Άσκηση: Απλό Πρότυπο Χωροχρονικής Σκουλικότρυπας

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Άσκηση: Απλό Πρότυπο Χωροχρονικής Σκουλικότρυπας"

Transcript

1 Άσκηση: Απλό Πρότυπο Χωροχρονικής Σκουλικότρυπας

2 Σχήμα 1: Η χωρική γεωμετρία της σκουλικότρυπας. Δύο ασυμπτωτικά επίπεδα μέρη του χώρου συνδέονται με ένα λαιμό ό οποίος μπορεί να κανονιστεί να είναι μικρού μήκους. 1 Πρόβλημα Η χωροχρονική σκουλικότρυπα είναι η απλή χωροχρονική γεωμετρία που συνδέει δυό απομακρυσμένες περιοχές του χώρου οι οποίες είναι ασυμπτωτικά επίπεδες (δηλ. σε αρκετά μεγάλη απόσταση από τα στόμια της σκουλικότρυπας, ο χώρος είναι σχεδόν επίπεδος). Μια τέτοια γεωμετρία φαίνεται στο Σχήμα 1. Απόσταση που διανύει κάποιος περνώντας από τα στόμια της τρύπας, μπορεί να είναι πολύ μικρότερη από την απόσταση των στομίων που διανύει κανείς εκτός της σκουλικότρυπας οπότε, θεωρητικά τουλάχιστον, μπορούν να χρησιμοποιηθούν για διαστρικά / διαγαλαξιακά ταξίδια. Ή, όπως φαίνεται και στο σχήμα, να επικοινωνήσουν περιοχές του χώρου που θα ήταν διαφορετικά ασύνδετες μεταξύ τους. Στην άσκηση αυτή θα μελετήσουμε μια πολύ απλή τέτοια γεωμετρία στο επίπεδο, καθώς και την ελεύθερη κίνηση σωματιδίου μέσα σε αυτή. Η ιδέα αυτή είναι άσκηση στο βιβλίο του J. B. Hartle, Gravity: An Introduction to Einstein s General Relativity, Addison Wesley 003, Κεφ. 7, Ασκ. 5. Παίρνουμε το επίπεδο και αφαιρούμε δύο δίσκους ακτίνας R που τα κέντρα τους απέχουν απόσταση d όπως φαίνεται στο Σχήμα. Ταυτοποιούμε τα σημεία των κύκλων έτσι ώστε το σημείο 1 στον αριστερό κύκλο να ταυτίζεται με το σημείο 1 στον δεξιό, το σημείο με το σημείο κ.ο.κ. Οι δύο κύκλοι δίνονται από τις παραμετρικές 1

3 y θ 4 v 4 θ 3 v x Σχήμα : Απλό πρότυπο της χωρικής γεωμετρία της σκουλικότρυπας που δείχνεται στο Σχήμα 1. Το σωματίδιο κινείται σε όλο το επίπεδό εκτός από τους δίσκους που έχουμε αφαιρέσει. Ο λαιμός της σκουλικότρυπας προτυποποιείται από τους δύο κύκλους x(θ) = ±d/±r cos θ, y(θ) = R sin θ, π < θ π και έχει μηδενικό μήκος έχοντας ταυτίσει τα σημεία του χείλους της σκουλικότρυπας. Η ταυτοποίηση γίνεται με συγκεκριμένη φορά ταυτίζοντας τα σημεία με τό ίδιο θ έτσι ώστε λ.χ. τα σημεία 1,, 3, και 4 να ταυτίζονται (μπορείτε να φανταστητε τι γίνεται αν διπλώσετε το χαρτί κατά μήκος του άξονα των y και κολήσετε τους δύο κύκλους μαζί). Το βύθισμα ενός σωματιδίου μέσα στη σκουλικότρυπα και η ανάδυση από το άλλο χείλος γίνεται όπως φαίνεται για το διάνυσμα v v. εξισώσεις x(θ) = d/ + R cos θ, y(θ) = R sin θ, π < θ π για τον δεξί κύκλο και x(θ) = d/ R cos θ, y(θ) = R sin θ, π < θ π για τον αριστερό. Τα σημεία με το ίδιο θ στους δύο κύκλους ταυτίζονται. Ένα σωμάτιο που βυθίζεται στο αριστερό στόμιο της σκουλικότρυπας με ταχύτητα v αναδύεται άμεσα από το δεξί με ταχύτητα v όπως φαίνεται στο Σχήμα. 1. Γράψτε πρόγραμμα που να υπολογίζει την τροχιά σωματιδίου που να κινείται στη γεωμετρία του Σχήματος. Τα όρια της κίνησης είναι για L/ x L/ και L/ y L/. Όταν το σωμάτιο βγει εκτός των παραπάνω ορίων να πάρετε περιοδικές συνοριακές συνθήκες, δηλ. να ταυτίσετε τα σημεία του ευθύγραμμου τμήματος x = L/ με αυτά του x = +L/ καθώς και αυτά του ευθύγραμμου τμήματος y = L/ με αυτά του y = +L/. Ο χρήστης θα παρέχει τις παραμέτρους R, d και L καθώς και τις αρχικές συνθήκες (x 0, y 0 ), (v 0, φ) όπου v 0 = v 0 (cos φˆx + sin φŷ). Θα δίνει επίσης τις χρονικές παραμέτρους t f και dt για κίνηση στο χρόνο στο διάστημα t [t 0 = 0, t f ] με βήμα dt.. Στη γεωμετρία με L = 0, d = 5, R = 1, σχεδιάστε την τροχιά του σωματιδίου με (x 0, y 0 ) = (0, 1), (v 0, φ) = (1, 10 o ) με t f = 40,

4 dt = Βρείτε τροχιά που να είναι κλειστή χωρίς να περνάει από τα άκρα x = L/, y = L/. Είναι αυτή ευσταθής ως προς μικρές αλλαγές των αρχικών συνθηκών; 4. Βρείτε άλλες κλειστές τροχιές που περνάνε μέσα από τα χείλη της σκουλικότρυπας και εξετάστε αν είναι ευσταθείς ως προς μικρές αλλαγές των αρχικών συνθηκών; 5. Προσθέστε στο πρόγραμμά σας τη δυνατότητα να υπολογίζει την απόσταση που διάνυσε το σωματίδιο. Ένα σωμάτιο ξεκινάει από τη θέση ( x 0, 0) και κινείται προς την +x διεύθυνση μέχρι τη θέση (x 0, 0) με x 0 > R + d/. Σχεδιάστε στο χαρτί την τροχιά που ακολουθεί και υπολογίστε την απόσταση που διάνυσε. Στη συνέχεια επιβεβαιώστε τους υπολογισμούς σας με το πρόγραμμά σας. 6. Μεταβάλλετε το πρόγραμμά σας έτσι ώστε στα άκρα x = L/, y = L/ το σωμάτιο να ανακλάται ελαστικά. Επανασχεδιάστε τις τροχιές των παραπάνω ερωτημάτων. Να σημειώσουμε πάντως, ότι παρόλο που τέτοιες γεωμετρίες έχουν εξάψει την φαντασία των φυσικών αλλά και των συγγραφέων επιστημονικής φαντασίας, η υλοποίηση τους στα πλαίσια της τρέχουσας θεωρίας για τη βαρύτητα, τη Γενική Θεωρία της Σχετικότητας, δεν είναι δυνατή. Για την κατασκευή τους, η εξίσωση του Einstein απαιτεί εξωτικού τύπου ύλη με αρνητική πυκνότητα ενέργειας η οποία δεν έχει παρατηρηθεί στη φύση. Επίσης αναμένεται ότι τέτοια κατασκευάσματα θα ήταν ασταθή από την παραμικρή διαταραχή στη γεωμετρία που θα προκαλούνταν από λ.χ. ένα πεδίο που θα έπεφτε προς την τρύπα. Έτσι κάποιος ταξιδευτής σκουλικότρυπας θα προκαλούσε ταυτόχρονα και την κατάρρευσή της. Αν ήταν δυνατόν να κατασκευαστούν μακροσκοπικές σκουλικότρυπες οι οποίες να αντέχαν το πέρασμα παρατηρητών μέσα από αυτές θα είχαμε και το εξής παράδοξο: Θα μπορούσαμε να κανονίσουμε ο ταξιδιώτης της σκουλικότρυπας να βγει από το άλλο στόμιο σε προγενέστερο χρόνο, έτσι ώστε να προλάβει να συνατήσει τον εαυτό του πριν μπει στη σκουλικότρυπα. Για την ώρα όμως αυτά είναι απλή φαντασία. Δεν έχει αποκλειστεί όμως ακόμα οι εξωτικές αυτές γεωμετρίες να παρουσιάζονται σε μικροσκοπικό επίπεδο ως κβαντικές διακυμάνσεις της γεωμετρίας (spacetime foam του A. Wheeler, διαβάστε το ενδιαφέρον βιβλίο του K.S. Thorne Black Holes and Time Wraps: Eistein s Outrageous Legacy, W.W. Norton, New York). 3

5 Λύση Ορίζουμε τον δεξί κύκλο c 1 από την παραμετρική σχέση x(θ) = d + R cos θ, y(θ) = R sin θ, π < θ π, (1) και τον αριστερό κύκλο c από την παραμετρική σχέση x(θ) = d R cos θ, y(θ) = R sin θ, π < θ π. () Σε κάθε χρονική στιγμή, προωθούμε το σωματίδιο σύμφωνα με τις σχέσεις t i = idt x i = x i 1 + v x dt y i = y i 1 + v y dt (3) για i = 1,,... με δεδομένα (x 0, y 0 ), t 0 = 0 και όσο t i t f. Αν το σημείο (x i, y i ) είναι εκτός των ορίων x = L/, y = L/ το επαναφέρουμε με τις σχέσεις x i x i ± L, y i y i ± L ανάλογα με την περίπτωση. Τα σημεία με το ίδιο θ στους δύο κύκλους ταυτίζονται, είναι δηλ. τα ίδια σημεία του χώρου. Αν το σημείο (x i, y i ) περάσει μέσα από τον κύκλο c 1 ή c βγάζουμε το σωμάτιο έξω από τον άλλο κύκλο. Το πέρασμα μέσα στον κύκλο c 1 το επισημαίνει η σχέση ( x i d ) + y i R. (4) Στην περίπτωση αυτή υπολογίζουμε τη γωνία θ από τη σχέση ( ) θ = tan 1 yi x i d, (5) και το σημείο (x i, y i ) απεικονίζεται στο σημείο (x i, y i) όπου x i = d R cos θ, y i = y i, (6) όπως φαίνεται στο Σχήμα 3. Για την απεικόνιση της ταχύτητας v v υπολογίζουμε πρώτα τα διανύσματα } { ê r = cos θ ˆx + sin θ ŷ ê r = cos θ ˆx + sin θ ŷ ê θ = sin θ ˆx + cos θ ŷ ê θ = sin θ ˆx + cos θ ŷ, (7) 4

6 y v ^ e r θ ^ e θ (x,y ) v e^ θ θ (x,y) ^ er x Σχήμα 3: Το σωματίδιο περνάει μέσα στον δεξί κύκλο c 1 με ταχύτητα v και αναδύεται από τον c με ταχύτητα v. Τα ακτινικά / γωνιακά μοναδιαία διανύσματα (ê r, ê θ ), (ê r, ê θ ) ταυτίζονται από την παραμετρική ταυτοποίηση των δύο κύκλων c 1 και c. έτσι ώστε η ταχύτητα v = v r ê r + v θ ê θ v = v r ê r + v θ ê θ, (8) όπου οι ακτινικές συνιστώσες v r = v ê r και v θ = v ê θ. Έτσι οι τελικές σχέσεις που μας δίνουν την ταχύτητα ανάδυσης v είναι οι: v r = v x cos θ + v y sin θ v θ = v x sin θ + v y cos θ v x = v r cos θ + v θ sin θ v y = v r sin θ + v θ cos θ. (9) Ανάλογα εργαζόμαστε και για το πέρασμα μέσα στον κύκλο c το οποίο τώρα επισημαίνει η σχέση ( x i + d ) + y i R. (10) Στην περίπτωση αυτή υπολογίζουμε τη γωνία θ από τη σχέση ( ) θ = π tan 1 yi x i + d, (11) και το σημείο (x i, y i ) απεικονίζεται στο σημείο (x i, y i) όπου x i = d + R cos θ, y i = y i. (1) 5

7 Για την απεικόνιση της ταχύτητας v v υπολογίζουμε τα διανύσματα ê r = cos θ ˆx + sin θ ŷ ê θ = sin θ ˆx + cos θ ŷ έτσι ώστε η ταχύτητα } { ê r = cos θ ˆx + sin θ ŷ ê θ = sin θ ˆx + cos θ ŷ, (13) v = v r ê r + v θ ê θ v = v r ê r + v θ ê θ. (14) Τώρα οι τελικές σχέσεις που μας δίνουν την ταχύτητα ανάδυσης v είναι οι: v r = v x cos θ + v y sin θ v θ = v x sin θ + v y cos θ v x. (15) = v r cos θ v θ sin θ v y = v r sin θ + v θ cos θ Τα συστηματικά σφάλματα προέρχονται μόνο από τα περάσματα μέσα στη σκουλικότρυπα. Δεν υπάρχουν συστηματικά σφάλματα στο πέρασμα των ορίων x = L/, y = L/ (γιατί;). Σκεφτείτε τρόπους να τα αντιμετωπίσετε στο πρόγραμμά σας καθώς και να τα μελετήσετε. Οι κλειστές τροχιές που ζητούνται προκύπτουν λ.χ. από τις αρχικές συνθήκες (x 0, y 0, v 0, φ) = (0, 0, 1, 0) (16) που ενώνει τα σημεία 1 του Σχήματος. Είναι ασταθής, και αυτό μπορείτε να το δείτε παίρνοντας φ φ + ɛ. Οι κλειστές τροχιές που περνούν τη σκουλικότρυπα, αλλά περιτυλίγονται προκύπτουν λ.χ. από τις αρχικές συνθήκες (x 0, y 0, v 0, φ) = ( 9, 0, 1, 0) (x 0, y 0, v 0, φ) = (.5, 3, 1, 90 o ) που περνούν από 3 3 και 4 4 αντίστοιχα. Είναι επίσης ασταθείς όπως εύκολα μπορεί να μελετηθεί με το πρόγραμμα που θα γράψετε. Το πρόγραμμα αυτό παρατίθεται παρακάτω για πληρότητα: program WormHoleD implicit none C C Declaration of variables real*8 PI parameter(pi= d0) real*8 Lx,Ly,L,R,d 6

8 real*8 x0,y0,v0,theta real*8 t0,tf,dt real*8 t,x,y,vx,vy real*8 xc1,yc1,xc,yc,r1,r integer i C C Ask user for input: print *,'# Enter L,d,R:' read(*,*)l,d,r print*,'# L= ',L,' d= ',d,' R= ',R if( L.le. d+.0d0*r) stop 'L <= d+*r' if( d.le..0d0*r) stop 'd <= *R' print *,'# Enter (x0,y0), v0, theta(degrees):' read(5,*)x0,y0,v0,theta print *,'# x0= ',x0,' y0 = ',y0 print *,'# v0= ',v0,' theta= ',theta,' degrees' if(v0.le. 0.0D0 ) stop 'illegal value of v0.' print *,'# Enter tf, dt:' read(*,*)tf,dt print *,'# tf= ',tf,' dt= ',dt C C Initialize theta = (PI/180.0D0)*theta i = 0 t = 0.0D0 x = x0 y = y0 vx = v0*cos(theta) vy = v0*sin(theta) print *,'# x0= ',x,' y0= ',y,' v0x= ',vx,' v0y= ',vy C Wormhole's centers: xc1 = 0.5D0*d yc1 = 0.0D0 xc = -0.5D0*d yc = 0.0D0 C Box limits coordinates: Lx = 0.5D0*L Ly = 0.5D0*L C Test if already inside cut region: r1 = sqrt((x-xc1)**+(y-yc1)**) r = sqrt((x-xc)**+(y-yc)**) 7

9 if( r1.le. R ) stop 'r1 <= R' if( r.le. R ) stop 'r <= R' C Test if outside box limits: if(abs(x).ge. Lx) stop ' x >= Lx' if(abs(y).ge. Ly) stop ' y >= Ly' open(unit=11,file='wormhole.dat') C C Compute: do while( t.lt. tf ) write(11,*)t,x,y,vx,vy i = i+1 t = i*dt x = x + vx*dt y = y + vy*dt C Toroidal boundary conditions: if( x.gt. Lx) x = x - L if( x.lt. -Lx) x = x + L if( y.gt. Ly) y = y - L if( y.lt. -Ly) y = y + L C Test if inside the cut disks r1 = sqrt((x-xc1)**+(y-yc1)**) r = sqrt((x-xc)**+(y-yc)**) if( r1.lt. R)then C Notice: we pass r1 as radius of circle, not R call crossc1(x,y,vx,vy,dt,r1,d) else if( r.lt. R)then call crossc(x,y,vx,vy,dt,r,d) endif C small chance here that still in C1 or C, but OK since C another dt-advance given at the beginning of do-loop enddo!do while( t.lt. tf ) end C CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC subroutine crossc1(x,y,vx,vy,dt,r,d) implicit none real*8 x,y,vx,vy,dt,r,d real*8 vr,v0!v0 -> vtheta real*8 theta,xc,yc print *,'# Inside C1: (x,y,vx,vy,r)= ',x,y,vx,vy,r xc = 0.5D0*d!center of C1 yc = 0.0D0 8

10 theta = atan(y-yc,x-xc) x = -xc - R*cos(theta)!new x-value, y invariant C Velocity transformation: vr = vx*cos(theta)+vy*sin(theta) v0 = -vx*sin(theta)+vy*cos(theta) vx = vr*cos(theta)+v0*sin(theta) vy = -vr*sin(theta)+v0*cos(theta) C advance x,y, hopefully outside C: x = x + vx*dt y = y + vy*dt print *,'# Exit C: (x,y,vx,vy )= ',x,y,vx,vy end C CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC subroutine crossc(x,y,vx,vy,dt,r,d) implicit none real*8 PI parameter(pi= d0) real*8 x,y,vx,vy,dt,r,d real*8 vr,v0!v0 -> vtheta real*8 theta,xc,yc print *,'# Inside C: (x,y,vx,vy,r)= ',x,y,vx,vy,r xc = -0.5D0*d!center of C yc = 0.0D0 theta = PI-atan(y-yc,x-xc) x = -xc + R*cos(theta)!new x-value, y invariant C Velocity transformation: vr = -vx*cos(theta)+vy*sin(theta) v0 = vx*sin(theta)+vy*cos(theta) vx = -vr*cos(theta)-v0*sin(theta) vy = -vr*sin(theta)+v0*cos(theta) C advance x,y, hopefully outside C1: x = x + vx*dt y = y + vy*dt 9

11 print *,'# Exit C1: (x,y,vx,vy )= ',x,y,vx,vy end To πρόγραμμα μεταγλωττίζεται και τρέχει κατά τα γνωστά. Στο συνοδευτικό λογισμικό θα βρείτε τα αρχεία Wormhole.csh και Wormhole_animate.gnu που μπορούν να σας βοηθήσουν στην απεικόνιση της τροχιάς. Ξεκινήστε το gnuplot, θέστε τις επιθυμητές παραμέτρους στο Wormhole.csh και δώστε τις εντολές gnuplot> file = "Wormhole.dat" gnuplot> R=1;d=5;L=0; gnuplot>!./wormhole.csh gnuplot> t0=0;dt=0.;load "Wormhole_animate.gnu" 10

ΚΕΦΑΛΑΙΟ 2. Περιγραφή της Κίνησης. 2.1 Κίνηση στο Επίπεδο

ΚΕΦΑΛΑΙΟ 2. Περιγραφή της Κίνησης. 2.1 Κίνηση στο Επίπεδο ΚΕΦΑΛΑΙΟ 2 Περιγραφή της Κίνησης Στο κεφάλαιο αυτό θα δείξουμε πώς να προγραμματίσουμε απλές εξισώσεις τροχιάς ενός σωματιδίου και πώς να κάνουμε βασική ανάλυση των αριθμητικών αποτελεσμάτων. Χρησιμοποιούμε

Διαβάστε περισσότερα

Κεφάλαιο 2 : Περιγραφή της Κίνησης. Υπολογιστική Φυσική Ι. Αναγνωστόπουλος Κωνσταντίνος

Κεφάλαιο 2 : Περιγραφή της Κίνησης. Υπολογιστική Φυσική Ι. Αναγνωστόπουλος Κωνσταντίνος Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εθνικό Μετσόβιο Πολυτεχνείο Υπολογιστική Φυσική Ι Κεφάλαιο 2 : Περιγραφή της Κίνησης Αναγνωστόπουλος Κωνσταντίνος Άδεια Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Ασκήσεις Κεφ. 1, Κινηματική υλικού σημείου Κλασική Μηχανική, Τμήμα Μαθηματικών Διδάσκων: Μιχάλης Ξένος, email : mxenos@cc.uoi.gr 10 Απριλίου 2012 1. Αν το διάνυσμα θέσης υλικού σημείου είναι: r(t) = [ln(t

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Εικόνα: Στην εκτέλεση πέναλτι, ο ποδοσφαιριστής κτυπά ακίνητη μπάλα, με σκοπό να της δώσει ταχύτητα και κατεύθυνση ώστε να σκοράρει. Υπό προϋποθέσεις, η εκτέλεση μπορεί να ιδωθεί

Διαβάστε περισσότερα

Ενότητα 3 (μέρος 1 ο )

Ενότητα 3 (μέρος 1 ο ) Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εθνικό Μετσόβιο Πολυτεχνείο Προγραμματισμός με Εφαρμογές στην Επιστήμη του Μηχανικού Ενότητα 3 (μέρος 1 ο ) Σιέττος Κωνσταντίνος Άδεια Χρήσης Το παρόν

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Εικόνα: Στην εκτέλεση πέναλτι, ο ποδοσφαιριστής κτυπά ακίνητη μπάλα, με σκοπό να της δώσει ταχύτητα και κατεύθυνση ώστε να σκοράρει. Υπό προϋποθέσεις, η εκτέλεση μπορεί να ιδωθεί ως κίνηση σε δυο (αντί

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξέταση στη Μηχανική I 2 Σεπτεμβρίου 2010

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξέταση στη Μηχανική I 2 Σεπτεμβρίου 2010 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξέταση στη Μηχανική I Σεπτεμβρίου 00 Απαντήστε και στα 0 ερωτήματα με σαφήνεια και απλότητα. Οι ολοκληρωμένες απαντήσεις εκτιμώνται ιδιαιτέρως. Καλή σας επιτυχία.. Ένας

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΦΥΣΙΚΗΣ 2019

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΦΥΣΙΚΗΣ 2019 ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΦΥΣΙΚΗΣ 019 Κινηματική ΑΣΚΗΣΗ Κ.1 Η επιτάχυνση ενός σώματος που κινείται ευθύγραμμα δίνεται από τη σχέση a = (4 t ) m s. Υπολογίστε την ταχύτητα και το διάστημα που διανύει το σώμα

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Μηχανική Εικόνα: Στην εκτέλεση πέναλτι, ο ποδοσφαιριστής κτυπά ακίνητη μπάλα, με σκοπό να της δώσει ταχύτητα και κατεύθυνση ώστε να σκοράρει. Υπό προϋποθέσεις, η εκτέλεση μπορεί να

Διαβάστε περισσότερα

Ακτίνα καμπυλότητας - Ανάλυση επιτάχυνσης σε εφαπτομενική και κεντρομόλο συνιστώσα

Ακτίνα καμπυλότητας - Ανάλυση επιτάχυνσης σε εφαπτομενική και κεντρομόλο συνιστώσα Ακτίνα καμπυλότητας - Ανάλυση επιτάχυνσης σε εφαπτομενική και κεντρομόλο συνιστώσα Εξ ορισμού, ένας κύκλος έχει συγκεκριμένη και σταθερή καμπυλότητα σε όλα τα σημεία του ίση με 1/R όπου R η ακτίνα του.

Διαβάστε περισσότερα

website:

website: Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Τμήμα Φυσικής Μηχανική Ρευστών Μαάιτα Τζαμάλ-Οδυσσέας 3 Μαρτίου 2019 1 Τανυστής Παραμόρφωσης Συνοδεύον σύστημα ονομάζεται το σύστημα συντεταγμένων ξ i το οποίο μεταβάλλεται

Διαβάστε περισσότερα

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Εαρινό Εξάμηνο 2015/2016. ΦΥΣ145 Υπολογιστικές Μέθοδοι στην Φυσική

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Εαρινό Εξάμηνο 2015/2016. ΦΥΣ145 Υπολογιστικές Μέθοδοι στην Φυσική Τμήμα Φυσικής Πανεπιστημίου Κύπρου Εαρινό Εξάμηνο 2015/2016 Διδάσκoντες: Χαράλαμπος Παναγόπουλος, Μάριος Κώστα Βαθμός: Όνομα: Α.Δ.Τ.:... ΕΝΔΙΑΜΕΣΗ ΕΞΕΤΑΣΗ 24/03/2016 Άσκηση 1 (1 μονάδα) Ποιο είναι το αποτέλεσμα

Διαβάστε περισσότερα

Ασκήσεις Κλασικής Μηχανικής, Τμήμα Μαθηματικών Διδάσκων: Μιχάλης Ξένος, email : mxenos@cc.uoi.gr 30 Μαρτίου 2014 Κεφάλαιο Ι: Κινηματική του Υλικού Σημείου 1. Αν το διάνυσμα θέσης υλικού σημείου είναι:

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέμβριος 2012

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέμβριος 2012 ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέμβριος ΘΕΜΑ α) Υλικό σημείο μάζας κινείται στον άξονα Ο υπό την επίδραση του δυναμικού V=V() Αν για t=t βρίσκεται στη θέση = με ενέργεια Ε δείξτε ότι η κίνησή του δίνεται από

Διαβάστε περισσότερα

ΕΙΔΙΚΗ ΘΕΩΡΙΑ ΤΗΣ ΣΧΕΤΙΚΟΤΗΤΑΣ

ΕΙΔΙΚΗ ΘΕΩΡΙΑ ΤΗΣ ΣΧΕΤΙΚΟΤΗΤΑΣ ΕΙΔΙΚΗ ΘΕΩΡΙΑ ΤΗΣ ΣΧΕΤΙΚΟΤΗΤΑΣ Διδάσκων: Θεόδωρος Ν. Τομαράς 1. Μετασχηματισμοί συντεταγμένων και συμμετρίες. 1α. Στροφές στο επίπεδο. Θεωρείστε δύο καρτεσιανά συστήματα συντεταγμένων στο επίπεδο, στραμμένα

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Φεβρουάριος 2004

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Φεβρουάριος 2004 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Φεβρουάριος 4 Τµήµα Π. Ιωάννου & Θ. Αποστολάτου Απαντήστε µε σαφήνεια και συντοµία. Η ορθή πλήρης απάντηση θέµατος εκτιµάται περισσότερο από τη

Διαβάστε περισσότερα

B 2Tk. Παράδειγμα 1.2.1

B 2Tk. Παράδειγμα 1.2.1 Παράδειγμα 1..1 Μία δέσμη πρωτονίων κινείται μέσα σε ομογενές μαγνητικό πεδίο μέτρου,0 Τ, που έχει την κατεύθυνση του άξονα των θετικών z, (Σχ. 1.4). Τα πρωτόνια έχουν ταχύτητα με μέτρο 3,0 10 5 m / s

Διαβάστε περισσότερα

Ασκήσεις Κλασικής Μηχανικής, Τμήμα Μαθηματικών Διδάσκων: Μιχάλης Ξένος, email : mxenos@cc.uoi.gr 19 Απριλίου 2013 Κεφάλαιο Ι 1. Να γραφεί το διάνυσμα της ταχύτητας και της επιτάχυνσης υλικού σημείου σε

Διαβάστε περισσότερα

1. Κινηµατική. x dt (1.1) η ταχύτητα είναι. και η επιτάχυνση ax = lim = =. (1.2) Ο δεύτερος νόµος του Νεύτωνα παίρνει τη µορφή: (1.

1. Κινηµατική. x dt (1.1) η ταχύτητα είναι. και η επιτάχυνση ax = lim = =. (1.2) Ο δεύτερος νόµος του Νεύτωνα παίρνει τη µορφή: (1. 1. Κινηµατική Βιβλιογραφία C. Kittel W. D. Knight M. A. Rueman A. C. Helmholz και B. J. Moe Μηχανική. Πανεπιστηµιακές Εκδόσεις Ε.Μ.Π. 1998. Κεφ.. {Μαθηµατικό Συµπλήρωµα Μ1 Παράγωγος} {Μαθηµατικό Συµπλήρωµα

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Χημείας Φυσική 1 1 Φεβρουαρίου 2017

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Χημείας Φυσική 1 1 Φεβρουαρίου 2017 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Χημείας Φυσική 1 1 Φεβρουαρίου 017 Πρόβλημα Α Ένα σημειακό σωματίδιο μάζας m βάλλεται υπό γωνία ϕ και με αρχική ταχύτητα μέτρου v 0 από το έδαφος Η κίνηση εκτελείται στο ομογενές

Διαβάστε περισσότερα

ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ. ΛΥΣΗ (α) Το οδόστρωμα στη στροφή είναι οριζόντιο: N. Οι δυνάμεις που ασκούνται πάνω στο αυτοκίνητο είναι:

ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ. ΛΥΣΗ (α) Το οδόστρωμα στη στροφή είναι οριζόντιο: N. Οι δυνάμεις που ασκούνται πάνω στο αυτοκίνητο είναι: ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ ΑΣΚΗΣΗ 1 Μια οριζόντια στροφή μιας ενικής οδού έχει ακτίνα = 95 m. Ένα αυτοκίνητο παίρνει τη στροφή αυτή με ταχύτητα υ = 26, m/s. (α) Πόση πρέπει να είναι η τιμή του συντελεστή μ s της στατικής

Διαβάστε περισσότερα

2 Η ΠΡΟΟΔΟΣ. Ενδεικτικές λύσεις κάποιων προβλημάτων. Τα νούμερα στις ασκήσεις είναι ΤΥΧΑΙΑ και ΟΧΙ αυτά της εξέταση

2 Η ΠΡΟΟΔΟΣ. Ενδεικτικές λύσεις κάποιων προβλημάτων. Τα νούμερα στις ασκήσεις είναι ΤΥΧΑΙΑ και ΟΧΙ αυτά της εξέταση 2 Η ΠΡΟΟΔΟΣ Ενδεικτικές λύσεις κάποιων προβλημάτων Τα νούμερα στις ασκήσεις είναι ΤΥΧΑΙΑ και ΟΧΙ αυτά της εξέταση Ένας τροχός εκκινεί από την ηρεμία και επιταχύνει με γωνιακή ταχύτητα που δίνεται από την,

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Μηχανική Εικόνα: Ο πίνακας ελέγχου σε ένα πιλοτήριο βοηθά τον πιλότο να κρατά το αεροσκάφος υπό έλεγχο δηλ. να ελέγχει πόσο γρήγορα ταξιδεύει και σε ποια κατεύθυνση επιτρέποντάς του

Διαβάστε περισσότερα

ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3//7/2013 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ

ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3//7/2013 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3//7/013 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ ΩΡΕΣ ΑΣΚΗΣΗ 1 Σώμα μάζας m=0.1 Kg κινείται σε οριζόντιο δάπεδο ευθύγραμμα με την

Διαβάστε περισσότερα

ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΟ ΕΞΕΤΑΣΕΙΣ ΣΤΗ ΓΕΝΙΚΗ ΦΥΣΙΚΗ 16 ΙΟΥΝΙΟΥ 2010 1) Ράβδος μάζας Μ και μήκους L που είναι στερεωμένη με άρθρωση σε οριζόντιο άξονα Ο, είναι στην κατακόρυφη θέση και σε κατάσταση ασταθούς ισορροπίας

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Πτυχιακή εξέταση στη Μηχανική ΙI 20 Σεπτεμβρίου 2007

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Πτυχιακή εξέταση στη Μηχανική ΙI 20 Σεπτεμβρίου 2007 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Πτυχιακή εξέταση στη Μηχανική ΙI 0 Σεπτεμβρίου 007 Τμήμα Π. Ιωάννου & Θ. Αποστολάτου Απαντήστε στα ερωτήματα που ακολουθούν με σαφήνεια, ακρίβεια και απλότητα. Όλα τα

Διαβάστε περισσότερα

ΤΡΟΧΙΑ ΙΑΝΥΣΜΑ ΘΕΣΗΣ. t 1 (x 1,y 1 ) Η αρχή ενός οποιουδήποτε ορθογωνίου xy συστήματος συντεταγμένων

ΤΡΟΧΙΑ ΙΑΝΥΣΜΑ ΘΕΣΗΣ. t 1 (x 1,y 1 ) Η αρχή ενός οποιουδήποτε ορθογωνίου xy συστήματος συντεταγμένων ΤΡΟΧΙΑ ΙΑΝΥΣΜΑ ΘΕΣΗΣ 1 ( 1, 1 ) ορθογωνίου συστήματος r1 1 1 ΤΡΟΧΙΑ ΙΑΝΥΣΜΑ ΘΕΣΗΣ (, ) ορθογωνίου συστήματος r ΤΡΟΧΙΑ ΙΑΝΥΣΜΑ ΘΕΣΗΣ 3 ( 3, 3 ) ορθογωνίου συστήματος r3 3 3 ΤΡΟΧΙΑ ΙΑΝΥΣΜΑ ΘΕΣΗΣ 4 ( 4, 4

Διαβάστε περισσότερα

Μαθηματική Εισαγωγή Συναρτήσεις

Μαθηματική Εισαγωγή Συναρτήσεις Φυσικός Ραδιοηλεκτρολόγος (MSc) ο Γενικό Λύκειο Καστοριάς Καστοριά, Ιούλιος 14 A. Μαθηματική Εισαγωγή Πράξεις με αριθμούς σε εκθετική μορφή Επίλυση βασικών μορφών εξισώσεων Συναρτήσεις Στοιχεία τριγωνομετρίας

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ. ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ ΙI Ιούνιος 2004

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ. ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ ΙI Ιούνιος 2004 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ ΙI Ιούνιος 2004 Τμήμα Π. Ιωάννου & Θ. Αποστολάτου Απαντήστε στα 4 θέματα με σαφήνεια συντομία. Η πλήρης απάντηση θέματος εκτιμάται ιδιαίτερα. Καλή

Διαβάστε περισσότερα

ΦΥΣ 145 Υπολογιστικές Μέθοδοι στη Φυσική. Πρόοδος 26 Μαρτίου 2007 Ομάδα 1 η

ΦΥΣ 145 Υπολογιστικές Μέθοδοι στη Φυσική. Πρόοδος 26 Μαρτίου 2007 Ομάδα 1 η ΦΥΣ 145 Υπολογιστικές Μέθοδοι στη Φυσική Πρόοδος 6 Μαρτίου 007 Ομάδα 1 η Γράψτε το ονοματεπώνυμο και αριθμό ταυτότητάς σας στο πάνω μέρος της αυτής της σελίδας. Πρέπει να απαντήσετε και στα 6 προβλήματα

Διαβάστε περισσότερα

Η επιτάχυνση και ο ρόλος της.

Η επιτάχυνση και ο ρόλος της. Η επιτάχυνση και ο ρόλος της. Το μέγεθος «επιτάχυνση» το συναντήσαμε κατά τη διδασκαλία στην Α Λυκείου, όπου και ορίσθηκε με βάση την εξίσωση: t Όπου η παραπάνω μαθηματική εξίσωση μας λέει ότι η επιτάχυνση:

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Μηχανική Εικόνα: Στην εκτέλεση πέναλτι, ο ποδοσφαιριστής κτυπά ακίνητη μπάλα, με σκοπό να της δώσει ταχύτητα και κατεύθυνση ώστε να σκοράρει. Υπό προϋποθέσεις, η εκτέλεση μπορεί να

Διαβάστε περισσότερα

1. Ποια μεγέθη ονομάζονται μονόμετρα και ποια διανυσματικά;

1. Ποια μεγέθη ονομάζονται μονόμετρα και ποια διανυσματικά; ΚΕΦΑΛΑΙΟ 2 ο ΚΙΝΗΣΗ 2.1 Περιγραφή της Κίνησης 1. Ποια μεγέθη ονομάζονται μονόμετρα και ποια διανυσματικά; Μονόμετρα ονομάζονται τα μεγέθη τα οποία, για να τα προσδιορίσουμε πλήρως, αρκεί να γνωρίζουμε

Διαβάστε περισσότερα

ΕΡΓΑΣΙΑ 3 η. Παράδοση Οι ασκήσεις είναι βαθμολογικά ισοδύναμες

ΕΡΓΑΣΙΑ 3 η. Παράδοση Οι ασκήσεις είναι βαθμολογικά ισοδύναμες ΕΡΓΑΣΙΑ 3 η Παράδοση 9--9 Οι ασκήσεις είναι βαθμολογικά ισοδύναμες Άσκηση 1 A) Δυο τραίνα ταξιδεύουν στην ίδια σιδηροτροχιά το ένα πίσω από το άλλο. Το πρώτο τραίνο κινείται με ταχύτητα 1 m s. Το δεύτερο

Διαβάστε περισσότερα

Τα θέματα συνεχίζονται στην πίσω σελίδα

Τα θέματα συνεχίζονται στην πίσω σελίδα ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΤΟΠΟΓΡΑΦΙΑΣ ΚΑΙ ΓΕΩΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ ΚΑΤΕΥΘΥΝΣΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ ΕΞΕΤΑΣΤΙΚΗ ΙΑΝΟΥΑΡΙΟΥ ΑΚΑΔ. ΕΤΟΣ 16-17 Διδάσκων : Χ. Βοζίκης Τ. Ε. Ι. ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ Ι - ΙΟΥΝΙΟΣ Θέματα και Λύσεις. Ox υπό την επίδραση του δυναμικού. x 01

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ Ι - ΙΟΥΝΙΟΣ Θέματα και Λύσεις. Ox υπό την επίδραση του δυναμικού. x 01 ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ Ι - ΙΟΥΝΙΟΣ 1 Θέματα και Λύσεις ΘΕΜΑ 1 Υλικό σημείο κινείται στον άξονα x' Ox υπό την επίδραση του δυναμικού 3 ax x V ( x) a x, a 3 α) Βρείτε τα σημεία ισορροπίας και την ευστάθειά τους

Διαβάστε περισσότερα

ΩΡΙΩΝ ΑΣΤΡΟΝΟΜΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΤΡΑΣ

ΩΡΙΩΝ ΑΣΤΡΟΝΟΜΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΤΡΑΣ ΩΡΙΩΝ ΑΣΤΡΟΝΟΜΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΤΡΑΣ Κ. Ν. Γουργουλιάτος ΜΑΥΡΕΣ ΤΡΥΠΕΣ Η ΒΑΣΙΚΗ ΙΔΕΑ Αντικείμενα που εμποδίζουν την διάδοση φωτός από αυτά Πρωτοπροτάθηκε γύρω στα 1783 (John( John Michell) ως αντικείμενο

Διαβάστε περισσότερα

dx cos x = ln 1 + sin x 1 sin x.

dx cos x = ln 1 + sin x 1 sin x. Μηχανική Ι Εργασία #5 Χειμερινό εξάμηνο 17-18 Ν. Βλαχάκης 1. Εστω πεδίο δύναμης F = g () cos y ˆ + λ g() sin y ŷ, όπου λ = σταθερά και g() = 1 e π/ B C (σε κατάλληλες μονάδες). (α) Υπολογίστε πόση ενέργεια

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 1: ΚΙΝΗΣΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΘΕΜΑ Β

ΕΝΟΤΗΤΑ 1: ΚΙΝΗΣΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΘΕΜΑ Β ΚΕΦΑΛΑΙΟ 4 ο : ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΕΝΟΤΗΤΑ : ΚΙΝΗΣΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΘΕΜΑ Β Ερώτηση. Tο γιο-γιο του σχήματος έχει ακτίνα R και αρχικά είναι ακίνητο. Την t=0 αφήνουμε ελεύθερο το δίσκο

Διαβάστε περισσότερα

Α. ο σώμα αρχίζει να κινείται όταν η προωστική δύναμη γίνει ίση με τη δύναμη της τριβής. Έχουμε δηλαδή

Α. ο σώμα αρχίζει να κινείται όταν η προωστική δύναμη γίνει ίση με τη δύναμη της τριβής. Έχουμε δηλαδή Εισαγωγή στις Φυσικές Επιστήμες (8-7-007) Μηχανική Ονοματεπώνυμο Τμήμα ΘΕΜΑ A. Υλικό σώμα μάζας βρίσκεται σε οριζόντιο επίπεδο με μέγιστο συντελεστή στατικής τριβής η και συντελεστή τριβής ολίσθησης μ.

Διαβάστε περισσότερα

1. Τι είναι η Κινηματική; Ποια κίνηση ονομάζεται ευθύγραμμη;

1. Τι είναι η Κινηματική; Ποια κίνηση ονομάζεται ευθύγραμμη; ΚΕΦΑΛΑΙΟ 2 ο ΚΙΝΗΣΗ 2.1 Περιγραφή της Κίνησης 1. Τι είναι η Κινηματική; Ποια κίνηση ονομάζεται ευθύγραμμη; Κινηματική είναι ο κλάδος της Φυσικής που έχει ως αντικείμενο τη μελέτη της κίνησης. Στην Κινηματική

Διαβάστε περισσότερα

( ) ) V(x, y, z) Παραδείγματα. dt + "z ˆk + z d ˆk. v 2 =!x 2 +!y 2 +!z 2. F =! "p. T = 1 2 m (!x2 +!y 2 +!z 2

( ) ) V(x, y, z) Παραδείγματα. dt + z ˆk + z d ˆk. v 2 =!x 2 +!y 2 +!z 2. F =! p. T = 1 2 m (!x2 +!y 2 +!z 2 ΦΥΣ 211 - Διαλ.04 1 Παραδείγματα Κίνηση ενός και μόνο σωματιδίου, χρησιμοποιώντας Καρτεσιανές συντεταγμένες και συντηρητικές δυνάμεις. Οι εξισώσεις Lagrange θα πρέπει να επιστρέφουν τα ίδια αποτελέσματα

Διαβάστε περισσότερα

1η Εργασία στο Μάθημα Γενική Φυσική ΙΙΙ - Τμήμα Τ1. Λύσεις Ασκήσεων 1 ου Κεφαλαίου

1η Εργασία στο Μάθημα Γενική Φυσική ΙΙΙ - Τμήμα Τ1. Λύσεις Ασκήσεων 1 ου Κεφαλαίου 1η Εργασία στο Μάθημα Γενική Φυσική ΙΙΙ - Τμήμα Τ1 Λύσεις Ασκήσεων 1 ου Κεφαλαίου 1. Στον άξονα βρίσκονται δύο σημειακά φορτία q A = 1 μ και q Β = 45 μ, καθώς και ένα τρίτο σωματίδιο με άγνωστο φορτίο

Διαβάστε περισσότερα

F mk(1 e ), όπου k θετική σταθερά. Στο όχημα ασκείται

F mk(1 e ), όπου k θετική σταθερά. Στο όχημα ασκείται 6-04-011 1. Όχημα μάζας m ξεκινά από την αρχή του άξονα x χωρίς αρχική ταχύτητα και κινείται στον άξονα x υπό την επίδραση της δυνάμεως t F mk(1 e ), όπου k θετική σταθερά. Στο όχημα ασκείται επίσης αντίσταση

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ. ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέµβριος 2004

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ. ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέµβριος 2004 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέµβριος 2004 Τµήµα Π. Ιωάννου & Θ. Αποστολάτου Θέµα 1 (25 µονάδες) Ένα εκκρεµές µήκους l κρέµεται έτσι ώστε η σηµειακή µάζα να βρίσκεται ακριβώς

Διαβάστε περισσότερα

Reynolds. du 1 ξ2 sin 2 u. (2n)!! ( (http://www.natgeotv.com/uk/street-genius/ videos/bulletproof-balloons) n=0

Reynolds. du 1 ξ2 sin 2 u. (2n)!! ( (http://www.natgeotv.com/uk/street-genius/ videos/bulletproof-balloons) n=0 Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών, Τμήμα Φυσικής Εξετάσεις στη Μηχανική Ι, Τμήμα Κ. Τσίγκανου & Ν. Βλαχάκη, Μαΐου 7 Διάρκεια εξέτασης 3 ώρες, Καλή επιτυχία ( = bonus ερωτήματα) Ονοματεπώνυμο:,

Διαβάστε περισσότερα

ΚΑΡΤΕΣΙΑΝΟ ΣΥΣΤΗΜΑ ΣΕ ΔΥΟ ΔΙΑΣΤΑΣΕΙΣ

ΚΑΡΤΕΣΙΑΝΟ ΣΥΣΤΗΜΑ ΣΕ ΔΥΟ ΔΙΑΣΤΑΣΕΙΣ ΚΑΡΤΕΣΙΑΝΟ ΣΥΣΤΗΜΑ ΣΕ ΔΥΟ ΔΙΑΣΤΑΣΕΙΣ Δυο κάθετοι μεταξύ τους προσανατολισμένοι και βαθμονομημένοι άξονες A Α Έστω σημείο Α στο επίπεδο Η θέση του προσδιορίζεται από τις προβολές στους άξονες A, A 0 A Η

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΑ 3,4. Συστήµατα ενός Βαθµού ελευθερίας. k Για E 0, η (1) ισχύει για κάθε x. Άρα επιτρεπτή περιοχή είναι όλος ο άξονας

ΚΕΦΑΛΑΙΑ 3,4. Συστήµατα ενός Βαθµού ελευθερίας. k Για E 0, η (1) ισχύει για κάθε x. Άρα επιτρεπτή περιοχή είναι όλος ο άξονας ΚΕΦΑΛΑΙΑ,4. Συστήµατα ενός Βαθµού ελευθερίας. Να βρεθούν οι επιτρεπτές περιοχές της κίνησης στον άξονα ' O για την απωστική δύναµη F, > και για ενέργεια Ε. (α) Είναι V και οι επιτρεπτές περιοχές της κίνησης

Διαβάστε περισσότερα

ΦΥΣ η ΠΡΟΟΔΟΣ 7-Μάρτη-2015

ΦΥΣ η ΠΡΟΟΔΟΣ 7-Μάρτη-2015 ΦΥΣ. 11 1 η ΠΡΟΟΔΟΣ 7-Μάρτη-015 Πριν ξεκινήσετε συµπληρώστε τα στοιχεία σας (ονοµατεπώνυµο, αριθµό ταυτότητας) στο πάνω µέρος της σελίδας αυτής. Για τις λύσεις των ασκήσεων θα πρέπει να χρησιµοποιήσετε

Διαβάστε περισσότερα

Κεφάλαιο 5 ΔΙΔΙΑΣΤΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ. Ενα αυτόνομο δυναμικό σύστημα δύο διαστάσεων περιγράφεται από τις εξισώσεις

Κεφάλαιο 5 ΔΙΔΙΑΣΤΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ. Ενα αυτόνομο δυναμικό σύστημα δύο διαστάσεων περιγράφεται από τις εξισώσεις Κεφάλαιο 5 ΔΙΔΙΑΣΤΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ Ενα αυτόνομο δυναμικό σύστημα δύο διαστάσεων περιγράφεται από τις εξισώσεις ẋ 1 f 1 (x 1 x 2 ) ẋ 2 f 2 (x 1 x 2 ) (501) Το σύστημα αυτό γράφεται σε διανυσματική

Διαβάστε περισσότερα

ΦΥΣ Πριν αρχίσετε συµπληρώστε τα στοιχεία σας (ονοµατεπώνυµο και αριθµό ταυτότητας).

ΦΥΣ Πριν αρχίσετε συµπληρώστε τα στοιχεία σας (ονοµατεπώνυµο και αριθµό ταυτότητας). ΦΥΣ. 111 1 η Πρόοδος: 13-Οκτωβρίου-2018 Πριν αρχίσετε συµπληρώστε τα στοιχεία σας (ονοµατεπώνυµο και αριθµό ταυτότητας). Ονοµατεπώνυµο Αριθµός Ταυτότητας Απενεργοποιήστε τα κινητά σας. Η εξέταση αποτελείται

Διαβάστε περισσότερα

ΦΥΣ Πριν αρχίσετε συµπληρώστε τα στοιχεία σας (ονοµατεπώνυµο και αριθµό ταυτότητας).

ΦΥΣ Πριν αρχίσετε συµπληρώστε τα στοιχεία σας (ονοµατεπώνυµο και αριθµό ταυτότητας). ΦΥΣ. 111 1 η Πρόοδος: 13-Οκτωβρίου-2018 Πριν αρχίσετε συµπληρώστε τα στοιχεία σας (ονοµατεπώνυµο και αριθµό ταυτότητας). Ονοµατεπώνυµο Αριθµός Ταυτότητας Απενεργοποιήστε τα κινητά σας. Η εξέταση αποτελείται

Διαβάστε περισσότερα

Κεφάλαιο 2. Διανύσματα και Συστήματα Συντεταγμένων

Κεφάλαιο 2. Διανύσματα και Συστήματα Συντεταγμένων Κεφάλαιο 2 Διανύσματα και Συστήματα Συντεταγμένων Διανύσματα Διανυσματικά μεγέθη Φυσικά μεγέθη που έχουν τόσο αριθμητικές ιδιότητες όσο και ιδιότητες κατεύθυνσης. Σε αυτό το κεφάλαιο, θα ασχοληθούμε με

Διαβάστε περισσότερα

Φυσικά μεγέθη. Φυσική α λυκείου ΕΙΣΑΓΩΓΗ. Όλα τα φυσικά μεγέθη τα χωρίζουμε σε δύο κατηγορίες : Α. τα μονόμετρα. Β.

Φυσικά μεγέθη. Φυσική α λυκείου ΕΙΣΑΓΩΓΗ. Όλα τα φυσικά μεγέθη τα χωρίζουμε σε δύο κατηγορίες : Α. τα μονόμετρα. Β. ΕΙΣΑΓΩΓΗ Φυσικά μεγέθη Όλα τα φυσικά μεγέθη τα χωρίζουμε σε δύο κατηγορίες : Α. τα μονόμετρα Β. τα διανυσματικά Μονόμετρα ονομάζουμε τα μεγέθη εκείνα τα οποία για να τα γνωρίζουμε χρειάζεται να ξέρουμε

Διαβάστε περισσότερα

ΦΥΕ14-5 η Εργασία Παράδοση

ΦΥΕ14-5 η Εργασία Παράδοση ΦΥΕ4-5 η Εργασία Παράδοση.5.9 Πρόβληµα. Συµπαγής οµογενής κύλινδρος µάζας τυλιγµένος µε λεπτό νήµα αφήνεται να κυλίσει από την κορυφή κεκλιµένου επιπέδου µήκους l και γωνίας φ (ϐλέπε σχήµα). Το ένα άκρο

Διαβάστε περισσότερα

ΦΥΕ 14 5η ΕΡΓΑΣΙΑ Παράδοση ( Οι ασκήσεις είναι βαθμολογικά ισοδύναμες) Άσκηση 1 : Aσκηση 2 :

ΦΥΕ 14 5η ΕΡΓΑΣΙΑ Παράδοση ( Οι ασκήσεις είναι βαθμολογικά ισοδύναμες) Άσκηση 1 : Aσκηση 2 : ΦΥΕ 14 5 η ΕΡΓΑΣΙΑ Παράδοση 19-5-8 ( Οι ασκήσεις είναι βαθμολογικά ισοδύναμες) Άσκηση 1 : Συμπαγής κύλινδρος μάζας Μ συνδεδεμένος σε ελατήριο σταθεράς k = 3. N / και αμελητέας μάζας, κυλίεται, χωρίς να

Διαβάστε περισσότερα

d E dt Σχήμα 3.4. (α) Σχηματικό διάγραμμα απλού εναλλάκτη, όπου ένας αγώγιμος βρόχος περιστρέφεται μέσα

d E dt Σχήμα 3.4. (α) Σχηματικό διάγραμμα απλού εναλλάκτη, όπου ένας αγώγιμος βρόχος περιστρέφεται μέσα Παράδειγμα 3.1. O περιστρεφόμενος βρόχος με σταθερή γωνιακή ταχύτητα ω μέσα σε σταθερό ομογενές μαγνητικό πεδίο είναι το πρότυπο μοντέλο ενός τύπου γεννήτριας εναλλασσόμενου ρεύματος, του εναλλάκτη. Αναπτύσσει

Διαβάστε περισσότερα

ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 15/10/2012 ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗΣ ΣΤΗ ΦΥΣΙΚΗ

ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 15/10/2012 ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗΣ ΣΤΗ ΦΥΣΙΚΗ ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 15/1/1 ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗΣ ΣΤΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ ΩΡΕΣ ΑΣΚΗΣΗ 1 Σε σώμα μάζας m = 1Kg ασκείται η δύναμη F

Διαβάστε περισσότερα

Κεφάλαιο 2. Διανύσματα και Συστήματα Συντεταγμένων

Κεφάλαιο 2. Διανύσματα και Συστήματα Συντεταγμένων Κεφάλαιο 2 Διανύσματα και Συστήματα Συντεταγμένων Διανύσματα Διανυσματικά μεγέθη Φυσικά μεγέθη που έχουν τόσο αριθμητικές ιδιότητες όσο και ιδιότητες κατεύθυνσης. Σε αυτό το κεφάλαιο, θα ασχοληθούμε με

Διαβάστε περισσότερα

από t 1 (x) = A 1 x A 1 b.

από t 1 (x) = A 1 x A 1 b. Σύνοψη Κεφαλαίου 2: Ομοπαραλληλική Γεωμετρία Γεωμετρία και μετασχηματισμοί 1. Μία ισομετρία του R 2 είναι μία απεικόνιση από το R 2 στο R 2 που διατηρεί αποστάσεις. Κάθε ισομετρία του R 2 έχει μία από

Διαβάστε περισσότερα

Κίνηση σε Ηλεκτρικό Πεδίο.

Κίνηση σε Ηλεκτρικό Πεδίο. Κίνηση σε Ηλεκτρικό Πεδίο. 3.01. Έργο κατά την μετακίνηση φορτίου. Στις κορυφές Β και Γ ενός ισοπλεύρου τριγώνου ΒΓ πλευράς α= 2cm, βρίσκονται ακλόνητα δύο σημειακά ηλεκτρικά φορτία 1 =2μC και 2 αντίστοιχα.

Διαβάστε περισσότερα

Εσωτερικές Αλληλεπιδράσεις Νο 3.

Εσωτερικές Αλληλεπιδράσεις Νο 3. Το θέμα του 05, (επαναληπτικές) Εσωτερικές λληλεπιδράσεις Νο 3. Δύο ράβδοι είναι συνδεδεμένες στο άκρο τους και σχηματίζουν σταθερή γωνία 60 ο μεταξύ τους, όπως φαίνεται στο Σχήμα. Οι ράβδοι είναι διαφορετικές

Διαβάστε περισσότερα

kg(χιλιόγραμμο) s(δευτερόλεπτο) Ένταση ηλεκτρικού πεδίου Α(Αμπέρ) Ένταση φωτεινής πηγής cd (καντέλα) Ποσότητα χημικής ουσίας mole(μόλ)

kg(χιλιόγραμμο) s(δευτερόλεπτο) Ένταση ηλεκτρικού πεδίου Α(Αμπέρ) Ένταση φωτεινής πηγής cd (καντέλα) Ποσότητα χημικής ουσίας mole(μόλ) ΕΙΣΑΓΩΓΗ- ΦΥΣΙΚΑ ΜΕΓΕΘΗ Στα φυσικά φαινόμενα εμφανίζονται κάποιες ιδιότητες της ύλης. Για να περιγράψουμε αυτές τις ιδιότητες χρησιμοποιούμε τα φυσικά μεγέθη. Τέτοια είναι η μάζα, ο χρόνος, το ηλεκτρικό

Διαβάστε περισσότερα

Ο ειδικός μετασχηματισμός του Lorentz

Ο ειδικός μετασχηματισμός του Lorentz Ο ειδικός μετασχηματισμός του Lorentz Με αφετηρία τις δυο απαιτήσεις της Ειδικής Θεωρίας Σχετικότητας του Einstein θα βρούμε τον ειδικό μετασχηματισμό του Lorentz Πρώτη απαίτηση: Όλοι οι αδρανειακοί παρατηρητές

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξετάσεις στη Θεωρία της Ειδικής Σχετικότητας 23 Μαρτίου 2015 (πτυχιακή περίοδος)

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξετάσεις στη Θεωρία της Ειδικής Σχετικότητας 23 Μαρτίου 2015 (πτυχιακή περίοδος) ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξετάσεις στη Θεωρία της Ειδικής Σχετικότητας 23 Μαρτίου 25 (πτυχιακή περίοδος) Αν θέλετε μπορείτε να επεξεργαστείτε όλα τα προβλήματα σε σύστημα μονάδων όπου η ταχύτητα

Διαβάστε περισσότερα

Μαθηματική Εισαγωγή Συναρτήσεις

Μαθηματική Εισαγωγή Συναρτήσεις Φυσικός Ραδιοηλεκτρολόγος (MSc) ο Γενικό Λύκειο Καστοριάς A. Μαθηματική Εισαγωγή Πράξεις με αριθμούς σε εκθετική μορφή Επίλυση βασικών μορφών εξισώσεων Συναρτήσεις Στοιχεία τριγωνομετρίας Διανύσματα Καστοριά,

Διαβάστε περισσότερα

Εισαγωγή στην Αριθμητική Ανάλυση

Εισαγωγή στην Αριθμητική Ανάλυση Εισαγωγή στην Αριθμητική Ανάλυση Εισαγωγή στη MATLAB ΔΙΔΑΣΚΩΝ: ΓΕΩΡΓΙΟΣ ΑΚΡΙΒΗΣ ΒΟΗΘΟΙ: ΔΗΜΗΤΡΙΑΔΗΣ ΣΩΚΡΑΤΗΣ, ΣΚΟΡΔΑ ΕΛΕΝΗ E-MAIL: SDIMITRIADIS@CS.UOI.GR, ESKORDA@CS.UOI.GR Τι είναι Matlab Είναι ένα περιβάλλον

Διαβάστε περισσότερα

11 η Εβδομάδα Δυναμική Περιστροφικής κίνησης. Έργο Ισχύς στην περιστροφική κίνηση Στροφορμή Αρχή διατήρησης στροφορμής

11 η Εβδομάδα Δυναμική Περιστροφικής κίνησης. Έργο Ισχύς στην περιστροφική κίνηση Στροφορμή Αρχή διατήρησης στροφορμής 11 η Εβδομάδα Δυναμική Περιστροφικής κίνησης Έργο Ισχύς στην περιστροφική κίνηση Στροφορμή Αρχή διατήρησης στροφορμής Έργο και ισχύς στην περιστροφική κίνηση Εφαπτομενική δύναμη που περιστρέφει τον τροχό

Διαβάστε περισσότερα

1. Τι είναι η Κινηματική; Ποια κίνηση ονομάζεται ευθύγραμμη;

1. Τι είναι η Κινηματική; Ποια κίνηση ονομάζεται ευθύγραμμη; ΚΕΦΑΛΑΙΟ 2 ο ΚΙΝΗΣΗ 2.1 Περιγραφή της Κίνησης 1. Τι είναι η Κινηματική; Ποια κίνηση ονομάζεται ευθύγραμμη; Κινηματική είναι ο κλάδος της Φυσικής που έχει ως αντικείμενο τη μελέτη της κίνησης. Στην Κινηματική

Διαβάστε περισσότερα

Πρόβλημα 4.9.

Πρόβλημα 4.9. Πρόβλημα 4.9. Να βρεθεί το δυναμικό V() παντού στο χώρο ενός θετικά φορτισμένου φύλλου απείρων διαστάσεων με επιφανειακή πυκνότητα φορτίου σ. Πάρτε τον άξονα κάθετα στο φύλλο και θεωρήστε ότι το φύλλο

Διαβάστε περισσότερα

Κίνηση ΚΕΦΑΛΑΙΟ 2 Β ΓΥΜΝΑΣΙΟΥ

Κίνηση ΚΕΦΑΛΑΙΟ 2 Β ΓΥΜΝΑΣΙΟΥ Κίνηση ΚΕΦΑΛΑΙΟ 2 Β ΓΥΜΝΑΣΙΟΥ 2.1 Περιγραφή της Κίνησης 1. Τι είναι η Κινηματική; Ποια κίνηση ονομάζεται ευθύγραμμη; Κινηματική είναι ο κλάδος της Φυσικής που έχει ως αντικείμενο τη μελέτη της κίνησης.

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Μηχανική Ι 17 Φεβρουαρίου 2015

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Μηχανική Ι 17 Φεβρουαρίου 2015 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Μηχανική Ι 17 Φεβρουαρίου 2015 Τμήμα Θ. Αποστολάτου & Π. Ιωάννου Απαντήστε και στα 4 προβλήματα με σαφήνεια και απλότητα. Οι ολοκληρωμένες απαντήσεις στα ερωτήματα εκτιμώνται

Διαβάστε περισσότερα

ΗΛΕΚΤΡΙΚΑ ΚΥΚΛΩΜΑΤΑ Ι ΗΛΕΚΤΡΙΚΟ ΔΥΝΑΜΙΚΟ

ΗΛΕΚΤΡΙΚΑ ΚΥΚΛΩΜΑΤΑ Ι ΗΛΕΚΤΡΙΚΟ ΔΥΝΑΜΙΚΟ ΗΛΕΚΤΡΙΚΑ ΚΥΚΛΩΜΑΤΑ Ι ΗΛΕΚΤΡΙΚΟ ΔΥΝΑΜΙΚΟ 1 1. ΗΛΕΚΤΡΙΚΗ ΔΥΝΑΜΙΚΗ ΕΝΕΡΓΕΙΑ Αρχικά ας δούμε ορισμένα σημεία που αναφέρονται στο έργο, στη δυναμική ενέργεια και στη διατήρηση της ενέργειας. Πρώτον, όταν μια

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΗ ΘΕΩΡΙΑ ΗΛΕΚΤΡΙΚΟ ΔΥΝΑΜΙΚΟ

ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΗ ΘΕΩΡΙΑ ΗΛΕΚΤΡΙΚΟ ΔΥΝΑΜΙΚΟ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΗ ΘΕΩΡΙΑ ΗΛΕΚΤΡΙΚΟ ΔΥΝΑΜΙΚΟ 1 1. ΗΛΕΚΤΡΙΚΗ ΔΥΝΑΜΙΚΗ ΕΝΕΡΓΕΙΑ Αρχικά ας δούμε ορισμένα σημεία που αναφέρονται στο έργο, στη δυναμική ενέργεια και στη διατήρηση της ενέργειας. Πρώτον, όταν

Διαβάστε περισσότερα

v = r r + r θ θ = ur + ωutθ r = r cos θi + r sin θj v = u 1 + ω 2 t 2

v = r r + r θ θ = ur + ωutθ r = r cos θi + r sin θj v = u 1 + ω 2 t 2 ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΦΥΣΙΚΉΣ Ι ΤΜΗΜΑ ΧΗΜΕΙΑΣ, 9 ΙΑΝΟΥΑΡΙΟΥ 019 ΚΏΣΤΑΣ ΒΕΛΛΙΔΗΣ, cvellid@phys.uoa.r, 10 77 6895 ΘΕΜΑ 1: Σώµα κινείται µε σταθερή ταχύτητα u κατά µήκος οριζόντιας ράβδου που περιστρέφεται

Διαβάστε περισσότερα

11 η Εβδομάδα Δυναμική Περιστροφικής κίνησης. Έργο Ισχύς στην περιστροφική κίνηση Στροφορμή

11 η Εβδομάδα Δυναμική Περιστροφικής κίνησης. Έργο Ισχύς στην περιστροφική κίνηση Στροφορμή 11 η Εβδομάδα Δυναμική Περιστροφικής κίνησης Έργο Ισχύς στην περιστροφική κίνηση Στροφορμή Έργο και ισχύς στην περιστροφική κίνηση Εφαπτομενική δύναμη που περιστρέφει τον τροχό κατά dθ dw F ds = F R dθ

Διαβάστε περισσότερα

Ασκήσεις Κεφ. 2, Δυναμική υλικού σημείου Κλασική Μηχανική, Τμήμα Μαθηματικών Διδάσκων: Μιχάλης Ξένος, email : mxenos@cc.uoi.gr 29 Μαΐου 2012 1. Στο υλικό σημείο A ασκούνται οι δυνάμεις F 1 και F2 των οποίων

Διαβάστε περισσότερα

ΦΥΣΙΚΗ (ΠΟΜ 114) ΛΥΣΕΙΣ ΓΙΑ ΤΗΝ ΕΝΔΙΑΜΕΣΗ ΕΞΕΤΑΣΗ 2015

ΦΥΣΙΚΗ (ΠΟΜ 114) ΛΥΣΕΙΣ ΓΙΑ ΤΗΝ ΕΝΔΙΑΜΕΣΗ ΕΞΕΤΑΣΗ 2015 ΦΥΣΙΚΗ (ΠΟΜ 114) ΛΥΣΕΙΣ ΓΙΑ ΤΗΝ ΕΝΔΙΑΜΕΣΗ ΕΞΕΤΑΣΗ 15 Ct 1. Η επιτάχυνση ενός σώματος που κινείται σε ευθεία γραμμή είναι a At Be, όπου Α, B, C είναι θετικές ποσότητες. Η αρχική ταχύτητα του σώματος είναι

Διαβάστε περισσότερα

GMm. 1 2GM ) 2 + L2 2 + R L=4.5 L=4 L=3.7 L= 1 2 =3.46 L= V (r) = L 2 /2r 2 - L 2 /r 3-1/r

GMm. 1 2GM ) 2 + L2 2 + R L=4.5 L=4 L=3.7 L= 1 2 =3.46 L= V (r) = L 2 /2r 2 - L 2 /r 3-1/r Ονοματεπώνυμο: Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών, Τμήμα Φυσικής Εξετάσεις στη Μηχανική Ι, Τμήμα Κ Τσίγκανου & Ν Βλαχάκη, Σεπτεμβρίου 05 Διάρκεια εξέτασης 3 ώρες, Καλή επιτυχία = bonus ερωτήματα),

Διαβάστε περισσότερα

ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ

ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 19//013 ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ ΩΡΕΣ ΑΣΚΗΣΗ 1 υ (m/s) Σώμα μάζας m = 1Kg κινείται σε ευθύγραμμη τροχιά

Διαβάστε περισσότερα

Ηλεκτρομαγνητισμός. Μαγνητικό πεδίο. Νίκος Ν. Αρπατζάνης

Ηλεκτρομαγνητισμός. Μαγνητικό πεδίο. Νίκος Ν. Αρπατζάνης Ηλεκτρομαγνητισμός Μαγνητικό πεδίο Νίκος Ν. Αρπατζάνης Μαγνητικοί πόλοι Κάθε μαγνήτης, ανεξάρτητα από το σχήμα του, έχει δύο πόλους. Τον βόρειο πόλο (Β) και τον νότιο πόλο (Ν). Μεταξύ των πόλων αναπτύσσονται

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Ο.Π. ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ

ΦΥΣΙΚΗ Ο.Π. ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Κανάρη 36, Δάφνη Τηλ. 1 9713934 & 1 9769376 ΘΕΜΑ Α ΦΥΣΙΚΗ Ο.Π. ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Α. Στις ερωτήσεις 1-4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και το γράμμα που αντιστοιχεί στη σωστή απάντηση.

Διαβάστε περισσότερα

7. Ένα σώμα εκτελεί Α.Α.Τ. Η σταθερά επαναφοράς συστήματος είναι.

7. Ένα σώμα εκτελεί Α.Α.Τ. Η σταθερά επαναφοράς συστήματος είναι. ΚΕΦΑΛΑΙΟ 1 ο : ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΕΝΟΤΗΤΑ 1.2: ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ (ΕΝΕΡΓΕΙΑΚΗ ΠΡΟΣΕΓΓΙΣΗ, ΑΡΧΙΚΗ ΦΑΣΗ, ΣΥΣΤΗΜΑ ΕΛΑΤΗΡΙΟΥ ΣΩΜΑΤΟΣ, ΟΡΜΗ) 6α. Σφαίρα μάζας ισορροπεί δεμένη στο πάνω άκρο κατακόρυφου

Διαβάστε περισσότερα

dv 2 dx v2 m z Β Ο Γ

dv 2 dx v2 m z Β Ο Γ Μηχανική Ι Εργασία #2 Χειμερινό εξάμηνο 218-219 Ν Βλαχάκης 1 Στην άσκηση 4 της εργασίας #1 αρχικά για t = είναι φ = και η ταχύτητα του σώματος είναι v με φορά κάθετη στο νήμα ώστε αυτό να τυλίγεται στον

Διαβάστε περισσότερα

Προγραμματισμός Ι Εργαστήριο 8ο Ακαδ. Έτος ΕΡΓΑΣΤΗΡΙΟ 8 ΕΡΓΑΣΤΗΡΙΟ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ I, ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ

Προγραμματισμός Ι Εργαστήριο 8ο Ακαδ. Έτος ΕΡΓΑΣΤΗΡΙΟ 8 ΕΡΓΑΣΤΗΡΙΟ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ I, ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ ΕΡΓΑΣΤΗΡΙΟ 8 ΕΡΓΑΣΤΗΡΙΟ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ I, ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2014-2015 Στόχοι Φορμαρισμένη είσοδος και έξοδος Πίνακες Αλφαριθμητικά Συναρτήσεις Προσοχή: Απαγορεύεται αυστηρά η χρήση goto. Πριν ξεκινήσετε

Διαβάστε περισσότερα

Γενική Φυσική Ενότητα: Κινητική

Γενική Φυσική Ενότητα: Κινητική Γενική Φυσική Ενότητα: Κινητική Όνομα Καθηγητή: Γεώργιος Βούλγαρης Τμήμα: Μαθηματικό Σελίδα 2 1. Ασκήσεις κινητικής... 4 1.1 Άσκηση 1... 4 1.2 Άσκηση 2... 4 1.3 Άσκηση 3... 4 1.4 Άσκηση 4... 4 1.5 Άσκηση

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ

ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ ΜΑΝΩΛΗ ΡΙΤΣΑ ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Τράπεζα θεμάτων Β Θέμα ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ 16118 Δύο σφαιρίδια Σ 1 και Σ 2 βρίσκονται σε λείο οριζόντιο τραπέζι (κάτοψη του οποίου φαίνεται στο

Διαβάστε περισσότερα

ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ. 1. Β.2 Ο ωροδείκτης και ο λεπτοδείκτης ξεκινούν μαζί στις 12:00.

ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ. 1. Β.2 Ο ωροδείκτης και ο λεπτοδείκτης ξεκινούν μαζί στις 12:00. ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ ΘΕΜΑ 2 1. Β.2 Ο ωροδείκτης και ο λεπτοδείκτης ξεκινούν μαζί στις 12:00. Α) Να επιλέξετε τη σωστή απάντηση. Η πρώτη τους συνάντηση θα γίνει: α. Σε μια ώρα. β. Σε λιγότερο

Διαβάστε περισσότερα

Ορμή - Κρούσεις, ΦΥΣ Διαλ.19 1

Ορμή - Κρούσεις, ΦΥΣ Διαλ.19 1 Ορμή - Κρούσεις, ΦΥΣ 131 - Διαλ.19 1 ΦΥΣ 131 - Διαλ.19 2 Κρούσεις σε 2 διαστάσεις q Για ελαστικές κρούσεις! p 1 + p! 2 = p! 1! + p! 2! όπου p = (p x,p y ) Δηλαδή είναι 2 εξισώσεις, µια για κάθε διεύθυνση

Διαβάστε περισσότερα

Κεφάλαιο M4. Κίνηση σε δύο διαστάσεις

Κεφάλαιο M4. Κίνηση σε δύο διαστάσεις Κεφάλαιο M4 Κίνηση σε δύο διαστάσεις Κινηµατική σε δύο διαστάσεις Θα περιγράψουµε τη διανυσµατική φύση της θέσης, της ταχύτητας, και της επιτάχυνσης µε περισσότερες λεπτοµέρειες. Θα µελετήσουµε την κίνηση

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξετάσεις στη ΜΗΧΑΝΙΚΗ Ι 26 Ιανουαρίου 2016

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξετάσεις στη ΜΗΧΑΝΙΚΗ Ι 26 Ιανουαρίου 2016 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξετάσεις στη ΜΗΧΑΝΙΚΗ Ι 26 Ιανουαρίου 2016 Τμήμα Π. Ιωάννου & Θ. Αποστολάτου Στις παρενθέσεις δίνονται τα μόρια του κάθε ερωτήματος. Σε ένα σωματίδιο που κινείται στον

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξέταση στη Μηχανική ΙI 11 Ιουνίου 2012

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξέταση στη Μηχανική ΙI 11 Ιουνίου 2012 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξέταση στη Μηχανική ΙI Ιουνίου 202 Απαντήστε και στα 4 Θέματα με σαφήνεια και απλότητα. Οι ολοκληρωμένες απαντήσεις στα ερωτήματα εκτιμώνται ιδιαιτέρως. Καλή σας επιτυχία.

Διαβάστε περισσότερα

( ) ( r) V r. ( ) + l 2. Τι είδαμε: m!! r = l 2. 2mr 2. 2mr 2 + V r. q Ξεκινήσαμε την συζήτηση για το θέμα κεντρικής δύναμης

( ) ( r) V r. ( ) + l 2. Τι είδαμε: m!! r = l 2. 2mr 2. 2mr 2 + V r. q Ξεκινήσαμε την συζήτηση για το θέμα κεντρικής δύναμης ΦΥΣ 2 - Διαλ.4 Τι είδαμε: q Ξεκινήσαμε την συζήτηση για το θέμα κεντρικής δύναμης ü Ανάγαμε το πρόβλημα 2 σωμάτων σε πρόβλημα κεντρικής δύναμης ü διατήρηση ορμής CM μετατρέπει το πρόβλημα από 6 DoF σε

Διαβάστε περισσότερα

Παράρτημα Ι. 1 Το ισόχρονο της ταλάντωσης επί κυκλοειδούς

Παράρτημα Ι. 1 Το ισόχρονο της ταλάντωσης επί κυκλοειδούς Παράρτημα Ι 1 Το ισόχρονο της ταλάντωσης επί κυκλοειδούς Ας θεωρήσουμε μια κυκλική στεφάνη ακτίνας a η οποία κυλίεται, χωρίς να ολισθαίνει, πάνω σε μια ευθεία (για ευκολία υποθέστε ότι η ευθεία είναι ο

Διαβάστε περισσότερα

Προγραμματισμός Ι Εργαστήριο 8ο Ακαδ. Έτος ΕΡΓΑΣΤΗΡΙΟ 8 ΕΡΓΑΣΤΗΡΙΟ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ I, ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ

Προγραμματισμός Ι Εργαστήριο 8ο Ακαδ. Έτος ΕΡΓΑΣΤΗΡΙΟ 8 ΕΡΓΑΣΤΗΡΙΟ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ I, ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ ΕΡΓΑΣΤΗΡΙΟ 8 ΕΡΓΑΣΤΗΡΙΟ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ I, ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2014-2015 Στόχοι Φορμαρισμένη είσοδος και έξοδος Πίνακες Αλφαριθμητικά Συναρτήσεις Προσοχή: Απαγορεύεται αυστηρά η χρήση goto. Πριν ξεκινήσετε

Διαβάστε περισσότερα

Και τα στερεά συγκρούονται

Και τα στερεά συγκρούονται Και τα στερεά συγκρούονται Εξετάζοντας την ελαστική κρούση υλικών σημείων, ουσιαστικά εξετάζουμε την κρούση μεταξύ δύο στερεών σωμάτων, δύο μικρών σφαιρών, τα οποία εκτελούν μόνο μεταφορική κίνηση. Τι

Διαβάστε περισσότερα

ΕΠΙΣΚΟΠΗΣΗ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ

ΕΠΙΣΚΟΠΗΣΗ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ ΕΠΙΣΚΟΠΗΣΗ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ ΕΓΧΕΙΡΙΔΙΟ ΔΙΔΑΚΤΕΑΣ ΥΛΗΣ ΔΗΜΗΤΡΙΟΣ ΘΕΟΔΩΡΙΔΗΣ Κεφάλαιο 1.1 Ευθύγραμμη κίνηση 1. Τι ονομάζουμε κίνηση; Τι ονομάζουμε τροχιά; Ποια είδη τροχιών γνωρίζετε; Κίνηση ενός αντικειμένου

Διαβάστε περισσότερα

1. Κίνηση Υλικού Σημείου

1. Κίνηση Υλικού Σημείου 1. Κίνηση Υλικού Σημείου Εισαγωγή στην Φυσική της Γ λυκείου Τροχιά: Ονομάζεται η γραμμή που συνδέει τις διαδοχικές θέσεις του κινητού. Οι κινήσεις ανάλογα με το είδος της τροχιάς διακρίνονται σε: 1. Ευθύγραμμες

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Μηχανική Ι 22 Ιανουαρίου, 2019

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Μηχανική Ι 22 Ιανουαρίου, 2019 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Μηχανική Ι Ιανουαρίου, 9 Καλή σας επιτυχία. Πρόβλημα Α Ένα σωματίδιο μάζας m κινείται υπό την επίδραση του πεδίου δύο σημειακών ελκτικών κέντρων, το ένα εκ των οποίων

Διαβάστε περισσότερα

ΦΥΣ. 111 Κατ οίκον εργασία # 1 - Επιστροφή 19/09/2017. Οι ασκήσεις στηρίζονται στα κεφάλαια 1 και 2 των βιβλίων των Young και Serway

ΦΥΣ. 111 Κατ οίκον εργασία # 1 - Επιστροφή 19/09/2017. Οι ασκήσεις στηρίζονται στα κεφάλαια 1 και 2 των βιβλίων των Young και Serway ΦΥΣ. 111 Κατ οίκον εργασία # 1 - Επιστροφή 19/09/2017 Οι ασκήσεις στηρίζονται στα κεφάλαια 1 και 2 των βιβλίων των Young και Serway 1. Χρησιµοποιώντας διαστασιακή ανάλυση, να προσδιορίστε την ταχύτητα

Διαβάστε περισσότερα