Baseband Transmission
|
|
- Πάνος Μήτζου
- 6 χρόνια πριν
- Προβολές:
Transcript
1 Ψηφιακές Επικοινωνίες Baseband ransmission Antipodal Signalling - Binary Orthogonal Signalling Probability of Error M-ary Orthogonal Signalling Waveforms Detection M-PAM detection Probability of error
2 Ανίχνευση υαδικού Σήµατος σε Gaussian Noise s i ( t) x n( t) r( t) (AWGN) h(t) z( t) t= Η ανάκτηση του σήµατος στο δέκτη αποτελείται από δύο µέρη Signal correlator ή Matched filter z( ) s i ( t) µετατρέπει το σήµα λήψης σε µία µεταβλητή z() z()ονοµάζεται test statistics Ανιχνευτής (Detector) (ή decision circuit) συγκρίνει το z()µε κάποιο κατώφλι (threshold)γ, z( ) H 1 > < H γ όπου H 1 και H είναι οι δύοδυνατές υποθέσεις (binary likelihoods) H 1 H Page 349
3 Οι λειτουργίες του Signal correlatorκαιτου detectorείναι ανεξάρτητες η µία από την άλλη. Αφού το r(t)έχει µετασχηµατιστεί σε z(),η µορφή της κυµατοµορφής δεν έχει πλέον σηµασία! Αυτό σηµαίνει ότι κάθε κυµατοµορφήεκποµπής µετασχηµατίζεται σε z() για τη διαδικασία της ανίχνευσης. Εποµένως, detection για baseband και bandpass είναι το ίδιο!! Ένας δηµοφιλής detector που ελαχιστοποιεί την πιθανότητα σφάλµατος (probability of error) είναι γνωστός ως maximum likelihood detector (MLD). Page 35
4 Για antipodal signaling (polar NRZ ή -PAM ή BPSK) x(t) A -A t 3 5 η έξοδος από το matched filter z(t) [z = conv(x, h)] είναι: z(t) A -A και κατά τις στιγµές δειγµατοληψίας z(k), k=1,, παίρνουµε (απουσία θορύβου) τις τιµές (test statistics ή decision variables) Α Τ, -Α Τ, -Α Τ, Α Τ, Α Τ,
5 Orthogonal signalling Έστω ότι ένα δυαδικό ορθογώνιο σύστηµα σηµατοδοσίας χρησιµοποιεί δύο κυµατοµορφές, για τις οποίες ισχύει η συνθήκη ορθογωνιότητας: Παράδειγµα: b s ( τ ) s ( τ ) dτ= 1
6 Binary orthogonal signalling Ο δέκτης προσαρµοσµένου φίλτρου για την µετάδοση µε δύο ορθογώνιες κυµατοµορφές δίνεται Για το παράδειγµα:
7 Binary orthogonal signalling - Correlator-ype Receiver Ισοδύναµα, ο συσχετιστής (correlator) cross-correlates το σήµα λήψης, r(t), µε τα δύο πιθανά σύµβολα εκποµπής s (t)και s 1 (t) x r( t) s t ( ) x z () dt z () dt z ( t ) z t 1 ( ) t = z ( ) z 1 ( ) Maximum Detector ( ) s t i s t 1 ( ) Η έξοδος του συσχετιστήτη στιγµή t= για το z ή για το z 1 δίνεται: =z z ( ) r( t) s ( t) dt z 1( ) r( t) s1( t) dt =z Page 375
8 Binary orthogonal signalling - Correlator-ype Receiver Μία άλλη εκδοχή του correlator receiver δίνεται στο παρακάτω διάγραµµα Ο Detector συγκρίνει την είσοδο z() µε το r( t) z x () dt z ( t ) s ( t ) Σ t = x s t 1 ( ) z () dt - + z t 1 ( ) z( ) s ( t) i Page 378
9 Binary orthogonal signalling - Correlator-ype Receiver Μερικές φορές ένας µόνο correlatorχρησιµοποιείται αλλά µε σήµα συσχετισµού (correlating signal) να δίνεται από s 1 (t) - s (t) r( t) x s ( t) s ( t) 1 z () dt t = s ( t) i Page 378
10 Πιθανότητα λάθους µεταξύ συµβόλων Θα δούµε µία γενική και πολύ σηµαντική σχέση για την πιθανότητα λάθους δύο συµβόλων κάποιας µετάδοσης σε σχέση µε την Ευκλείδεια απόσταση τους στο διάγραµµα αστερισµού. Η σχέση αυτή θα χρησιµοποιείται στη συνέχεια για όλες τις διαµορφώσεις βασική ζώνης και διέλευση ζώνης!!! Έστω δύο ισοπίθανασύµβολα µετάδοσης s 1 (t) και s (t) Η περιοχή ανίχνευσης για το καθένα δίνεται στο παρακάτω σχήµα D 1 n r D s 1 n A s
11 Πιθανότητα λάθους µεταξύ συµβόλων Έστω ότι το s 1 στέλνεται Λάθος θα συµβεί όταν το r είναι στην περιοχή D το οποίο σηµαίνει ότι η απόσταση µεταξύ της προβολής του r s1 στο s s1 (point A) από το s1, δηλαδή το πλάτος n, είναι µεγαλύτερoαπό την απόσταση d 1 /, όπου d 1 = s-s1 Η απόσταση d 1 δίνεται από τη σχέση ( ( ) ( )) d = s t s t dt 1 1 D 1 n r D s 1 n A s
12 Πιθανότητα λάθους µεταξύ συµβόλων Με µαθηµατικά έχουµε: Pe= Pr n> d 1 x y 1 1 N = = π N e d d 1 1 N dx e dy π y= N x / dx dy= dx= N / dy N / = Q d 1 N D 1 n r D σ = N n s 1 n A s Pe d = Q σ n
13 Πιθανότητα Λάθους για Binary Ορθογώνια Σήµατα Unipolar Signaling (orthogonal) s ( t) = A, t, for binary1 1 s ( t) =, t, for binary r( t) x s ( t ) s ( t ) 1 r(t) = s(t) + n(t) z () dt Για s 1 (t): a ( ) = E z( ) 1 z( t) { } t= z( ) ( ) > < γ z o A s ( t) i = A + E An( τ ) dτ = A Για s (t): { } { a ( ) = E z( ) = E [ + n( τ )] Adτ} = { } { ( τ ) ( τ ) τ [ ( τ )] τ} = E r s d = E A+ n Ad { } t Page 4
14 a1+ a A γ = = Επίσης d [ ] 1( ) ( ) E = s t s t dt= A E d A E b P = Q Q Q e = = N N N s o s 1 φ 1 E E E b = + = E γ E = A E b είναι η µέση τιµή ενέργειας για τη unipolar σηµατοδοσία Page 43
15 Bipolar Signaling (antipodal) s ( t) = A, t, for binary1 1 s ( t) = A, t, for binary A -A t r( t) x s t 1 ( ) z () dt z ( t ) - s ( t ) z( ) Σ z ( ) > s ( t) < γ o i + t= z x () dt z ( t ) 1 z( t) = z ( t) z ( t) a a = γ = 1 1 E = A+ A dt= A d z ( ) E d 4A E b Pe = Q Q Q N = = o N o N o Page 44
16 Οrthogonal signals Antipodal Signals P Q E b N F = H G I b K J o P b F E = Q H G I b N K J o Αφού 1log 1 = 3 db, λέµε ότιηbinary antipodal signaling έχει κατά 3 db καλύτερη επίδοση απότην orthogonal. Probability of Bit Error 1 Othogonal Antipodal Q o I HG o K J Q E Nb Eb/No (db) F F HG I Eb N K J 3-dB Page 45
17 Σύγκριση BER Επίδοσης Pro obability of Bit Error Othogonal Antipodal 1-8 Για E b /N o = 1 db P b,orthogonal = 9.x1 - P b, antipodal = 7.8x Eb/No (db) Για το ίδιο λαµβανόµενο signal to noise ratio, antipodal δίνει µικρότερο bit error rate από orthogonalσηµατοδοσία Page 46
18 M-ary orthogonal signalling - Correlator-ype Receiver Έστω ότι έχουµε Mπιθανά σήµαταεκποµπής s i (t), i =, 1,.., M-1. ο σήµα λήψηςµπορεί να συσχετιστεί µε µία bank από correlatorsµε το καθένα προσαρµοσµένο (matched) σε µία από τις δυνατές κυµατοµορφέςκαι επιλέγοντας αυτό που δίνει τη µεγαλύτερη έξοδο αποφασίζουµε για την κυµατοµορφή εκποµπής! x z () dt t = z ( ) s ( t ) r( t) x s t 1 ( ) z () dt z 1 ( ) Selects s i (t) with the max z i (t) s ( t) i x z () dt zm 1( ) sm 1( t)
19 Matched Filter Receiver για Μ-ary orthogonal Το Matched filter είναι το φίλτρο ανίχνευσης που βελτιστοποιεί το SNR της µεταβλητής απόφασης και είναι ισοδύναµο µε τον correlator receiver (προηγούµενη διαφάνεια). Και τα δύο είναι διαφορετικές υλοποιήσεις του βέλτιστου φίλτρου!!! h ( t ) = s ( t ) b z t ( ) z ( ) r( t) h ( t ) = s ( t ) 1 b z t 1 ( ) z 1 ( ) Selects s i (t) with the max z i (t) s ( t) i h( t) = s ( t) M 1 b zm 1( t) t = zm 1( )
20 Orthogonal basis functions for Μ-ary orthogonal Γενίκευση σε M-αδικά Ορθογώνια Σήµατα M=4 imedomain Signal Space s( t) = Aφ1( t) s = ( A,,, ) s1( t) = Aφ( t) s1 = (, A,, ) s( t) = Aφ3( t) s = (,, A, ) s ( t) = Aφ ( t) s = (,,, A) s j ( t) s j ( t) φ j ( t) = = A E όπου {φ 1 (t), φ (t), φ 3 (t) φ 4 (t)} είναι ένα set από ορθοκανονικές basis functions M=8 imedomain Signal Space s( t) = Aφ1( t) s = ( A,,,,,,, ) s1( t) = Aφ( t) s1 = (, A,,,,,, ) s( t) = Aφ3( t) s = (,, A,,,,, ) s3( t) = Aφ4( t) s3 = (,,, A,,,, ) s4( t) = Aφ5( t) s4 = (,,,, A,,, ) s5( t) = Aφ6( t) s5 = (,,,,, A,, ) s6( t) = Aφ7( t) s6 = (,,,,,, A, ) s ( t) = Aφ ( t) s = (,,,,,,, A) όπου {φ 1 (t), φ (t), φ 3 (t) φ 4 (t), φ 5 (t), φ 6 (t), φ 7 (t) φ 8 (t)} είναι ένα set από ορθοκανονικές basis functions
21 Orthogonal basis functions for Μ-ary orthogonal General M (M is a power of ) ime Domain Signal Space s ( t) = Aφ ( t) s = ( A,,,,,,, ) 1 s ( t) = Aφ ( t) s = (, A,,,,,, ) 1 1 s ( t) = Aφ ( t) s = (,, A,,,,, ) 3 s ( t) = Aφ ( t) s = (,,, A,,,, ) s ( t) = Aφ ( t) s = (,,,,,,,, A) M 1 M M 1 όπου {φ 1 (t), φ (t), φ 3 (t) φ M-1 (t)} είναι ένα set απόορθοκανονικές basis functions
22 M-ary PAM σηµατοδοσία 4-PAM Κυµατοµορφές ιάγραµµα Αστερισµού
23 M-ary PAM σηµατοδοσία Πιθανότητα λάθους για 4-PAM Μεταξύ του s και s1 E average 9d + d + d + 9d = = 4 5d 3 d ( d) 1= = 4 d dt d Pe 1 = d 1 4d d = = N N N Q Q Q
24 M-ary PAM σηµατοδοσία Πιθανότητα λάθους για 4-PAM Μεταξύ του s και s Μεταξύ του s1 και s 3 d ( d) d = dt= 16d d 1 16d Pe = Q = Q N N d ( d) 1 = = 4 d dt d Pe 1 = Q d 1 4d = Q N N
25 M-ary PAM σηµατοδοσία Πιθανότητα λάθους για 4-PAM ( ) ( ) ( ) ( ) ( s ) ( s error) ( s ) ( s error) Pe4 PAM = Pr s Pr s error + Pr s1 Pr s1 error + Pr Pr + Pr Pr 3 3 Αν θεωρήσουµε λάθος µόνο µε γειτονικά σύµβολα έχουµε 1 d 1 d 1 d 1 d Pe= Q + Q + Q + Q N N N N 3 d = Q N 3 E average = Q 5 N
26 M-ary PAM σηµατοδοσία Για διαµορφώσεις Μ-PAM µε Mπλάτη εκποµπής A m = (m - M + 1)d, m =, 1,, M-1, η πιθανότητα σφάλµατος συµβόλου του MLD δίνεται από τη σχέση: ( M ) 6 1 E average Pe = ( 1) M PAM Q M M N Αν ορίσουµε ως µέση ενέργεια ανά bit: E b = E average / log (M), θα έχουµε: P ( M ) ( ) 1 6 log b bm PAM = Q ( M M 1) N M E τότε
27 Είναι η µέθοδος απεικόνισης των symbol states ενός διαµορφωµένου bandpass σήµατος µε γνώµονα το amplitude και phase που έχουν. Με άλλα λόγια, είναι µία γεωµετρική απεικόνιση των σηµάτων. Υπάρχουν 3 κατηγορίες δυαδικών (binary) σηµάτων: Antipodal Binary Signal Constellations ύο σήµατα λέγονται antipodalόταν το ένα είναι το αντίθετο του άλλου s 1 (t) = - s (t) π.χ. s 1 (t)=αcos(w c t + π) και s (t)=αcos(w c t) Τα σήµατα έχουν ίση ενέργεια µε κάθε signal point στην πραγµατική γραµµή s o s 1 E E φ 1 E E avg = + E = E On-Off Keying (OOK) Είναι µονοδιάστατα σήµατα που είναι είτε ON είτε OFF µε σηµεία σηµατοδοσίας πάνω στον πραγµατικό άξονα
28 Με το OOK, υπάρχουν symbol states που απεικονίζονται στο constellation Orthogonal s (t) = (χωρίς carrier amplitude, δίνει το σηµείο στην αρχή) s 1 (t) = A cosω c t (δίνει το σηµείο σηµατοδοσίας στο θετικό οριζόντιο άξονα σε απόσταση A από την αρχή) s o s 1 E φ 1 E E E avg = + = Έχει µία δι-διάστατη γεωµετρική απεικόνιση επειδή αποτελείται από δύο γραµµικά ανεξάρτητες συναρτήσεις s 1 (t) και s (t) E s o s 1 E E E avg = + = E E Γενικά, ο οριζόντιος άξονας λαβαίνεται ως αναφορά για τασύµβολα που είναι In-phaseµε το φέρον (carrier) cosω c t, ενώ ο κάθετος άξονας εκπροσωπεί την Quadratureσυνιστώσα φέροντος, sinω c t
Λύσεις Θεµάτων Εξεταστικής Ιανουαρίου 2009 Mάθηµα: «Ψηφιακές Επικοινωνίες» G F = 0.8 T F = 73 0 K
Λύσεις Θεµάτων Εξεταστικής Ιανουαρίου 9 Mάθηµα: «Ψηφιακές Επικοινωνίες» Θέµα 1 ο (3%) A =6 o K P R = 1pWatt SNR IN G LNA =13dB LNA =3 K LNA G F =.8 F = 73 K Φίλτρο G = db F = 8 db Ενισχυτής IF SNR OU 1.
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΜΔΕ Προηγμένα Τηλεπικοινωνιακά Συστήματα και Δίκτυα Διάλεξη 5 η Νικόλαος Χ. Σαγιάς Επίκουρος Καθηγητής Wepage: http://eclass.uop.gr/courses/tst233
Ψηφιακές Τηλεπικοινωνίες. Πιθανότητα Σφάλματος για Δυαδική Διαμόρφωση
Ψηφιακές Τηλεπικοινωνίες Πιθανότητα Σφάλματος για Δυαδική Διαμόρφωση Σύνδεση με τα Προηγούμενα Σχεδιάστηκε ο βέλτιστος δέκτης για κανάλι AWGN Επειδή πάντοτε υπάρχει ο θόρυβος, ακόμη κι ο βέλτιστος δέκτης
Ψηφιακές Τηλεπικοινωνίες. Δισδιάστατες Κυματομορφές Σήματος
Ψηφιακές Τηλεπικοινωνίες Δισδιάστατες Κυματομορφές Σήματος Εισαγωγή Στα προηγούμενα μελετήσαμε τη διαμόρφωση PAM δυαδικό και Μ-αδικό, βασικής ζώνης και ζωνοπερατό Σε κάθε περίπτωση προέκυπταν μονοδιάστατες
Τηλεπικοινωνιακά Συστήματα ΙΙ
Τηλεπικοινωνιακά Συστήματα ΙΙ Διάλεξη 3: Ψηφιακή Διαμόρφωση Πλάτους Amplitude Shift Keying (ASK) Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Ατζέντα Ψηφιακή Διαμόρφωση Πλάτους (ASK) Μαθηματική περιγραφή
Τηλεπικοινωνιακά Συστήματα ΙΙ
Τηλεπικοινωνιακά Συστήματα ΙΙ Διάλεξη 3: Εισαγωγή στην Έννοια της Διαμόρφωσης Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Ατζέντα 1. Η ανάγκη για διαμόρφωση 2. Είδη διαμόρφωσης 3. Διαμόρφωση με ημιτονοειδές
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Κ 17 Επικοινωνίες ΙΙ Χειμερινό Εξάμηνο Διάλεξη 15 η Νικόλαος Χ. Σαγιάς Επίκουρος Καθηγητής Webpage: http://eclass.uop.gr/courses/tst15
Θόρυβος και λάθη στη μετάδοση PCM
Θόρυβος και λάθη στη μετάδοση PCM Πότε συμβαίνουν λάθη Για μονοπολική (on-off) σηματοδότηση το σήμα στην έξοδο είναι, όπου α k =0 όταν y( kts) ak n( kts) μεταδίδεται το bit 0 και α k =Α όταν μεταδίδεται
Κεφάλαιο 3. Μετάδοση στη βασική ζώνη
Κεφάλαιο 3 Σύνοψη Μετάδοση στη βασική ζώνη Στο κεφάλαιο αυτό εξετάζεται η μετάδοση στη βασική ζώνη για σήματα ορθογώνια και σήματα διαμόρφωσης πλάτους καθώς και η χρήση του προσαρμοσμένου φίλτρου και του
ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ
Σχολή Θετικών Επιστημών Τεχνολογίας Τηλεπικοινωνιών Τμήμα Επιστήμης και Τεχνολογίας Τηλεπικοινωνιών ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ ΕΠΙΚΟΙΝΩΝΙΕΣ ΙI Εργαστήριο 7 ο : Διαμόρφωση BPSK & QPSK
Κεφάλαιο 7. Ψηφιακή Διαμόρφωση
Κεφάλαιο 7 Ψηφιακή Διαμόρφωση Ψηφιακή Διαμόρφωση 2 Διαμόρφωση βασικής ζώνης H ψηφιακή πληροφορία μεταδίδεται απ ευθείας με τεχνικές διαμόρφωσης παλμών βασικής ζώνης, οι οποίες δεν απαιτούν τη χρήση ημιτονοειδούς
ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ
Τμήμα Πληροφορικής και Τηλεπικοινωνιών ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ ΨΗΦΙΑΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ Εργαστήριο 9 ο : Διαμόρφωση BPSK & QPSK Βασική Θεωρία Εισαγωγή Κατά την μετάδοση ψηφιακών δεδομένων
Συστήματα Επικοινωνιών
Συστήματα Επικοινωνιών Ενότητα 10: Ψηφιακή Μετάδοση Βασικής Ζώνης Μιχαήλ Λογοθέτης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Παρουσίαση των πινάκων αναζήτησης
Συστήματα Επικοινωνιών ΙI
+ Διδάσκων: Δρ. Κ. Δεμέστιχας e-mail: cdemestichas@uowm.gr Συστήματα Επικοινωνιών ΙI FSK, MSK Πυκνότητα φάσματος ισχύος βασικής ζώνης + Ιστοσελίδα nιστοσελίδα του μαθήματος: n https://eclass.uowm.gr/courses/icte302/
BandPass (4A) Young Won Lim 1/11/14
BandPass (4A) Copyright (c) 22 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version.2 or any later version
Συστήματα Επικοινωνιών ΙI
+ Διδάσκων: Δρ. Κ. Δεμέστιχας e-mail: cdemestichas@uowm.gr Συστήματα Επικοινωνιών ΙI M-κά συστήματα διαμόρφωσης: Μ-PSK, M-FSK, M-QAM, DPSK + Ιστοσελίδα nιστοσελίδα του μαθήματος: n https://eclass.uowm.gr/courses/icte302/
Συστήματα Επικοινωνιών
Συστήματα Επικοινωνιών Ενότητα 5: Μαθιόπουλος Παναγιώτης Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών Περιγραφή ενότητας Πλεονεκτήματα-Μειονεκτήματα ψηφιακών επικοινωνιών, Κριτήρια Αξιολόγησης
Ψηφιακές Τηλεπικοινωνίες. Διαμόρφωση Παλμών κατά Πλάτος
Ψηφιακές Τηλεπικοινωνίες Διαμόρφωση Παλμών κατά Πλάτος Διαμόρφωση Παλμών κατά Πλάτος Είπαμε ότι κατά την ψηφιακή μετάδοση μέσα από αναλογικό κανάλι κάθε σύμβολο αντιστοιχίζεται σε μια κυματομορφή σήματος
Ψηφιακή μετάδοση στη βασική ζώνη. Baseband digital transmission
Ψηφιακή μετάδοση στη βασική ζώνη Baseband digital transmission Ψηφιακά σήματα Ένα ψηφιακό σήμα δεν είναι τίποτα άλλο από μια διατεταγμένη ακολουθία συμβόλων Η πηγή πληροφορίας παράγει σύμβολα από ένα αλφάβητο
Κωδικοποίηση Χώρου-Χρόνου. Χρόνου
Κωδικοποίηση Χώρου-Χρόνου Χρόνου Μέρος Ι: Σχήμα Alamouti Ομάδα Ασύρματων Τηλεπικοινωνιακών Συστημάτων Τμήμα Ηλεκτρολόγων Μηχανικών & Μ/Υ Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Γιώργος Καραγιαννίδης Βασίλειος
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Κ 17 Επικοινωνίες ΙΙ Χειμερινό Εξάμηνο Διάλεξη 14 η Νικόλαος Χ. Σαγιάς Επίκουρος Καθηγητής Webpage: hp://ecla.uop.gr/coure/s15 e-mail:
Μορφοποίηση και ιαµόρφωση Σηµάτων Βασικής Ζώνης
Μορφοποίηση και ιαµόρφωση Σηµάτων Βασικής Ζώνης Μορφοποίηση - Κωδικοποίηση πηγής Μορφοποίηση παλµών βασικής ζώνης Μορφοποίηση & µετάδοση βασικής ζώνης Mορφοποίηση-κωδικοποίηση πηγής Mορφοποίηση παλµών
Δυαδικά Αντίποδα Σήματα. Προχωρημένα Θέματα Τηλεπικοινωνιών. Πιθανότητα Σφάλματος σε AWGN Κανάλι. r s n E n. P r s P r s.
Προχωρημένα Θέματα Τηλεπικοινωνιών Πιθανότητα Σφάλματος σε AWGN Κανάλι Δυαδικά Αντίποδα Σήματα Δυαδικά Αντίποδα Σήματα Βασικής Ζώνης) : s (t)=-s (t) Παράδειγμα: Δυαδικό PA s (t)=g T (t) (παλμός με ενέργεια
ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ
Τμήμα Πληροφορικής και Τηλεπικοινωνιών ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ ΨΗΦΙΑΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ Εργαστήριο 6 ο : Διαμόρφωση Θέσης Παλμών Βασική Θεωρία Μ-αδική Διαμόρφωση Παλμών Κατά την μετατροπή
Ψηφιακές Επικοινωνίες
Ψηφιακές Επικοινωνίες Ενότητα 2: Παναγιώτης Μαθιόπουλος Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών Εισαγωγή (1) Οι Ψηφιακές Επικοινωνίες (Digital Communications) καλύπτουν σήμερα το
Σύνδεση με τα Προηγούμενα. Προχωρημένα Θέματα Τηλεπικοινωνιών. Εισαγωγή (2) Εισαγωγή. Βέλτιστος Δέκτης. παρουσία AWGN.
Προχωρημένα Θέματα Τηλεπικοινωνιών Βέλτιστος Δέκτης για Ψηφιακά Διαμορφωμένα Σήματα παρουσία AWGN Σύνδεση με τα Προηγούμενα Στις «Ψηφιακές Τηλεπικοινωνίες», αναφερθήκαμε στο βέλτιστο δέκτη ψηφιακά διαμορφωμένων
Ψηφιακές Επικοινωνίες
Ψηφιακές Επικοινωνίες Ενότητα 3: Μαθιόπουλος Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών Μέρος Α 3 Διαμόρφωση βασικής ζώνης (1) H ψηφιακή πληροφορία μεταδίδεται απ ευθείας με τεχνικές
Τηλεπικοινωνιακά Συστήματα ΙΙ
Τηλεπικοινωνιακά Συστήματα ΙΙ Διάλεξη 1: Χωρητικότητα Καναλιών Το θεώρημα Shannon - Hartley Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Ατζέντα 1. Δυαδική σηματοδοσία 2. Μορφές δυαδικής σηματοδοσίας 3.
Transmitter Channel Receiver. (modulated signal ) s(t) + r(t) (received signal ) n(t) (noise) G n (f)
Ψηφιακές Επικοινωνίες Ανίχνευση εδοµένων σε Βασική Ζώνη Θεωρία Θορύβου (additive white Gaussia Noise/AWGN) υαδική (Biary) Μετάδοση Σήµατος Ανίχνευση (Detectio) Biary Σήµατος σε Gaussia Θόρυβο Προσαρµοσµένο
Τηλεπικοινωνιακά Συστήματα ΙΙ
Τηλεπικοινωνιακά Συστήματα ΙΙ Διάλεξη 4: Ψηφιακή Διαμόρφωση Φάσης Phase Shift Keying (PSK) Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Ατζέντα Μαθηματική περιγραφή δυαδικής PSK (BPSK) Φάσμα σήματος διαμορφωμένου
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΜΔΕ Προηγμένα Τηλεπικοινωνιακά Συστήματα και Δίκτυα Διάλεξη 6 η Νικόλαος Χ. Σαγιάς Επίκουρος Καθηγητής Webpage: http://eclass.uop.gr/courses/tst215
Εξομοίωση Τηλεπικοινωνιακού Συστήματος Βασικής Ζώνης
Πανεπιστήμιο Πατρών Τμήμα Μηχ. Η/Υ & Πληροφορικής Ακαδημαϊκό Έτος 009-010 Ψ Η Φ Ι Α Κ Ε Σ Τ Η Λ Ε Π Ι Κ Ο Ι Ν Ω Ν Ι ΕΣ η Εργαστηριακή Άσκηση: Εξομοίωση Τηλεπικοινωνιακού Συστήματος Βασικής Ζώνης Στην άσκηση
Ψηφιακές Τηλεπικοινωνίες. Βέλτιστος Δέκτης
Ψηφιακές Τηλεπικοινωνίες Βέλτιστος Δέκτης Σύνδεση με τα Προηγούμενα Επειδή το πραγματικό κανάλι είναι αναλογικό, κατά τη διαβίβαση ψηφιακής πληροφορίας, αντιστοιχίζουμε τα σύμβολα σε αναλογικές κυματομορφές
Ο Βέλτιστος Φωρατής. Σεραφείµ Καραµπογιάς
Ο Βέλτιστος Φωρατής Ο φωρατής σήµατος, µε τη βοήθεια ενός κανόνα απόφασης, βασιζόµενος στην παρατήρηση του διανύσµατος, λαµβάνει µία απόφαση ως προς το µεταδιδόµενο σύµβολο, έτσι ώστε να µεγιστοποιείται
Σταθερή περιβάλλουσα (Constant Envelope)
Διαμόρφωση ολίσθησης φάσης (Phase Shift Keying-PSK) Σταθερή περιβάλλουσα (Constant Envelope) Ίση Ενέργεια συμβόλων 1 Binary Phase Shift keying (BPSK) BPSK 2 Quaternary Phase Shift Keying (QPSK) 3 Αστερισμός-Διαγράμματα
Τηλεπικοινωνιακά Συστήματα ΙΙ
Τηλεπικοινωνιακά Συστήματα ΙΙ Διάλεξη 6: Ψηφιακή Διαμόρφωση Φάσης Phase Shift Keying (PSK) με Ορθογωνική Σηματοδοσία Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Ατζέντα Ορθογωνική Σηματοδοσία Διαμόρφωση
Ψηφιακή μετάδοση στη βασική ζώνη. Baseband digital transmission
Ψηφιακή μετάδοση στη βασική ζώνη Baseband digital transmission Ψηφιακά σήματα Το ψηφιακό σήμα δεν είναι τίποτε άλλο από μια διατεταγμένη σειρά συμβόλων παραγόμενη από μια διακριτή πηγή πληροφορίας Η πηγή
ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ
Σχολή Θετικών Επιστημών Τεχνολογίας Τηλεπικοινωνιών Τμήμα Επιστήμης και Τεχνολογίας Τηλεπικοινωνιών ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ ΕΠΙΚΟΙΝΩΝΙΕΣ ΙI Εργαστήριο 7 ο : Διαμόρφωση Θέσης Παλμών
ΕΕ725 Ειδικά Θέµατα Ψηφιακών Επικοινωνιών 4η διάλεξη
ΕΕ725 Ειδικά Θέµατα Ψηφιακών Επικοινωνιών 4η διάλεξη ηµήτρης-αλέξανδρος Τουµπακάρης Τµήµα ΗΜ&ΤΥ, Πανεπιστήµιο Πατρών 15 Μαρτίου 2010 ηµήτρης-αλέξανδρος Τουµπακάρης Ειδικά Θέµατα Ψηφιακών Επικοινωνιών 4η
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΉΜΑ ΕΠΙΣΤΗΜΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Κ 7 Επικοινωνίες ΙΙ Χειμερινό Εξάμηνο Διάλεξη η Νικόλαος Χ. Σαγιάς Επίκουρος Καθηγητής Webpage: hp://ecla.uop.gr/coure/s5 e-mail:
ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ
Σχολή Θετικών Επιστημών Τεχνολογίας Τηλεπικοινωνιών Τμήμα Επιστήμης και Τεχνολογίας Τηλεπικοινωνιών ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ ΕΠΙΚΟΙΝΩΝΙΕΣ ΙI Εργαστήριο 5 ο : Προσαρμοσμένα Φίλτρα Βασική
Τμήμα Μηχανικών Η/Υ και Πληροφορικής
Τμήμα Μηχανικών Η/Υ και Πληροφορικής Εργαστήριο Επεξεργασίας Σημάτων και Τηλεπικοινωνιών Ασύρματες και Κινητές Επικοινωνίες Τεχνικές Ψηφιακής Διαμόρφωσης και Μετάδοσης Τι θα δούμε στο μάθημα Μια σύντομη
Μετάδοση πληροφορίας - Διαμόρφωση
Μετάδοση πληροφορίας - Διαμόρφωση MYE006: ΑΣΥΡΜΑΤΑ ΔΙΚΤΥΑ Ευάγγελος Παπαπέτρου ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΜΗΧ. Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ Διάρθρωση μαθήματος Μετάδοση Βασικές έννοιες Διαμόρφωση ορισμός είδη
Συστήματα Επικοινωνιών
Συστήματα Επικοινωνιών Ενότητα 11: Ψηφιακή Διαμόρφωση Μέρος Α Μιχαήλ Λογοθέτης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Περιγραφή διαμόρφωσης παλμών κατά
ΤΕΙ ΠΕΛΟΠΟΝΝΗΣΟΥ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Τ.Ε.
ΤΕΙ ΠΕΛΟΠΟΝΝΗΣΟΥ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Τ.Ε. ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΑ ΣΥΣΤΗΜΑΤΑ Ι 5 Ο ΕΞΑΜΗΝΟ ΔΙΔΑΣΚΩΝ: Δρ ΒΑΣΙΛΕΙΟΣ ΜΠΟΖΑΝΤΖΗΣ ΨΗΦΙΑΚΗ ΔΙΑΜΟΡΦΩΣΗ ΒΑΣΙΚΗΣ ΖΩΝΗΣ Τα είδη ψηφιακής
ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ. Εργαστήριο 8 ο. Αποδιαμόρφωση PAM-PPM με προσαρμοσμένα φίλτρα
Τμήμα Πληροφορικής και Τηλεπικοινωνιών ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ ΨΗΦΙΑΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ Εργαστήριο 8 ο Αποδιαμόρφωση PAM-PPM με προσαρμοσμένα φίλτρα Βασική Θεωρία Σε ένα σύστημα μετάδοσης
Κινητά Δίκτυα Επικοινωνιών
Κινητά Δίκτυα Επικοινωνιών Ενότητα 8: Πιθανότητα Σφάλματος σε AWGN Κανάλι Καθ. Κώστας Μπερμπερίδης Πολυτεχνική Σχολή Τμήμα Μηχανικών Η/Υ & Πληροφορικής Σκοποί ενότητας Η εξοικείωση του φοιτητή με τεχνικές
Εξίσωση Τηλεπικοινωνιακών Διαύλων
Εξίσωση Τηλεπικοινωνιακών Διαύλων ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΜΔΕ ΠΡΟΗΓΜΈΝΑ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΑ ΣΥΣΤΉΜΑΤΑ ΚΑΙ ΔΙΚΤΥΑ Ενότητα 2 η Φίλτρα Μηδενισμού της ISI Νικόλαος Χ.
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Κ 17 Επικοινωνίες ΙΙ Χειμερινό Εξάμηνο Διάλεξη 3 η Νικόλαος Χ. Σαγιάς Επίκουρος Καθηγητής Webpage: http://eclass.uop.gr/courses/tst15
Ψηφιακή Επεξεργασία Σημάτων
Ψηφιακή Επεξεργασία Σημάτων Ενότητα 7: Μετατροπή Σήματος από Αναλογική Μορφή σε Ψηφιακή Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Μετατροπή Αναλογικού Σήματος σε Ψηφιακό Είδη Δειγματοληψίας: Ιδανική
ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Διαμόρφωση Γωνίας (Angle Modulation) - 1
ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Διαμόρφωση Γωνίας (Angle Modulaion) - 1 0.0: Μετάδοση Αναλογικής & Ψηφιακής Πληροφορίας (Baseband, Bandpass) Σύντομη
ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ
Σχολή Θετικών Επιστημών Τεχνολογίας Τηλεπικοινωνιών Τμήμα Επιστήμης και Τεχνολογίας Τηλεπικοινωνιών ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ ΕΠΙΚΟΙΝΩΝΙΕΣ ΙI Εργαστήριο 4 ο : Διαμόρφωση Παλμών Βασική
Μετάδοση πληροφορίας - Διαμόρφωση
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΜΗΧ. Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ Μετάδοση πληροφορίας - Διαμόρφωση MYE006-ΠΛΕ065: ΑΣΥΡΜΑΤΑ ΔΙΚΤΥΑ Ευάγγελος Παπαπέτρου Διάρθρωση μαθήματος Βασικές έννοιες μετάδοσης Διαμόρφωση ορισμός
Hard decision Soft decision
Ψηφιακές ιαµορφώσεις ιέλευσης Ζώνης Καθηγητής Γεώργιος Ευθύµογλου October 1, 2017 Εισαγωγή Σύµβολα εκποµπής M-PSK, M-QAM Αντιστοίχιση (mapping) bits σε σύµβολα εκποµπής Αποδιαµόρφωση (demodulation) Hard
ΦΡΟΝ ΑΣΚΗΣΕΙΣ ΕΙΣ. ΣΤΑ ΣΥΣΤΗΜΑΤΑ ΕΠΙΚΟΙΝΩΝΙΩΝ
Πρόβλημα 1 ΦΡΟΝ ΑΣΚΗΣΕΙΣ ΕΙΣ. ΣΤΑ ΣΥΣΤΗΜΑΤΑ ΕΠΙΚΟΙΝΩΝΙΩΝ ΚΑΝΑΛΙ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ s + r Ο πομπός στέλνει στο δέκτη μέσω του καναλιού του σχήματος την ακολουθία συμβόλων {st} t=1,2,,10 που ανήκουν στο
ΚΕΦΑΛΑΙΟ ΠΕΜΠΤΟ ΜΕΤΑΤΡΟΠΗ ΑΝΑΛΟΓΙΚΟΥ ΣΗΜΑΤΟΣ ΣΕ ΨΗΦΙΑΚΟ
ΚΕΦΑΛΑΙΟ ΠΕΜΠΤΟ ΜΕΤΑΤΡΟΠΗ ΑΝΑΛΟΓΙΚΟΥ ΣΗΜΑΤΟΣ ΣΕ ΨΗΦΙΑΚΟ 5.1 Tο θεώρημα δειγματοληψίας. Χαμηλοπερατά σήματα 5.2 Διαμόρφωση πλάτους παλμού 5.3 Εύρος ζώνης καναλιού για ένα PAM σήμα 5.4 Φυσική δειγματοληψία
Ψηφιακές Τηλεπικοινωνίες. Πολυδιάστατες Κυματομορφές Σήματος
Ψηφιακές Τηλεπικοινωνίες Πολυδιάστατες Κυματομορφές Σήματος Ανακεφαλαίωση Καθένα από τα Μ σύμβολα αντιστοιχίζεται σε μια αναλογική κυματομορφή Οι κυματομορφές ορίζονται σε ένα N-D χώρο σήματος (Ν Μ) Μονοδιάστατα
ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ
Σχολή Θετικών Επιστημών Τεχνολογίας Τηλεπικοινωνιών Τμήμα Επιστήμης και Τεχνολογίας Τηλεπικοινωνιών ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ ΕΠΙΚΟΙΝΩΝΙΕΣ ΙI Εργαστήριο 8 ο : Προσαρμοσμένα Φίλτρα Βασική
Συστήματα Επικοινωνιών ΙI
+ Διδάσκων: Δρ. Κ. Δεμέστιχας e-mail: cdemestichas@uowm.gr Συστήματα Επικοινωνιών ΙI Ψηφιακή μετάδοση στη βασική ζώνη + Ιστοσελίδα nιστοσελίδα του μαθήματος: n https://eclass.uowm.gr/courses/icte302/ +
Αναλογικές και Ψηφιακές Επικοινωνίες
Αναλογικές και Ψηφιακές Επικοινωνίες Ενότητα 3: Πιθανότητα σφάλματος στη φώραση σήματος Σεραφείμ Καραμπογιάς Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Επικοινωνιών Ο Βέλτιστος Φωρατής Σεραφείμ Καραμπογιάς
Τηλεπικοινωνιακά Συστήματα ΙΙ
Τηλεπικοινωνιακά Συστήματα ΙΙ Διάλεξη 9: Ο συγχρονισμός στις ψηφιακές επικοινωνίες Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Ατζέντα Σκοπός Εισαγωγή Βρόχος κλειδώματος φάσης (Phase Locked Loop - PLL)
Τηλεπικοινωνιακά Συστήματα Ι
Τηλεπικοινωνιακά Συστήματα Ι Διάλεξη 4: Κανάλια Επικοινωνιών Η έννοια της Διαμόρφωσης Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Ατζέντα 1. Κανάλια Επικοινωνίας Είδη καναλιών επικοινωνίας Ηλεκτρομαγνητικό
ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ. «ΜΕΛΕΤΗ ΚΑΙ ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΜΕΤΡΗΣΕΙΣ BER ΓΙΑ ΣΗΜΑΤΑ QPSK, π/8 PSK, 16QAM, 64- QAM ΜΕ ΧΡΗΣΗ ΓΕΝΝΗΤΡΙΑΣ ΣΗΜΑΤΟΣ ΚΑΙ ΑΝΑΛΥΤΗ ΣΗΜΑΤΟΣ»
ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ «ΜΕΛΕΤΗ ΚΑΙ ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΜΕΤΡΗΣΕΙΣ BER ΓΙΑ ΣΗΜΑΤΑ QPSK, π/8 PSK, 16QAM, 64- QAM ΜΕ ΧΡΗΣΗ ΓΕΝΝΗΤΡΙΑΣ ΣΗΜΑΤΟΣ ΚΑΙ ΑΝΑΛΥΤΗ ΣΗΜΑΤΟΣ» ΟΛΓΑ ΛΑΔΑ Α.Ε.Μ. 2572 ΑΘΑΝΑΣΙΑ ΧΡΟΝΗ Α.Ε.Μ 1802 ΕΠΙΒΛΕΠΩΝ
Περιεχόµενα διαλέξεων 2ης εβδοµάδας
Εισαγωγή οµή και πόροι τηλεπικοινωνιακού συστήµατος Σήµατα Περιεχόµενα διαλέξεων 1ης εβδοµάδας Εισαγωγή Η έννοια της επικοινωνιας Ιστορική αναδροµή οµή και πόροι τηλεπικοινωνιακού συστήµατος οµή τηλεπικοινωνιακού
ΘΕΜΑΤΑ & ΛΥΣΕΙΣ ΕΞΕΤΑΣΕΩΝ
ΘΕΜΑΤΑ & ΛΥΣΕΙΣ ΕΞΕΤΑΣΕΩΝ Μάθημα: Επικοινωνίες ΙΙ. Εξεταστική Περίοδος: B Θερινή, 14 Σεπτεμβρίου 2009. ΕΙΣΗΓΗΤΗΣ: Αναστάσιος Παπατσώρης Θέμα 1 ο (25 μονάδες) Ένα ADSL modem λειτουργεί με ταχύτητα downloading
Παλμοκωδική Διαμόρφωση. Pulse Code Modulation (PCM)
Παλμοκωδική Διαμόρφωση Pulse Code Modulation (PCM) Pulse-code modulation (PCM) Η PCM είναι ένας στοιχειώδης τρόπος διαμόρφωσης που δεν χρησιμοποιεί φέρον! Το μεταδιδόμενο (διαμορφωμένο) σήμα PCM είναι
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Κ 17 Επικοινωνίες ΙΙ Χειμερινό Εξάμηνο Διάλεξη 8 η Νικόλαος Χ. Σαγιάς Επίκουρος Καθηγητής Webpage: http://eclass.uop.gr/courses/tst15
ΣΥΓΚΡΙΣΗ ΕΠΙ ΟΣΕΩΝ ΨΗΦΙΑΚΩΝ ΚΑΝΑΛΙΩΝ & ΟΡΙΑ ΤΗΣ ΛΕΙΤΟΥΡΓΙΑΣ ΑΥΤΩΝ
ΕΙΣ. ΣΥΣΤ. ΕΠΙΚΟΙΝΩΝΙΩΝ 011-1 16/1/011 9:45:1 µµ ΣΥΓΚΡΙΣΗ ΕΠΙ ΟΣΕΩΝ ΨΗΦΙΑΚΩΝ ΚΑΝΑΛΙΩΝ & ΟΡΙΑ ΤΗΣ ΛΕΙΤΟΥΡΓΙΑΣ ΑΥΤΩΝ ΑΠΑΙΤΗΣΕΙΣ ΣΕ ΕΥΡΟΣ ΖΩΝΗΣ ΤΩΝ ΣΥΣΤΗΜΑΤΩΝ ΙΑΒΙΒΑΣΗΣ ΙΑΚΡΙΤΩΝ Ε ΟΜΕΝΩΝ Η ΣΧΕΣΗ ΜΕΤΑΞΥ ΕΥΡΟΥΣ
+ r=s+v ΚΑΝΑΛΙ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ. ΦΡΟΝ ΑΣΚΗΣΕΙΣ ΕΙΣ. ΣΤΑ ΣΥΣΤΗΜΑΤΑ ΕΠΙΚΟΙΝΩΝΙΩΝ 30/11/ :27 µµ Πρόβληµα 1
Πρόβληµα 1 Ο ποµπός στέλνει στο δέκτη µέσω του καναλιού του σχήµατος την ακολουθία συµβόλων {s t } t=1,2,,10 που ανήκουν στο αλφάβητο {-3,-1,1,3} Στον δέκτη λαµβάνεται η ακολουθία {r i } i=1,2,,10 του
ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Διαμόρφωση Πλάτους - 1
ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Διαμόρφωση Πλάτους - 1 3.2: Διαμόρφωση Πλάτους (Amplitude Modulation, AM) 3.3: Διαμόρφωση Πλευρικής Ζώνης με Καταπιεσμένο
ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 3, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 3
ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 3, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 3 5.6: Μέση Τιμή, Συναρτήσεις Συσχέτισης & Συνδιασποράς 5.7: Μετάδοση Στοχαστικής
ΘΕΜΑΤΑ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΕΣ
Αντικείμενο: Δειγματοληψία ΘΕΜΑΤΑ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΕΣ Έστω οτι το σήμα x()=sinc(4) δειγματοληπτείται με συχνότητα δειγματοληψίας διπλάσια της συχνότητας Nyquis και κβαντίζεται με ομοιόμορφη
Δίκτυα Απευθείας Ζεύξης
Δίκτυα Απευθείας Ζεύξης Επικοινωνία μεταξύ δύο υπολογιστώνοιοποίοιείναι απευθείας συνδεδεμένοι Φυσικό Επίπεδο. Περίληψη Ζεύξεις σημείου προς σημείο (point-to-point links) Ανάλυση σημάτων Μέγιστη χωρητικότητα
ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Διαμόρφωση Πλάτους - 1
ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Διαμόρφωση Πλάτους - 1 3.2: Διαμόρφωση Πλάτους (Amplitude Modulation, AM) 3.3: Διαμόρφωση Πλευρικής Ζώνης με Καταπιεσμένο
Επεξεργασία Στοχαστικών Σημάτων
Επεξεργασία Στοχαστικών Σημάτων Ψηφιακή Μετάδοση Αναλογικών Σημάτων Σεραφείμ Καραμπογιάς Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών Ψηφιακή Μετάδοση Αναλογικών Σημάτων Τα σύγχρονα συστήματα
ΑΝΑΠΤΥΓΜA - ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΑΝΑΛΟΓΙΚΩΝ ΣΗΜΑΤΩΝ. Περιγράψουµε τον τρόπο ανάπτυξης σε σειρά Fourier ενός περιοδικού αναλογικού σήµατος.
3. ΚΕΦΑΛΑΙΟ ΑΝΑΠΤΥΓΜA - ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΑΝΑΛΟΓΙΚΩΝ ΣΗΜΑΤΩΝ Περιγράψουµε τον τρόπο ανάπτυξης σε σειρά Fourier ενός περιοδικού αναλογικού σήµατος. Ορίσουµε το µετασχηµατισµό Fourier ενός µη περιοδικού
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΉΜΑ ΕΠΙΣΤΉΜΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Κ 7 Επικοινωνίες ΙΙ Χειμερινό Εξάμηνο Διάλεξη η Νικόλαος Χ. Σαγιάς Επίκουρος Καθηγητής Webpage: hp://ecla.uop.gr/coure/tst25 e-ail:
Ψηφιακές Τηλεπικοινωνίες. Γεωμετρική Αναπαράσταση Κυματομορφών Σήματος
Ψηφιακές Τηλεπικοινωνίες Γεωμετρική Αναπαράσταση Κυματομορφών Σήματος Ψηφιακό Τηλ/κό Σύστημα: Τι είδαμε ως τώρα; ΠΗΓΗ ΚΩΔΙΚΟΠΟΙΗΤΗΣ ΠΗΓΗΣ ΚΩΔΙΚΟΠΟΙΗΤΗΣ ΚΑΝΑΛΙΟΥ ΦΙΛΤΡΟ ΠΟΜΠΟΥ ΑΠΟΔΙΑΜΟΡΦΩΤΗΣ ΚΑΝΑΛΙ ΔΙΑΜΟΡΦΩΤΗΣ
Παράμετροι σχεδίασης παλμών (Μορφοποίηση παλμών)
Παράμετροι σχεδίασης παλμών (Μορφοποίηση παλμών) Κύριοι παράμετροι στη σχεδίαση παλμών είναι (στο πεδίο συχνοτήτων): Η Συχνότητα του 1ου μηδενισμού (θέλουμε μικρό BW). H ελάχιστη απόσβεση των πλαγίων λοβών
ΛΕΙΤΟΥΡΓΙΑ ΚΑΙ ΑΠΟ ΟΣΗ ΨΗΦΙΑΚΩΝ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ
ΛΕΙΤΟΥΡΓΙΑ ΚΑΙ ΑΠΟ ΟΣΗ ΨΗΦΙΑΚΩΝ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Εξετάζονται οι βασικοί συµβιβασµοί (δυνατότητες ανταλλαγής) µεταξύ των εξής σχεδιαστικών παραµέτρων ψηφιακών τηλεπικοινωνιακών συστηµάτων: Εύρους
Σεραφείµ Καραµπογιάς ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ
ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Εισαγωγή στα Σήµατα Εισαγωγή στα Συστήµατα Ανάπτυγµα - Μετασχηµατισµός Fourier Μετασχηµατισµός Laplace Μετασχηµατισµός z Εφαρµογές 1. ΚΕΦΑΛΑΙΟ ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΗΜΑΤΑ Γενική εικόνα τι
Παλμοκωδική Διαμόρφωση. Pulse Code Modulation (PCM)
Παλμοκωδική Διαμόρφωση Pulse Code Modulation (PCM) Pulse-code modulation (PCM) Η PCM είναι ένας στοιχειώδης τρόπος διαμόρφωσης που δεν χρησιμοποιεί φέρον! Το μεταδιδόμενο (διαμορφωμένο) σήμα PCM είναι
Ευρυζωνικά δίκτυα (2) Αγγελική Αλεξίου
Ευρυζωνικά δίκτυα (2) Αγγελική Αλεξίου alexiou@unipi.gr 1 Σήματα και πληροφορία Βασικές έννοιες 2 Αναλογικά και Ψηφιακά Σήματα Στις τηλεπικοινωνίες συνήθως χρησιμοποιούμε περιοδικά αναλογικά σήματα και
ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ
Τμήμα Πληροφορικής και Τηλεπικοινωνιών ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ ΨΗΦΙΑΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ Εργαστήριο 5 ο : Διαμόρφωση Παλμών Βασική Θεωρία Μ-αδική Διαμόρφωση Παλμών Κατά την μετατροπή
( x) Η ΕΝΝΟΙΑ ΤΗΣ ΤΥΧΑΙΑΣ ΜΕΤΑΒΛΗΤΗΣ - ΠΙΘΑΝΟΤΗΤΑΣ. Βασικά αξιώµατα και ιδιότητες της πιθανότητας. Σεραφείµ Καραµπογιάς
Η ΕΝΝΟΙΑ ΤΗΣ ΤΥΧΑΙΑΣ ΜΕΤΑΒΛΗΤΗΣ - ΠΙΘΑΝΟΤΗΤΑΣ Βασικά αξιώµατα και ιδιότητες της πιθανότητας Σεραφείµ Καραµπογιάς Η αθροιστική συνάρτηση κατανοµής cumulaive diribuio ucio CDF µίας τυχαίας µεταβλητής X ορίζεται
Συστήματα Επικοινωνιών ΙI
+ Διδάσκων: Δρ. Κ. Δεμέστιχας e-mail: cdemestichas@uowm.gr Συστήματα Επικοινωνιών ΙI Παλμοκωδική διαμόρφωση (PCM) I + Ιστοσελίδα nιστοσελίδα του μαθήματος: n https://eclass.uowm.gr/courses/icte302/ + Περιεχόμενα
Αποδιαμόρφωση σημάτων CW με θόρυβο
Αποδιαμόρφωση σημάτων CW με θόρυβο Ορισμοί Το σήμα στη λήψη (μετά το φίλτρο προ-ανίχνευσης) είναι r( t) s( t) n( t) όπου s S, n N R Οι σηματοθορυβικές σχέσεις είναι S S W S SNR SNRb, SNRo N N0B B N Ο ζωνοπερατός
ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 3
ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 3 5.6: Μέση Τιμή, Συναρτήσεις Συσχέτισης (Correlation) & Συνδιασποράς (Covariance)
Συστήματα Επικοινωνιών ΙI
+ Διδάσκων: Δρ. Κ. Δεμέστιχας e-mail: cdemestichas@uowm.gr Συστήματα Επικοινωνιών ΙI Διαφορική Παλμοκωδική Διαμόρφωση + Ιστοσελίδα nιστοσελίδα του μαθήματος: n https://eclass.uowm.gr/courses/icte302/ +
Συστήματα Επικοινωνιών
Συστήματα Επικοινωνιών Ενότητα 12: Ψηφιακή Διαμόρφωση Μέρος B Μιχαήλ Λογοθέτης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Περιγραφή της διαμόρφωσης παλμών
Ραδιοτηλεοπτικά Συστήματα Ενότητα 7: Κωδικοποίηση και Διαμόρφωση
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ραδιοτηλεοπτικά Συστήματα Ενότητα 7: Κωδικοποίηση και Διαμόρφωση Δρ. Νικόλαος- Αλέξανδρος Τάτλας Τμήμα Ηλεκτρονικών Μηχανικών
Εργαστήριο 8: Τεχνικές πολλαπλής πρόσβασης στα Δίκτυα Κινητών Επικοινωνιών
Εργαστήριο 8: Τεχνικές πολλαπλής πρόσβασης στα Δίκτυα Κινητών Επικοινωνιών Σε ένα σύστημα τηλεπικοινωνιών πολλών χρηστών, όπου περισσότεροι από ένας χρήστες στέλνουν πληροφορίες μέσω ενός κοινού καναλιού,
Διαμόρφωση Συχνότητας. Frequency Modulation (FM)
Διαμόρφωση Συχνότητας Frequency Modulation (FM) Τι συμβαίνει με τις γραμμικές διαμορφώσεις; Στη γραμμική διαμόρφωση CW (Carrier Wave) δηλαδή, AM, DSB, SSB, VSB Το πλάτος ενός ημιτονικού φέροντος μεταβάλλεται
Συστήματα Επικοινωνιών Ι
+ Διδάσκων: Δρ. Κ. Δεμέστιχας e-mail: demestihas@uowm.gr Συστήματα Επικοινωνιών Ι Θόρυβος σε συστήματα διαμόρφωσης συνεχούς κυματομορφής (CW) + Περιεχόμενα n Θόρυβος σε συστήματα διαμόρφωσης συνεχούς κυματομορφής
Ψηφιακές Επικοινωνίες
Ψηφιακές Επικοινωνίες Ενότητα 3: Παναγιώτης Μαθιόπουλος Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών Μέρος Β Διαμόρφωση ολίσθησης φάσης (Phase Shift Keying-PSK) Σταθερή περιβάλλουσα (Constant
ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ
Σχολή Θετικών Επιστημών Τμήμα Επιστήμης και Τεχνολογίας Τηλεπικοινωνιών ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ ΕΠΙΚΟΙΝΩΝΙΕΣ Ι Μπατιστάτος Μιχάλης Εργαστήριο ο : Διαμόρφωση ΑΜ Βασική Θεωρία Εισαγωγή
ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 3, Νέα Κτίρια ΣΗΜΜΥ Διαμόρφωση Πλάτους - 2
ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 3, Νέα Κτίρια ΣΗΜΜΥ Διαμόρφωση Πλάτους - 2 3.4: Πολυπλεξία Ορθογωνικών Φερόντων (Quadrature Amplitude Modulation, QAM) 3.5: Μέθοδοι Διαμόρφωσης
Τηλεπικοινωνιακά Συστήματα ΙΙ
Τηλεπικοινωνιακά Συστήματα ΙΙ Διάλεξη 11: Ψηφιακές επικοινωνίες σε κανάλια με διασυμβολική παρεμβολή Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Διασυμβολική παρεμβολή Αντιμετώπιση διασυμβολικής παρεμβολής
Αρχές Τηλεπικοινωνιών
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Αρχές Τηλεπικοινωνιών Ενότητα #11: Ψηφιακή Διαμόρφωση Χ. ΚΑΡΑΪΣΚΟΣ Τμήμα Μηχανικών Αυτοματισμών Τ.Ε. Άδειες Χρήσης Το παρόν εκπαιδευτικό
Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Τομέας Τηλεπικοινωνιών
Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Τομέας Τηλεπικοινωνιών θ QAM: Μια Παραμετρική Οικογένεια Ψηφιακής Διαμόρφωσης και η Επίδοσή