ΚΑΡΤΕΣΙΑΝΟ ΣΥΣΤΗΜΑ ΣΕ ΔΥΟ ΔΙΑΣΤΑΣΕΙΣ
|
|
- Μυρρίνη Πυλαρινός
- 8 χρόνια πριν
- Προβολές:
Transcript
1
2 ΚΑΡΤΕΣΙΑΝΟ ΣΥΣΤΗΜΑ ΣΕ ΔΥΟ ΔΙΑΣΤΑΣΕΙΣ Δυο κάθετοι μεταξύ τους προσανατολισμένοι και βαθμονομημένοι άξονες A Α Έστω σημείο Α στο επίπεδο Η θέση του προσδιορίζεται από τις προβολές στους άξονες A, A 0 A Η θέση κάθε σημείου προσδιορίζεται από ζεύγος τιμών,.
3 ΠΟΛΙΚΟ ΣΥΣΤΗΜΑ ΣΕ ΔΥΟ ΔΙΑΣΤΑΣΕΙΣ Για να προσδιορίσουμε τη θέση του σημείου Α πρέπει να χρησιμοποιήσουμε ένα ζεύγος τιμών. Α Την απόσταση από την αρχή των αξόνων ρ Τη γωνία φ που μετριέται από το θετικό ημιάξονα αντίθετα από τη φορά των δεικτών του ρολογιού 0 ρ φ 0 0 Η θέση κάθε σημείου προσδιορίζεται από ζεύγος τιμών ρ, φ.
4 ΠΟΛΙΚΟ ΣΥΣΤΗΜΑ ΣΕ ΔΥΟ ΔΙΑΣΤΑΣΕΙΣ Σχέση μεταξύ Πολικών και Καρτεσιανών συντεταγμένων Γεωμετρικά εύκολα βρίσκουμε ότι cs Α sin ρ Συμβολισμοί που θα χρησιμοποιούμε συν cs ημ sin εφ tan σφ ct 0 φ
5 ΠΟΛΙΚΟ ΣΥΣΤΗΜΑ ΣΕ ΔΥΟ ΔΙΑΣΤΑΣΕΙΣ Τα μοναδιαία διανύσματα ορίζονται ως εξής: 1. Για σημείο Μ φέρουμε την ΟΜ που ορίζει το. r r rr Μ r Το μοναδιαίο διάνυσμα r ορίζεται κατά μήκος του r και φορά από το Ο προς το Μ.. Το μοναδιαίο διάνυσμα που αντιστοιχεί στη γωνία φ, το, είναι κάθετο στο και δείχνει τη φορά μέτρησης του φ. r Ο х ΑΠΟ ΤΟΝ ΟΡΙΣΜΟ ΕΙΝΑΙ ΣΑΦΕΣ, ΠΩΣ ΤΑ ΜΟΝΑΔΙΑΙΑ ΔΙΑΝΥΣΜΑΤΑ ΕΞΑΡΤΩΝΤΑΙ ΑΠΟ ΤΟ ΣΗΜΕΙΟ ΑΝ ΕΧΟΥΜΕ ΝΑ ΚΑΝΟΥΜΕ ΜΕ ΣΩΜΑΤΙΔΙΟ ΠΟΥ ΚΙΝΕΙΤΑΙ, ΘΑ ΕΧΟΥΜΕ ΜΕΤΑΒΟΛΗ ΚΑΙ ΤΩΝ ΜΟΝΑΔΙΑΙΩΝ ΔΙΑΝΥΣΜΑΤΩΝ
6 ΤΑΧΥΤΗΤΑ ΣΕ ΠΟΛΙΚΕΣ ΣΥΝΤΕΤΑΓΜΕΝΕΣ Εξετάζουμε και πάλι το σημείο M, το οποίο περιγράφει τη θέση του σωματιδίου μια τυχαία χρονική στιγμή. Ας εκφράσουμε το διάνυσμα θέσης του σωματιδίου στις πολικές συντεταγμένες r=rr Τότε, σύμφωνα με τα γνωστά για την ταχύτητα θα έχουμε dr d( rr ) = Κατά την παραγώγιση πρέπει να πάρουμε υπόψη μας ότι και το r και το r είναι μεταβλητά dr drr ( ) dr dr = r r Ο r dr r / M r х
7 ΤΑΧΥΤΗΤΑ ΣΕ ΠΟΛΙΚΕΣ ΣΥΝΤΕΤΑΓΜΕΝΕΣ Σχεδιάζουμε τα μοναδιαία i διανύσματα και του καρτεσιανού συστήματος στο ίδιο σχήμα j j Ο i r M r х Σχεδιάζουμε και τα 4 μοναδιαία διανύσματα στους, άξονες με κοινή κορυφή το Ο j Ο r i х
8 Φέρνουμε τις προβολές του στους άξονες και. r Τότε, από το σχήμα βλέπουμε ότι ισχύει: r csi sin j (1) ΤΑΧΥΤΗΤΑ ΣΕ ΠΟΛΙΚΕΣ ΣΥΝΤΕΤΑΓΜΕΝΕΣ Φέρνουμε τις προβολές του στους άξονες και. Θα ισχύει: sin i cs j () dr / Για να υπολογίσουμε την πρέπει να παραγωγίσουμε την (1) ως προς το χρόνο dr d d d sin i cs j( sini cs j) Από τη () παίρνουμε: dr d j Ο r i х
9 ΤΑΧΥΤΗΤΑ ΣΕ ΠΟΛΙΚΕΣ ΣΥΝΤΕΤΑΓΜΕΝΕΣ dr drr ( ) dr dr = r r ( 3) (4) Από τις σχέσεις (3), (4) προκύπτει η έκφραση τις ταχύτητας σε πολικές συντεταγμένες. dr d dr dr d r r rr r Πολικές συντεταγμένες της ταχύτητας dr d, r r r r
10 ΕΠΙΤΑΧΥΝΣΗ ΠΟΛΙΚΕΣ ΣΥΝΤΕΤΑΓΜΕΝΕΣ Με παραγώγιση της ταχύτητας προκύπτει η επιτάχυνση d d a ( rr ) r rr rr r r r dr d Γνωρίζοντας ότι: r d d r a ( r r ) r ( r r ) Πολικές συντεταγμένες της επιτάχυνσης a r r a r r r,
11 ΦΥΣΙΚΕΣ ΣΥΝΙΣΤΩΣΕΙΣ ΤΑΧΥΤΗΤΑΣ ΚΑΙ ΕΠΙΤΑΧΥΝΣΗΣ Ταχύτητα dr () ds r dr dsdr lim t 0 (1) t ds (1),() dr ds Επιτάχυνση d d ds d s ds d d s ds d a (3) ds d d (3),(4),(5) a n R d n R (4) ds 1 R d ds (5) Επιτρόχια Επιτάχυνση a d d s s Κεντρομόλος Επιτάχυνση a R
12 ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ Ταχύτητα rr r () 1 dr d r c, r0,, () Ο a r φ n (ε) d (),( 1 ) r r r r r Επιτάχυνση a ( r r ) r ( r r ) ( 3) ( ),( ) 3 a r r r r n r, a r a r r
13 ΑΡΜΟΝΙΚΗ ΚΙΝΗΣΗ Υλικό σημείο Μ εκτελεί ομαλή κυκλική κίνηση σε περιφέρεια κύκλου ακτίνας r. Οι προβολές του Μ, Μ 1 και Μ στους άξονες Ο και O αντίστοιχα κάνουν αρμονική κίνηση. Ο Μ r Φ=ωt Μ 1 M (ε) Θέση Ταχύτητα Επιτάχυνση των Μ 1 και Μ. d rcst rsin t a r cst d rsint rcs t a r sint d d Περίοδος Τ, κυκλική συχνότητα ω. T
14 ΑΡΜΟΝΙΚΗ ΚΙΝΗΣΗ Η Θέση, η Ταχύτητα και η Επιτάχυνση των Μ 1 και Μ παίρνουν τις ίδιες τιμές μετά από κάθε περίοδο T Ο Μ r Φ=ωt Μ 1 M (ε) Βασική εξίσωση αρμονικής κίνησης των Μ 1 και Μ d a 0 0 d a 0 0 dr r Γενική εξίσωση αρμονικής κίνησης 0
15 ΣΧΕΤΙΚΗ ΚΙΝΗΣΗ ΩΧΥΖ (S) ακίνητο σύστημα αναφοράς. ΟΧ Υ Ζ (S ) κινούμενο σύστημα αναφοράς στο χώρο. Μ κινούμενο υλικό σημείο στο χώρο. ΔιανύσματαθέσηςτουΜωςπροςτα S και S, Rr, αντίστοιχα. Διάνυσμα θέσης του S ως προς S, R Μοναδιαία διανύσματα των αξόνων των συστημάτων ΩΧΥΖ και ΟΧ Υ Ζ Διανύσματα θέσης i, j, k u, v, w Rijzk R i j zk αντίστοιχα. r u v zw
16 Σχέση Διανυσμάτων θέσης R R r Ταχύτητα του Μ ως προς το ΩΧΥΖ ΣΧΕΤΙΚΗ ΚΙΝΗΣΗ dr dr dr dr d d dz d d dz i j k i j k d d dz du dv dw u v w z u u v v w w
17 ΣΧΕΤΙΚΗ ΚΙΝΗΣΗ Ταχύτητα του Μ ως προς το ΩΧΥΖ d d dz RR u v w (u v zw) Επιτάχυνση του Μ ως προς το ΩΧΥΖ d d dz RR u v w d d dz ( u v w) ( r) ( r)
18 ΣΧΕΤΙΚΗ ΚΙΝΗΣΗ ΟΡΙΣΜΟΙ Ταχύτητα και επιτάχυνση του S ως προς το S. d d dz i j k d d dz a i j k Απόλυτη ταχύτητα και επιτάχυνση του Μ ως προς το S. d d dz i j k d d dz a i j k Σχετική ταχύτητα και επιτάχυνση του Μ ως προς το S. d d dz. u v w d d dz a. u v w
19 ΣΧΕΤΙΚΗ ΚΙΝΗΣΗ ΟΡΙΣΜΟΙ Μετοχική ταχύτητα και επιτάχυνση του Μ r Κοριόλειος επιτάχυνση του Μ a c Φυγόκεντρη επιτάχυνση του Μ a ( r) Γενικές εξισώσεις a a ( r) ( r) a a a c a
20 ΕΙΔΙΚΕΣ ΠΕΡΙΠΤΩΣΕΙΣ Το S κινείται ευθύγραμμα με σταθερή ταχύτητα a a Το S κινείται ευθύγραμμα με μεταβαλλόμενη ταχύτητα a a a ΣΧΕΤΙΚΗ ΚΙΝΗΣΗ Τα S και S έχουν κοινή αρχή και το δεύτερο περιστρέφεται με σταθερή γωνιακή ταχύτητα. r a a a c ( r)
21 ΕΙΔΙΚΕΣ ΠΕΡΙΠΤΩΣΕΙΣ ΣΧΕΤΙΚΗ ΚΙΝΗΣΗ Τα S και S κινούνται με παραλλήλους τους άξονες τους και χωρίς περιστροφή (Γαλιλαικοί Μετασχηματισμοί) t d d d d d d d d z z dz dz d z d z
22 ΣΥΣΤΗΜΑΤΑ ΑΝΑΦΟΡΑΣ στις ΤΡΕΙΣ ΔΙΑΣΤΑΣΕΙΣ Καρτεσιανό Σύστημα (δεξιόστροφο) Τρεις κάθετοι μεταξύ τους προσανατολισμένοι και βαθμονομημένοι άξονες Έστω σημείο Α στο χώρο Η θέση του προσδιορίζεται αν φέρουμε την προβολή του Α στο επίπεδο και βρούμε τις Α, Α και την προβολή του z Α στον z άξονα. A z z A 0 Α Α z A Η θέση κάθε σημείου προσδιορίζεται από τρία μεγέθη,, z.
23 ΣΥΣΤΗΜΑΤΑ ΑΝΑΦΟΡΑΣ στις ΤΡΕΙΣ ΔΙΑΣΤΑΣΕΙΣ Κυλινδρικό Σύστημα Ουσιαστικά πρόκειται για Το πολικό σύστημα στο Επίπεδο (π.χ. το,) Με την προσθήκη ενός άξονα (π.χ.) του z) Έστω σημείο Α στο χώρο Η θέση του προσδιορίζεται αν φέρουμε την προβολή του Α στο επίπεδο και βρούμε τις ρ Α, φ Α και την προβολή του z Α στον z άξονα. 0 0 z Α Η θέση κάθε σημείου προσδιορίζεται από τρία μεγέθη ρ, φ, z. 0 z z A φ Α ρ Α Α
24 ΣΥΣΤΗΜΑΤΑ ΑΝΑΦΟΡΑΣ στις ΤΡΕΙΣ ΔΙΑΣΤΑΣΕΙΣ Σχέση συντεταγμένων Κυλινδρικού και Καρτεσιανού Συστήματος z z Από το σχήμα, αλλά και από τις σχέσεις τις οποίες βρήκαμε γιατοπολικόσύστημαστο επίπεδο έχουμε: Α cs sin z z 0 φ ρ Α
25 ΣΥΣΤΗΜΑΤΑ ΑΝΑΦΟΡΑΣ στις ΤΡΕΙΣ ΔΙΑΣΤΑΣΕΙΣ Γιατί λέγεται το σύστημα Κυλινδρικό; Εάν διατηρήσουμε σταθερό το ρ, ενώ θα μεταβάλλουμε το φ και το z σχηματίζεται κύλινδρος Το σύστημα χρησιμοποιείται σε προβλήματα με κυλινδρική συμμετρία, π.χ. μαγνητικό πεδίο ρευματοφόρου αγωγού. z z 0 Α
26 ΣΥΣΤΗΜΑΤΑ ΑΝΑΦΟΡΑΣ στις ΤΡΕΙΣ ΔΙΑΣΤΑΣΕΙΣ Σφαιρικό Σύστημα Η θέση του Α προσδιορίζεται από τα εξής μεγέθη: Την απόσταση r Α από την αρχή Την γωνία φ Α που ορίζεται όπως και η πολική. Την γωνία θ Α που μετριέται πάντα από το θετικό ημιάξονα z z 0 θ Α φ Α r Α 0 r 0 0 Α Α Η θέση κάθε σημείου προσδιορίζεται από τρία μεγέθη r, θ, φ.
27 ΣΥΣΤΗΜΑΤΑ ΑΝΑΦΟΡΑΣ στις ΤΡΕΙΣ ΔΙΑΣΤΑΣΕΙΣ Σχέση μεταξύ Σφαιρικών και Καρτεσιανών συντεταγμένων Από το σχήμα εύκολα παίρνουμε: ( )cs ( )sin z Ρ ( ) r sin z (OP) rcs θ r Α Τελικά: rsin cs rsin sin z rcs 0 φ θ Α
28 ΣΥΣΤΗΜΑΤΑ ΑΝΑΦΟΡΑΣ στις ΤΡΕΙΣ ΔΙΑΣΤΑΣΕΙΣ Γιατί λέγεται το σύστημα Σφαιρικό; z Εάν διατηρήσουμε σταθερό το r, ενώθαμεταβάλλουμετοφ και το θ σχηματίζεται σφαίρα Το σύστημα χρησιμοποιείται σε προβλήματα με σφαιρική συμμετρία, π.χ. βαρυντικό πεδίο Της Γης. 0 r
Σύντομη μαθηματική εισαγωγή
Σύντομη μαθηματική εισαγωγή (ή πώς να γίνουν ομοιογενείς 250 φοιτητές από 130 διαφορετικά Σχολεία δύο διαφορετικούς δασκάλους ο καθένας) με δύο http://www.cc.uoa.gr/~ctrikali http://eclass.uoa.gr Α. Καραμπαρμπούνης,
Καρτεσιανό Σύστηµα y. y A. x A
Στη γενική περίπτωση µπορούµε να ορίσουµε άπειρα συστήµατα συντεταγ- µένων τα οποία να µας επιτρέπουν να προσδιορίσουµε τη θέση ενός σηµείου. Στη Φυσική χρησιµοποιούνται αρκετά. Τα βασικά από αυτά θα εξετάσουµε
Ασκήσεις Κεφ. 1, Κινηματική υλικού σημείου Κλασική Μηχανική, Τμήμα Μαθηματικών Διδάσκων: Μιχάλης Ξένος, email : mxenos@cc.uoi.gr 10 Απριλίου 2012 1. Αν το διάνυσμα θέσης υλικού σημείου είναι: r(t) = [ln(t
ΤΡΟΧΙΑ ΙΑΝΥΣΜΑ ΘΕΣΗΣ. t 1 (x 1,y 1 ) Η αρχή ενός οποιουδήποτε ορθογωνίου xy συστήματος συντεταγμένων
ΤΡΟΧΙΑ ΙΑΝΥΣΜΑ ΘΕΣΗΣ 1 ( 1, 1 ) ορθογωνίου συστήματος r1 1 1 ΤΡΟΧΙΑ ΙΑΝΥΣΜΑ ΘΕΣΗΣ (, ) ορθογωνίου συστήματος r ΤΡΟΧΙΑ ΙΑΝΥΣΜΑ ΘΕΣΗΣ 3 ( 3, 3 ) ορθογωνίου συστήματος r3 3 3 ΤΡΟΧΙΑ ΙΑΝΥΣΜΑ ΘΕΣΗΣ 4 ( 4, 4
ΦΥΣΙΚΗ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΕΡΓΑΣΙΑ 2 ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΟΜΑΛΗ ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ
ΦΥΣΙΚΗ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΕΡΓΑΣΙΑ 2 ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΟΜΑΛΗ ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ 1. Σώμα μάζας m=15/π Kg εκτελεί ομαλή κυκλική κίνηση ακτίνας R=20/π m με φορά αντίθετη απ τους δείκτες του ρολογιού. Αν το σώμα
lim Δt Δt 0 da da da dt dt dt dt Αν ο χρόνος αυξηθεί κατά Δt το διάνυσμα θα γίνει Εξετάζουμε την παράσταση
Έστω διάνυσμα a( t a ( t i a ( t j a ( t k Αν ο χρόνος αυξηθεί κατά Δt το διάνυσμα θα γίνει a( t Δt a ( t Δt i a ( t Δt j a ( t Δt k Εξετάζουμε την παράσταση z z a( t Δt - a( t Δa a ( t Δt - a ( t lim
Ασκήσεις Κεφ. 2, Δυναμική υλικού σημείου Κλασική Μηχανική, Τμήμα Μαθηματικών Διδάσκων: Μιχάλης Ξένος, email : mxenos@cc.uoi.gr 29 Μαΐου 2012 1. Στο υλικό σημείο A ασκούνται οι δυνάμεις F 1 και F2 των οποίων
Κεφάλαιο 3 Κίνηση σε 2 και 3 Διαστάσεις
Κεφάλαιο 3 Κίνηση σε και 3 Διαστάσεις Κίνηση υλικού σημείου στο επίπεδο ( -D) και στο χώρο (3 -D). Ορισμός διανυσμάτων για την μελέτη της -D 3-D κίνησης: Θέση, Μετατόπιση Μέση και στιγμιαία ταχύτητα Μέση
ΦΥΣΙΚΗ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΕΡΓΑΣΙΑ 2 ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΟΜΑΛΗ ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ
ΦΥΣΙΚΗ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΕΡΓΑΣΙΑ 2 ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΟΜΑΛΗ ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ 1. Σώμα μάζας m=15/π Kg εκτελεί ομαλή κυκλική κίνηση ακτίνας R=20/π m με φορά αντίθετη απ τους δείκτες του ρολογιού. Αν το σώμα
ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ
ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ Μηχανική Στερεού Σώματος - Κύλιση Επιμέλεια: ΑΓΚΑΝΑΚΗΣ A.ΠΑΝΑΓΙΩΤΗΣ, Φυσικός Βασικές Έννοιες Μέχρι στιγμής αντιμετωπίζαμε κάθε σώμα που μελετούσαμε την κίνηση του ως υλικό
Μαθηματικά για μηχανικούς ΙΙ ΑΣΚΗΣΕΙΣ
Μαθηματικά για μηχανικούς ΙΙ ΑΣΚΗΣΕΙΣ Κεφάλαιο 1 1 Να βρείτε (και να σχεδιάσετε) το πεδίο ορισμού των πιο κάτω συναρτήσεων f (, ) 9 4 (γ) f (, ) f (, ) 16 4 1 Να υπολογίσετε το κάθε όριο αν υπάρχει ή να
F mk(1 e ), όπου k θετική σταθερά. Στο όχημα ασκείται
6-04-011 1. Όχημα μάζας m ξεκινά από την αρχή του άξονα x χωρίς αρχική ταχύτητα και κινείται στον άξονα x υπό την επίδραση της δυνάμεως t F mk(1 e ), όπου k θετική σταθερά. Στο όχημα ασκείται επίσης αντίσταση
v = r r + r θ θ = ur + ωutθ r = r cos θi + r sin θj v = u 1 + ω 2 t 2
ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΦΥΣΙΚΉΣ Ι ΤΜΗΜΑ ΧΗΜΕΙΑΣ, 9 ΙΑΝΟΥΑΡΙΟΥ 019 ΚΏΣΤΑΣ ΒΕΛΛΙΔΗΣ, cvellid@phys.uoa.r, 10 77 6895 ΘΕΜΑ 1: Σώµα κινείται µε σταθερή ταχύτητα u κατά µήκος οριζόντιας ράβδου που περιστρέφεται
Διάνυσμα: έχει μέτρο, διεύθυνση και φορά
Διάνυσμα: έχει μέτρο, διεύθυνση και φορά Πολλά φυσικά μεγέθη είναι διανυσματικά (π.χ. δύναμη, ταχύτητα, επιτάχυνση, γωνιακή ταχύτητα, ροπή, στροφορμή ) Συμβολισμός του διανύσματος: Συμβολισμός του μέτρου
1. Κινηµατική. x dt (1.1) η ταχύτητα είναι. και η επιτάχυνση ax = lim = =. (1.2) Ο δεύτερος νόµος του Νεύτωνα παίρνει τη µορφή: (1.
1. Κινηµατική Βιβλιογραφία C. Kittel W. D. Knight M. A. Rueman A. C. Helmholz και B. J. Moe Μηχανική. Πανεπιστηµιακές Εκδόσεις Ε.Μ.Π. 1998. Κεφ.. {Μαθηµατικό Συµπλήρωµα Μ1 Παράγωγος} {Μαθηµατικό Συµπλήρωµα
Φυσική για Μηχανικούς
Φυσική για Μηχανικούς Εικόνα: Στην εκτέλεση πέναλτι, ο ποδοσφαιριστής κτυπά ακίνητη μπάλα, με σκοπό να της δώσει ταχύτητα και κατεύθυνση ώστε να σκοράρει. Υπό προϋποθέσεις, η εκτέλεση μπορεί να ιδωθεί
ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3//7/2013 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ
ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3//7/013 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ ΩΡΕΣ ΑΣΚΗΣΗ 1 Σώμα μάζας m=0.1 Kg κινείται σε οριζόντιο δάπεδο ευθύγραμμα με την
Μαθηματικά για μηχανικούς ΙΙ ΛΥΣΕΙΣ/ΑΠΑΝΤΗΣΕΙΣ ΑΣΚΗΣΕΩΝ
Μαθηματικά για μηχανικούς ΙΙ ΛΥΣΕΙΣ/ΑΠΑΝΤΗΣΕΙΣ ΑΣΚΗΣΕΩΝ Κεφάλαιο 1 1 Να βρείτε (και να σχεδιάσετε) το πεδίο ορισμού των πιο κάτω συναρτήσεων f (, ) 9 4 (γ) f (, ) f (, ) 16 4 1 D (, ) :9 0, 4 0 (, ) :
Ασκήσεις Κλασικής Μηχανικής, Τμήμα Μαθηματικών Διδάσκων: Μιχάλης Ξένος, email : mxenos@cc.uoi.gr 19 Απριλίου 2013 Κεφάλαιο Ι 1. Να γραφεί το διάνυσμα της ταχύτητας και της επιτάχυνσης υλικού σημείου σε
Κεφάλαιο Χώρος, Διανύσματα, Διανυσματικές εξισώσεις, Συστήματα Συντεταγμένων.
Χώρος Διανύσματα Κεφάλαιο Χώρος, Διανύσματα, Διανυσματικές εξισώσεις, Συστήματα Συντεταγμένων. Καρτεσιανές συντεταγμένες και διανύσματα στο χώρο. Στο σύστημα καρτεσιανών (ή ορθογώνιων) συντεταγμένων κάθε
ΟΜΑΛΗ ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ ΥΛΙΚΟΥ ΣΗΜΕΙΟΥ
ΟΜΑΛΗ ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ ΥΛΙΚΟΥ ΣΗΜΕΙΟΥ Οι δακτύλιοι του Κρόνου είναι ένα σύστημα πλανητικών δακτυλίων γύρω από αυτόν. Αποτελούνται από αμέτρητα σωματίδια των οποίων το μέγεθος κυμαίνεται από μm μέχρι m, με
b proj a b είναι κάθετο στο
ΦΥΛΛΑ ΙΟ ΑΣΚΗΣΕΩΝ. Βρείτε όλα τα σηµεία P τέτοια ώστε η απόσταση του P από το A(, 5, 3) είναι διπλάσια από την απόσταση του P από το B(6, 2, 2). είξτε ότι το σύνολο όλων αυτών των σηµείων είναι σφαίρα.
ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ
ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 19//013 ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ ΩΡΕΣ ΑΣΚΗΣΗ 1 υ (m/s) Σώμα μάζας m = 1Kg κινείται σε ευθύγραμμη τροχιά
Ηλεκτρομαγνητισμός. Μαγνητικό πεδίο. Νίκος Ν. Αρπατζάνης
Ηλεκτρομαγνητισμός Μαγνητικό πεδίο Νίκος Ν. Αρπατζάνης Μαγνητικοί πόλοι Κάθε μαγνήτης, ανεξάρτητα από το σχήμα του, έχει δύο πόλους. Τον βόρειο πόλο (Β) και τον νότιο πόλο (Ν). Μεταξύ των πόλων αναπτύσσονται
ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΦΥΣΙΚΗΣ 2019
ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΦΥΣΙΚΗΣ 019 Κινηματική ΑΣΚΗΣΗ Κ.1 Η επιτάχυνση ενός σώματος που κινείται ευθύγραμμα δίνεται από τη σχέση a = (4 t ) m s. Υπολογίστε την ταχύτητα και το διάστημα που διανύει το σώμα
Τα σώματα τα έχουμε αντιμετωπίσει μέχρι τώρα σαν υλικά σημεία. Το υλικό σημείο δεν έχει διαστάσεις. Έχει μόνο μάζα.
ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΕΡΕΟΎ ΣΏΜΑΤΟΣ Τα σώματα τα έχουμε αντιμετωπίσει μέχρι τώρα σαν υλικά σημεία. Το υλικό σημείο δεν έχει διαστάσεις. Έχει μόνο μάζα. Ένα υλικό σημείο μπορεί να κάνει μόνο μεταφορική
Ομαλή Κυκλική Κίνηση 1. Γίνεται με σταθερή ακτίνα (Το διάνυσμα θέσης έχει σταθερό μέτρο και περιστρέφεται γύρω από σταθερό σημείο.
Ομαλή Κυκλική Κίνηση 1. Γίνεται με σταθερή ακτίνα (Το διάνυσμα θέσης έχει σταθερό μέτρο και περιστρέφεται γύρω από σταθερό σημείο. 1 3 υ υ 1 1. Το μέτρο της ταχύτητας του υλικού σημείου είναι σταθερό.
ΜΑΘΗΜΑΤΙΚΑ ΙΙ ΠΑΡΑΔΕΙΓΜΑΤΑ Διανύσματα - Διανυσματικές Συναρτήσεις
ΜΑΘΗΜΑΤΙΚΑ ΙΙ ΠΑΡΑΔΕΙΓΜΑΤΑ Διανύσματα - Διανυσματικές Συναρτήσεις Επιμέλεια: Ι. Λυχναρόπουλος a) Να βρεθεί η ευθεία που διέρχεται από το σημείο P (5,,3) και είναι παράλληλη προς το διάνυσμα iˆ+ 4ˆj kˆ
Φυσική για Μηχανικούς
Φυσική για Μηχανικούς Μηχανική Εικόνα: Ο πίνακας ελέγχου σε ένα πιλοτήριο βοηθά τον πιλότο να κρατά το αεροσκάφος υπό έλεγχο δηλ. να ελέγχει πόσο γρήγορα ταξιδεύει και σε ποια κατεύθυνση επιτρέποντάς του
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξέταση στη Μηχανική I 2 Σεπτεμβρίου 2010
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξέταση στη Μηχανική I Σεπτεμβρίου 00 Απαντήστε και στα 0 ερωτήματα με σαφήνεια και απλότητα. Οι ολοκληρωμένες απαντήσεις εκτιμώνται ιδιαιτέρως. Καλή σας επιτυχία.. Ένας
Φυσική Θετικών Σπουδών Γ τάξη Ενιαίου Λυκείου 2 0 Κεφάλαιο
Φυσική Θετικών Σπουδών Γ τάξη Ενιαίου Λυκείου 0 Κεφάλαιο Περιέχει: Αναλυτική Θεωρία Ερωτήσεις Θεωρίας Ερωτήσεις Πολλαπλής Επιλογής Ερωτήσεις Σωστού - λάθους Ασκήσεις ΘΕΩΡΙΑ 4- ΕΙΣΑΓΩΓΗ Στην μέχρι τώρα
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Φεβρουάριος 2004
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Φεβρουάριος 4 Τµήµα Π. Ιωάννου & Θ. Αποστολάτου Απαντήστε µε σαφήνεια και συντοµία. Η ορθή πλήρης απάντηση θέµατος εκτιµάται περισσότερο από τη
Φυσική για Μηχανικούς
Φυσική για Μηχανικούς Εικόνα: Το Σέλας συμβαίνει όταν υψηλής ενέργειας, φορτισμένα σωματίδια από τον Ήλιο ταξιδεύουν στην άνω ατμόσφαιρα της Γης λόγω της ύπαρξης του μαγνητικού της πεδίου. Μαγνητισμός
Λύσεις στο επαναληπτικό διαγώνισμα 3
Τμήμα Μηχανικών Οικονομίας και Διοίκησης Απειροστικός Λογισμός ΙΙ Γ. Καραγιώργος ykarag@aegean.gr Λύσεις στο επαναληπτικό διαγώνισμα Διπλά Ολοκληρώματα Άσκηση (Υπολογισμός διπλού ολοκληρώματος- Αλλαγή
ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ. ΛΥΣΗ (α) Το οδόστρωμα στη στροφή είναι οριζόντιο: N. Οι δυνάμεις που ασκούνται πάνω στο αυτοκίνητο είναι:
ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ ΑΣΚΗΣΗ 1 Μια οριζόντια στροφή μιας ενικής οδού έχει ακτίνα = 95 m. Ένα αυτοκίνητο παίρνει τη στροφή αυτή με ταχύτητα υ = 26, m/s. (α) Πόση πρέπει να είναι η τιμή του συντελεστή μ s της στατικής
Ακτίνα καμπυλότητας - Ανάλυση επιτάχυνσης σε εφαπτομενική και κεντρομόλο συνιστώσα
Ακτίνα καμπυλότητας - Ανάλυση επιτάχυνσης σε εφαπτομενική και κεντρομόλο συνιστώσα Εξ ορισμού, ένας κύκλος έχει συγκεκριμένη και σταθερή καμπυλότητα σε όλα τα σημεία του ίση με 1/R όπου R η ακτίνα του.
ΤΕΙ ΠΕΙΡΑΙΑ ΗΜ: 1/7/14 ΣΤΕΦ - ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΑΥΤΟΜΑΤΙΣΜΟΥ Α ΕΞΕΤΑΣΤΙΚΗ -ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΦΥΣΙΚΗ ΟΝΟΜΑΤΕΠΩΝΥΜΟ.
ΤΕΙ ΠΕΙΡΑΙΑ ΗΜ: 1/7/14 ΣΤΕΦ - ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΑΥΤΟΜΑΤΙΣΜΟΥ Α ΕΞΕΤΑΣΤΙΚΗ -ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ:Μ.ΠΗΛΑΚΟΥΤΑ ΔΙΑΡΚΕΙΑ 2 ΩΡΕΣ B ΟΝΟΜΑΤΕΠΩΝΥΜΟ. 1. (2.5) Σώμα μάζας m=0.1 Kg κινείται σε οριζόντιο
ΕΡΩΤΗΣΕΙΣ - ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ
ΕΡΩΤΗΣΕΙΣ - ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ Ερωτήσεις 1. Στην ομαλή κυκλική κίνηση, α. Το μέτρο της ταχύτητας διατηρείται σταθερό. β. Η ταχύτητα διατηρείται σταθερή. γ. Το διάνυσμα της ταχύτητας υ έχει την
Ο χώρος. 1.Μονοδιάστατη κίνηση
Ο χώρος Τα χελιδόνια έρχονται και ξανάρχονται. Κάθε χρόνο βρίσκουν μια γωνιά για να χτίσουν τη φωλιά, που θα γίνει το επίκεντρο του χώρου τους. Ο χώρος είναι ένας οργανικός χώρος, όπως εκείνος που αφορά
ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ
ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ Καμπυλόγραμμες Κινήσεις Επιμέλεια: Αγκανάκης Α. Παναγιώτης, Φυσικός http://phyiccore.wordpre.com/ Βασικές Έννοιες Μέχρι στιγμής έχουμε μάθει να μελετάμε απλές κινήσεις,
Ασκήσεις 6 ου Κεφαλαίου
Ασκήσεις 6 ου Κεφαλαίου 1. Μία ράβδος ΟΑ έχει μήκος l και περιστρέφεται γύρω από τον κατακόρυφο άξονα Οz, που είναι κάθετος στο άκρο της Ο με σταθερή γωνιακή ταχύτητα ω. Να βρεθεί r η επαγώμενη ΗΕΔ στη
Κεφάλαιο 2. Διανύσματα και Συστήματα Συντεταγμένων
Κεφάλαιο 2 Διανύσματα και Συστήματα Συντεταγμένων Διανύσματα Διανυσματικά μεγέθη Φυσικά μεγέθη που έχουν τόσο αριθμητικές ιδιότητες όσο και ιδιότητες κατεύθυνσης. Σε αυτό το κεφάλαιο, θα ασχοληθούμε με
Ασκήσεις στη Κυκλική Κίνηση
1 Ασκήσεις στη Κυκλική Κίνηση 1.Δυο τροχοί ακτινών R 1=40cm και R 2=10cm συνδέονται με ιμάντα και περιστρέφονται ο πρώτος με συχνότητα f 1=4Hz, ο δε δεύτερος με συχνότητα f 2. Να βρεθεί ο αριθμός των στροφών
ΑΣΚΗΣΕΙΣ ΥΠΟΛΟΓΙΣΜΟΥ ΜΑΖΑΣ ΘΕΣΗΣ ΚΕΝΤΡΟΥ ΜΑΖΑΣ ΡΟΠΗΣ ΑΔΡΑΝΕΙΑΣ ΣΩΜΑΤΩΝ
ΑΣΚΗΣΕΙΣ ΥΠΟΛΟΓΙΣΜΟΥ ΜΑΖΑΣ ΘΕΣΗΣ ΚΕΝΤΡΟΥ ΜΑΖΑΣ ΡΟΠΗΣ ΑΔΡΑΝΕΙΑΣ ΣΩΜΑΤΩΝ ΓΕΝΙΚΕΣ ΠΑΡΑΤΗΡΗΣΕΙΣ Α. Υπολογισμός της θέσης του κέντρου μάζας συστημάτων που αποτελούνται από απλά διακριτά μέρη. Τα απλά διακριτά
Κεφάλαιο 2. Διανύσματα και Συστήματα Συντεταγμένων
Κεφάλαιο 2 Διανύσματα και Συστήματα Συντεταγμένων Διανύσματα Διανυσματικά μεγέθη Φυσικά μεγέθη που έχουν τόσο αριθμητικές ιδιότητες όσο και ιδιότητες κατεύθυνσης. Σε αυτό το κεφάλαιο, θα ασχοληθούμε με
Κεφάλαιο 8. Βαρυτικη Δυναμικη Ενεργεια { Εκφραση του Βαρυτικού Δυναμικού, Ταχύτητα Διαφυγής, Τροχιές και Ενέργεια Δορυφόρου}
Κεφάλαιο 8 ΒΑΡΥΤΙΚΟ ΠΕΔΙΟ Νομος της Βαρυτητας {Διανυσματική Εκφραση, Βαρύτητα στη Γη και σε Πλανήτες} Νομοι του Kepler {Πεδίο Κεντρικών Δυνάμεων, Αρχή Διατήρησης Στροφορμής, Κίνηση Πλανητών και Νόμοι του
2. Ένα μπαλάκι το δένουμε στην άκρη ενός νήματος και το περιστρέφουμε. Αν το μπαλάκι
1. Α. Η κίνηση του εκκρεμούς είναι μια ( περιοδική/ ομαλή κυκλική κίνηση) Β. Ένα αυτοκίνητο που κινείται σε κυκλική πλατεία, σίγουρα εκτελεί (κυκλική / ομαλή κυκλική) κίνηση. Γ. Η κίνηση του άκρου ενός
ΕΠΙΣΚΟΠΗΣΗ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ
ΕΠΙΣΚΟΠΗΣΗ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ ΕΓΧΕΙΡΙΔΙΟ ΔΙΔΑΚΤΕΑΣ ΥΛΗΣ ΔΗΜΗΤΡΙΟΣ ΘΕΟΔΩΡΙΔΗΣ Κεφάλαιο 1.1 Ευθύγραμμη κίνηση 1. Τι ονομάζουμε κίνηση; Τι ονομάζουμε τροχιά; Ποια είδη τροχιών γνωρίζετε; Κίνηση ενός αντικειμένου
Ασκήσεις Κλασικής Μηχανικής, Τμήμα Μαθηματικών Διδάσκων: Μιχάλης Ξένος, email : mxenos@cc.uoi.gr 30 Μαρτίου 2014 Κεφάλαιο Ι: Κινηματική του Υλικού Σημείου 1. Αν το διάνυσμα θέσης υλικού σημείου είναι:
ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΟΡΙΖΟΝΤΙΑ ΒΟΛΗ ΚΑΙ ΟΜΑΛΗ ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ
ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ B ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΟΡΙΖΟΝΤΙΑ ΒΟΛΗ ΚΑΙ ΟΜΑΛΗ ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ Επώνυμο: Όνομα: Τμήμα: Αγρίνιο 10-11-013 ΘΕΜΑ 1 ο Α) Να επιλέξετε τη σωστή απάντηση σε καθεμία από τις επόμενες
Φυσική για Μηχανικούς
Φυσική για Μηχανικούς Εικόνα: Το Σέλας συμβαίνει όταν υψηλής ενέργειας, φορτισμένα σωματίδια από τον Ήλιο ταξιδεύουν στην άνω ατμόσφαιρα της Γης λόγω της ύπαρξης του μαγνητικού της πεδίου. Μαγνητισμός
β. Υπολογίστε την γραμμική ταχύτητα περιστροφής της πέτρας γ. Υπολογίστε την γωνιακή ταχύτητα περιστροφής της πέτρας.
Μεγέθη Κίνησης 1. Μια ομαλή κυκλική κίνηση γίνεται έτσι ώστε το αντικείμενο να περιστρέφεται σε κυκλική τροχιά ακτίνας R = 20cm με ταχύτητα μέτρου υ = 0,5m/s. α. Πόση είναι η περιφέρεια της τροχιάς του
8. ΜΑΓΝΗΤΙΣΜΟΣ. Φυσική ΙΙ Δ. Κουζούδης. Πρόβλημα 8.6.
1 8. ΜΑΓΝΗΤΙΣΜΟΣ Πρόβλημα 8.6. Το σύρμα του παρακάτω σχήματος έχει άπειρο μήκος και διαρρέεται από ρεύμα I. Υπολογίστε με τη βοήθεια του νόμου του Biot-Savart με ολοκλήρωση το μέτρο και την κατεύθυνση
Διαφορικός Λογισμός. Κεφάλαιο Συναρτήσεις. Κατανόηση εννοιών - Θεωρία. 1. Τι ονομάζουμε συνάρτηση;
Κεφάλαιο 1 Διαφορικός Λογισμός 1.1 Συναρτήσεις Κατανόηση εννοιών - Θεωρία 1. Τι ονομάζουμε συνάρτηση; 2. Πως ορίζονται οι πράξεις της πρόσθεσης, της διαφοράς, του γινομένου και του πηλίκου μεταξύ δύο συναρτήσεων;
Η Επιτάχυνση. η τα- χύτητά του ( Σχήμα 1 ). Από τον ορισμό της ταχύτητας θα ισχύει (3)
Η Επιτάχυνση η τα- Έστω r ( t ) ( t ) i ( t ) j z ( t ) k το διάνυσμα θέσης του κινητού Μ και ( t ) χύτητά του ( Σχήμα 1 ). Από τον ορισμό της ταχύτητας θα ισχύει r ( t ) r ( t ) ή πιο απλά (1) t t Άρα
1 p p a y. , όπου H 1,2. u l, όπου l r p και u τυχαίο μοναδιαίο διάνυσμα. Δείξτε ότι μπορούν να γραφούν σε διανυσματική μορφή ως εξής.
ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ασκήσεις Κεφαλαίου V Άσκηση : Οι θεμελιώδεις σχέσεις μετάθεσης της στροφορμής επιτρέπουν την ύπαρξη ακέραιων και ημιπεριττών ιδιοτιμών Αλλά για την τροχιακή στροφορμή L r p γνωρίζουμε ότι
Ολοκληρώματα. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Ασκήσεις για ΑΕΙ και ΤΕΙ. Kglykos.gr. σε Ολοκληρώματα. τεχνικές. 108 ασκήσεις. εκδόσεις.
Ολοκληρώματα Κώστας Γλυκός Ασκήσεις για ΑΕΙ και ΤΕΙ σε Ολοκληρώματα τεχνικές 08 ασκήσεις Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 6 9 7. 0 0. 8 8. 8 8 Kglkos.gr / / 0 9 εκδόσεις Καλό πήξιμο Τα πάντα για τα Ολοκληρώματα
Κεφάλαιο 6α. Περιστροφή στερεού σώματος γύρω από σταθερό άξονα
Κεφάλαιο 6α Περιστροφή στερεού σώματος γύρω από σταθερό άξονα Στερεό (ή άκαμπτο) σώμα Τα μοντέλα ανάλυσης που παρουσιάσαμε μέχρι τώρα δεν μπορούν να χρησιμοποιηθούν για την ανάλυση όλων των κινήσεων. Μπορούμε
Φυσική για Μηχανικούς
Φυσική για Μηχανικούς Μηχανική Εικόνα: Ο πίνακας ελέγχου σε ένα πιλοτήριο βοηθά τον πιλότο να κρατά το αεροσκάφος υπό έλεγχο δηλ. να ελέγχει πόσο γρήγορα ταξιδεύει και σε ποια κατεύθυνση επιτρέποντάς του
Κεφάλαιο M4. Κίνηση σε δύο διαστάσεις
Κεφάλαιο M4 Κίνηση σε δύο διαστάσεις Κινηµατική σε δύο διαστάσεις Θα περιγράψουµε τη διανυσµατική φύση της θέσης, της ταχύτητας, και της επιτάχυνσης µε περισσότερες λεπτοµέρειες. Θα µελετήσουµε την κίνηση
Φυσική για Μηχανικούς
Φυσική για Μηχανικούς Εικόνα: Το Σέλας συμβαίνει όταν υψηλής ενέργειας, φορτισμένα σωματίδια από τον Ήλιο ταξιδεύουν στην άνω ατμόσφαιρα της Γης λόγω της ύπαρξης του μαγνητικού της πεδίου. Μαγνητισμός
ΜΕΘΟΔΟΛΟΓΙΑ ΣΤΗΝ ΟΜΑΛΗ ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ ΚΕΝΤΡΟΜΟΛΟΣ ΔΥΝΑΜΗ
ΜΕΘΟΔΟΛΟΓΙΑ ΣΤΗΝ ΟΜΑΛΗ ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ ΚΕΝΤΡΟΜΟΛΟΣ ΔΥΝΑΜΗ 1.Οι περισσότερες ασκήσεις είναι απλή εφαρμογή των τύπων Συνήθως από ένα μέγεθος όπως η συχνότητα f ή η γωνιακή ταχύτητα ω μπορούμε να υπολογίσουμε
ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 16/2/2012 ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ A ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ Ι
ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 6//0 ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ A ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ Ι ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ ΩΡΕΣ ΑΣΚΗΣΗ Σωματίδιο μάζας m = Kg κινείται ευθύγραμμα και ομαλά στον
ΕΙΔΙΚΗ ΘΕΩΡΙΑ ΤΗΣ ΣΧΕΤΙΚΟΤΗΤΑΣ
ΕΙΔΙΚΗ ΘΕΩΡΙΑ ΤΗΣ ΣΧΕΤΙΚΟΤΗΤΑΣ Διδάσκων: Θεόδωρος Ν. Τομαράς 1. Μετασχηματισμοί συντεταγμένων και συμμετρίες. 1α. Στροφές στο επίπεδο. Θεωρείστε δύο καρτεσιανά συστήματα συντεταγμένων στο επίπεδο, στραμμένα
1 ΦΕΠ 012 Φυσική και Εφαρμογές
1 ΦΕΠ 012 Φυσική και Εφαρμογές Διάλεξη 10 η Ομαλή κυκλική κίνηση Δθ = ω = σταθερό Δt X = Rσυν (ωt) => X 2 +Υ 2 = R 2 Υ = Rημ(ωt) Οι προβολές της κίνησης στους άξονες των x και y είναι αρμονικές ταλαντώσεις
ΚΕΦΑΛΑΙΟ 1 Ο ΚΑΜΠΥΛΟΓΡΑΜΜΕΣ ΚΙΝΗΣΕΙΣ
Σχολικό Έτος 016-017 1 ΚΕΦΑΛΑΙΟ 1 Ο ΚΑΜΠΥΛΟΓΡΑΜΜΕΣ ΚΙΝΗΣΕΙΣ Α. ΟΡΙΖΟΝΤΙΑ ΒΟΛΗ Οριζόντια βολή, ονομάζουμε την εκτόξευση ενός σώματος από ύψος h από το έδαφος, με οριζόντια ταχύτητα u o, όταν στο σώμα επιδρά
ΚΙΝΗΣΗ ΣΤΟ ΧΩΡΟ ΚΑΙ ΕΞΕΛΙΞΗ ΣΤΟ ΧΩΡΟ-ΧΡΟΝΟ
ΜΑΘΗΜΑ : ΚΙΝΗΣΗ ΣΤΟ ΧΩΡΟ ΚΑΙ ΕΞΕΛΙΞΗ ΣΤΟ ΧΩΡΟ-ΧΡΟΝΟ Πρώτα απ όλα θέλουμε να βρούμε και να εξηγήσουμε έναν ορισμό που να ταιριάζει όσο το δυνατό καλύτερα στα φυσικά φαινόμενα Και η πεποίθησή μας θα ενισχυθεί
Η επιτάχυνση και ο ρόλος της.
Η επιτάχυνση και ο ρόλος της. Το μέγεθος «επιτάχυνση» το συναντήσαμε κατά τη διδασκαλία στην Α Λυκείου, όπου και ορίσθηκε με βάση την εξίσωση: t Όπου η παραπάνω μαθηματική εξίσωση μας λέει ότι η επιτάχυνση:
ΨΗΦΙΑΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΒΟΗΘΗΜΑ «ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ» 5 o ΔΙΑΓΩΝΙΣΜΑ ΜΑΡΤΙΟΣ 2017: ΘΕΜΑΤΑ
ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ 5 ο ΔΙΑΓΩΝΙΣΜΑ ΘΕΜΑΤΑ ΘΕΜΑ Α Στις προτάσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη φράση, η οποία
ΑΣΚΗΣΗ 5.1 Το διάνυσμα θέσης ενός σώματος μάζας m=0,5kgr δίνεται από τη σχέση: 3 j οπότε το μέτρο της ταχύτητας θα είναι:
ΑΣΚΗΣΗ. Το διάνυσμα θέσης ενός σώματος μάζας =,k δίνεται από τη σχέση: 6. α Βρείτε την θέση και το μέτρο της ταχύτητας του κινητού την χρονική στιγμή. β Τι είδους κίνηση κάνει το κινητό σε κάθε άξονα;
ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ
ΜΑΝΩΛΗ ΡΙΤΣΑ ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Τράπεζα θεμάτων Β Θέμα ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ 16118 Δύο σφαιρίδια Σ 1 και Σ 2 βρίσκονται σε λείο οριζόντιο τραπέζι (κάτοψη του οποίου φαίνεται στο
Φυσική για Μηχανικούς
Εικόνα: Στην εκτέλεση πέναλτι, ο ποδοσφαιριστής κτυπά ακίνητη μπάλα, με σκοπό να της δώσει ταχύτητα και κατεύθυνση ώστε να σκοράρει. Υπό προϋποθέσεις, η εκτέλεση μπορεί να ιδωθεί ως κίνηση σε δυο (αντί
 = 1 A A = A A. A A + A2 y. A = (A x, A y ) = A x î + A y ĵ. z A. 2 A + A2 z
Οκτώβριος 2017 Ν. Τράκας ΜΑΘΗΜΑΤΙΚΟ ΒΟΗΘΗΜΑ ΔΙΑΝΥΣΜΑΤΑ Διάνυσμα: κατεύθυνση (διεύθυνση και ϕορά) και μέτρο. Συμβολισμός: A ή A. Αναπαράσταση μέσω των συνιστωσών του: A = (A x, A y ) σε 2-διαστάσεις και
1.2 Συντεταγμένες στο Επίπεδο
1 Συντεταγμένες στο Επίπεδο Τι εννοούμε με την έννοια άξονας; ΑΠΑΝΤΗΣΗ Πάνω σε μια ευθεία επιλέγουμε δύο σημεία και Ι έτσι ώστε το διάνυσμα OI να έχει μέτρο 1 και να βρίσκεται στην ημιευθεία O Λέμε τότε
ΦΥΣΙΚΗ Ο.Π Β Λ-Γ Λ ΧΡΗΣΤΟΣ ΚΑΡΑΒΟΚΥΡΟΣ ΙΩΑΝΝΗΣ ΤΖΑΓΚΑΡΑΚΗΣ
ΦΥΣΙΚΗ Ο.Π Β Λ-Γ Λ 25/11/2018 ΧΡΗΣΤΟΣ ΚΑΡΑΒΟΚΥΡΟΣ ΙΩΑΝΝΗΣ ΤΖΑΓΚΑΡΑΚΗΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί
1. Κίνηση Υλικού Σημείου
1. Κίνηση Υλικού Σημείου Εισαγωγή στην Φυσική της Γ λυκείου Τροχιά: Ονομάζεται η γραμμή που συνδέει τις διαδοχικές θέσεις του κινητού. Οι κινήσεις ανάλογα με το είδος της τροχιάς διακρίνονται σε: 1. Ευθύγραμμες
ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3/2/2016 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ
ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3/2/2016 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ 2 ΩΡΕΣ ΑΣΚΗΣΗ 1 Σώμα μάζας m 0.25 Kg κινείται στο επίπεδο xy, με τις εξισώσεις κίνησης
γραπτή εξέταση στη ΦΥΣΙΚΗ B κατεύθυνσης
η εξεταστική περίοδος από 4/0/5 έως 08//5 γραπτή εξέταση στη ΦΥΣΙΚΗ B κατεύθυνσης Τάξη: Β Λυκείου Τμήμα: Βαθμός: Ονοματεπώνυμο: Καθηγητές: Θ Ε Μ Α A Στις ερωτήσεις Α-Α4 να επιλέξετε τη σωστή απάντηση.
ΦΥΕ14-5 η Εργασία Παράδοση
ΦΥΕ4-5 η Εργασία Παράδοση.5.9 Πρόβληµα. Συµπαγής οµογενής κύλινδρος µάζας τυλιγµένος µε λεπτό νήµα αφήνεται να κυλίσει από την κορυφή κεκλιµένου επιπέδου µήκους l και γωνίας φ (ϐλέπε σχήµα). Το ένα άκρο
Κεφάλαιο 2: Διανυσματικός λογισμός συστήματα αναφοράς
Κεφάλαιο 2: Διανυσματικός λογισμός συστήματα αναφοράς 2.1 Η έννοια του διανύσματος Ο τρόπος που παριστάνομε τα διανυσματικά μεγέθη είναι με τη μαθηματική έννοια του διανύσματος. Διάνυσμα δεν είναι τίποτε
2 Η ΠΡΟΟΔΟΣ. Ενδεικτικές λύσεις κάποιων προβλημάτων. Τα νούμερα στις ασκήσεις είναι ΤΥΧΑΙΑ και ΟΧΙ αυτά της εξέταση
2 Η ΠΡΟΟΔΟΣ Ενδεικτικές λύσεις κάποιων προβλημάτων Τα νούμερα στις ασκήσεις είναι ΤΥΧΑΙΑ και ΟΧΙ αυτά της εξέταση Ένας τροχός εκκινεί από την ηρεμία και επιταχύνει με γωνιακή ταχύτητα που δίνεται από την,
ΕΠΙΦΑΝΕΙΕΣ ΔΕΥΤΕΡΟΥ ΒΑΘΜΟΥ
ΚΕΦΑΛΑΙΟ 1 ΕΠΙΦΑΝΕΙΕΣ ΔΕΥΤΕΡΟΥ ΒΑΘΜΟΥ 1 Γενικά Επειδή οι επιφάνειε δευτέρου βαθμού συναντώνται συχνά στη μελέτη των συναρτήσεων πολλών μεταβλητών θεωρούμε σκόπιμο να τι περιγράψουμε στην αρχή του βιβλίου
ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 15/10/2012 ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗΣ ΣΤΗ ΦΥΣΙΚΗ
ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 15/1/1 ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗΣ ΣΤΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ ΩΡΕΣ ΑΣΚΗΣΗ 1 Σε σώμα μάζας m = 1Kg ασκείται η δύναμη F
Φυσική για Μηχανικούς
Φυσική για Μηχανικούς Μηχανική Εικόνα: Στην εκτέλεση πέναλτι, ο ποδοσφαιριστής κτυπά ακίνητη μπάλα, με σκοπό να της δώσει ταχύτητα και κατεύθυνση ώστε να σκοράρει. Υπό προϋποθέσεις, η εκτέλεση μπορεί να
ΦΥΣΙΚΗ (ΜΗΧΑΝΙΚΗ-ΚΥΜΑΤΙΚΗ)
ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΑΤΤΙΚΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ- ΗΛΕΚΤΡΟΝΙΚΩΝ ΦΥΣΙΚΗ (ΜΗΧΑΝΙΚΗ-ΚΥΜΑΤΙΚΗ) ΤΜΗΜΑ Α.2 ΚΑΘΗΓ. ΖΑΧΑΡΙΑΔΟΥ ΚΑΤΕΡΙΝΑ ΓΡΑΦΕΙΟ ΖΒ114 (ΡΑΓΚΟΥΣΗ-ΖΑΧΑΡΙΑΔΟΥ) E-mail: zacharia@uniwa.gr
Εφαρμοσμένα Μαθηματικά ΙΙ 2ο Σετ Ασκήσεων (Λύσεις) Διανυσματικές Συναρτήσεις Επιμέλεια: Ι. Λυχναρόπουλος
Εφαρμοσμένα Μαθηματικά ΙΙ ο Σετ Ασκήσεων (Λύσεις) Διανυσματικές Συναρτήσεις Επιμέλεια: Ι. Λυχναρόπουλος. Ποιες από τις επόμενες καμπύλες παριστάνουν ευθείες γραμμές; r ( ) 8,, ˆ ˆ r ˆ () i 7 j+ k r ( )
ΚΕΦΑΛΑΙΟ 9 ΠΕΡΙΣΤΡΟΦΗ ΣΤΕΡΕΩΝ ΣΩΜΑΤΩΝ 18/11/2011 ΚΕΦ. 9
ΚΕΦΑΛΑΙΟ 9 ΠΕΡΙΣΤΡΟΦΗ ΣΤΕΡΕΩΝ ΣΩΜΑΤΩΝ 18/11/011 ΚΕΦ. 9 1 ΓΩΝΙΑΚΗ ΚΙΝΗΣΗ: ΟΡΙΣΜΟΙ Περιστροφική κινηματική: περιγράφει την περιστροφική κίνηση. Στερεό Σώμα: Ιδανικό μοντέλο σώματος που έχει τελείως ορισμένα
Γενικά Μαθηματικά ΙΙ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 3 η : Εισαγωγικές Ένvοιες ΙI Λουκάς Βλάχος Καθηγητής Αστροφυσικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
8η Εργασία στο Μάθημα Γενική Φυσική ΙΙΙ - Τμήμα Τ1 Ασκήσεις 8 ου Κεφαλαίου
8η Εργασία στο Μάθημα Γενική Φυσική ΙΙΙ - Τμήμα Τ1 Ασκήσεις 8 ου Κεφαλαίου 1. Ένα σύρμα μεγάλου μήκους φέρει ρεύμα 30 Α, με φορά προς τα αριστερά κατά μήκος του άξονα x. Ένα άλλο σύρμα μεγάλου μήκους φέρει
ΟΡΟΣΗΜΟ α. =α. γων. R γ. Όλα τα σημεία του τροχού που είναι σε ύψος R από τον δρόμο έχουν ταχύτητα υ=υ cm
ÊéíÞóåéò óôåñåïý óþìáôïò ÊÅÖÁËÁÉÏ 4 21 Ένα σώμα εκτελεί μεταφορική κίνηση Τότε: α Όλα τα σημεία του στερεού έχουν την ίδια στιγμιαία γωνιακή επιτάχυνση β Όλα τα σημεία του στερεού έχουν την ίδια στιγμιαία
α. 2 β. 4 γ. δ. 4 2 Μονάδες 5
ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΟΠ Β Λ (ΠΡΟΕΤΟΙΜΑΣΙΑ) - ΑΠΑΝΤΗΣΕΙΣ ΗΜΕΡΟΜΗΝΙΑ: 04/01/017 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις
1. Για το σύστηµα που παριστάνεται στο σχήµα θεωρώντας ότι τα νήµατα είναι αβαρή και µη εκτατά, τις τροχαλίες αµελητέας µάζας και. = (x σε μέτρα).
Θέμα ο. ια το σύστηµα που παριστάνεται στο σχήµα θεωρώντας ότι τα νήµατα είναι αβαρή και µη εκτατά, τις τροχαλίες αµελητέας µάζας και M= M = M, υπολογίστε την επιτάχυνση της µάζας. ίνεται το g. (0) Λύση.
Μετεωρολογία. Ενότητα 7. Δρ. Πρόδρομος Ζάνης Αναπληρωτής Καθηγητής, Τομέας Μετεωρολογίας-Κλιματολογίας, Α.Π.Θ.
Μετεωρολογία Ενότητα 7 Δρ. Πρόδρομος Ζάνης Αναπληρωτής Καθηγητής, Τομέας Μετεωρολογίας-Κλιματολογίας, Α.Π.Θ. Ενότητα 7: Η κίνηση των αέριων μαζών Οι δυνάμεις που ρυθμίζουν την κίνηση των αέριων μαζών (δύναμη
Φυσική για Μηχανικούς
Φυσική για Μηχανικούς Μηχανική Εικόνα: Στους αγώνες drag, ο οδηγός θέλει να επιτύχει όσο γίνεται μεγαλύτερη επιτάχυνση. Σε απόσταση περίπου μισού χιλιομέτρου, το όχημα αναπτύσσει ταχύτητες κοντά στα 515
ΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2018 A ΦΑΣΗ ΦΥΣΙΚΗ
ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ Ημερομηνία: Πέμπτη 4 Ιανουαρίου 08 Διάρκεια Εξέτασης: ώρες ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Στις ημιτελείς προτάσεις Α Α4 να γράψετε στο τετράδιό
Κεφάλαιο M11. Στροφορµή
Κεφάλαιο M11 Στροφορµή Στροφορµή Η στροφορµή παίζει σηµαντικό ρόλο στη δυναµική των περιστροφών. Αρχή διατήρησης της στροφορµής Η αρχή αυτή είναι ανάλογη µε την αρχή διατήρησης της ορµής. Σύµφωνα µε την
ΦΥΣΙΚΗ Ι. ΤΜΗΜΑ Α Ε. Στυλιάρης
(Με ιδέες και υλικό από ΦΥΣΙΚΗ Ι ΤΜΗΜΑ Α Ε. Στυλιάρης από παλαιότερες διαφάνειες του κ. Καραμπαρμπούνη) ΠΑΝΕΠΙΣΤΗΜΙΟN ΑΘΗΝΩΝ,, 5 6 6 ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ Μέση και Στιγμιαία Ταχύτητα Επιτάχυνση Διαφορικές
ΦΥΣΙΚΗ (ΠΟΜ 114) ΛΥΣΕΙΣ ΓΙΑ ΤΗΝ ΕΝΔΙΑΜΕΣΗ ΕΞΕΤΑΣΗ 2015
ΦΥΣΙΚΗ (ΠΟΜ 114) ΛΥΣΕΙΣ ΓΙΑ ΤΗΝ ΕΝΔΙΑΜΕΣΗ ΕΞΕΤΑΣΗ 15 Ct 1. Η επιτάχυνση ενός σώματος που κινείται σε ευθεία γραμμή είναι a At Be, όπου Α, B, C είναι θετικές ποσότητες. Η αρχική ταχύτητα του σώματος είναι
Ολοκληρώματα. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Ασκήσεις για ΑΕΙ και ΤΕΙ. Kglykos.gr. σε Ολοκληρώματα. τεχνικές. 108 ασκήσεις. εκδόσεις.
Ολοκληρώματα Κώστας Γλυκός Ασκήσεις για ΑΕΙ και ΤΕΙ σε Ολοκληρώματα τεχνικές 08 ασκήσεις Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 6 9 7. 0 0. 8 8. 8 8 Kglkos.gr / / 0 7 εκδόσεις Καλό πήξιμο τηλ. Οικίας : 0-60.78
ΛΥΣΕΙΣ 6. a2 x 2 y 2. = y
ΛΥΣΕΙΣ 6. Οι ασκήσεις από το βιβλίο των Marsden - romba. 7.5. Θεωρούμε την παραμετρικοποίηση rx, y = x, y, a 2 x 2 y 2, όπου το x, y διατρέχει τον δίσκο στο xy-επίπεδο που ορίζεται από την x 2 +y 2 a 2.