορίθμων Δυναμικός Προγραμματισμός http://delab.csd.auth.gr/~gounaris/courses/ad Σχεδίαση Αλγορίθμων - Τμήμα Πληροφορικής ΑΠΘ -4ο εξάμηνο 1 Δυναμικός προγραμματισμός Ο Δυναμικός Προγραμματισμός
Αλγόριθμοι - Τμήμα Πληροφορικής ΑΠΘ -4ο εξάμηνο 1
Αλγόριθμοι Δυναμικός Προγραμματισμός http://delab.csd.auth.gr/courses/algorithms/ Αλγόριθμοι - Τμήμα Πληροφορικής ΑΠΘ -4ο εξάμηνο 1 Δυναμικός προγραμματισμός Ο Δυναμικός Προγραμματισμός προτάθηκε από τον
Δομές Δεδομένων & Αλγόριθμοι
Θέματα Απόδοσης Αλγορίθμων 1 Η Ανάγκη για Δομές Δεδομένων Οι δομές δεδομένων οργανώνουν τα δεδομένα πιο αποδοτικά προγράμματα Πιο ισχυροί υπολογιστές πιο σύνθετες εφαρμογές Οι πιο σύνθετες εφαρμογές απαιτούν
(Γραμμικές) Αναδρομικές Σχέσεις
(Γραμμικές) Αναδρομικές Σχέσεις Διδάσκοντες: Φ. Αφράτη, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Αναδρομικές Σχέσεις
Προσεγγιστικοί Αλγόριθμοι για NP- ύσκολα Προβλήματα
Προσεγγιστικοί Αλγόριθμοι για NP- ύσκολα Προβλήματα ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Αντιμετώπιση NP- υσκολίας Αν P NP, όχι αλγόριθμος
Συντομότερες Διαδρομές
Συντομότερη Διαδρομή Συντομότερες Διαδρομές Διδάσκοντες: Σ Ζάχος, Δ Φωτάκης Επιμέλεια διαφανειών: Δ Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Κατευθυνόμενο G(V, E, w) με μήκη Μήκος
Συντομότερες Διαδρομές
Συντομότερες Διαδρομές Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Συντομότερη Διαδρομή Κατευθυνόμενο G(V, E, w) με μήκη Μήκος διαδρομής
Αλγόριθμοι Προσέγγισης για NP-Δύσκολα Προβλήματα
Αλγόριθμοι Προσέγγισης για NP-Δύσκολα Προβλήματα Διδάσκοντες: E. Ζάχος, Α. Παγουρτζής Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο
ιαίρει-και-βασίλευε ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο
ιαίρει-και-βασίλευε ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο ιαίρει-και-βασίλευε Γενική μέθοδος σχεδιασμού αλγορίθμων: ιαίρεση σε ( 2) υποπροβλήματα
Αλγόριθµοι. Παράδειγµα. ιαίρει και Βασίλευε. Παράδειγµα MergeSort. Τεχνικές Σχεδιασµού Αλγορίθµων
Τεχνικές Σχεδιασµού Αλγορίθµων Αλγόριθµοι Παύλος Εφραιµίδης pefraimi@ee.duth.gr Ορισµένες γενικές αρχές για τον σχεδιασµό αλγορίθµων είναι: ιαίρει και Βασίλευε (Divide and Conquer) υναµικός Προγραµµατισµός
Συντομότερες ιαδρομές
Συντομότερες ιαδρομές ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Άδεια Χρήσης Το παρόν εκπαιδευτικό
Ασυμπτωτικός Συμβολισμός
Ασυμπτωτικός Συμβολισμός Επιμέλεια διαφανειών: Δημήτρης Φωτάκης (λίγες προσθήκες: Άρης Παγουρτζής) Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Υπολογιστική Πολυπλοκότητα
(Γραμμικές) Αναδρομικές Σχέσεις
(Γραμμικές) Αναδρομικές Σχέσεις ιδάσκοντες:. Φωτάκης. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Αναδρομικές Σχέσεις Αναπαράσταση
Διαίρει-και-Βασίλευε. Αλγόριθµοι & Πολυπλοκότητα (Χειµώνας 2011) Διαίρει-και-Βασίλευε 2
Διαίρει-και-Βασίλευε Αλγόριθµοι & Πολυπλοκότητα (Χειµώνας 2011) Διαίρει-και-Βασίλευε 2 Διαίρει-και-Βασίλευε Γενική µέθοδος σχεδιασµού αλγορίθµων: Διαίρεση σε ( 2) υποπροβλήµατα (σηµαντικά) µικρότερου µεγέθους.
Συντομότερες ιαδρομές
Συντομότερες ιαδρομές ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Άδεια Χρήσης Το παρόν εκπαιδευτικό
Ασυμπτωτικός Συμβολισμός
Ασυμπτωτικός Συμβολισμός ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Άδεια Χρήσης Το παρόν εκπαιδευτικό
Quicksort. Πρόβλημα Ταξινόμησης. Μέθοδοι Ταξινόμησης. Συγκριτικοί Αλγόριθμοι
Πρόβλημα Ταξινόμησης Quicksort Διδάσκοντες: Σ. Ζάχος, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Είσοδος : ακολουθία n αριθμών (α 1, α 2,..., α n
Επιμέλεια διαφανειών: Δ. Φωτάκης Τροποποιήσεις-προσθήκες: Α. Παγουρτζής. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών
Διαίρει-και-Βασίλευε Επιμέλεια διαφανειών: Δ. Φωτάκης Τροποποιήσεις-προσθήκες: Α. Παγουρτζής Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Διαίρει-και-Βασίλευε Γενική
Αλγόριθμοι και πολυπλοκότητα Δυναμικός Προγραμματισμός
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Αλγόριθμοι και πολυπλοκότητα Δυναμικός Προγραμματισμός Ιωάννης Τόλλης Τμήμα Επιστήμης Υπολογιστών Δυναμικός Προγραμματισμός Δυναμικός Προγραμματισμός 1 Περίληψη
Συντομότερες ιαδρομές
Συντομότερες ιαδρομές ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Συντομότερη ιαδρομή Κατευθυνόμενο G(V, E, w) με μήκη Μήκος διαδρομής Απόσταση d(u,
Εισαγωγικές Έννοιες. ημήτρης Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. Εθνικό Μετσόβιο Πολυτεχνείο
Εισαγωγικές Έννοιες ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
(Γραμμικές) Αναδρομικές Σχέσεις
(Γραμμικές) Αναδρομικές Σχέσεις ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Αναδρομικές Σχέσεις Αναπαράσταση
ΑΛΓΟΡΙΘΜΟΙ. Ενότητα 8: Δυναμικός Προγραμματισμός. Ιωάννης Μανωλόπουλος, Καθηγητής Αναστάσιος Γούναρης, Επίκουρος Καθηγητής Τμήμα Πληροφορικής ΑΠΘ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΛΓΟΡΙΘΜΟΙ Ενότητα 8: Δυναμικός Προγραμματισμός Ιωάννης Μανωλόπουλος, Καθηγητής Αναστάσιος Γούναρης, Επίκουρος Καθηγητής Άδειες Χρήσης
Ασυμπτωτικός Συμβολισμός
Ασυμπτωτικός Συμβολισμός ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Υπολογιστική Πολυπλοκότητα Υπολογιστική
Συνδυαστική Απαρίθμηση
Παραδείγματα Συνδυαστική Απαρίθμηση Διδάσκοντες: Φ. Αφράτη, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο n θρανία στη σειρά
Επιλογή. Πρόβλημα Επιλογής. Μέγιστο / Ελάχιστο. Εφαρμογές
Επιλογή Διδάσκοντες: Σ. Ζάχος, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Πρόβλημα Επιλογής Πίνακας Α[]με n στοιχεία (όχι ταξινομημένος). Αριθμός
Αλγόριθµοι και Πολυπλοκότητα
Αλγόριθµοι και Πολυπλοκότητα Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Πανεπιστήµιο Αθηνών Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα 28 Μαΐου 2015 1 / 45 Εισαγωγή Ο δυναµικός
Δυναμικός Προγραμματισμός
πρόβλημα μεγέθους Ν «Διαίρει και βασίλευε» : ανεξάρτητα υποπροβλήματα διάσπαση πρόβλημα μεγέθους k πρόβλημα μεγέθους Ν-k πρόβλημα μεγέθους Ν Σε κάποιες περιπτώσεις όμως τα υποπροβλήματα δεν είναι ανεξάρτητα
Προσεγγιστικοί Αλγόριθμοι
Πολλά NP-πλήρη προβλήματα έχουν μεγάλο πρακτικό ενδιαφέρον. http://xkcd.com/287/ Πολλά NP-πλήρη προβλήματα έχουν μεγάλο πρακτικό ενδιαφέρον. Πως μπορούμε να αντιμετωπίσουμε το γεγονός ότι είναι απίθανη(;)
Ουρά Προτεραιότητας: Heap
Δομές Δεδομένων Ουρά Προτεραιότητας: Heap Διδάσκοντες: Σ. Ζάχος, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο (Αναπαράσταση,)
Ασυμπτωτικός Συμβολισμός
Ασυμπτωτικός Συμβολισμός ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Υπολογιστική Πολυπλοκότητα Υπολογιστική πολυπλοκότητα αλγόριθμου Α: Ποσότητα
Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα:
υναµικός Προγραµµατισµός Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: Σχεδιασµός αλγορίθµων µε υναµικό Προγραµµατισµό Το πρόβληµα του πολλαπλασιασµού πινάκων ΕΠΛ 3 Αλγόριθµοι και Πολυπλοκότητα 3- υναµικός
Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα:
υναµικός Προγραµµατισµός Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: Σχεδιασµός αλγορίθµων µε υναµικό Προγραµµατισµό Το πρόβληµα του πολλαπλασιασµού πινάκων ΕΠΛ 3 Αλγόριθµοι και Πολυπλοκότητα 3- υναµικός
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΜΑΘΗΜΑ: ΑΛΓΟΡΙΘΜΟΙ ΚΑΙ ΠΟΛΥΠΛΟΚΟΤΗΤΑ 1. α. Να βάλετε σε αύξουσα σειρά μεγέθους τις παρακάτω συναρτήσεις χρονικής πολυπλοκότητας αλγορίθμων: nlogn, n logn,
Υπολογιστική Πολυπλοκότητα
Υπολογιστική Πολυπλοκότητα ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Άδεια Χρήσης Το παρόν εκπαιδευτικό
Πιθανοτικοί Αλγόριθμοι
Πιθανοτικοί Αλγόριθμοι ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Πιθανοτικοί Αλγόριθμοι Πιθανοτικός
Επιλογή. Επιμέλεια διαφανειών: Δ. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. Εθνικό Μετσόβιο Πολυτεχνείο
Επιλογή Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Πρόβλημα Επιλογής Πίνακας Α[ ] με n στοιχεία (όχι ταξινομημένος). Αριθμός k,
Επιλογή. ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών
Επιλογή ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Τεχνικές Σχεδιασμού Αλγορίθμων
Τεχνικές Σχεδιασμού Αλγορίθμων Διαίρει και Βασίλευε Δυναμικός Προγραμματισμός Απληστία Π. Μποζάνης ΤHMMY - Αλγόριθμοι 2014-2015 1 Διαίρει και Βασίλευε Βασικά Βήματα Διαίρει: Κατάτμηση του αρχικού προβλήματος
Quicksort. Επιμέλεια διαφανειών: Δ. Φωτάκης Μικροαλλαγές: Α. Παγουρτζής. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών
Quicksort Επιμέλεια διαφανειών: Δ. Φωτάκης Μικροαλλαγές: Α. Παγουρτζής Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Quicksort [Hoare, 6] Στοιχείο διαχωρισμού (pivot),
Υπολογιστικό Πρόβληµα
Υπολογιστικό Πρόβληµα Μετασχηµατισµός δεδοµένων εισόδου σε δεδοµένα εξόδου. Δοµή δεδοµένων εισόδου (έγκυρο στιγµιότυπο). Δοµή και ιδιότητες δεδοµένων εξόδου (απάντηση ή λύση). Τυπικά: διµελής σχέση στις
Σχεδίαση Αλγορίθμων -Τμήμα Πληροφορικής ΑΠΘ - Εξάμηνο 4ο
Πολλαπλασιασμός μεγάλων ακεραίων (1) Για να πολλαπλασιάσουμε δύο ακεραίους με n 1 και n 2 ψηφία με το χέρι, θα εκτελέσουμε n 1 n 2 πράξεις πολλαπλασιασμού Πρόβλημα ρβημ όταν έχουμε πολλά ψηφία: A = 12345678901357986429
Εισαγωγή στους Αλγορίθμους Ενότητα 11η
Εισαγωγή στους Αλγορίθμους Ενότητα 11η Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Δυναμικός Προγραμματισμός Σταθμισμένος Χρονοπρογραμματισμός
Quicksort. ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών
Quicksort ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Ουρά Προτεραιότητας: Heap
Ουρά Προτεραιότητας: Heap Επιμέλεια διαφανειών: Δ. Φωτάκης (λίγες τροποποιήσεις: Α. Παγουρτζής) Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Δομές Δεδομένων (Αναπαράσταση,)
auth Αλγόριθμοι - Τμήμα Πληροφορικής ΑΠΘ - Εξάμηνο 4ο
Σχεδίαση Αλγορίθμων Διαίρει και Βασίλευε http://delab.csd.auth.gr/courses/algorithms/ auth 1 Διαίρει και Βασίλευε Η γνωστότερη ρημέθοδος σχεδιασμού αλγορίθμων: 1. Διαιρούμε το στιγμιότυπο του προβλήματος
Ουρά Προτεραιότητας: Heap
Ουρά Προτεραιότητας: Heap ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Άδεια Χρήσης Το παρόν εκπαιδευτικό
Υπολογιστική Πολυπλοκότητα
Υπολογιστική Πολυπλοκότητα ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Υπολογιστική Πολυπλοκότητα Γιατί κάποια (επιλύσιμα) προβλήματα είναι δύσκολο
Μάθημα 20: Δυναμικός Προγραμματισμός (DP)
Μάθημα 20: Δυναμικός Προγραμματισμός (DP) Γενικά Είναι μια γενική μεθοδολογία και δεν υπάρχει ένα πρότυπο διατύπωσης /επίλυσης προβλημάτων Αρχικά ξεκίνησε σαν μαθηματική μέθοδος για τη λήψη σειράς αλληλοσυνδεόμενων
Επιλογή. ημήτρης Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. Εθνικό Μετσόβιο Πολυτεχνείο
Επιλογή ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Πρόβλημα Επιλογής Πίνακας Α[]με n στοιχεία (όχι ταξινομημένος). Αριθμός k, 1 k n. Υπολογισμός
Αλγόριθµοι και Πολυπλοκότητα
Αλγόριθµοι και Πολυπλοκότητα ηµήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Οργανωτικά ιδάσκοντες:. Φωτάκης και. Σούλιου (και Σ. Ζάχος στις πρόσθετες
Συντομότερα Μονοπάτια για Όλα τα Ζεύγη Κορυφών
Συντομότερα Μονοπάτια για Όλα τα Ζεύγη Κορυφών Αλγόριθμοι και πολυπλοκότητα Στάθης Ζάχος, Δημήτρης Φωτάκης Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Quicksort. ημήτρης Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. Εθνικό Μετσόβιο Πολυτεχνείο
Quicksort ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Quicksort [Hoare, 62] Στοιχείο διαχωρισμού (pivot), π.χ. πρώτο, τυχαίο, Αναδιάταξη και διαίρεση
Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 5: ΚΑΤΗΓΟΡΙΕΣ ΑΛΓΟΡΙΘΜΙΚΩΝ ΠΡΟΒΛΗΜΑΤΩΝ-ΑΝΑΓΩΓΗ
Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 5: ΚΑΤΗΓΟΡΙΕΣ ΑΛΓΟΡΙΘΜΙΚΩΝ ΠΡΟΒΛΗΜΑΤΩΝ-ΑΝΑΓΩΓΗ Δημήτριος Κουκόπουλος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διαχείρισης Πολιτισμικού Περιβάλλοντος και
Αλγόριθμοι και Πολυπλοκότητα
Αλγόριθμοι και Πολυπλοκότητα ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Οργανωτικά ιδάσκοντες: Σ. Ζάχος,.
Αλγόριθμοι και Πολυπλοκότητα
Αλγόριθμοι και Πολυπλοκότητα Διαίρει και Βασίλευε Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Διαίρει και Βασίλευε Divide and Conquer Η τεχνική διαίρει και βασίλευε αναφέρεται
Αλγόριθμοι Αναζήτησης
Αλγόριθμοι Αναζήτησης ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Ενότητα 13: Αλγόριθμοι-Μεγάλων ακεραίων- Εκθετοποίηση- Πολλαπλασιασμός πινάκων -Strassen Μαρία Σατρατζέμη Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό
Αλγόριθμοι και Πολυπλοκότητα
Αλγόριθμοι και Πολυπλοκότητα ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Οργανωτικά ιδάσκοντες: Σ. Ζάχος,.
Αλγόριθμοι και Πολυπλοκότητα
Αλγόριθμοι και Πολυπλοκότητα ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Οργανωτικά ιδάσκοντες: Σ. Ζάχος,.
Γεννήτριες Συναρτήσεις
Ακολουθίες Γεννήτριες Συναρτήσεις Διδάσκοντες: Φ. Αφράτη, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Ακολουθία: αριθμητική
Αλγόριθμοι και Πολυπλοκότητα
Αλγόριθμοι και Πολυπλοκότητα ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Άδεια Χρήσης Το παρόν εκπαιδευτικό
Αλγόριθμοι και Πολυπλοκότητα
Αλγόριθμοι και Πολυπλοκότητα ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Outline. 6 Edit Distance
Αλγόριθμοι και Πολυπλοκότητα Άπληστοι Αλγόριθμοι και Δυναμικός Προγραμματισμός Ασκήσεις CoReLab ΣΗΜΜΥ - Ε.Μ.Π. 16 Νοεμβρίου 216 (CoReLab - NTUA) Αλγόριθμοι - Ασκήσεις 16 Νοεμβρίου 216 1 / 52 Outline 1
Εισαγωγή στην Ανάλυση Αλγορίθμων
Εισαγωγή στην Ανάλυση Αλγορίθμων (4) Μεθοδολογία αναδρομικών σχέσεων (Ι) Με επανάληψη της αναδρομής Έστω όπου r και a είναι σταθερές. Βρίσκουμε τη σχέση που εκφράζει την T(n) συναρτήσει της T(n-) την T(n)
Αλγόριθμοι και Πολυπλοκότητα
Αλγόριθμοι και Πολυπλοκότητα ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Οργανωτικά ιδάσκοντες:. Φωτάκης (και Σ. Ζάχος στο μτπχ.) Βοηθοί διδασκαλίας
Εισαγωγή στην Επιστήμη των Υπολογιστών
Εισαγωγή στην Επιστήμη των Υπολογιστών 4 ο εξάμηνο ΣΗΜΜΥ 4 η ενότητα: Γράφοι: προβλήματα και αλγόριθμοι Επιμέλεια διαφανειών: Στάθης Ζάχος, Άρης Παγουρτζής, Δημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών
Υπολογιστική Πολυπλοκότητα
Υπολογιστική Πολυπλοκότητα Υπολογιστική πολυπλοκότητα αλγόριθµου Α: Ποσότητα υπολογιστικών πόρων που απαιτεί Α ως αύξουσα συνάρτηση µεγέθους στιγµιότυπου εισόδου. Χρόνος, µνήµη, επεξεργαστές, επικοινωνία,
Θέματα Εφαρμογών Βάσεων Δεδομένων: Ιδιωτικότητα Δεδομένων
Θέματα Εφαρμογών Βάσεων Δεδομένων: Ιδιωτικότητα Δεδομένων 3. Δυναμικός Προγραμματισμός Ζαγορίσιος Παναγώτης Παπαοικονόμου Χριστίνα Δυναμικός Προγραμματισμός Μέθοδος επίλυσης σύνθετων προβλημάτων. Όπως
Μέγιστη Ροή Ελάχιστη Τομή
Μέγιστη Ροή Ελάχιστη Τομή Διδάσκοντες: Σ. Ζάχος, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Δίκτυα και Ροές Δίκτυο : κατευθυνόμενο γράφημα G(V, E). Πηγή, προορισμός, χωρητικότητα ακμής b e. ροή μεγέθους
Αλγόριθµοι και Πολυπλοκότητα
Αλγόριθµοι και Πολυπλοκότητα Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Πανεπιστήµιο Αθηνών Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα 31 Μαΐου 2019 1 / 10 Ελάχιστα τετράγωνα
οµές εδοµένων 3 ο Εξάµηνο Τµήµα Πανεπιστήµιο Πληροφορικής Ιωαννίνων ΟΜΕΣ Ε ΟΜΕΝΩΝ
Τµήµα Πανεπιστήµιο Πληροφορικής Ιωαννίνων ΟΜΕΣ Ε ΟΜΕΝΩΝ ΕΝΟΤΗΤΑ 1 ΕΙΣΑΓΩΓΗ 1 εδοµένα Σύνολο από πληροφορίες που πρέπει να αποθηκευτούν σε έναν υπολογιστή Υπολογιστικό Μοντέλο ένας επεξεργαστής και µεγάλος
Αλγόριθµοι και Πολυπλοκότητα
Αλγόριθµοι και Πολυπλοκότητα Ενότητα 5 υναµικός Προγραµµατισµός Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Καθηγητής: Ν. Μ. Μισυρλής Αλγόριθµοι και Πολυπλοκότητα - Ενότητα 5 1 / 49 Εισαγωγή
Δομές Δεδομένων & Αλγόριθμοι
- Πίνακες 1 Πίνακες Οι πίνακες έχουν σταθερό μέγεθος και τύπο δεδομένων. Βασικά πλεονεκτήματά τους είναι η απλότητα προγραμματισμού τους και η ταχύτητα. Ωστόσο δεν παρέχουν την ευελιξία η οποία απαιτείται
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Ενότητα 4: Αναδρομικές σχέσεις και ανάλυση αλγορίθμων Μαρία Σατρατζέμη Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Βασικές Έννοιες Θεωρίας Γραφημάτων
Βασικές Έννοιες Θεωρίας Γραφημάτων Διδάσκοντες: Σ. Ζάχος, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Γραφήματα Μοντελοποίηση πολλών σημαντικών προβλημάτων
ΠΛΕ075: Προηγμένη Σχεδίαση Αλγορίθμων και Δομών Δεδομένων. Λουκάς Γεωργιάδης
ΠΛΕ075: Προηγμένη Σχεδίαση Αλγορίθμων και Δομών Δεδομένων Λουκάς Γεωργιάδης loukas@cs.uoi.gr www.cs.uoi.gr/~loukas Βασικές έννοιες και εφαρμογές Αλγόριθμος: Μέθοδος για την επίλυση ενός προβλήματος Δομή
ΑΛΓΟΡΙΘΜΟΙ Άνοιξη I. ΜΗΛΗΣ
ΑΛΓΟΡΙΘΜΟΙ http://eclass.aueb.gr/courses/inf161/ Άνοιξη 2017 - I. ΜΗΛΗΣ ΔΥΝΑΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Knapsack problems ΑΛΓΟΡΙΘΜΟΙ - ΑΝΟΙΞΗ 2017 - Ι. ΜΗΛΗΣ 10 DP III 1 Knapsack problems ΕΙΣΟΔΟΣ: Σακίδιο χωρητικότητας
Συνδυαστική Απαρίθµηση Υπολογισµός (µε συνδυαστικά επιχειρήµατα) του πλήθους των διαφορετικών αποτελεσµάτων ενός «πειράµατος». «Πείραµα»: διαδικασία µ
Συνδυαστική Απαρίθµηση ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιµέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Συνδυαστική Απαρίθµηση Υπολογισµός
Στοιχεία Αλγορίθµων και Πολυπλοκότητας
Στοιχεία Αλγορίθµων και Πολυπλοκότητας Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Ο. Τελέλης Πανεπιστήµιο Πειραιώς Πολυπλοκότητα 1 / 16 «Ζέσταµα» Να γράψετε τις συναρτήσεις
Σχεδίαση & Ανάλυση Αλγορίθμων
Σχεδίαση & Ανάλυση Αλγορίθμων Ενότητα 1 Αλγόριθμοι και Πολυπλοκότητα Σταύρος Δ. Νικολόπουλος Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Ιωαννίνων Webpage: www.cs.uoi.gr/~stavros Εισαγωγή Ας ξεκινήσουμε
Δομές Δεδομένων και Αλγόριθμοι
Δομές Δεδομένων και Αλγόριθμοι Χρήστος Γκόγκος ΤΕΙ Ηπείρου Χειμερινό Εξάμηνο 2014-2015 Παρουσίαση 9 P vs NP 1 / 13 Δυσκολία επίλυσης υπολογιστικών προβλημάτων Κάποια προβλήματα είναι εύκολα να λυθούν με
Αλγόριθμοι και Πολυπλοκότητα
Αλγόριθμοι και Πολυπλοκότητα Ανάλυση Αλγορίθμων Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ανάλυση Αλγορίθμων Η ανάλυση αλγορίθμων περιλαμβάνει τη διερεύνηση του τρόπου