ΠΡΟΣΟΜΟΙΩΣΗ MONTE CARLO ΓΙΑ
|
|
- Σέλευκος Δεσποτόπουλος
- 8 χρόνια πριν
- Προβολές:
Transcript
1 ΤΕΙ ΛΑΡΙΣΑΣ ΧΑΡΑΛΑΜΠΟΣ ΑΜΥΓΔΑΛΟΣ (Τ-1400) ΑΛΕΚΟΣ ΠΑΠΠΑΣ (Τ 1605) ΠΡΟΣΟΜΟΙΩΣΗ MONTE CARLO ΓΙΑ ΣΥΣΤΗΜΑ 8-DPSK
2
3 ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ 1. ΕΙΣΑΓΩΓΗ 1 2. ΠΛΑΙΣΙΟ ΑΝΑΦΟΡΑΣ ΠΡΟΣΟΜΟΙΩΣΗ MONTE CARLO ΣΥΣΤΗΜΑΤΑ DPSK 2 3. ΕΙΚΟΝΕΣ ΣΥΣΤΗΜΑΤΟΣ ΕΝΔΕΙΚΤΙΚΟ ΜΟΝΤΕΛΟ ΠΡΟΣΩΜΕΙΩΣΗΣ M FILES GNGAUSS QFUNCT CM_DPSKE CM_SM MATLAB SCRIPT ΤΕΛΙΚΟ ΓΡΑΦΗΜΑ 8 4. ΣΥΜΠΕΡΑΣΜΑΤΑ ΑΠΟΤΕΛΕΣΜΑΤΑ 8 i
4
5 1. ΕΙΣΑΓΩΓΗ Σκοπός της άσκησης είναι η παραγωγή αποτελεσμάτων από μια προσομοίωση Monte Carlo για ένα σύστημα 8DPSK. Το επιθυμητό αποτέλεσμα θα μας δείξει την πιθανότητα σφάλματος ανάλογα με την ποιότητα του καναλιού, όπως αυτή μετριέται από τον λόγο E b /N o, δηλαδή τον λόγο της ενέργειας που απαιτείται για την αποστολή ενός bit δια την ενέργεια του θορύβου (Noise). 2. ΠΛΑΙΣΙΟ ΑΝΑΦΟΡΑΣ 2.1 Προσομοίωση Monte Carlo Οι μέθοδοι Μόντε Κάρλο είναι μια κατηγορία υπολογιστικών αλγορίθμων που στηρίζονται στην επαναλαμβανόμενη τυχαία δειγματοληψία για να υπολογίσουν τα αποτελέσματά τους. Οι μέθοδοι Μόντε Κάρλο χρησιμοποιούνται συχνά στις προσομοιώσεις φυσικών και μαθηματικών συστημάτων. Λόγω του όρι βασίζονται σε επαναλαμβανόμενους υπολογισμους και σε τυχαίους ή (ψευδοτυχαίους) αριθμούς, οι μέθοδοι Μόντε Κάρλο συνήθως εκτελούνται σε υπολογιστή. Οι μέθοδοι του Μόντε Κάρλο τείνουν να χρησιμοποιηθούν όταν είναι ανέφικτο ή αδύνατο να υπολογιστεί ένα ακριβές αποτέλεσμα με έναν ακριβή (ντετερμινιστικό) αλγόριθμο. Γενικά, δεν υπάρχει μία συγκεκριμένη μέθοδος Μόντε Κάρλο. Ο όρος, που δόθηκε από τους φυσικούς Στάνισλαβ Ούλαμ, Ενρίκο Φέρμι, Τζον βον Νιούμαν, και Νίκολας Μετρόπολις, περιγράφει μια μεγάλη και ευρέως χρησιμοποιούμενη κατηγορία προσεγγίσεων για την επίλυση των προβλημάτων. Η χρήση του 1
6 τυχαίου και η επαναλαμβανόμενη φύση της διαδικασίας είναι ανάλογες με τις δραστηριότητες που γίνονται σε ένα καζίνο, και συγκεκριμένο σε αυτό του Μόντε Κάρλο, όπου έπαιζε συχνά ο θείος του Ούλαμ. Οι προσεγγίσεις Μόντε Κάρλο ακολουθούν σε γενικές γραμμές ένα συγκεκριμένο σχέδιο: 1. Καθορίζεται μια περιοχή των πιθανών δεδομένων (inputs) 2. Τα δεδομένα παράγονται τυχαία εντός των επιτρεπόμενων ορίων 3. Εκτελούνται μεμονωμένοι ντετερμινιστικοί υπολογισμοί με τα παραχθέντα δεδομένα 4. Τα αποτελέσματα των μεμονωμένων υπολογισμών αθροίζονται και παράγουν το τελικό αποτέλεσμα. 2.2 Συστήματα DPSK Η Διαμόρφωση Μετατόπισης Φάσης (Phase-Shift Keying - PSK) είναι ένα ψηφιακό σχέδιο διαμόρφωσης που μεταβιβάζει τα στοιχεία με την αλλαγή, ή τη διαμόρφωση, η φάση ενός σήματος αναφοράς (το carrier wave). Οποιοδήποτε ψηφιακό σχέδιο διαμόρφωσης χρησιμοποιεί έναν πεπερασμένο αριθμό ευδιάκριτων σημάτων για να αντιπροσωπεύσει τα ψηφιακά στοιχεία. Το PSK χρησιμοποιεί έναν πεπερασμένο αριθμό φάσεων, όπου η κάθε μία αντιστοιχεί σε ένα μοναδικό σχέδιο δυαδικών bit. Συνήθως, κάθε φάση κωδικοποιεί έναν ίσο αριθμό bit. Ο αποδιαμορφωτής (demodulator), ο οποίος σχεδιάζεται συγκεκριμένα για το σετ συμβόλων που χρησιμοποιείται από το διαμορφωτή, καθορίζει τη φάση του λαμβανόμενου σήματος και την χαρτογραφεί στο σύμβολο που αντιπροσωπεύει, ανακτώντας έτσι τα αρχικά στοιχεία. Αυτό απαιτεί το δέκτη για να είναι σε θέση να συγκρίνει τη φάση του λαμβανόμενου σήματος με ένα σήμα αναφοράς. Εναλλακτικά, αντί τα σχέδια bit να ορίζουν την φάση του κύματος, μπορούν να την αλλάζουν κατά ένα διευκρινισμένο ποσό. Ο αποδιαμορφωτής διαβάζει έτσι την πληροφορία από τις αλλαγές στη φάση του λαμβανόμενου σήματος παρά από την ίδια την φάση. Αυτός ο τρόπος διαμόρφωσης ονομάζεται διαφορική διαμόρφωση μετατόπισης φάσης (DPSK - Differential), δεδομένου ότι εξαρτάται από τη διαφορά μεταξύ των διαδοχικών φάσεων. Το DPSK μπορεί να είναι πολύ πιο απλό στην εφαρμογή από συνηθισμένο PSK δεδομένου ότι δεν υπάρχει καμία ανάγκη για τον αποδιαμορφωτή να έχει ένα αντίγραφο του σήματος αναφοράς για να καθορίσει την ακριβή φάση του λαμβανόμενου σήματος. Αντίθετα όμως, παρουσιάζει το μειονέκτημα ότι κατά την ανταλλαγή, παράγει περισσότερες λανθασμένες αποδιαμορφώσεις. Οι ακριβείς απαιτήσεις του ιδιαίτερου σεναρίου υπό εξέταση καθορίζουν ποιο σχέδιο χρησιμοποιείται. 2
7 Πρόσθετα, τo DPSK λύνει το πρόβλημα των απλών PSK, και ιδιαίτερα των BPSK (Binary Δυαδικό) και QPSK (Quadrature Τετραπλό), όπου υπάρχει μια ασάφεια της φάσης εάν ο αστερισμός περιστρέφεται από κάποια επίδραση (π.χ. θόρυβος) στο κανάλι επικοινωνιών μέσω του οποίου διέρχεται το σήμα. Αυτό το πρόβλημα αντιμετωπίζεται με τη χρησιμοποίηση των στοιχείων για να αλλάξει παρά να τεθεί η φάση. 3
8 3. ΕΙΚΟΝΕΣ ΣΥΣΤΗΜΑΤΟΣ 3.1 Ενδεικτικό Μοντέλο Προσωμείωσης 3.2 M Files Ο παρακάτω κώδικας αφορά τα m-files που είναι απαραίτητα για την εκτέλεση της προσομοίωσης. Το παραπάνω γράφημα είναι ενδεικτικό του συστήματος και δεν χρησιμοποιείται κατά την προσομοίωση. Τα m-files πρέπει να ονομαστούν κατάλληλα (όνομα_συνάρτησης.m π.χ. gngauss.m) και να τοποθετηθούν στον ίδιο φάκελο. Στην συνέχεια, πρέπει να γραφτεί ο κώδικας του sript αρχείου (παράγραφος 3.3 σελίδα 7) και να αποθηκευτεί και αυτός σε m-file στον ίδιο φάκελο, ο οποίος θα πρέπει είτε να οριστεί σαν τρέχων φάκελος (Current 4
9 Directory) στο Matlab ή να προστεθεί στο PATH του Matlab. απαραίτητο για να λειτουργήσουν σωστά οι συναρτήσεις. εντολές στο script δίνουν ετικέτες στους άξονες gngauss Αυτό είναι Οι δύο τελευταίες function [gsrv1,gsrv2]=gngauss(m,sgma) % [gsrv1,gsrv2]=gngauss(m,sgma) % [gsrv1,gsrv2]=gngauss(sgma) % [gsrv1,gsrv2]=gngauss % GNGAUSS generates two independent Gaussian random variables with mean % m and standard deviation sgma. If one of the input arguments is missing, % it takes the mean as 0. % If neither the mean nor the variance is given, it generates two standard % Gaussian random variables. if nargin == 0, m=0; sgma=1; elseif nargin == 1, sgma=m; m=0; u=rand; % a uniform random variable in (0,1) z=sgma*(sqrt(2*log(1/(1-u)))); % a Rayleigh distributed random variable u=rand; % another uniform random variable in (0,1) gsrv1=m+z*cos(2*pi*u); gsrv2=m+z*sin(2*pi*u); Qfunct function [y]=qfunct(x) % [y]=qfunct(x) QFUNCT evaluates the Q-function. % y = 1/sqrt(2*pi) * integral from x to inf of exp(-t^2/2) dt. % y = (1/2) * erfc(x/sqrt(2)). y=(1/2)*erfc(x/sqrt(2)); cm_dpske function [enc_comp] = cm_dpske(e,m,mapping,sequence) % CM_DPSKE differentially encodes a sequence. % E is the average energy. M is the number of constellation points % and mapping is the vector defining how the constellation points are % allocated. Finally, sequence is the uncoded binary data sequence. k=log2(m); N=length(sequence); % if N is not divisible by k. append zerus,so that it is remainder=rem(n,k); if (remainder==0), for i=n+1:n+k-remainder, 5
10 sequence(i)=0; N=N+k-remainder; theta=0; % initially, assume that theta=0 for i=1:k:n index=0; for j=i:i+k-1, index=2*index+sequence(j); index=index+1; theta=mod(2*pi*mapping(index)/m+theta,2*pi); enc_comp((i+k-1)/k,1)=sqrt(e)*cos(theta); enc_comp((i+k-1)/k,2)=sqrt(e)*sin(theta); cm_sm34 function [p]=cm_sm34(snr_in_db) % [p]=cm_sm34(snr_in_db) % CM_SM34 finds the probability of error for the given % value of snr_in_db, signal-to-noise ratio in db. N=10000; E=1; % energy per symbol snr=10^(snr_in_db/10); % signal-to-noise ratio sgma=sqrt(e/(4*snr)); % noise variance % Generation of the data source follows. for i=1:2*n, temp=rand; % a uniform random variable between 0 and 1 if (temp<0.5), dsource(i)=0; 6 % With probability 1/2, source output is "0." else dsource(i)=1; % With probability 1/2, source output is "1" % Differential encoding of the data source follows mapping=[ ]; M=4; [diff_enc_output] = cm_dpske(e,m,mapping,dsource); % Received signal is then for i=1:n, [n(1) n(2)]=gngauss(sgma); r(i,:)=diff_enc_output(i,:)+n; % detection and the probability of error calculation numoferr=0; prev_theta=0; for i=1:n, theta=angle(r(i,1)+j*r(i,2)); delta_theta=mod(theta-prev_theta,2*pi); if ((delta_theta<pi/4) (delta_theta>7*pi/4)), decis=[0 0];
11 elseif (delta_theta<3*pi/4), decis=[0 1]; elseif (delta_theta<5*pi/4) decis=[1 1]; else decis=[1 0]; prev_theta=theta; % Increase the error counter, if the decision is not correct. if ((decis(1)~=dsource(2*i-1)) (decis(2)~=dsource(2*i))), numoferr=numoferr+1; p=numoferr/n; 3.3 Matlab Script echo on SNRindB1=0:2:12; SNRindB2=0:0.1:12; for i=1:length(snrindb1), smld_err_prb(i)=cm_sm34(snrindb1(i)); rate %signal-to- for i=1:length(snrindb2), SNR=exp(SNRindB2(i)*log(10)/10); noise ratio theo_err_prb(i)=2*qfunct(sqrt(snr)); symbol-error rate % Plotting commands follow semilogy(snrindb1,smld_err_prb,'*'); hold semilogy(snrindb2,theo_err_prb); xlabel('eb/n0'); ylabel('pb'); %simulated error %theoretical 7
12 3.4 Τελικό Γράφημα 4. ΣΥΜΠΕΡΑΣΜΑΤΑ ΑΠΟΤΕΛΕΣΜΑΤΑ Βάσει της γνωστής σε εμάς θεωρίας, το αποτέλεσμα της προσομοίωσης εμφανίζει πτώση της πιθανότητας σφάλματος όσο βελτιώνεται η ποιότητα του καναλιού (αυξάνεται δηλαδή του E b /N o ). Αυτό επιβεβαιώνεται από το γράφημα που προκύπτει από την εκτέλεση της προσομοίωσης. 8
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Κ 17 Επικοινωνίες ΙΙ Χειμερινό Εξάμηνο Διάλεξη 15 η Νικόλαος Χ. Σαγιάς Επίκουρος Καθηγητής Webpage: http://eclass.uop.gr/courses/tst15
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ. Ενότητα 4: Δειγματοληψία και Κβάντιση Εικόνας
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ Ενότητα 4: Δειγματοληψία και Κβάντιση Εικόνας Ιωάννης Έλληνας Τμήμα Υπολογιστικών Συστημάτων Άδειες Χρήσης
Ψηφιακές Τηλεπικοινωνίες. Πιθανότητα Σφάλματος για Δυαδική Διαμόρφωση
Ψηφιακές Τηλεπικοινωνίες Πιθανότητα Σφάλματος για Δυαδική Διαμόρφωση Σύνδεση με τα Προηγούμενα Σχεδιάστηκε ο βέλτιστος δέκτης για κανάλι AWGN Επειδή πάντοτε υπάρχει ο θόρυβος, ακόμη κι ο βέλτιστος δέκτης
Σταθερή περιβάλλουσα (Constant Envelope)
Διαμόρφωση ολίσθησης φάσης (Phase Shift Keying-PSK) Σταθερή περιβάλλουσα (Constant Envelope) Ίση Ενέργεια συμβόλων 1 Binary Phase Shift keying (BPSK) BPSK 2 Quaternary Phase Shift Keying (QPSK) 3 Αστερισμός-Διαγράμματα
ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ
Τμήμα Πληροφορικής και Τηλεπικοινωνιών ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ ΨΗΦΙΑΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ Εργαστήριο 9 ο : Διαμόρφωση BPSK & QPSK Βασική Θεωρία Εισαγωγή Κατά την μετάδοση ψηφιακών δεδομένων
ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ. «ΜΕΛΕΤΗ ΚΑΙ ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΜΕΤΡΗΣΕΙΣ BER ΓΙΑ ΣΗΜΑΤΑ QPSK, π/8 PSK, 16QAM, 64- QAM ΜΕ ΧΡΗΣΗ ΓΕΝΝΗΤΡΙΑΣ ΣΗΜΑΤΟΣ ΚΑΙ ΑΝΑΛΥΤΗ ΣΗΜΑΤΟΣ»
ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ «ΜΕΛΕΤΗ ΚΑΙ ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΜΕΤΡΗΣΕΙΣ BER ΓΙΑ ΣΗΜΑΤΑ QPSK, π/8 PSK, 16QAM, 64- QAM ΜΕ ΧΡΗΣΗ ΓΕΝΝΗΤΡΙΑΣ ΣΗΜΑΤΟΣ ΚΑΙ ΑΝΑΛΥΤΗ ΣΗΜΑΤΟΣ» ΟΛΓΑ ΛΑΔΑ Α.Ε.Μ. 2572 ΑΘΑΝΑΣΙΑ ΧΡΟΝΗ Α.Ε.Μ 1802 ΕΠΙΒΛΕΠΩΝ
ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ
Σχολή Θετικών Επιστημών Τεχνολογίας Τηλεπικοινωνιών Τμήμα Επιστήμης και Τεχνολογίας Τηλεπικοινωνιών ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ ΕΠΙΚΟΙΝΩΝΙΕΣ ΙI Εργαστήριο 7 ο : Διαμόρφωση BPSK & QPSK
Ψηφιακές Τηλεπικοινωνίες. Δισδιάστατες Κυματομορφές Σήματος
Ψηφιακές Τηλεπικοινωνίες Δισδιάστατες Κυματομορφές Σήματος Εισαγωγή Στα προηγούμενα μελετήσαμε τη διαμόρφωση PAM δυαδικό και Μ-αδικό, βασικής ζώνης και ζωνοπερατό Σε κάθε περίπτωση προέκυπταν μονοδιάστατες
Συστήματα Επικοινωνιών ΙI
+ Διδάσκων: Δρ. Κ. Δεμέστιχας e-mail: cdemestichas@uowm.gr Συστήματα Επικοινωνιών ΙI M-κά συστήματα διαμόρφωσης: Μ-PSK, M-FSK, M-QAM, DPSK + Ιστοσελίδα nιστοσελίδα του μαθήματος: n https://eclass.uowm.gr/courses/icte302/
Τηλεπικοινωνιακά Συστήματα ΙΙ
Τηλεπικοινωνιακά Συστήματα ΙΙ Διάλεξη 4: Ψηφιακή Διαμόρφωση Φάσης Phase Shift Keying (PSK) Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Ατζέντα Μαθηματική περιγραφή δυαδικής PSK (BPSK) Φάσμα σήματος διαμορφωμένου
Baseband Transmission
Ψηφιακές Επικοινωνίες Baseband ransmission Antipodal Signalling - Binary Orthogonal Signalling Probability of Error M-ary Orthogonal Signalling Waveforms Detection M-PAM detection Probability of error
Κωδικοποίηση Χώρου-Χρόνου. Χρόνου
Κωδικοποίηση Χώρου-Χρόνου Χρόνου Μέρος Ι: Σχήμα Alamouti Ομάδα Ασύρματων Τηλεπικοινωνιακών Συστημάτων Τμήμα Ηλεκτρολόγων Μηχανικών & Μ/Υ Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Γιώργος Καραγιαννίδης Βασίλειος
Ψηφιακές Επικοινωνίες
Ψηφιακές Επικοινωνίες Ενότητα 3: Παναγιώτης Μαθιόπουλος Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών Μέρος Β Διαμόρφωση ολίσθησης φάσης (Phase Shift Keying-PSK) Σταθερή περιβάλλουσα (Constant
ΚΕΦΑΛΑΙΟ ΠΕΜΠΤΟ ΜΕΤΑΤΡΟΠΗ ΑΝΑΛΟΓΙΚΟΥ ΣΗΜΑΤΟΣ ΣΕ ΨΗΦΙΑΚΟ
ΚΕΦΑΛΑΙΟ ΠΕΜΠΤΟ ΜΕΤΑΤΡΟΠΗ ΑΝΑΛΟΓΙΚΟΥ ΣΗΜΑΤΟΣ ΣΕ ΨΗΦΙΑΚΟ 5.1 Tο θεώρημα δειγματοληψίας. Χαμηλοπερατά σήματα 5.2 Διαμόρφωση πλάτους παλμού 5.3 Εύρος ζώνης καναλιού για ένα PAM σήμα 5.4 Φυσική δειγματοληψία
Probability and Random Processes (Part II)
Probability and Random Processes (Part II) 1. If the variance σ x of d(n) = x(n) x(n 1) is one-tenth the variance σ x of a stationary zero-mean discrete-time signal x(n), then the normalized autocorrelation
Τηλεπικοινωνιακά Συστήματα ΙΙ
Τηλεπικοινωνιακά Συστήματα ΙΙ Διάλεξη 3: Εισαγωγή στην Έννοια της Διαμόρφωσης Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Ατζέντα 1. Η ανάγκη για διαμόρφωση 2. Είδη διαμόρφωσης 3. Διαμόρφωση με ημιτονοειδές
Τηλεπικοινωνιακά Συστήματα ΙΙ
Τηλεπικοινωνιακά Συστήματα ΙΙ Διάλεξη 1: Χωρητικότητα Καναλιών Το θεώρημα Shannon - Hartley Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Ατζέντα 1. Δυαδική σηματοδοσία 2. Μορφές δυαδικής σηματοδοσίας 3.
Συστήματα Επικοινωνιών ΙI
+ Διδάσκων: Δρ. Κ. Δεμέστιχας e-mail: cdemestichas@uowm.gr Συστήματα Επικοινωνιών ΙI FSK, MSK Πυκνότητα φάσματος ισχύος βασικής ζώνης + Ιστοσελίδα nιστοσελίδα του μαθήματος: n https://eclass.uowm.gr/courses/icte302/
Τηλεπικοινωνιακά Συστήματα ΙΙ
Τηλεπικοινωνιακά Συστήματα ΙΙ Διάλεξη 6: Ψηφιακή Διαμόρφωση Φάσης Phase Shift Keying (PSK) με Ορθογωνική Σηματοδοσία Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Ατζέντα Ορθογωνική Σηματοδοσία Διαμόρφωση
Τηλεπικοινωνιακά Συστήματα ΙΙ
Τηλεπικοινωνιακά Συστήματα ΙΙ Διάλεξη 3: Ψηφιακή Διαμόρφωση Πλάτους Amplitude Shift Keying (ASK) Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Ατζέντα Ψηφιακή Διαμόρφωση Πλάτους (ASK) Μαθηματική περιγραφή
ΜΕΛΕΤΗ ΚΑΙ ΠΡΟΣΟΜΟΙΩΣΗ ΙΑΜΟΡΦΩΣΕΩΝ ΣΕ ΨΗΦΙΑΚΑ ΣΥΣΤΗΜΑΤΑ ΕΠΙΚΟΙΝΩΝΙΩΝ.
Τµήµα Ηλεκτρονικής ΜΕΛΕΤΗ ΚΑΙ ΠΡΟΣΟΜΟΙΩΣΗ ΙΑΜΟΡΦΩΣΕΩΝ ΣΕ ΨΗΦΙΑΚΑ ΣΥΣΤΗΜΑΤΑ ΕΠΙΚΟΙΝΩΝΙΩΝ. Σπουδαστής: Γαρεφαλάκης Ιωσήφ Α.Μ. 3501 Επιβλέπων καθηγητής : Ασκορδαλάκης Παντελής. -Χανιά 2010- ΠΕΡΙΛΗΨΗ : Η παρούσα
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΜΔΕ Προηγμένα Τηλεπικοινωνιακά Συστήματα και Δίκτυα Διάλεξη 5 η Νικόλαος Χ. Σαγιάς Επίκουρος Καθηγητής Wepage: http://eclass.uop.gr/courses/tst233
BandPass (4A) Young Won Lim 1/11/14
BandPass (4A) Copyright (c) 22 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version.2 or any later version
Κεφάλαιο 7. Ψηφιακή Διαμόρφωση
Κεφάλαιο 7 Ψηφιακή Διαμόρφωση Ψηφιακή Διαμόρφωση 2 Διαμόρφωση βασικής ζώνης H ψηφιακή πληροφορία μεταδίδεται απ ευθείας με τεχνικές διαμόρφωσης παλμών βασικής ζώνης, οι οποίες δεν απαιτούν τη χρήση ημιτονοειδούς
ΦΡΟΝ ΑΣΚΗΣΕΙΣ-2 ΕΙΣΑΓ. ΣΤΑ ΣΥΣΤΗΜΑΤΑ ΕΠΙΚΟΙΝΩΝΙΩΝ
Πρόβλημα 24 a. Να υπολογίσετε το δείκτη d 2 min/eb για ένα 16-QAM. b. Να υπολογίσετε το [(d 2 min/eb)16qam/(d 2 min/eb)qpsk]db. c. Αν θεωρήσουμε ότι το μέγεθος των αστερισμών του Ερωτήματος b) έχουν επιλεγεί
Elements of Information Theory
Elements of Information Theory Model of Digital Communications System A Logarithmic Measure for Information Mutual Information Units of Information Self-Information News... Example Information Measure
Τμήμα Μηχανικών Πληροφορικής
Τμήμα Μηχανικών Πληροφορικής ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΘΕΜΑ: ΜΕΛΕΤΗ ΚΑΙ ΠΡΟΣΟΜΟΙΩΣΗ ΤΟΥ ΦΥΣΙΚΟΥ ΣΤΡΩΜΑΤΟΣ ΤΟΥ ΔΟΡΥΦΟΡΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ORBCOMM Study and simulation of ORBCOMM physical layer ΟΝΟΜΑΤΕΠΩΝΥΜΟ: ΤΣΑΝΙΔΟΥ
HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών. Χρόνου (Ι)
HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών Σημάτων Διάλεξη 5: Στοχαστικά/Τυχαία Σήματα Διακριτού Διάλεξη 5: Στοχαστικά/Τυχαία Σήματα Διακριτού Χρόνου (Ι) Στοχαστικά σήματα Στα προηγούμενα: Ντετερμινιστικά
Αρχές Τηλεπικοινωνιών
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Αρχές Τηλεπικοινωνιών Ενότητα #11: Ψηφιακή Διαμόρφωση Χ. ΚΑΡΑΪΣΚΟΣ Τμήμα Μηχανικών Αυτοματισμών Τ.Ε. Άδειες Χρήσης Το παρόν εκπαιδευτικό
Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.
Bayesian statistics DS GA 1002 Probability and Statistics for Data Science http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall17 Carlos Fernandez-Granda Frequentist vs Bayesian statistics In frequentist
2 η Εργαστηριακή Άσκηση
Πανεπιστήμιο Πατρών Τμήμα Μηχ. Η/Υ & Πληροφορικής Ψ Η Φ Ι Α Κ Ε Σ Τ Η Λ Ε Π Ι Κ Ο Ι Ν Ω Ν Ι ΕΣ 2 η Εργαστηριακή Άσκηση Σύγκριση Ομόδυνων Ζωνοπερατών Συστημάτων 8-PSK και 8-FSK Στην άσκηση αυτή καλείστε
Χρήστος Ξενάκης. Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων
ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ Κεφάλαιο 5 : Θόρυβος Χρήστος Ξενάκης Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων Περιεχόμενα Ομιλίας Είδη θορύβου Περιγραφή θορύβου Θεώρημα Shannon Hartley Απόδοση ισχύος και εύρους
ΜΕΛΕΤΗ ΓΝΩΣΤΙΚΩΝΝ ΡΑΔΙΟΣΥΣΤΗΜΑΤΩΝ ΕΠΙΚΟΙΝΩΝΙΑΣ
ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡOΦΟΡΙΚΗΣ ΤΕ ΜΕΛΕΤΗ ΓΝΩΣΤΙΚΩΝΝ ΡΑΔΙΟΣΥΣΤΗΜΑΤΩΝ ΕΠΙΚΟΙΝΩΝΙΑΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΤΟΥ ΖΗΣΚΑ ΠΑΝΑΓΙΩΤΗ ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ: Δρ ΕΥΣΤΑΘΙΟΥ ΔΗΜΗΤΡΙΟΣ ΕΠΙΣΚΟΠΗΣΗ ΠΑΡΟΥΣΙΑΣΗΣ Σκοπός Πτυχιακής Εργασίας
ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ
Τμήμα Πληροφορικής και Τηλεπικοινωνιών ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ ΨΗΦΙΑΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ Εργαστήριο 5 ο : Διαμόρφωση Παλμών Βασική Θεωρία Μ-αδική Διαμόρφωση Παλμών Κατά την μετατροπή
Συστήματα Επικοινωνιών
Συστήματα Επικοινωνιών Ενότητα 13: Ψηφιακή Διαμόρφωση Μέρος Γ Μιχαήλ Λογοθέτης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Περιγραφή της διαμόρφωσης διαφορικής
ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Όλοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα μικρότεροι του 10000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Αν κάπου κάνετε κάποιες υποθέσεις
Δυαδικά Αντίποδα Σήματα. Προχωρημένα Θέματα Τηλεπικοινωνιών. Πιθανότητα Σφάλματος σε AWGN Κανάλι. r s n E n. P r s P r s.
Προχωρημένα Θέματα Τηλεπικοινωνιών Πιθανότητα Σφάλματος σε AWGN Κανάλι Δυαδικά Αντίποδα Σήματα Δυαδικά Αντίποδα Σήματα Βασικής Ζώνης) : s (t)=-s (t) Παράδειγμα: Δυαδικό PA s (t)=g T (t) (παλμός με ενέργεια
ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ
Τμήμα Πληροφορικής και Τηλεπικοινωνιών ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ ΨΗΦΙΑΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ Εργαστήριο 6 ο : Διαμόρφωση Θέσης Παλμών Βασική Θεωρία Μ-αδική Διαμόρφωση Παλμών Κατά την μετατροπή
27-Ιαν-2009 ΗΜΥ 429. 2. (ι) Βασική στατιστική (ιι) Μετατροπές: αναλογικό-σεψηφιακό και ψηφιακό-σε-αναλογικό
ΗΜΥ 429 2. (ι) Βασική στατιστική (ιι) Μετατροπές: αναλογικό-σεψηφιακό και ψηφιακό-σε-αναλογικό 1 (i) Βασική στατιστική 2 Στατιστική Vs Πιθανότητες Στατιστική: επιτρέπει μέτρηση και αναγνώριση θορύβου και
HMY 799 1: Αναγνώριση Συστημάτων
HMY 799 : Αναγνώριση Συστημάτων Διάλεξη Στοχαστικές Τυχαίες Μεταβλητές/ Στοχαστικά Σήματα Πειραματικά δεδομένα >Επιλογή τύπου μοντέλου >Επιλογή κριτηρίου >Υπολογισμός >Επικύρωση Προσαρμογή καμπύλης (Curve
Δίκτυα Υπολογιστών. Επικοινωνίες ψηφιακών δεδομένων Εισαγωγικές έννοιες. Κ. Βασιλάκης
Δίκτυα Υπολογιστών Επικοινωνίες ψηφιακών δεδομένων Εισαγωγικές έννοιες Κ. Βασιλάκης Πληροφορική Στόχος: Η παροχή έγκυρης και έγκαιρης πληροφόρησης προς τους χρήστες των συστημάτων της. Πώς επιτυγχάνεται
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Κ 17 Επικοινωνίες ΙΙ Χειμερινό Εξάμηνο Διάλεξη 3 η Νικόλαος Χ. Σαγιάς Επίκουρος Καθηγητής Webpage: http://eclass.uop.gr/courses/tst15
Εισαγωγή στο 802.11 AC Συμβουλές και Λύσεις Υλοποίησης Ασύρματων Δικτύων στο RouterOS v6 MUM 2015 GREECE. Ελευθέριος Λιοδάκης
Εισαγωγή στο 802.11 AC Συμβουλές και Λύσεις Υλοποίησης Ασύρματων Δικτύων στο RouterOS v6 MUM 2015 GREECE Ελευθέριος Λιοδάκης Σχετικά με εμένα! Λιοδάκης Ελευθέριος D&C ELECTRONICS MikroTik Certified Consultant
Μοντέλο Επικοινωνίας Δεδομένων. Επικοινωνίες Δεδομένων Μάθημα 6 ο
Μοντέλο Επικοινωνίας Δεδομένων Επικοινωνίες Δεδομένων Μάθημα 6 ο Εισαγωγή Με τη βοήθεια επικοινωνιακού σήματος, κάθε μορφή πληροφορίας (κείμενο, μορφή, εικόνα) είναι δυνατόν να μεταδοθεί σε απόσταση. Ανάλογα
«Σχεδιασμός Ολοκληρωμένων Κυκλωμάτων» Χειμερινό εξάμηνο Μηχανές Πεπερασμένων Καταστάσεων
«Σχεδιασμός Ολοκληρωμένων Κυκλωμάτων» Χειμερινό εξάμηνο 2016-2017 Μηχανές Πεπερασμένων Καταστάσεων Παρασκευάς Κίτσος http://diceslab.cied.teiwest.gr Επίκουρος Καθηγητής Tμήμα Μηχανικών Πληροφορικής ΤΕ
Τηλεπικοινωνίες. Ενότητα 6: Ψηφιακή Διαμόρφωση. Μιχάλας Άγγελος Τμήμα Μηχανικών Πληροφορικής ΤΕ
Τηλεπικοινωνίες Ενότητα 6: Ψηφιακή Διαμόρφωση Μιχάλας Άγγελος Τμήμα Μηχανικών Πληροφορικής ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,
ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ
Σχολή Θετικών Επιστημών Τεχνολογίας Τηλεπικοινωνιών Τμήμα Επιστήμης και Τεχνολογίας Τηλεπικοινωνιών ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ ΕΠΙΚΟΙΝΩΝΙΕΣ ΙI Εργαστήριο 4 ο : Διαμόρφωση Παλμών Βασική
Συστήματα Επικοινωνιών
Συστήματα Επικοινωνιών Ενότητα 5: Μαθιόπουλος Παναγιώτης Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών Περιγραφή ενότητας Πλεονεκτήματα-Μειονεκτήματα ψηφιακών επικοινωνιών, Κριτήρια Αξιολόγησης
ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ενότητα 12: Συνοπτική Παρουσίαση Ανάπτυξης Κώδικα με το Matlab Σαμαράς Νικόλαος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Παλμοκωδική Διαμόρφωση. Pulse Code Modulation (PCM)
Παλμοκωδική Διαμόρφωση Pulse Code Modulation (PCM) Pulse-code modulation (PCM) Η PCM είναι ένας στοιχειώδης τρόπος διαμόρφωσης που δεν χρησιμοποιεί φέρον! Το μεταδιδόμενο (διαμορφωμένο) σήμα PCM είναι
mapper κανάλι slicer/ demapper AWGN P e Υπολογισµός BER
EE725 Ειδικά Θέµατα Ψηφιακών Επικοινωνιών ηµήτρης Τουµπακάρης 07/06/2007 Τελική εργασία µαθήµατος Μέρος 1 ο Στο πρώτο µέρος της εργασίας θα υλοποιηθεί ένα απλό σύστηµα διαµόρφωσης/αποδιαµόρφωσης και µετάδοσης
Λύσεις Θεµάτων Εξεταστικής Ιανουαρίου 2009 Mάθηµα: «Ψηφιακές Επικοινωνίες» G F = 0.8 T F = 73 0 K
Λύσεις Θεµάτων Εξεταστικής Ιανουαρίου 9 Mάθηµα: «Ψηφιακές Επικοινωνίες» Θέµα 1 ο (3%) A =6 o K P R = 1pWatt SNR IN G LNA =13dB LNA =3 K LNA G F =.8 F = 73 K Φίλτρο G = db F = 8 db Ενισχυτής IF SNR OU 1.
Μαρία Μακρή Α.Ε.Μ: 3460
TEΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ «Μελέτη και προσομοίωση ενός πομποδέκτη για το Διαδίκτυο των Πραγμάτων» Study and simulation
Ψηφιακές Επικοινωνίες
Ψηφιακές Επικοινωνίες Ενότητα 2: Παναγιώτης Μαθιόπουλος Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών Εισαγωγή (1) Οι Ψηφιακές Επικοινωνίες (Digital Communications) καλύπτουν σήμερα το
Fault Models, Modular Redundancy, Canonical Resilient Structures, Reliability and Availability Models
Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών ΗΜΥ 424: Συστηματα Ανοχης Σφαλματων Εαρινό Εξάμηνο 2016-2017 Καθηγητής: Χριστόφορος Χατζηκωστής Σειρά Ασκήσεων 1 Fault Models,
Statistics 104: Quantitative Methods for Economics Formula and Theorem Review
Harvard College Statistics 104: Quantitative Methods for Economics Formula and Theorem Review Tommy MacWilliam, 13 tmacwilliam@college.harvard.edu March 10, 2011 Contents 1 Introduction to Data 5 1.1 Sample
Εργαστήριο 8: Τεχνικές πολλαπλής πρόσβασης στα Δίκτυα Κινητών Επικοινωνιών
Εργαστήριο 8: Τεχνικές πολλαπλής πρόσβασης στα Δίκτυα Κινητών Επικοινωνιών Σε ένα σύστημα τηλεπικοινωνιών πολλών χρηστών, όπου περισσότεροι από ένας χρήστες στέλνουν πληροφορίες μέσω ενός κοινού καναλιού,
Σύνδεση με τα Προηγούμενα. Προχωρημένα Θέματα Τηλεπικοινωνιών. Εισαγωγή (2) Εισαγωγή. Βέλτιστος Δέκτης. παρουσία AWGN.
Προχωρημένα Θέματα Τηλεπικοινωνιών Βέλτιστος Δέκτης για Ψηφιακά Διαμορφωμένα Σήματα παρουσία AWGN Σύνδεση με τα Προηγούμενα Στις «Ψηφιακές Τηλεπικοινωνίες», αναφερθήκαμε στο βέλτιστο δέκτη ψηφιακά διαμορφωμένων
ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ
Σχολή Θετικών Επιστημών Τεχνολογίας Τηλεπικοινωνιών Τμήμα Επιστήμης και Τεχνολογίας Τηλεπικοινωνιών ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ ΕΠΙΚΟΙΝΩΝΙΕΣ ΙI Εργαστήριο 7 ο : Διαμόρφωση Θέσης Παλμών
ΔΕΚΤΕΣ ΔΙΑΦΟΡΙΚΗΣ ΛΗΨΗΣ
ΔΕΚΤΕΣ ΔΙΑΦΟΡΙΚΗΣ ΛΗΨΗΣ (Diversity Receivers) Alexandros-Apostolos A. Boulogeorgos e-mail: ampoulog@auth.gr WCS GROUP, EE Dept, AUTH ΑΝΑΓΚΑΙΟΤΗΤΑ ΔΙΑΦΟΡΙΣΜΟΥ Η ισχύς σε κάθε όδευση παρουσιάζει διακυμάνσεις
ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ. Εργαστήριο 8 ο. Αποδιαμόρφωση PAM-PPM με προσαρμοσμένα φίλτρα
Τμήμα Πληροφορικής και Τηλεπικοινωνιών ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ ΨΗΦΙΑΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ Εργαστήριο 8 ο Αποδιαμόρφωση PAM-PPM με προσαρμοσμένα φίλτρα Βασική Θεωρία Σε ένα σύστημα μετάδοσης
ΤΕΙ ΚΡΗΤΗΣ ΤΜ. ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡ/ΚΗΣ & ΠΟΛΥΜΕΣΩΝ ΔΙΔΑΣΚΩΝ: Δρ. Γ. ΓΑΡΔΙΚΗΣ. Δορυφορική ψηφιακή τηλεόραση
ΤΕΙ ΚΡΗΤΗΣ ΤΜ. ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡ/ΚΗΣ & ΠΟΛΥΜΕΣΩΝ ΔΙΔΑΣΚΩΝ: Δρ. Γ. ΓΑΡΔΙΚΗΣ 4 Δορυφορική ψηφιακή τηλεόραση Δορυφορική τηλεόραση: Η εκπομπή και λήψη του τηλεοπτικού σήματος από επίγειους σταθμούς μεταξύ
Άσκηση 1. Α. Υπολογίστε χωρίς να εκτελέσετε κώδικα FORTRAN τα παρακάτω: Ποιά είναι η τελική τιμή του Z στα παρακάτω κομμάτια κώδικα FORTRAN:
Άσκηση 1 Α. Υπολογίστε χωρίς να εκτελέσετε κώδικα FORTRAN τα παρακάτω: Ποιά είναι η τελική τιμή του J στα παρακάτω κομμάτια κώδικα FORTRAN: INTEGER J J = 5 J = J + 1 J = J + 1 INTEGER X, Y, J X = 2 Y =
Κινητά Δίκτυα Επικοινωνιών
Κινητά Δίκτυα Επικοινωνιών Ενότητα 8: Πιθανότητα Σφάλματος σε AWGN Κανάλι Καθ. Κώστας Μπερμπερίδης Πολυτεχνική Σχολή Τμήμα Μηχανικών Η/Υ & Πληροφορικής Σκοποί ενότητας Η εξοικείωση του φοιτητή με τεχνικές
Math 6 SL Probability Distributions Practice Test Mark Scheme
Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry
Solutions to Exercise Sheet 5
Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X
Ασύρματες Ζεύξεις - Εργαστήριο
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ Τμήμα Πληροφορικής και Τηλεπικοινωνιών Version: 2 Ασύρματες Ζεύξεις - Εργαστήριο Εξάμηνο 6 o Ακ. Έτος: 2016-2017 6 ο Εργαστήριο: Μελε τη πολύ οδης διά δοσης (προφι λ ισχύ ος,
Συστήματα Μετάδοσης Πληροφορίας Ενότητα 4: Τεχνικές διαμόρφωσης. Βλάχος Κυριάκος Πολυτεχνική Σχολή Τμήμα Μηχανικών Η/Υ και Πληροφορικής
Συστήματα Μετάδοσης Πληροφορίας Ενότητα 4: Τεχνικές διαμόρφωσης Βλάχος Κυριάκος Πολυτεχνική Σχολή Τμήμα Μηχανικών Η/Υ και Πληροφορικής Σκοποί ενότητας Σκοπός της ενότητας είναι η εξοικείωση του σπουδαστή
ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΑ ΣΥΣΤΗΜΑΤΑ ΙΙ (ΨΗΦΙΑΚΑ ΤΗΛΕΠΙΚΟΙΝΩΙΑΚΑ ΣΥΣΤΗΜΑΤΑ) 3 η ΟΜΑΔΑ ΑΣΚΗΣΕΩΝ
ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΑ ΣΥΣΤΗΜΑΤΑ ΙΙ (ΨΗΦΙΑΚΑ ΤΗΛΕΠΙΚΟΙΝΩΙΑΚΑ ΣΥΣΤΗΜΑΤΑ) 3 η ΟΜΑΔΑ ΑΣΚΗΣΕΩΝ ΑΣΚΗΣΗ 1 Στο ανωτέρω Σχήμα η πρώτη κυματομορφή αποτελεί την είσοδο δύο κωδικοποιητών (Line Coders) ενώ οι επόμενες δύο
ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο
Μηχανική Μάθηση Hypothesis Testing
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Μηχανική Μάθηση Hypothesis Testing Γιώργος Μπορμπουδάκης Τμήμα Επιστήμης Υπολογιστών Procedure 1. Form the null (H 0 ) and alternative (H 1 ) hypothesis 2. Consider
Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013
Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering
Ψηφιακή Επεξεργασία Εικόνας
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ψηφιακή Επεξεργασία Εικόνας Ενότητα 6 : Κωδικοποίηση & Συμπίεση εικόνας Ιωάννης Έλληνας Τμήμα Η/ΥΣ Άδειες Χρήσης Το παρόν εκπαιδευτικό
Παλμοκωδική Διαμόρφωση. Pulse Code Modulation (PCM)
Παλμοκωδική Διαμόρφωση Pulse Code Modulation (PCM) Pulse-code modulation (PCM) Η PCM είναι ένας στοιχειώδης τρόπος διαμόρφωσης που δεν χρησιμοποιεί φέρον! Το μεταδιδόμενο (διαμορφωμένο) σήμα PCM είναι
Μελέτη και Προσομοίωση n πομπού για ασύρματη πρόσβαση ΦΟΙΤΗΤΗΣ: ΛΑΖΑΡΙΔΗΣ ΚΩΝΣΤΑΝΤΙΝΟΣ ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ: ΕΥΣΤΑΘΙΟΥ ΔΗΜΗΤΡΙΟΣ
Μελέτη και Προσομοίωση 802.11n πομπού για ασύρματη πρόσβαση ΦΟΙΤΗΤΗΣ: ΛΑΖΑΡΙΔΗΣ ΚΩΝΣΤΑΝΤΙΝΟΣ ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ: ΕΥΣΤΑΘΙΟΥ ΔΗΜΗΤΡΙΟΣ A) Προσομοίωση του φάσματος του καναλιού του προτύπου για να φανεί
Εισαγωγή στη Matlab 2 Εισαγωγή στην Αριθμητική Ανάλυση Διδάσκων: Γεώργιος Ακρίβης Βοηθός: Δημήτριος Ζαβαντής
Εισαγωγή στη Matlab 2 Εισαγωγή στην Αριθμητική Ανάλυση Διδάσκων: Γεώργιος Ακρίβης Βοηθός: Δημήτριος Ζαβαντής email: dzavanti@cs.uoi.gr Περιεχόμενα Ορισμοί Λογικοί τελεστές f0r loops while loops if else
Ψηφιακές Τηλεπικοινωνίες. Βέλτιστος Δέκτης
Ψηφιακές Τηλεπικοινωνίες Βέλτιστος Δέκτης Σύνδεση με τα Προηγούμενα Επειδή το πραγματικό κανάλι είναι αναλογικό, κατά τη διαβίβαση ψηφιακής πληροφορίας, αντιστοιχίζουμε τα σύμβολα σε αναλογικές κυματομορφές
1 η Εργαστηριακή Άσκηση MATLAB Εισαγωγή
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΗΠΕΙΡΟΥ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Τ.Ε. Εργαστήριο Επεξεργασία Εικόνας & Βίντεο 1 η Εργαστηριακή Άσκηση MATLAB Εισαγωγή Νικόλαος Γιαννακέας Άρτα 2018 1 Εισαγωγή Το Matlab
Εκτέλεση πράξεων. Ψηφιακά Ηλεκτρονικά και Δυαδική Λογική. Πράξεις με δυαδικούς αριθμούς. Πράξεις με δυαδικούς αριθμούς
Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 24-5 Πράξεις με δυαδικούς αριθμούς (λογικές πράξεις) http://di.ionio.gr/~mistral/tp/csintro/ Μ.Στεφανιδάκης ; Ποιες κατηγορίες
ΗΥ-100: Εισαγωγή στην Επιστήμη Υπολογιστών 3η σειρά ασκήσεων
ΗΥ-100: Εισαγωγή στην Επιστήμη Υπολογιστών η σειρά ασκήσεων Οδηγίες Για τη μεταγλώττιση των προγραμμάτων που ζητούνται θα πρέπει να χρησιμοποιήσετε το gcc με τις παρακάτω παραμέτρους: gcc -ansi -pedantic
ΤΕΙ ΠΕΛΟΠΟΝΝΗΣΟΥ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Τ.Ε.
ΤΕΙ ΠΕΛΟΠΟΝΝΗΣΟΥ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Τ.Ε. ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΑ ΣΥΣΤΗΜΑΤΑ Ι 5 Ο ΕΞΑΜΗΝΟ ΔΙΔΑΣΚΩΝ: Δρ ΒΑΣΙΛΕΙΟΣ ΜΠΟΖΑΝΤΖΗΣ ΨΗΦΙΑΚΗ ΔΙΑΜΟΡΦΩΣΗ ΒΑΣΙΚΗΣ ΖΩΝΗΣ Τα είδη ψηφιακής
Δίκτυα Απευθείας Ζεύξης
Δίκτυα Απευθείας Ζεύξης Επικοινωνία μεταξύ δύο υπολογιστώνοιοποίοιείναι απευθείας συνδεδεμένοι Φυσικό Επίπεδο. Περίληψη Ζεύξεις σημείου προς σημείο (point-to-point links) Ανάλυση σημάτων Μέγιστη χωρητικότητα
ΠΕΙΡΑΜΑΤΙΚΕΣ ΠΡΟΣΟΜΟΙΩΣΕΙΣ ΚΕΦΑΛΑΙΟ 4. είναι η πραγματική απόκριση του j δεδομένου (εκπαίδευσης ή ελέγχου) και y ˆ j
Πειραματικές Προσομοιώσεις ΚΕΦΑΛΑΙΟ 4 Όλες οι προσομοιώσεις έγιναν σε περιβάλλον Matlab. Για την υλοποίηση της μεθόδου ε-svm χρησιμοποιήθηκε το λογισμικό SVM-KM που αναπτύχθηκε στο Ecole d Ingenieur(e)s
Εισαγωγή στους Υπολογιστές
Εισαγωγή στους Υπολογιστές Ενότητα #5: Διαγράμματα ροής (Flow Charts), Δομές επανάληψης Καθ. Δημήτρης Ματαράς Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Διαγράμματα ροής (Flow Charts), Δομές επανάληψης
Δύο είναι οι κύριες αιτίες που μπορούμε να πάρουμε από τον υπολογιστή λανθασμένα αποτελέσματα εξαιτίας των σφαλμάτων στρογγυλοποίησης:
Ορολογία bit (binary digit): δυαδικό ψηφίο. Τα δυαδικά ψηφία είναι το 0 και το 1 1 byte = 8 bits word: η θεμελιώδης μονάδα σύμφωνα με την οποία εκπροσωπούνται οι πληροφορίες στον υπολογιστή. Αποτελείται
Συστήματα Επικοινωνιών
Συστήματα Επικοινωνιών Ενότητα 10: Ψηφιακή Μετάδοση Βασικής Ζώνης Μιχαήλ Λογοθέτης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Παρουσίαση των πινάκων αναζήτησης
Ψηφιακή Επεξεργασία Εικόνας
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ψηφιακή Επεξεργασία Εικόνας Ενότητα 4 : Δειγματοληψία και κβάντιση (Sampling and Quantization) Ιωάννης Έλληνας Τμήμα Η/ΥΣ Άδειες
Εξομοίωση Τηλεπικοινωνιακού Συστήματος Βασικής Ζώνης
Πανεπιστήμιο Πατρών Τμήμα Μηχ. Η/Υ & Πληροφορικής Ακαδημαϊκό Έτος 009-010 Ψ Η Φ Ι Α Κ Ε Σ Τ Η Λ Ε Π Ι Κ Ο Ι Ν Ω Ν Ι ΕΣ η Εργαστηριακή Άσκηση: Εξομοίωση Τηλεπικοινωνιακού Συστήματος Βασικής Ζώνης Στην άσκηση
ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ
Σχολή Θετικών Επιστημών Τεχνολογίας Τηλεπικοινωνιών Τμήμα Επιστήμης και Τεχνολογίας Τηλεπικοινωνιών ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ ΕΠΙΚΟΙΝΩΝΙΕΣ ΙI Εργαστήριο 8 ο : Προσαρμοσμένα Φίλτρα Βασική
Τμήμα Μηχανικών Η/Υ και Πληροφορικής
Τμήμα Μηχανικών Η/Υ και Πληροφορικής Εργαστήριο Επεξεργασίας Σημάτων και Τηλεπικοινωνιών Ασύρματες και Κινητές Επικοινωνίες Τεχνικές Ψηφιακής Διαμόρφωσης και Μετάδοσης Τι θα δούμε στο μάθημα Μια σύντομη
«0» ---> U Volts (13.1) «1» ---> +U Volts
3. ΔΙΑΜΟΡΦΩΣΗ ΚΛΕΙΔΩΜΑΤΟΣ ΦΑΣΗΣ (PSK) 3.. Διαμόρφωση δυαδικού κλειδώματος φάσης (Binary Phase Shift Keying ή ΒPSK) 3.. (Ψηφιακό) σήμα πληροφορίας m(t) To σήμα πληροφορίας m(t) πρέπει να είναι διπολικό
ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB. Κολοβού Αθανασία Ε.Τ.Ε.Π.
ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB Κολοβού Αθανασία Ε.Τ.Ε.Π. http://users.uoa.gr/~akolovou/ MATRIX LABORATORY Μαθηματικό λογισμικό πακέτο Everything is a matrix Εύκολο να ορίσουμε τους πίνακες >> A = [6 3; 5 0] A = 6
Behavioral & Mixed VHDL Architectures Finite State Machines in VHDL
ΗΜΥ211 Εργαστήριο Ψηφιακών Συστημάτων Behavioral & Mixed VHDL Architectures Finite State Machines in VHDL Διδάσκoντες: Δρ. Αγαθοκλής Παπαδόπουλος και Δρ. Γιώργος Ζάγγουλος Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων
Behavioral & Mixed VHDL Architectures Finite State Machines in VHDL
ΗΜΥ211 Εργαστήριο Ψηφιακών Συστημάτων Behavioral & Mixed VHDL Architectures Finite State Machines in VHDL Διδάσκoντες: Δρ. Γιώργος Ζάγγουλοςκαι Δρ. Παναγιώτα Δημοσθένους Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων
Ψηφιακές Επικοινωνίες
Ψηφιακές Επικοινωνίες Ενότητα 3: Μαθιόπουλος Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών Μέρος Α 3 Διαμόρφωση βασικής ζώνης (1) H ψηφιακή πληροφορία μεταδίδεται απ ευθείας με τεχνικές
ST5224: Advanced Statistical Theory II
ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known
ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 2
ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 5.4: Στατιστικοί Μέσοι Όροι 5.5 Στοχαστικές Ανελίξεις (Stochastic Processes)
Σύντομες εισαγωγικές σημειώσεις για την. Matlab
Σύντομες εισαγωγικές σημειώσεις για την Matlab Δήλωση Μεταβλητών Για να εισάγει κανείς δεδομένα στη Matlab υπάρχουν πολλοί τρόποι. Ο πιο απλός είναι στη γραμμή εντολών να εισάγουμε αυτό που θέλουμε και
ΗΜΥ211 Εργαστήριο Ψηφιακών Συστημάτων
ΗΜΥ211 Εργαστήριο Ψηφιακών Συστημάτων Behavioral & Mixed VHDL Architectures Finite State Machines in VHDL Διδάσκων: Γιώργος Ζάγγουλος Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών
ΤΕΙ ΠΕΛΟΠΟΝΝΗΣΟΥ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ
ΤΕΙ ΠΕΛΟΠΟΝΝΗΣΟΥ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ ΜΑΘΗΜΑ: ΔΟΡΥΦΟΡΙΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ (ΕΡΓΑΣΤΗΡΙΟ), 7 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 1 Έστω σύστημα δορυφορικής ζεύξης το οποίο υλοποιείται