Δομές Δεδομένων και Τεχνικές Προγραμματισμού Ενότητα 7: ΑΤΔ Γράφημα. Ιωάννης Κοτρώνης Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Δομές Δεδομένων και Τεχνικές Προγραμματισμού Ενότητα 7: ΑΤΔ Γράφημα. Ιωάννης Κοτρώνης Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών"

Transcript

1 Δομές Δεδομένων και Τεχνικές Προγραμματισμού Ενότητα 7: ΑΤΔ Γράφημα Ιωάννης Κοτρώνης Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών

2 Σκοποί ενότητας Να ορίσει τον ΑΤΔ Γράφημα. Να σχεδιάσει και υλοποιήσει με εναλλακτικούς τρόπους (πίνακα, λίστα γειτονικών κορυφών, λίστα ακμών) Να ορίσει τους δυο τρόπους αναζήτησης κατά βάθος και κατά πλάτος. Να ορίσει τα δένδρα επικάλυψης Να παρουσιάσει εφαρμογές (πίνακες μετάβασης και τον Αλγόριθμο του Dijkstra) ENOTHTA 7 - ΑΤΔ Γράφημα 2

3 Περιεχόμενα ενότητας Γράφημα και νέες έννοιες Κατευθυνόμενο και μη κατεθυνόμενο Ορισμός (δεδομένα και Πράξεις) Υλοποίηση με Πίνακα, λίστα γειτονικών κορυφών, λίστα ακμών Αναζήτηση κατά βάθος και κατά πλάτος Δένδρα επικάλυψης Πίνακες Μετάβασης Αλγόριθμος Dijkstra ENOTHTA 7 - ΑΤΔ Γράφημα 3

4 Ενότητα 7 ΑΤΔ Γράφημα

5 Γραφήματα (Graphs) G = (V, E) Κορυφές V και ακμές E 2 4 μονοπάτι, 2, 3, 4 κορυφή 3 ακμή γειτονικές V(G ) = {,2,3,4,5 G E(G ) = {(,2), (2,3), (2,4), (3,4), (4,5) 5 ENOTHTA 7 - ΑΤΔ Γράφημα 5

6 To Δένδρο, ειδική περίπτωση γραφήματος 2 3 G μήκος μονοπατιού (διαδρομή από κόμβο έως κόμβο) κύκλος (μονοπάτι από έναν κόμβο στον εαυτό του) αν δεν υπάρχει κύκλος τότε ακυκλικό (πχ. Δένδρο) συνδεδεμένο (αν για ζεύγη κόμβων υπάρχει μονοπάτι) βαθμός κόμβου (ο αριθμός των ακμών) ENOTHTA 7 - ΑΤΔ Γράφημα 6

7 Κατευθυνόμενο γράφημα ακμές με κατεύθυνση (μονόδρομος) 2 V(G 3 ) = {,2,3,4 3 4 E(G 3 ) = {<,2>, <2,3>, <3,4>, <4,> G 3 Ισχυρά συνδεδεμένο αν για κάθε ζεύγος κόμβων Vi, Vj υπάρχoυν κατευθυνόμενα μονοπάτια από Vi σε Vj και απόvj σε Vi. Το G3 είναι ισχυρά συνδεδεμένο κατευθυνόμενο γράφημα ENOTHTA 7 - ΑΤΔ Γράφημα 7

8 Ο ΑΤΔ Γράφημα και οι υλοποιήσεις του Ο ΑΤΔ γράφημα G = (V, E) αποτελείται από ένα σύνολο V (κορυφές), μια σχέση Ε (ακμές) και πράξεις που επιδρούν πάνω στα δύο αυτά σύνολα. ENOTHTA 7 - ΑΤΔ Γράφημα 8

9 Βασικές πράξεις. Δημιουργία γραφήματος: Δημιουργεί ένα κενό γράφημα. 2. Γειτονική κορυφή: Ελέγχει αν υπάρχει ακμή μεταξύ δύο κορυφών. 3. Ενημέρωση: Τροποποιεί το περιεχόμενο μιας κορυφής. 4. Ανάκτηση: Επιστρέφει το περιεχόμενο μιας κορυφής. 5. Διαγραφή κορυφής: Διαγράφει μια κορυφή από το γράφημα μαζί με τις ακμές που περιέχουν την κορυφή αυτή. 6. Διαγραφή ακμής: Διαγράφει μια ακμή από το γράφημα. 7. Εισαγωγή κορυφής: Εισάγει μια κορυφή στο γράφημα, χωρίς τη σύνδεσή της με άλλες κορυφές. 8. Εισαγωγή ακμής: Εισάγει μια ακμή στο γράφημα. ENOTHTA 7 - ΑΤΔ Γράφημα 9

10 ENOTHTA 7 - ΑΤΔ Γράφημα Υλοποίηση του ΑΤΔ Γράφημα με πίνακα G κατασκευή γειτονικού πίνακα (πίνακας γειτνίασης): αν κορυφές i,j γειτονικές A[i,j]= αλλιώς (για μη-κατευθυνόμενα οι πίνακες είναι συμμετρικοί)

11 ENOTHTA 7 - ΑΤΔ Γράφημα Ο γειτονικός πίνακας ενός γραφήματος δεν είναι μονοσήμαντα ορισμένος, αφού η κατασκευή του εξαρτάται από την αρίθμηση των κορυφών του γραφήματος G Γειτονικός πίνακας κατευθυνόμενου γραφήματος

12 Υλοποίηση με Πίνακα #define plithos typedef struct { int geit_pin[plithos][plithos]; int arkrfon ; // ο πραγματικός αριθμός κορυφών graphima; graphima G; ENOTHTA 7 - ΑΤΔ Γράφημα 2

13 /*Δημιουργία κενού γραφήματος (μερική απόκρυψη)*/ void dimiourgia(graphima *G){ G->arkrfon = ; ENOTHTA 7 - ΑΤΔ Γράφημα 3

14 int geitoniki(graphima G, korifi p, korifi q){ /* Eλέγχει αν οι (p,q) είναι γειτονικές στο μη κατευθυνόμενο γράφημα G */ if( (p < ) (p > G.arkrfon-) (q < ) (q > G.arkrfon-)) return -; /* Λάθος κορυφή */ else return (G.geit_pin[p][q]); ENOTHTA 7 - ΑΤΔ Γράφημα 4

15 int diagrafi_akmis(graphima *G, korifi p, korifi q){ /* Προ: H (p,q) είναι ακμή του μη κατευθυνόμενου γραφήματος *G. Mετά: Aν οι κορυφές p,q δεν ανήκουν στο σύνολο των κορυφών του γραφήματος *G τότε επιστρέφει-, αλλιώς αν η (p,q) είναι ακμή του γραφήματος *G τότε διαγράφεται η (p,q) από το *G και η συνάρτηση επιστρέφει, αλλιώς η συνάρτηση επιστρέφει. */ if ( (p<) (p > G->arkrfon-) (q<) (q > G->arkrfon-) ) return -; /* Λάθος κορυφές */ else if (!geitoniki(*g,p,q,)) return ; else{ G->geit_pin[p][q] = ; G->geit_pin[q][p] = ; return ; ENOTHTA 7 - ΑΤΔ Γράφημα 5

16 int eisagogi_akmis(graphima *G, korifi p,korifi q){ /* Προ: Oι κορυφές p,q ανήκουν στο σύνολο κορυφών του *G και η ακμή (p,q) δεν ανήκει στο μη κατευθυνόμενο γράφημα. Mετά: Aν οι κορυφές p,q δεν ανήκουν στο σύνολο των κορυφών του *G τότε η συνάρτηση επιστρέφει -, αλλιώς αν η ακμή (p,q) δεν ανήκει στο σύνολο ακμών του *G τότε εισάγεται και η συνάρτηση επιστρέφει, αλλιώς η συνάρτηση επιστρέφει */ if (p<) (p > G->arkrfon-) (q<) (q > G->arkrfon-) ) return -; /* Λάθος κορυφές */ else if (geitoniki(*g, p, q)) else{ return ; G->geit_pin[p][q] = ; G->geit_pin[q][p] = ; return ; ENOTHTA 7 - ΑΤΔ Γράφημα 6

17 int eisagogi_korifis(graphima *G, korifi *p){ /* Προ:Tο γράφημα *G δεν έχει το μέγιστο πλήθος κορυφών. Mετά: Eισάγεται στο γράφημα *G η κορυφή G->arkrfon χωρίς αυτή να συνδεθεί με άλλες κορυφές, το *p γίνεται ίσο με αυτήν και η συνάρτηση επιστρέφει. Aν το *G είχε το μέγιστο πλήθος κορυφών τότε η συνάρτηση επιστρέφει. */ korifi i; if (G->arkrfon == plithos) return ; else{ G->arkrfon++; *p = (G->arkrfon)-; /* Tελευταία κορυφή */ for (i = ; i <= *p; i++){ G->geit_pin[*p][i] = ; /*Nέα γραμμή*/ G->geit_pin[i][*p] = ; /*Nέα στήλη*/ return ; ENOTHTA 7 - ΑΤΔ Γράφημα 7

18 int diagrafi_korifis(graphima *G, korifi p){ /* Προ : H κορυφή p ανήκει στο σύνολο κορυφών του γραφήματος *G. Mετά: Aν η κορυφή p ανήκει στο σύνολο κορυφών του γραφήματος *G τότε αυτή διαγράφεται και διαγράφονται και όλες οι ακμές που περιέχουν την κορυφή p και η συνάρτηση επιστρέφει, αλλιώς η συνάρτηση επιστρέφει. Mετά από αυτές τις διαγραφές το γράφημα έχει ως κορυφές του τις,,.., (G->arkrfon)-2. */ ENOTHTA 7 - ΑΤΔ Γράφημα 8

19 int diagrafi_korifis(graphima *G, korifi p) { korifi i,j; if ( (p<) (p > (G->arkrfon)-) ) return ; /* Λάθος κορυφή */ else { /* μετακίνηση i+ γραμμής προς τα πάνω */ for ( i = p; i <= (G->arkrfon)-2; i++) for ( j = ; j <= (G->arkrfon)-; j++) G->geit_pin[i][j]=G->geit_pin[i+][j]; /* μετακίνηση i+ στήλης προς τα αριστερά */ for ( i = p; i <= (G->arkrfon)-2; i++) for ( j = ; j <= (G->arkrfon)-2; j++) G->geit_pin[j][i] =G->geit_pin[j][i+]; G->arkrfon--; return ; ENOTHTA 7 - ΑΤΔ Γράφημα 9

20 ENOTHTA 7 - ΑΤΔ Γράφημα 2 Ορθογώνια Λίστα (αραιοί πίνακες 5-8%!=) Α Β C E D

21 κόμβοι κεφαλές Απεικόνιση Αραιού Πίνακα, ως γράφημα G5 ENOTHTA 7 - ΑΤΔ Γράφημα 2

22 Υλοποίηση του ΑΤΔ Γράφημα με συνδεδεμένες λίστες (κόμβοι και δείκτες) 2 4 μονοπάτι,2,3,4 κορυφή 3 ακμή γειτονικές G 5 ENOTHTA 7 - ΑΤΔ Γράφημα 22

23 Πίνακας δεικτών Α. Λίστα γειτονικών κορυφών του G κόμβοι κορυφών κόμβοι γειτονικών κορυφών ENOTHTA 7 - ΑΤΔ Γράφημα 23

24 A 2 B E 5 G 5 C D 3 4 ENOTHTA 7 - ΑΤΔ Γράφημα 24

25 2 3 4 δείκτες.... Λίστα γειτονικών κορυφών του G 5 A B C D κόμβοι κορυφών Data Data Data Data κόμβοι γειτονικών κορυφών.. B C. C.. B D. D E. 5. E Data ENOTHTA 7 - ΑΤΔ Γράφημα 25

26 Οι δηλώσεις στην C για την παράσταση ενός γραφήματος με λίστα γειτονικών κορυφών είναι οι ακόλουθες : #define plithos_korifon... typedef... typos_dedomenon; /* τ.δ.κορυφών */ typedef int arithmos_korifis; typedef struct korifi *kdktis; typedef struct korifi{ /* κόμβος κορυφή */ arithmos_korifis arkorifis; kdktis epomenos ; ; ENOTHTA 7 - ΑΤΔ Γράφημα 26

27 typedef struct kefali *kefdktis; typedef struct kefali{ typos_dedomenon dedomena; kdktis epomenos; ; /* κόμβος ένας για κάθε κορυφή*/ typedef struct{ kefdktis pinakas[plithos_korifon]; int k; /* αριθμός κορυφών */ graphima; graphima G; ENOTHTA 7 - ΑΤΔ Γράφημα 27

28 ENOTHTA 7 - ΑΤΔ Γράφημα 28 Υλοποίηση Γραφήματος με Λίστα Ακμών Α Β C E D G5

29 λίστα κορυφών G. Α.. B.. C.. D. λίστα ακμών <DD> <ΑΒ> <CB> <ΑC> <BC>.. <CD>.... <ΑE>. E. ENOTHTA 7 - ΑΤΔ Γράφημα 29

30 typedef... typos_stoixeiou; /* δεδομένα κορυφής */ typedef struct korifi *kdktis; typedef struct akmi *adktis; typedef struct korifi { typos_stoixeiou dedomena; kdktis epomenos; /* επόμενος λίστας κορυφών*/ adktis kefali; /* δείκτης λίστας ακμών */ ; typedef struct akmi { typos_stoixeiou dedomena; /* δεδομένα ακμής π.χ βάρος, απόσταση*/ kdktis akro; /* άκρο ακμής */ adktis epomenos; /* επόμενος λίστας ακμών */ ; typedef kdktis graphima; graphima G; ENOTHTA 7 - ΑΤΔ Γράφημα 3

31 /*Δημιουργία κενού γραφήματος*/ void dimiourgia(graphima *G){ *G = NULL; void enimerosi(typos_stoixeiou stoixeio, kdktis p){ /* Mετά:Eισάγει το stoixeio στον κόμβο που δείχνει ο p. */ p->dedomena = stoixeio; typos_stoixeiou anaktisi(kdktis p){ /* Mετά: H συνάρτηση επιστρέφει το περιέχομενο του κόμβου που δείχνει δείκτης p. */ return (p->dedomena); ENOTHTA 7 - ΑΤΔ Γράφημα 3

32 int geitoniki(kdktis p, kdktis q){ int telos; adktis trexon; /*για τη σάρωση της λίστας ακμών */ int geit=; trexon = p->kefali; /* αφετηρία από την κεφαλή */ telos = ; while (!telos){ if (trexon == NULL) /* τέλος λίστας ακμών */ telos = ; else if ( trexon->akro == q ){ /* βρέθηκε */ telos = ; geit = ; else /*επόμενος κόμβος λίστας ακμών */ trexon = trexon->epomenos; return geit; ENOTHTA 7 - ΑΤΔ Γράφημα 32

33 void diagrafi_korifis(kdktis p,graphima *G){ /* Mετά: H κορυφή που δείχνει ο p διαγράφεται */ kdktis trexon; trexon = *G; /* διατρέχει τη λίστα κορυφών */ while (!keni (trexon)){ /* δεν εξετάζεται η λίστα του p */ if (trexon! = p) /* διαγραφή της (trexon,p)*/ diagrafi_komvou(p,&(trexon->kefali)); proxorise (&trexon)/* στην επόμενη κορυφή*/ /* διαγραφή της λίστας ακμών της p */ diagrafi_listas(&(p->kefali)); /* βοηθητική */ diag_kor(p,g); /*διαγραφή κορυφής p */ ENOTHTA 7 - ΑΤΔ Γράφημα 33

34 void diagrafi_komvou(kdktis v, adktis *kefali) /* Mετά: Eντοπίζει και διαγράφει τον κόμβο της λίστας ακμών που ξεκινά απο τον *kefali του οποίου το πεδίο akro είναι ίσο με v. */ adktis pros; if (*kefali!= NULL){ if (((*kefali)->akro) == v) /* Διαγραφή του κόμβου */ { pros = *kefali; *kefali = (*kefali)->epomenos; free(pros); else diagrafi_komvou(v, &((*kefali)->epomenos)); ENOTHTA 7 - ΑΤΔ Γράφημα 34

35 void diagrafi_listas(adktis* kefali){ /* Mετά: Διαγράφει όλους τους κόμβους μιας λίστας ακμών ξεκινώντας από την κεφαλή. */ if (*kefali!=null){ diagrafi_listas(&((*kefali)->epomenos)); free (*kefali); *kefali = NULL; ENOTHTA 7 - ΑΤΔ Γράφημα 35

36 void eisagogi_korifis(graphima *G, typos_stoixeiou stoixeio) {/* Mετά: Eισάγεται ένας νέος κόμβος στην αρχή της λίστας κορυφών με δεδομένα stoixeio */ kdktis p; p = malloc(sizeof(struct korifi)); /* Συνδέει το νέο κόμβο με την κεφαλή της λίστας κορυφών του *G */ p->dedomena = stoixeio; p->epomenos = *G; p->kefali = NULL; /* Λίστα ακμών του p είναι κενή*/ /* O κόμβος που δείχνει ο p είναι η νέα κεφαλή της λίστας κορυφών του *G */ *G = p; ENOTHTA 7 - ΑΤΔ Γράφημα 36

37 Εισαγωγή Ακμής: μη κατευθυνόμενο (όπως εισαγωγή αρχή λίστας) p q ENOTHTA 7 - ΑΤΔ Γράφημα 37

38 void eisagogi_akmis(kdktis p,kdktis q){ /* Mετά: Eισάγεται μια ακμή μεταξύ των κορυφών που δείχνουν οι p και q, σε ένα μη κατευθυνόμενο γράφημα. */ adktis pros; if (!geitoniki(p,q)){ pros = p->kefali; p->kefali = malloc(sizeof(struct akmi)); /* Εισαγωγή στην αρχή & σύνδεση με q */ p->kefali->akro = q; p->kefali->epomenos = pros; /* Eπαναλαμβάνονται τα παραπάνω για το q */ pros = q->kefali; q->kefali = malloc(sizeof(struct akmi)); q->kefali->akro = p; q->kefali->epomenos = pros; ENOTHTA 7 - ΑΤΔ Γράφημα 38

39 Διαδρομή (ή Αναζήτηση) Γραφημάτων Διαδρομή πρώτα κατά βάθος Διαδρομή πρώτα κατά πλάτος Διαδρομή πρώτα κατά βάθος Α B C D E F H G Μια διαδρομή πρώτα κατά βάθος είναι ΑBEFHCDG ENOTHTA 7 - ΑΤΔ Γράφημα 39

40 αφετηρία B F Μια πρώτα κατά βάθος σειρά, ξεκινώντας από την κορυφή Α, είναι : ABFIHGCDE C G αφετηρία A I D H E Ξεκινώντας από την Β ποτέ σε Α και Ε. Πρέπει όμως να επισκεφτούμε όλες. ENOTHTA 7 - ΑΤΔ Γράφημα 4

41 Αλγόριθμος Διαδρομής πρώτα κατά βάθος (ισχυρά συνδεδεμένου) Επισκέπτεται όλες τις κορυφές ενός γραφήματος που είναι συνδεδεμένες με την κορυφή v από την οποία ξεκινά, με την πρώτα κατά βάθος αναζήτηση. Επίσκεψη της αρχικής κορυφής v. 2. Για κάθε γειτονική κορυφή w της v γίνονται τα εξής: Αν δεν έχουμε επισκεφτεί την w, εφαρμόζεται ο αλγόριθμος της αναζήτησης πρώτα κατά βάθος με αρχική κορυφή την w. ENOTHTA 7 - ΑΤΔ Γράφημα 4

42 2 προβλήματα Π. Ενα γράφημα μπορεί να περιέχει κύκλους, πράγμα που σημαίνει ότι είναι δυνατόν να επισκεφθούμε μία κορυφή περισσότερες από μία φορές. Για αυτό μαρκάρουμε τις κορυφές που επισκεπτόμαστε και ελέγχουμε αν τις έχουμε ξαναεπισκεφθεί. Π2. Το άλλο φαινόμενο που μπορεί να παρουσιαστεί είναι εκείνο του μη συνδεδεμένου (για μη κατευθυνόμενο) ή μη ισχυρά συνδεδεμένου (για κατευθυνόμενο) γραφήματος. Για αυτό ξεκινάμε Διαδρομή από κάθε κορυφή του γραφήματος και αν δεν την έχουμε ξαναεπισκεφθεί ξεκινάμε νέα Διδρομή. Η Διαδρομή πρώτα κατά βάθος περιγράφεται από τα παρακάτω δυο υποπρογράμματα σε ψευδογλώσσα για να καλύπτει αφαιρετικά και τις τρεις υλοποιήσεις των γραφημάτων. Στην συνέχεια τα εξειδικεύουμε για κάθε υλοποίηση. ENOTHTA 7 - ΑΤΔ Γράφημα 42

43 /* ψευδοκώδικας κατά βάθος για όλες τις υλοποιήσεις */ int episkeftike[plithos]; /* Πίνακας Επισκέψεων */ void vathos(graphima G){ int i; for (i=;i<plithos;i++)do episkeftike[k] = ; Για κάθε κορυφή στο G /* ψευδοκώδικας */ if (!episkeftike[k]) diadromi_vathos(k); Προσοχή! Ξεκινάμε κατά βάθος από κάθε κορυφή. Αν την έχουμε επισκεφτεί έχοντας ξεκινήσει από άλλη κορυφή, δεν την επισκεπτόμαστε. Επισκεπτόμαστε ΟΛΟΥΣ τους κόμβους. ENOTHTA 7 - ΑΤΔ Γράφημα 43

44 /*Προ: k είναι κορυφή του γραφήματος G. Μετά: Εχει εκτελεστεί η πρώτα κατά βάθος διαδρομή, με τη χρήση του υποπρογράμματος episkepsi για την k και για όλες τις γειτονικές της κορυφές.*/ /* Αναδρομικός ψευδοκώδικας για όλες τις υλοποιήσεις*/ void diadromi_vathos(korifi k){ korifi w; episkepsi(k); episkeftike[k] = ; Για κάθε w γειτονικό του k /* ψευδοκώδικας */ if (!episkeftike[w]) diadromi_vathos(w); ENOTHTA 7 - ΑΤΔ Γράφημα 44

45 Εξειδίκευση: η υλοποίηση της Διαδρομής πρώτα κατά βάθος στην περίπτωση όπου το γράφημα παριστάνεται με γειτονικό πίνακα. int episkeftike[plithos]; /*Προ: Εχει δημιουργηθεί ο γειτονικός πίνακας. Μετά: Επίσκεψη όλων των κορυφών του γραφήματος με τη μέθοδο της αναζήτησης πρώτα κατά βάθος*/ void vathosp(graphima G){ korifi i; for (i=; i<=(g.arkrfon-); i++) episkeftike[i] = ; for (i=; i<=(g.arkrfon-); i++) if (!episkeftike[i]) diadromi_vathosp(g,i); ENOTHTA 7 - ΑΤΔ Γράφημα 45

46 /*Προ: i είναι μια κορυφή του γραφήματος. Μετά: Η επίσκεψη της κορυφής i και των γειτονικών της έχειτελειώσει με την αναζήτηση πρώτα κατά βάθος*/ void diadromi_vathosp(graphima G, korifi i){ int j; episkepsi(i); /*επίσκεψη της i κορυφής*/ episkeftike[i] = ; for (j=; j<= G.arkrfon-; j++) if (geitoniki(g,i,j) && (!episkeftike[j])) diadromi_vathosp(g,j); ENOTHTA 7 - ΑΤΔ Γράφημα 46

47 Εξειδίκευση: το γράφημα παριστάνεται με τη λίστα ακμών Κάθε κόμβος περιέχει ένα boolean πεδίο episkeftike, το οποίο αρχικά έχει τεθεί ίσο με false για κάθε κορυφή. Η diadromi τροποποιείται ως εξής: ENOTHTA 7 - ΑΤΔ Γράφημα 47

48 void diadromi_vathosla(kdktis p){ /* Ο δείκτης p δείχνει την κορυφή αφετηρίας */ adktis trexon; kdktis q; episkepsi(p); p->episkeftike = ; trexon=p->kefali; while (trexon!=null){ q=trexon->akro; /* η q γειτονική της p */ if (!(q->episkeftike)) diadromi_vathosla(q); trexon = trexon->epomenos; ENOTHTA 7 - ΑΤΔ Γράφημα 48

49 Πολυπλοκότητα Διαδρομής κατά βάθος Γειτονικός Πίνακας : Ο(n 2 ), επειδή Ο(n) για γειτονικές x n Λίστα γειτονικών κορυφών : Ο(e) (το πολύ 2e κόμβοι) Λίστα ακμών : Ο(n+e) Συνήθως e << n 2 Οι υλοποιήσεις με λίστες έχουν πιο αποδοτικές αναζητήσεις. Η υλοποίηση με πίνακα χρησιμοποιείται σε αλγεβρικούς υπολογισμούς με πίνακες (μετάβασης). ENOTHTA 7 - ΑΤΔ Γράφημα 49

50 Αναζήτηση πρώτα κατά πλάτος Η αναζήτηση πρώτα κατά πλάτος ενός γραφήματος είναι ανάλογη με την επίσκεψη των κόμβων ενός δυαδικού δέντρου κατά επίπεδα ή βαθμό απομάκρυνσης από τον αρχικό κόμβο.. Τοποθετούμε αρχική κορυφή σε ουρά 2. Εξάγουμε την πρώτη κορυφή από την ουρά και την επισκεπτόμαστε 3. Τοποθετούμε κάθε γειτονική της κορυφή, αν δεν την έχουμε επισκεφτεί ήδη, στην ουρά. 4. και πάλι το 2. ENOTHTA 7 - ΑΤΔ Γράφημα 5

51 Αναζήτηση πρώτα κατά πλάτος A A Α Ουρά B-C-D Β C D E F G H A B C D E F G H B C-D-E-F C D-E-F D E-F-G E F-G F G-H G H H ENOTHTA 7 - ΑΤΔ Γράφημα 5

52 B F Από A: A B D E F C H G I (όλες) C G αφετηρία A D I E H Από B: B F G I H C D Όμως συνεχίζουμε από A E ENOTHTA 7 - ΑΤΔ Γράφημα 52

53 Ο αλγόριθμος της αναζήτησης πρώτα κατά πλάτος είναι παρόμοιος με εκείνον της αναζήτησης πρώτα κατά βάθος με τη διαφορά ότι τώρα προστίθεται η δημιουργία της ουράς των κορυφών και καλεί diadromi_platos. typedef korifi typos_stoixeiou; typos_oura oura_korifon; int episkeftike[plithos]; void platos(graphima G){ korifi k; for all k in G do episkeftike[k] = ; dimiourgia(&oura_korifon); for all k in G do if (!episkeftike[k]) diadromi_platos(k); ENOTHTA 7 - ΑΤΔ Γράφημα 53

54 Όλες οι αλλαγές βρίσκονται στον αλγόριθμο του τρόπου επίσκεψης των κορυφών. Πιο συγκεκριμένα ο αλγόριθμος της διαδρομής των κορυφών του γραφήματος τροποποιείται στον παρακάτω: ENOTHTA 7 - ΑΤΔ Γράφημα 54

55 Επαναληπτικός αλγόριθμος void diadromi_platos(korifi k){ /*Προ: k είναι η κορυφή του γραφήματος. Μετά: Έχει εκτελεστεί η κατά πλάτος διαδρομή */ korifi w,i; episkeftike[k] = ; prosthesi(&oura_korifon,k); while (!keni(oura_korifon)){ apomakrynsi(&oura_korifon,&i); episkepsi(i); for all w adjacent to i do /* ψευδοκώδικας */ if (!episkeftike[w]){ episkeftike[w] = ; prosthesi(&oura_korifon,w); ENOTHTA 7 - ΑΤΔ Γράφημα 55

56 Εξειδίκευση: το γράφημα παριστάνεται με τη λίστα ακμών, τότε υποθέτουμε ότι κάθε κόμβος περιέχει ένα boolean πεδίο episkeftike, το οποίο αρχικά έχει τεθεί ίσο με false για κάθε κορυφή. Η δε διαδρομή τροποποιείται ως εξής: /*Ο δείκτης p δείχνει την κορυφή-αφετηρία. Προ: Το γράφημα G έχει δημιουργηθεί. Μετά: Εχει εκτελεστεί η κατά πλάτος διαδρομή όλων των κορυφών του γραφήματος. Χρήση: Οι βασικές πράξεις της ουράς.*/ ENOTHTA 7 - ΑΤΔ Γράφημα 56

57 void diadromi_platosla(kdktis p){ adktis trexon; kdktis q,i; p->episkeftike = ; prosthesi(&oura_korifon, p); while (!(keni(oura_korifon))){ apomakrynsi(&oura_korifon, &i); episkepsi(i); trexon=i->kefali; while (trexon!=null){ q=trexon->akro;/* q γειτονική p*/ if (!(q->episkeftike)){ q->episkeftike = ; prosthesi(&oura_korifon,q); trexon=trexon->epomenos; ENOTHTA 7 - ΑΤΔ Γράφημα 57

58 Δέντρα Επικάλυψης (Spanning Trees) Ενα δέντρο επικάλυψης για ένα γράφημα G, είναι ένα δέντρο που έχει δημιουργηθεί από μερικές ακμές του G έτσι ώστε να περιέχει όλες τις κορυφές του. Με άλλα λόγια ένα δέντρο επικάλυψης είναι ένα γράφημα με το ελάχιστο πλήθος ακμών που επιτρέπει την επικοινωνία μεταξύ οποιονδήποτε κορυφών του γραφήματος. ENOTHTA 7 - ΑΤΔ Γράφημα 58

59 Ενα δέντρο επικάλυψης με πρώτα κατά βάθος επίσκεψη των κορυφών του. Αφετηρία η κορυφή a. a b g b a e i c c h d g e d f j f j h i ENOTHTA 7 - ΑΤΔ Γράφημα 59

60 b g αφετηρία a e i c h d f j ENOTHTA 7 - ΑΤΔ Γράφημα 6

61 Στη συνέχεια η vathos τροποποιείται κατάλληλα για τον εντοπισμό των ακμών ενός πρώτα κατά βάθος δέντρου επικάλυψης. /*Δημιουργεί ένα κατά βάθος δέντρο επικάλυψης*/ void vathos_spantree(graphima G){ kdktis p; adktis e; p = G; /*Αρχικές τιμές - δίνονται αρχικές τιμές σε όλα τα σημάδια επισκέπτονται όλες οι κορυφές του G και σημαδεύεται η κάθε ακμή ώστε αρχικά να μην ανήκειστο δέντρο επικάλυψης*/ συνέχεια ENOTHTA 7 - ΑΤΔ Γράφημα 6

62 while (p!=null){ /*αρχικά οι κορυφές δεν έχουμε επισκεφτεί p->episkeftike = ; e = p->kefali; /*επισκέπτεται τη λίστα ακμών για κάθε κορυφή καισημαδεύεται η κάθε ακμή, ώστε αρχικά να μην ανήκει στο δέντρο επικάλυψης*/ while (e!=null){ e->simadi = ; e = e->epomenos; p = p->epomenos; p = G; vathos_dimiourgia(p); ENOTHTA 7 - ΑΤΔ Γράφημα 62

63 void vathos_dimiourgia(kdktis p){ adktis trexon; kdktis q; p->episkeftike = ; trexon = p->kefali; while (trexon!=null){ q= trexon->akro; if (!(q->episkeftike)){ /* σημαδεύεται η ακμή του δέντρου*/ trexon->simadi = ; /*θα μπορούσαμε να τυπώσουμε την ακμή του δέντρου στο σημείο*/ vathos_dimiourgia(q); trexon = trexon->epomenos; ENOTHTA 7 - ΑΤΔ Γράφημα 63

64 Με όμοιο τρόπο τροποποιείται η platos και κατασκευάζεται ένα πρώτα κατά πλάτος δέντρο επικάλυψης ενός γραφήματος G. void platos_spantree(graphima G){ /*Δημιουργεί ένα κατά πλάτος δέντρο επικάλυψης. */ typos_ouras oura; kdktis n,m; adktis trexon; n = G; while (n!=null){ n->episkeftike = ; trexon = n->kefali; while (trexon!=null){ trexon->simadi = ; trexon = trexon->epomenos; n = n->epomenos; συνέχεια ENOTHTA 7 - ΑΤΔ Γράφημα 64

65 dimiourgia(&oura); /*Το ξεκίνημα από την κεφαλή της λίστας κορυφών*/ n = G; prosthesi(&oura,n); n->episkeftike = ; while (!keni(oura)){ apomakrynsi(&oura,&n); /* επισκέπτεται η λιστά ακμών */ trexon = n->kefali; while (trexon!=null){ m = trexon->akro; if (!(m->episkeftike)){ prosthesi(&oura,m); m->episkeftike = ; trexon->simadi = ; trexon = trexon->epomenos; ENOTHTA 7 - ΑΤΔ Γράφημα 65

66 Ενα πρώτα κατά πλάτος δέντρο επικάλυψης του γραφήματος. Αφετηρία η κορυφή a. b g αφετηρία a e i c h d f j ENOTHTA 7 - ΑΤΔ Γράφημα 66

67 Εφαρμογές Γραφημάτων Μεταβατικό γράφημα : Γενικά : Aν Αν Αi, j true k and Ak, j A i, v μήκους 2 i, v j v E(G) true μονοπάτι i j i 2 j i vk v j A i, and A,j or A i,2 and A 2,j or..... or A i,n and A n,j true μονοπάτι μήκους 2 v v v ή v v v ή... ENOTHTA 7 - ΑΤΔ Γράφημα 67

68 ή A l Α A (2) A A () () n k A k Ak, j A i, l-, l 2, 3, 4,... Υπάρχει μονοπάτι μήκους <= 3 ; P A () A (2) A (3) Υπαρξη μονοπατιού P A () A (2) A (3)... A (n) ENOTHTA 7 - ΑΤΔ Γράφημα 68

69 ENOTHTA 7 - ΑΤΔ Γράφημα 69 Α Β C E D Γειτονικός πίνακας

70 ENOTHTA 7 - ΑΤΔ Γράφημα 7 A A A () () (2) ή A 2 Μεταβατικός πίνακας 2 βημάτων

71 Μεταβατικός Πίνακας / Γράφημα Γράφημα που συνδέει κορυφές που γειτνιάζουν με οποιοδήποτε αριθμό μεταβάσεων (..n). Και ο πίνακας γειτνίασής του λέγεται μεταβατικός πίνακας. Π.χ. για το παραπάνω γράφημα ο μεταβατικός πίνακας είναι: P=A\/A \/A \/A \/A Ο(n 4 ) Τίτλος Ενότητας 7

72 Αλγόριθμος Warshall Μεταβατικού Πίνακα O(n 3 ) P k [i, j] = /* TRUE */ Αν υπάρχει μονοπάτι από την i στην j το οποίο να μην διέρχεται από καμία κορυφή μεγαλύτερη του k. ENOTHTA 7 - ΑΤΔ Γράφημα 72

73 P k+ [i, j] = /*true*/ AN. P k [i, j] = /*true*/ ή 2. P k [i, k+] = και P k [k+, j] = Τα παραπάνω ισοδυναμούν με P k+ [i, j] = (P k [i, j] (P k [i, k+] && P k [k+, j])); ή αναλυτικότερα for (i=;i<=n;i++) for (j=;j<=n;j++) P k [i, j] = P k- [i, j] (P k- [i, k] && P k- [k, j]); ENOTHTA 7 - ΑΤΔ Γράφημα 73

74 Απλοποιώντας τα παραπάνω λαμβάνουμε P k = P k -; for (i=;i<=n;i++) if (P k- [i, k]) for (j=; j<=n; j++) P k [i, j] := P k- [i, j] P k- [k, j]; ENOTHTA 7 - ΑΤΔ Γράφημα 74

75 και τελικά : P k = P k-; for (i=;i<=n;i++) if (P k- [i, k]) for (j=;j<=n;j++) if (P k- [k, j]) P k [i, j] = ; Ισχύει P [i,j] = A[i,j] ENOTHTA 7 - ΑΤΔ Γράφημα 75

76 void metavatikos_pinakas(geit_pin A, geit_pin P){ korifi i,j,k; geit_pin PP; for (i=; i <= plithos-; i++) for (j = ; j <= plithos-; j++) P[i][j]=A[i][j]; for (k=; k <= plithos-; k++){ for (i = ; i <= plithos-; i++) for (j = ; j <= plithos-; j++) PP[i][j]=P[i][j]; for (i=; i <= plithos-; i++) if (PP[i][k]) for (j=; j <= plithos-; j++) if (PP[k][j]) P[i][j] = ; ENOTHTA 7 - ΑΤΔ Γράφημα 76

77 Το συντομότερο μονοπάτι σε ένα κατευθυνόμενο γράφημα: Ο Αλγόριθμος του Dijkstra Μπορούμε να φανταστούμε το G σαν μια απεικόνιση αεροπορικών γραμμών, στην οποία κάθε κορυφή παριστάνει μια πόλη και το βάρος σε κάθε ακμή το κόστος της πτήσης από μια πόλη σε μιαν άλλη. Το πρόβλημά μας είναι η εύρεση μιας διαδρομής από την πόλη v στην πόλη w έτσι ώστε το συνολικό κόστος (απόσταση) να είναι ελάχιστο. ENOTHTA 7 - ΑΤΔ Γράφημα 77

78 Ένα κατευθυνόμενο γράφημα με βάρη ENOTHTA 7 - ΑΤΔ Γράφημα 78

79 Ας θεωρήσουμε το κατευθυνόμενο γράφημα του παραπάνω σχήματος. Αν υποτεθεί ότι η κορυφή είναι η πηγή, τότε το πρόβλημά μας είναι η εύρεση του συντομότερου μονοπατιού από την κορυφή προς όλες τις άλλες κορυφές του γραφήματος. Παράσταση με πίνακα Α όπου Α[i][j] είναι το κόστος μετάβασης από την i στην j. Αν δεν υπάρχει ακμή, Α[i][j]=. Διατηρεί σύνολο S με κορυφές των οποίων η συντομότερη διαδρομή από την κορυφή-πηγή είναι γνωστή. Σε κάθε βήμα προσθέτει μια κορυφή στο S. Πίνακας D (Δ) περιέχει κόστος (μήκος) για κάθε κορυφή του S. Πίνακας P (Δ) περιέχει το μονοπάτι - προηγούμενη κάθε κορυφής του S. Άπληστος αλγόριθμος. ENOTHTA 7 - ΑΤΔ Γράφημα 79

80 Αλγόριθμος του Dijkstra /* Υπολογίζει το κόστος του συντομότερου μονοπατιού από την κορυφή μέχρι μια οποιαδήποτε κορυφή ενός κατευθυνόμενου γραφήματος */ () S = {; /*Το σύνολο S περιέχει την κορυφή */ (2) for i=2,n do D[i] = A[,i]; {Αρχικές τιμές του D (3) for i=,n do P[i] = αν δεν υπάρχει ακμή από την προς την i P[i] = αν υπάρχει ακμή από την προς την i (4) for i =..n- do { (5) Διάλεξε μια κορυφή w εκτός S τέτοια ώστε η D[w] να είναι ελάχιστη (6) Πρόσθεσε την w στο S (7) Για κάθε κορυφή v εκτός S να ελεγχθεί αν η απόσταση απο την στην v μπορεί να συντομευθεί διαμέσου της w. Αν ναι, να ενημερωθεί η αντίστοιχη τιμή του πίνακα D. () D[v] = min (D[v], D[w] + A[w,v]) (2) Αν D[w]+A[w,v] < D[v] τότε P[v]=w ENOTHTA 7 - ΑΤΔ Γράφημα 8

81 S={ min d=3 d= d 3 5 d=4 4 d=5 4 Επανάληψη s w D[2] D[3] D[4] D[5] D[6] αρχική { {, ENOTHTA 7 - ΑΤΔ Γράφημα 8

82 S={, 2 d=3 d= min 3 5 d=4 d=7 d=5 4 P[] P[2] P[3] P[4] P[5] P[6] 2 Επανάληψη s w D[2] D[3] D[4] D[5] D[6] {, {,2, ENOTHTA 7 - ΑΤΔ Γράφημα 82

83 d=3 d= 2 6 S={, 2, d=4 3 5 d=7 2 d=5 min 4 P[] P[2] P[3] P[4] P[5] P[6] 4 Επανάληψη s w D[2] D[3] D[4] D[5] D[6] 2 {,2, {,2,5, ENOTHTA 7 - ΑΤΔ Γράφημα 83

84 S={, 2, 5, 4 d=3 d= min d=6 3 5 d=4 d=5 4 P[] P[2] P[3] P[4] P[5] P[6] 4 3 Επανάληψη s w D[2] D[3] D[4] D[5] D[6] 3 {,2,5, {,2,5,4, ENOTHTA 7 - ΑΤΔ Γράφημα 84

85 d=3 d= S={, 2, 5, 4, 3, 6 d= d=5 d=4 Επανάληψη s w D[2] D[3] D[4] D[5] D[6] 4 {,2,5,4, {,2,5,4,3, ENOTHTA 7 - ΑΤΔ Γράφημα 85

86 s w D[2] D[3] D[4] D[5] D[6] αρχική { {, {,2, {,2,5, {,2,5,4, {,2,5,4,3, Αν αλλάξει D[v] λόγω w P[v]=w. Εδώ Αλλαγές για w=2,4,3 P[3]=2, P[3]=4,P[6]=3 9 P[] P[2] P[3] P[4] P[5] P[6] ENOTHTA 7 - ΑΤΔ Γράφημα 86

87 Πολυπλοκότης : Ο(n 2 ) w Υποθετικά συντομότερο μονοπάτι S x Ο αλγόριθμος του Dijkstra υλοποιείται στο παρακάτω πρόγραμμα όπου χρησιμοποιείται ο πίνακας γειτονικών κορυφών για την παράσταση του γραφήματος. ENOTHTA 7 - ΑΤΔ Γράφημα 87

88 #include <stdio.h> #define plithos 5 #define infinity 2 /* τιμή όπου δεν υπάρχει ακμή */ #define min_stoixeio #define max_stoixeio plithos- #define megisto_plithos max_stoixeio-min_stoixeio+ typedef int typos_synolou[megisto_plithos]; typedef int korifi; typedef int typos_pinaka[plithos][plithos]; typedef struct { typos_pinaka geit_pin; int arkrfon; graphima; συνέχεια ENOTHTA 7 - ΑΤΔ Γράφημα 88

89 void Dimiourgia_graphimatos(graphima *G); void Diavasma_graphimatos(graphima *G); void Ektyposi_graphimatos(graphima G); void Dijkstra(graphima G); void Synolo_dimiourgia(typos_synolou synolo); int Synolo_eisagogi(int stoixeio, typos_synolou synolo); int Synolo_melos(int stoixeio, typos_synolou synolo); main(){ graphima G; printf("\n Δώστε το πλήθος των κορυφών: "); scanf("%d",&(g.arkrfon)); Dimiourgia_graphimatos(&G); Diavasma_graphimatos(&G); Ektyposi_graphimatos(G); Dijkstra(G); ENOTHTA 7 - ΑΤΔ Γράφημα 89

90 void Dimiourgia_graphimatos(graphima *G){ /* Όλα τα στοιχεία του geit_pin έχουν τιμή infinity */ int i,j; for (i=; i<=(g->arkrfon)-; i++) for (j=; j<=(g->arkrfon)-; j++) (G->geit_pin)[i][j] = infinity; ENOTHTA 7 - ΑΤΔ Γράφημα 9

91 void Diavasma_graphimatos(graphima *G){ /* Προ: έχει δημιουργηθεί ο geit_pin χωρίς ακμές. Μετά: Έχει δημιουργηθεί ο geit_pin με ακμές.*/ korifi i,j; int kostos; printf("\nδώστε τα στοιχεία του γραφήματος"); printf("\nδώστε i,j και kostos.\n\n"); scanf ("%d %d %d",&i,&j,&kostos); while (i!= plithos+){ if ( (i>=) && (i<(g->arkrfon)) &&(j>=) &&(j<(g->arkrfon)) &&(kostos>=)&&(kostos < infinity)) (G->geit_pin)[i][j] = kostos; else{ printf("\nλάθος δεδομένα. Ξαναδώστε τα"); scanf ("%d %d %d", &i, &j, &kostos); ENOTHTA 7 - ΑΤΔ Γράφημα 9

92 void Ektyposi_graphimatos(graphima G){ /*Προ : Έχει δημιουργηθεί ο γειτονικός πίνακας. Μετά: Για κάθε κορυφή έχει τυπωθεί μια γραμμή στην οποία εμφανίζονται οι κορυφές με τις οποίες είναι συνδεδεμένη*/ korifi i,j; for (i=; i <= G.arkrfon-; i++){ printf("γραμμή %2d ", i); for (j=; j <= G.arkrfon-; j++) printf ("%8d",G.geit_pin[i][j]); printf ("\n"); printf ("\n"); ENOTHTA 7 - ΑΤΔ Γράφημα 92

93 /* Προ : Ένα κατευθυνόμενο γράφημα με βάρη Μετά: Εύρεση του συντομότερου μονοπατιού και επιστροφή του αποτελέσματος στον πίνακα D. */ void Dijkstra(graphima G){ typos_synolou S; /* το σύνολο ειδικών κορυφών*/ korifi i,j,w; int elaxisti_apostasi; int apostasi[plithos]; int monopati[plithos]; dimiourgia(s); eisagogi(,s); /* Αρχικές τιμές για τα συντομότερα μονοπάτια εφόσον υπάρχουν ακμές από την κορυφή */ for (j=; j <= G.arkrfon-; j++){ apostasi[j] = G.geit_pin[][j]; if (G.geit_pin[][j] == infinity) monopati[j] = -; else monopati[j] = ; συνέχεια ENOTHTA 7 - ΑΤΔ Γράφημα 93

94 for ( i = ; i <= G.arkrfon-; i++){ /* Επιλογή μιας κορυφής w στο V-S : apostasi[w]=min */ elaxisti_apostasi = infinity; for (j = ; j <= G.arkrfon-; j++) if ( (!melos(j,s)) &&(apostasi[j]<elaxisti_apostasi)){ elaxisti_apostasi = apostasi[j]; w = j; eisagogi(w,s); /* Πρόσθεση της w στο S */ /*Ενημέρωση των τιμών για τον πίνακα apostasi */ for (j = ; j <= G.arkrfon-; j++) if ( (!melos(j,s)) &&( apostasi[w]+(g.geit_pin)[w][j]) < (apostasi[j])){ apostasi[j]= apostasi[w]+(g.geit_pin)[w][j]; monopati[j] = w; for (i=; i <= G.arkrfon-; i++) printf("%d %d %d\n",i,apostasi[i],monopati[i]); ENOTHTA 7 - ΑΤΔ Γράφημα 94

95 Τέλος Ενότητας

96 Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στo πλαίσιo του εκπαιδευτικού έργου του διδάσκοντα. Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα στο Πανεπιστήμιο Αθηνών» έχει χρηματοδοτήσει μόνο την αναδιαμόρφωση του εκπαιδευτικού υλικού. Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος «Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς πόρους. ENOTHTA 7 - ΑΤΔ Γράφημα 96

97 Σημειώματα

98 Σημείωμα Αναφοράς Copyright Εθνικόν και Καποδιστριακόν Πανεπιστήμιον Αθηνών, Κοτρώνης Ιωάννης. «Δομές Δεδομένων και Τεχνικές Προγραμματισμού. Ενότητα 7: ΑΤΔ Γράφημα». Έκδοση:.. Αθήνα 25. Διαθέσιμο από τη δικτυακή διεύθυνση: ENOTHTA 7 - ΑΤΔ Γράφημα 98

99 Σημείωμα Αδειοδότησης Το παρόν υλικό διατίθεται με τους όρους της άδειας χρήσης Creative Commons Αναφορά, Μη Εμπορική Χρήση Παρόμοια Διανομή 4. [] ή μεταγενέστερη, Διεθνής Έκδοση. Εξαιρούνται τα αυτοτελή έργα τρίτων π.χ. φωτογραφίες, διαγράμματα κ.λ.π., τα οποία εμπεριέχονται σε αυτό και τα οποία αναφέρονται μαζί με τους όρους χρήσης τους στο «Σημείωμα Χρήσης Έργων Τρίτων». [] Ως Μη Εμπορική ορίζεται η χρήση: που δεν περιλαμβάνει άμεσο ή έμμεσο οικονομικό όφελος από την χρήση του έργου, για το διανομέα του έργου και αδειοδόχο που δεν περιλαμβάνει οικονομική συναλλαγή ως προϋπόθεση για τη χρήση ή πρόσβαση στο έργο που δεν προσπορίζει στο διανομέα του έργου και αδειοδόχο έμμεσο οικονομικό όφελος (π.χ. διαφημίσεις) από την προβολή του έργου σε διαδικτυακό τόπο Ο δικαιούχος μπορεί να παρέχει στον αδειοδόχο ξεχωριστή άδεια να χρησιμοποιεί το έργο για εμπορική χρήση, εφόσον αυτό του ζητηθεί. ENOTHTA 7 - ΑΤΔ Γράφημα 99

100 Διατήρηση Σημειωμάτων Οποιαδήποτε αναπαραγωγή ή διασκευή του υλικού θα πρέπει να συμπεριλαμβάνει: το Σημείωμα Αναφοράς το Σημείωμα Αδειοδότησης τη δήλωση Διατήρησης Σημειωμάτων το Σημείωμα Χρήσης Έργων Τρίτων (εφόσον υπάρχει) μαζί με τους συνοδευόμενους υπερσυνδέσμους. ENOTHTA 7 - ΑΤΔ Γράφημα

Γραφήματα (Graphs) G = (V, E) Κορυφές και ακμές. μονοπάτι 1,2,3,4 κορυφή 3. ακμή. γειτονικές G 1 V(G 1 ) = {1,2,3,4,5}

Γραφήματα (Graphs) G = (V, E) Κορυφές και ακμές. μονοπάτι 1,2,3,4 κορυφή 3. ακμή. γειτονικές G 1 V(G 1 ) = {1,2,3,4,5} Γραφήματα (Graphs) G = (V, E) Κορυφές και ακμές 2 4 μονοπάτι,2,3,4 κορυφή 3 ακμή γειτονικές V(G ) = {,2,3,4,5 G E(G ) = {(,2), (2,3), (2,4), (3,4), (4,5) 5 To Δένδρο, ειδική περίπτωση γραφήματος 2 3 G

Διαβάστε περισσότερα

Γραφήματα (Graphs) Κατευθυνόμενο γράφημα ακμές με κατεύθυνση (μονόδρομος) G = (V, E) Κορυφές και ακμές. μονοπάτι 1,2,3,4 κορυφή 3

Γραφήματα (Graphs) Κατευθυνόμενο γράφημα ακμές με κατεύθυνση (μονόδρομος) G = (V, E) Κορυφές και ακμές. μονοπάτι 1,2,3,4 κορυφή 3 G = (V, E) Κορυφές και ακμές V(G ) = {,,3,, Γραφήματα (Graphs) G E(G ) = {(,), (,3), (,), (3,), (,) μονοπάτι,,3, κορυφή 3 ακμή γειτονικές 3 Κατευθυνόμενο γράφημα ακμές με κατεύθυνση (μονόδρομος) V(G 3

Διαβάστε περισσότερα

Γραφήματα (Graphs) To Δένδρο, ειδική περίπτωση γραφήματος. G = (V, E) Κορυφές V και ακμές E G 2 4. μονοπάτι 1, 2, 3, 4 κορυφή 3

Γραφήματα (Graphs) To Δένδρο, ειδική περίπτωση γραφήματος. G = (V, E) Κορυφές V και ακμές E G 2 4. μονοπάτι 1, 2, 3, 4 κορυφή 3 G = (V, E) Κορυφές V και ακμές E V(G ) = {,,3,, Γραφήματα (Graphs) G E(G ) = {(,), (,3), (,), (3,), (,) μονοπάτι,, 3, κορυφή 3 ακμή γειτονικές To Δένδρο, ειδική περίπτωση γραφήματος G 3 6 7 μήκος μονοπατιού

Διαβάστε περισσότερα

Γραφήματα (Graphs) G = (V, E) Κορυφές V και ακμές E. μονοπάτι 1, 2, 3, 4 κορυφή 3. ακμή. γειτονικές G 1 V(G 1 ) = {1,2,3,4,5}

Γραφήματα (Graphs) G = (V, E) Κορυφές V και ακμές E. μονοπάτι 1, 2, 3, 4 κορυφή 3. ακμή. γειτονικές G 1 V(G 1 ) = {1,2,3,4,5} Γραφήματα (Graphs) G = (V, E) Κορυφές V και ακμές E 2 4 μονοπάτι, 2, 3, 4 κορυφή 3 ακμή γειτονικές V(G ) = {,2,3,4,5 G E(G ) = {(,2), (2,3), (2,4), (3,4), (4,5) 5 To Δένδρο, ειδική περίπτωση γραφήματος

Διαβάστε περισσότερα

Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 4: ΑΝΑΠΑΡΑΣΤΑΣΗ ΔΕΔΟΜΕΝΩΝ - ΔΕΝΤΡΑ

Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 4: ΑΝΑΠΑΡΑΣΤΑΣΗ ΔΕΔΟΜΕΝΩΝ - ΔΕΝΤΡΑ Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 4: ΑΝΑΠΑΡΑΣΤΑΣΗ ΔΕΔΟΜΕΝΩΝ - ΔΕΝΤΡΑ Δημήτριος Κουκόπουλος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διαχείρισης Πολιτισμικού Περιβάλλοντος και Νέων Τεχνολογιών

Διαβάστε περισσότερα

Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 3: ΑΝΑΠΑΡΑΣΤΑΣΗ ΔΕΔΟΜΕΝΩΝ - ΓΡΑΦΗΜΑΤΑ

Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 3: ΑΝΑΠΑΡΑΣΤΑΣΗ ΔΕΔΟΜΕΝΩΝ - ΓΡΑΦΗΜΑΤΑ Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 3: ΑΝΑΠΑΡΑΣΤΑΣΗ ΔΕΔΟΜΕΝΩΝ - ΓΡΑΦΗΜΑΤΑ Δημήτριος Κουκόπουλος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διαχείρισης Πολιτισμικού Περιβάλλοντος και Νέων Τεχνολογιών

Διαβάστε περισσότερα

Εισαγωγή στους Αλγορίθμους Φροντιστήριο 4

Εισαγωγή στους Αλγορίθμους Φροντιστήριο 4 Εισαγωγή στους Αλγορίθμους Φροντιστήριο 4 Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Εισαγωγή στους Αλγορίθμους

Εισαγωγή στους Αλγορίθμους Εισαγωγή στους Αλγορίθμους Ενότητα 5 η Άσκηση Συγχώνευση & απαρίθμηση Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης

Διαβάστε περισσότερα

Εισαγωγή στους Αλγορίθμους

Εισαγωγή στους Αλγορίθμους Εισαγωγή στους Αλγορίθμους Ενότητα 6 η Άσκηση - DFS δένδρα Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Εισαγωγή στους Αλγορίθμους Ενότητα 9η Άσκηση - Αλγόριθμος Prim

Εισαγωγή στους Αλγορίθμους Ενότητα 9η Άσκηση - Αλγόριθμος Prim Εισαγωγή στους Αλγορίθμους Ενότητα 9η Άσκηση - Αλγόριθμος Prim Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Emil: zro@ei.uptrs.r Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Εισαγωγή στους Αλγορίθμους Ενότητα 10η Άσκηση Αλγόριθμος Dijkstra

Εισαγωγή στους Αλγορίθμους Ενότητα 10η Άσκηση Αλγόριθμος Dijkstra Εισαγωγή στους Αλγορίθμους Ενότητα 1η Άσκηση Αλγόριθμος Dijkra Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upara.gr Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 2: Εφαρμογές Δικτυωτής Ανάλυσης (1 ο Μέρος)

Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 2: Εφαρμογές Δικτυωτής Ανάλυσης (1 ο Μέρος) Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 2: Εφαρμογές Δικτυωτής Ανάλυσης (1 ο Μέρος) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων

Διαβάστε περισσότερα

Βέλτιστος Έλεγχος Συστημάτων

Βέλτιστος Έλεγχος Συστημάτων Βέλτιστος Έλεγχος Συστημάτων Ενότητα 7: Βέλτιστος έλεγχος συστημάτων διακριτού χρόνου Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σημείωμα

Διαβάστε περισσότερα

Θερμοδυναμική. Ανοικτά Ακαδημαϊκά Μαθήματα. Πίνακες Νερού σε κατάσταση Κορεσμού. Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής

Θερμοδυναμική. Ανοικτά Ακαδημαϊκά Μαθήματα. Πίνακες Νερού σε κατάσταση Κορεσμού. Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Πίνακες Νερού σε κατάσταση Κορεσμού Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής Διπλ. Ναυπηγός Μηχανολόγος Μηχανικός M.Sc. Διασφάλιση

Διαβάστε περισσότερα

Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 11: ΠΡΟΒΛΗΜΑ ΔΙΑΤΡΕΞΗΣ ΓΡΑΦΗΜΑΤΟΣ

Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 11: ΠΡΟΒΛΗΜΑ ΔΙΑΤΡΕΞΗΣ ΓΡΑΦΗΜΑΤΟΣ Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 11: ΠΡΟΒΛΗΜΑ ΔΙΑΤΡΕΞΗΣ ΓΡΑΦΗΜΑΤΟΣ Δημήτριος Κουκόπουλος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διαχείρισης Πολιτισμικού Περιβάλλοντος και Νέων Τεχνολογιών

Διαβάστε περισσότερα

Εισαγωγή στους Αλγορίθμους

Εισαγωγή στους Αλγορίθμους Εισαγωγή στους Αλγορίθμους Ενότητα 5 η Άσκηση - Συγχώνευση Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Διοικητική Λογιστική

Διοικητική Λογιστική Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Διοικητική Λογιστική Ενότητα 10: Προσφορά και κόστος Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά

Διαβάστε περισσότερα

Έλεγχος και Διασφάλιση Ποιότητας Ενότητα 4: Μελέτη ISO Κουππάρης Μιχαήλ Τμήμα Χημείας Εργαστήριο Αναλυτικής Χημείας

Έλεγχος και Διασφάλιση Ποιότητας Ενότητα 4: Μελέτη ISO Κουππάρης Μιχαήλ Τμήμα Χημείας Εργαστήριο Αναλυτικής Χημείας Έλεγχος και Διασφάλιση Ποιότητας Ενότητα 4: Μελέτη Κουππάρης Μιχαήλ Τμήμα Χημείας Εργαστήριο Αναλυτικής Χημείας ISO 17025 5.9. ΔΙΑΣΦΑΛΙΣΗ ΤΗΣ ΠΟΙΟΤΗΤΑΣ ΤΩΝ ΑΠΟΤΕΛΕΣΜΑΤΩΝ ΔΟΚΙΜΩΝ (1) 5.9.1 Το Εργαστήριο

Διαβάστε περισσότερα

Εισαγωγή στους Αλγορίθμους Ενότητα 10η

Εισαγωγή στους Αλγορίθμους Ενότητα 10η Εισαγωγή στους Αλγορίθμους Ενότητα 10η Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Εισαγωγή στους Αλγορίθμους Ενότητα 9η Άσκηση - Αλγόριθμος Kruskal

Εισαγωγή στους Αλγορίθμους Ενότητα 9η Άσκηση - Αλγόριθμος Kruskal Εισαγωγή στους Αλγορίθμους Ενότητα 9η Άσκηση - Αλγόριθμος Kruskl Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Emil: zro@ei.uptrs.r Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Λογιστική Κόστους Ενότητα 12: Λογισμός Κόστους (2)

Λογιστική Κόστους Ενότητα 12: Λογισμός Κόστους (2) Λογιστική Κόστους Ενότητα 12: Λογισμός Κόστους (2) Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για

Διαβάστε περισσότερα

ΠΛΗΡΟΦΟΡΙΚΗ Ι Ενότητα 6: Πίνακες [2/2] (Δισδιάστατοι)

ΠΛΗΡΟΦΟΡΙΚΗ Ι Ενότητα 6: Πίνακες [2/2] (Δισδιάστατοι) ΠΛΗΡΟΦΟΡΙΚΗ Ι Ενότητα 6: Πίνακες [2/2] (Δισδιάστατοι) Μιχάλης Δρακόπουλος Σχολή Θετικών επιστημών Τμήμα Μαθηματικών ΠΛΗΡΟΦΟΡΙΚΗ Ι (MATLAB) Ενότητα 6 Σημειώσεις βασισμένες στο βιβλίο Το MATLAB στην Υπολογιστική

Διαβάστε περισσότερα

Κβαντική Επεξεργασία Πληροφορίας

Κβαντική Επεξεργασία Πληροφορίας Κβαντική Επεξεργασία Πληροφορίας Ενότητα 4: Κλασσική και Κβαντική Πιθανότητα Σγάρμπας Κυριάκος Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Σκοπός της ενότητας

Διαβάστε περισσότερα

Προγραμματισμός Η/Υ. Βασικές Προγραμματιστικές Δομές. ΤΕΙ Ιονίων Νήσων Τμήμα Τεχνολόγων Περιβάλλοντος Κατεύθυνση Τεχνολογιών Φυσικού Περιβάλλοντος

Προγραμματισμός Η/Υ. Βασικές Προγραμματιστικές Δομές. ΤΕΙ Ιονίων Νήσων Τμήμα Τεχνολόγων Περιβάλλοντος Κατεύθυνση Τεχνολογιών Φυσικού Περιβάλλοντος Προγραμματισμός Η/Υ Βασικές Προγραμματιστικές Δομές ΤΕΙ Ιονίων Νήσων Τμήμα Τεχνολόγων Περιβάλλοντος Κατεύθυνση Τεχνολογιών Φυσικού Περιβάλλοντος Δομή Ελέγχου Ροής (IF) Η εντολή IF χρησιμοποιείται όταν

Διαβάστε περισσότερα

Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας. Βιοστατιστική (Ε) Ενότητα 3: Έλεγχοι στατιστικών υποθέσεων

Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας. Βιοστατιστική (Ε) Ενότητα 3: Έλεγχοι στατιστικών υποθέσεων Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας Βιοστατιστική (Ε) Ενότητα 3: Έλεγχοι στατιστικών υποθέσεων Δρ.Ευσταθία Παπαγεωργίου, Αναπληρώτρια Καθηγήτρια Τμήμα Ιατρικών Εργαστηρίων Το περιεχόμενο του μαθήματος

Διαβάστε περισσότερα

Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας. Βιοστατιστική (Ε) Ενότητα 1: Καταχώρηση δεδομένων

Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας. Βιοστατιστική (Ε) Ενότητα 1: Καταχώρηση δεδομένων Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας Βιοστατιστική (Ε) Ενότητα 1: Καταχώρηση δεδομένων Δρ.Ευσταθία Παπαγεωργίου, Αναπληρώτρια Καθηγήτρια Τμήμα Ιατρικών Εργαστηρίων Το περιεχόμενο του μαθήματος διατίθεται

Διαβάστε περισσότερα

Εισαγωγή στους Αλγορίθμους Φροντιστήριο 8

Εισαγωγή στους Αλγορίθμους Φροντιστήριο 8 Εισαγωγή στους Αλγορίθμους Φροντιστήριο 8 Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Λογιστική Κόστους Ενότητα 8: Κοστολογική διάρθρωση Κύρια / Βοηθητικά Κέντρα Κόστους.

Λογιστική Κόστους Ενότητα 8: Κοστολογική διάρθρωση Κύρια / Βοηθητικά Κέντρα Κόστους. Λογιστική Κόστους Ενότητα 8: Κοστολογική διάρθρωση Κύρια / Βοηθητικά Κέντρα Κόστους. Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας. Βιοστατιστική (Ε) Ενότητα 2: Περιγραφική στατιστική

Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας. Βιοστατιστική (Ε) Ενότητα 2: Περιγραφική στατιστική Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας Βιοστατιστική (Ε) Ενότητα 2: Περιγραφική στατιστική Δρ.Ευσταθία Παπαγεωργίου, Αναπληρώτρια Καθηγήτρια Τμήμα Ιατρικών Εργαστηρίων Το περιεχόμενο του μαθήματος

Διαβάστε περισσότερα

4 η Διάλεξη. Ενδεικτικές λύσεις ασκήσεων

4 η Διάλεξη. Ενδεικτικές λύσεις ασκήσεων 4 η Διάλεξη Ενδεικτικές λύσεις ασκήσεων 1 Περιεχόμενα 1 η Άσκηση... 3 2 η Άσκηση... 3 3 η Άσκηση... 4 4 η Άσκηση... 5 5 η Άσκηση... 6 6 η Άσκηση... 7 Χρηματοδότηση... 8 Σημείωμα Αναφοράς... 9 Σημείωμα

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Δομές δεδομένων Άσκηση αυτοαξιολόγησης Παναγιώτα Φατούρου Τμήμα Επιστήμης Υπολογιστών ΗΥ2, Ενότητα : Ασκήσεις και Λύσεις Άσκηση 1 Ενότητα : Υλοποίηση Λεξικών µε

Διαβάστε περισσότερα

Δομές Δεδομένων και Τεχνικές Προγραμματισμού Ενότητα 3: ΑΤΔ Ουρά. Ιωάννης Κοτρώνης Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών

Δομές Δεδομένων και Τεχνικές Προγραμματισμού Ενότητα 3: ΑΤΔ Ουρά. Ιωάννης Κοτρώνης Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών Δομές Δεδομένων και Τεχνικές Προγραμματισμού Ενότητα 3: ΑΤΔ Ουρά Ιωάννης Κοτρώνης Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών Ορίζει τον ΑΤΔ Ουρά Σκοποί ενότητας Σχεδιάζει τον ΑΤΔ Ουρά

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ ΜΕΤΑΒΑΤΙΚΑ ΦΑΙΝΟΜΕΝΑ ΣΤΑ ΣΗΕ Λαμπρίδης Δημήτρης Κατσανού Βάνα Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ ΜΕΤΑΒΑΤΙΚΑ ΦΑΙΝΟΜΕΝΑ ΣΤΑ ΣΗΕ Λαμπρίδης Δημήτρης Κατσανού Βάνα Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ ΜΕΤΑΒΑΤΙΚΑ ΦΑΙΝΟΜΕΝΑ ΣΤΑ ΣΗΕ Λαμπρίδης Δημήτρης Κατσανού Βάνα Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών

Διαβάστε περισσότερα

Εισαγωγή στους Αλγορίθμους Φροντιστήριο 5

Εισαγωγή στους Αλγορίθμους Φροντιστήριο 5 Εισαγωγή στους Αλγορίθμους Φροντιστήριο 5 Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Ενδεικτικές λύσεις ασκήσεων διαχείρισης έργου υπό συνθήκες αβεβαιότητας

Ενδεικτικές λύσεις ασκήσεων διαχείρισης έργου υπό συνθήκες αβεβαιότητας Ενδεικτικές λύσεις ασκήσεων διαχείρισης έργου υπό συνθήκες αβεβαιότητας 1 Περιεχόμενα 1 η Άσκηση... 4 2 η Άσκηση... 7 3 η Άσκηση... 10 Χρηματοδότηση... 12 Σημείωμα Αναφοράς... 13 Σημείωμα Αδειοδότησης...

Διαβάστε περισσότερα

Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 6: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ: ΠΡΟΒΛΗΜΑ ΑΝΑΖΗΤΗΣΗΣ

Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 6: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ: ΠΡΟΒΛΗΜΑ ΑΝΑΖΗΤΗΣΗΣ Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 6: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ: ΠΡΟΒΛΗΜΑ ΑΝΑΖΗΤΗΣΗΣ Δημήτριος Κουκόπουλος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διαχείρισης Πολιτισμικού Περιβάλλοντος

Διαβάστε περισσότερα

Σχεδίαση CMOS Ψηφιακών Ολοκληρωμένων Κυκλωμάτων

Σχεδίαση CMOS Ψηφιακών Ολοκληρωμένων Κυκλωμάτων Σχεδίαση CMOS Ψηφιακών Ολοκληρωμένων Κυκλωμάτων Ενότητα: Ασκήσεις Αγγελική Αραπογιάννη Τμήμα Πληροφορικής και Τηλεπικοινωνιών Σελίδα 2 1. Άσκηση 1... 5 2. Άσκηση 2... 5 3. Άσκηση 3... 7 4. Άσκηση 4...

Διαβάστε περισσότερα

Διδακτική των εικαστικών τεχνών Ενότητα 2

Διδακτική των εικαστικών τεχνών Ενότητα 2 Διδακτική των εικαστικών τεχνών Ενότητα 2 Ουρανία Κούβου Εθνικὸ καi Καποδιστριακὸ Πανεπιστήμιο Αθηνών Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία Ενότητα 2. Το παιδικό σχέδιο ως γνωστική διεργασία:

Διαβάστε περισσότερα

Διδακτική των εικαστικών τεχνών Ενότητα 2

Διδακτική των εικαστικών τεχνών Ενότητα 2 Διδακτική των εικαστικών τεχνών Ενότητα 2 Ουρανία Κούβου Εθνικὸ καi Καποδιστριακὸ Πανεπιστήμιο Αθηνών Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία Ενότητα 2. Το παιδικό σχέδιο ως γνωστική διεργασία:

Διαβάστε περισσότερα

Διδακτική των εικαστικών τεχνών Ενότητα 2

Διδακτική των εικαστικών τεχνών Ενότητα 2 Διδακτική των εικαστικών τεχνών Ενότητα 2 Ουρανία Κούβου Εθνικὸ καi Καποδιστριακὸ Πανεπιστήμιο Αθηνών Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία Ενότητα 2. Το παιδικό σχέδιο ως γνωστική διεργασία:

Διαβάστε περισσότερα

Διδακτική των εικαστικών τεχνών Ενότητα 2

Διδακτική των εικαστικών τεχνών Ενότητα 2 Διδακτική των εικαστικών τεχνών Ενότητα 2 Ουρανία Κούβου Εθνικὸ καi Καποδιστριακὸ Πανεπιστήμιο Αθηνών Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία Ενότητα 2. Το παιδικό σχέδιο ως γνωστική διεργασία:

Διαβάστε περισσότερα

Μηχανολογικό Σχέδιο Ι

Μηχανολογικό Σχέδιο Ι ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα # 8: Άτρακτοι και σφήνες Μ. Γρηγοριάδου Μηχανολόγων Μηχανικών Α.Π.Θ. Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

1 η Διάλεξη. Ενδεικτικές λύσεις ασκήσεων

1 η Διάλεξη. Ενδεικτικές λύσεις ασκήσεων 1 η Διάλεξη Ενδεικτικές λύσεις ασκήσεων 1 Περιεχόμενα 1 η Άσκηση... 3 2 η Άσκηση... 3 3 η Άσκηση... 3 4 η Άσκηση... 3 5 η Άσκηση... 4 6 η Άσκηση... 4 7 η Άσκηση... 4 8 η Άσκηση... 5 9 η Άσκηση... 5 10

Διαβάστε περισσότερα

Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 5: ΚΑΤΗΓΟΡΙΕΣ ΑΛΓΟΡΙΘΜΙΚΩΝ ΠΡΟΒΛΗΜΑΤΩΝ-ΑΝΑΓΩΓΗ

Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 5: ΚΑΤΗΓΟΡΙΕΣ ΑΛΓΟΡΙΘΜΙΚΩΝ ΠΡΟΒΛΗΜΑΤΩΝ-ΑΝΑΓΩΓΗ Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 5: ΚΑΤΗΓΟΡΙΕΣ ΑΛΓΟΡΙΘΜΙΚΩΝ ΠΡΟΒΛΗΜΑΤΩΝ-ΑΝΑΓΩΓΗ Δημήτριος Κουκόπουλος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διαχείρισης Πολιτισμικού Περιβάλλοντος και

Διαβάστε περισσότερα

Εισαγωγή στους Αλγορίθμους Ενότητα 7η

Εισαγωγή στους Αλγορίθμους Ενότητα 7η Εισαγωγή στους Αλγορίθμους Ενότητα 7η Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Κβαντική Επεξεργασία Πληροφορίας

Κβαντική Επεξεργασία Πληροφορίας Κβαντική Επεξεργασία Πληροφορίας Ενότητα 12: Ιδιοτιμές και Ιδιοδιανύσματα Σγάρμπας Κυριάκος Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Ιδιοτιμές και Ιδιοδιανύσματα

Διαβάστε περισσότερα

Πληροφορική ΙΙ Θεματική Ενότητα 5

Πληροφορική ΙΙ Θεματική Ενότητα 5 Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Πληροφορική ΙΙ Θεματική Ενότητα 5 Λογικοί Τελεστές Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά

Διαβάστε περισσότερα

Γενική Φυσική Ενότητα: Εισαγωγή στην Ειδική Θεωρία της Σχετικότητας

Γενική Φυσική Ενότητα: Εισαγωγή στην Ειδική Θεωρία της Σχετικότητας Γενική Φυσική Ενότητα: Εισαγωγή στην Ειδική Θεωρία της Σχετικότητας Όνομα Καθηγητή: Γεώργιος Βούλγαρης Τμήμα: Μαθηματικό Σελίδα 2 1. Ασκήσεις στην Εισαγωγή στην Ειδική Θεωρία της Σχετικότητας... 4 1.1

Διαβάστε περισσότερα

Αλγόριθμοι και πολυπλοκότητα Συγχωνευτική Ταξινόμηση

Αλγόριθμοι και πολυπλοκότητα Συγχωνευτική Ταξινόμηση ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Αλγόριθμοι και πολυπλοκότητα Συγχωνευτική Ταξινόμηση Ιωάννης Τόλλης Τμήμα Επιστήμης Υπολογιστών Συγχωνευτική Ταξινόμηση (Merge Sort) 7 2 9 4 2 4 7 9 7 2 2 7 9 4

Διαβάστε περισσότερα

Διδακτική των εικαστικών τεχνών Ενότητα 1

Διδακτική των εικαστικών τεχνών Ενότητα 1 Διδακτική των εικαστικών τεχνών Ενότητα 1 Ουρανία Κούβου Εθνικὸ καi Καποδιστριακὸ Πανεπιστήμιο Αθηνών Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία Ενότητα 1. Ιστορική αναδρομή της διδακτικής της

Διαβάστε περισσότερα

Διδακτική των εικαστικών τεχνών Ενότητα 3

Διδακτική των εικαστικών τεχνών Ενότητα 3 Διδακτική των εικαστικών τεχνών Ενότητα 3 Ουρανία Κούβου Εθνικὸ καi Καποδιστριακὸ Πανεπιστήμιο Αθηνών Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία Ενότητα 3. Ο ρόλος του εκπαιδευτικού: σχεδιασμός

Διαβάστε περισσότερα

Γενική Φυσική Ενότητα: Δυναμική Άκαμπτου Σώματος

Γενική Φυσική Ενότητα: Δυναμική Άκαμπτου Σώματος Γενική Φυσική Ενότητα: Δυναμική Άκαμπτου Σώματος Όνομα Καθηγητή: Γεώργιος Βούλγαρης Τμήμα: Μαθηματικό Σελίδα 2 1. Ερωτήσεις Δυναμικής Άκαμπτου Σώματος... 4 1.1 Ερώτηση 1... 4 1.2 Ερώτηση 2... 4 1.3 Ερώτηση

Διαβάστε περισσότερα

Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 8: ΧΡΗΣΗ ΔΟΜΩΝ ΔΕΝΤΡΟΥ ΚΑΙ ΣΩΡΟΥ ΓΙΑ ΕΠΙΛΥΣΗ ΠΡΟΒΛΗΜΑΤΟΣ ΤΑΞΙΝΟΜΗΣΗΣ ΑΛΓΟΡΙΘΜΟΣ HEAPSORT

Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 8: ΧΡΗΣΗ ΔΟΜΩΝ ΔΕΝΤΡΟΥ ΚΑΙ ΣΩΡΟΥ ΓΙΑ ΕΠΙΛΥΣΗ ΠΡΟΒΛΗΜΑΤΟΣ ΤΑΞΙΝΟΜΗΣΗΣ ΑΛΓΟΡΙΘΜΟΣ HEAPSORT Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 8: ΧΡΗΣΗ ΔΟΜΩΝ ΔΕΝΤΡΟΥ ΚΑΙ ΣΩΡΟΥ ΓΙΑ ΕΠΙΛΥΣΗ ΠΡΟΒΛΗΜΑΤΟΣ ΤΑΞΙΝΟΜΗΣΗΣ ΑΛΓΟΡΙΘΜΟΣ HEAPSORT Δημήτριος Κουκόπουλος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διαχείρισης

Διαβάστε περισσότερα

Διδακτική των εικαστικών τεχνών Ενότητα 2

Διδακτική των εικαστικών τεχνών Ενότητα 2 Διδακτική των εικαστικών τεχνών Ενότητα 2 Ουρανία Κούβου Εθνικὸ καi Καποδιστριακὸ Πανεπιστήμιο Αθηνών Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία Ενότητα 2. Το παιδικό σχέδιο ως γνωστική διεργασία:

Διαβάστε περισσότερα

Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 3: Εφαρμογές Δικτυωτής Ανάλυσης (2 ο Μέρος)

Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 3: Εφαρμογές Δικτυωτής Ανάλυσης (2 ο Μέρος) Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 3: Εφαρμογές Δικτυωτής Ανάλυσης (2 ο Μέρος) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων

Διαβάστε περισσότερα

Κβαντική Επεξεργασία Πληροφορίας

Κβαντική Επεξεργασία Πληροφορίας Κβαντική Επεξεργασία Πληροφορίας Ενότητα 11: Είδη και μετασχηματισμοί πινάκων Σγάρμπας Κυριάκος Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Είδη και μετασχηματισμοί

Διαβάστε περισσότερα

Λογικός Προγραμματισμός Ασκήσεις

Λογικός Προγραμματισμός Ασκήσεις Λογικός Προγραμματισμός Ασκήσεις Παναγιώτης Σταματόπουλος Τμήμα Πληροφορικής και Τηλεπικοινωνιών Περιεχόμενα 1. Β Ομάδα Ασκήσεων "Λογικού Προγραμματισμού" Ακαδημαϊκού Έτους 2007-08... 3 1.1 Άσκηση 5...

Διαβάστε περισσότερα

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 7: Παράγωγος, ελαστικότητα, παραγώγιση συναρτήσεων (Φροντιστήριο) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης

Διαβάστε περισσότερα

Εισαγωγή στους Η/Υ. Ενότητα 2β: Αντίστροφο Πρόβλημα. Δημήτρης Σαραβάνος, Καθηγητής Πολυτεχνική Σχολή Τμήμα Μηχανολόγων & Αεροναυπηγών Μηχανικών

Εισαγωγή στους Η/Υ. Ενότητα 2β: Αντίστροφο Πρόβλημα. Δημήτρης Σαραβάνος, Καθηγητής Πολυτεχνική Σχολή Τμήμα Μηχανολόγων & Αεροναυπηγών Μηχανικών Εισαγωγή στους Η/Υ Ενότητα 2β: Δημήτρης Σαραβάνος, Καθηγητής Πολυτεχνική Σχολή Τμήμα Μηχανολόγων & Αεροναυπηγών Μηχανικών Σκοποί ενότητας Εύρεση συνάρτησης Boole όταν είναι γνωστός μόνο ο πίνακας αληθείας.

Διαβάστε περισσότερα

Χωρικές σχέσεις και Γεωμετρικές Έννοιες στην Προσχολική Εκπαίδευση

Χωρικές σχέσεις και Γεωμετρικές Έννοιες στην Προσχολική Εκπαίδευση Χωρικές σχέσεις και Γεωμετρικές Έννοιες στην Προσχολική Εκπαίδευση Ενότητα 7: Κανονικότητες, συμμετρίες και μετασχηματισμοί στο χώρο Δημήτρης Χασάπης Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία

Διαβάστε περισσότερα

Ενότητα. Εισαγωγή στις βάσεις δεδομένων

Ενότητα. Εισαγωγή στις βάσεις δεδομένων Ενότητα 1 Εισαγωγή στις βάσεις δεδομένων 2 1.1 Βάσεις Δεδομένων Ένα βασικό στοιχείο των υπολογιστών είναι ότι έχουν τη δυνατότητα να επεξεργάζονται εύκολα και γρήγορα μεγάλο πλήθος δεδομένων και πληροφοριών.

Διαβάστε περισσότερα

Πρακτική Άσκηση σε σχολεία της δευτεροβάθμιας εκπαίδευσης

Πρακτική Άσκηση σε σχολεία της δευτεροβάθμιας εκπαίδευσης Πρακτική Άσκηση σε σχολεία της δευτεροβάθμιας εκπαίδευσης Ενότητα 1: Κρίσιμα συμβάντα Δέσποινα Πόταρη, Γιώργος Ψυχάρης Σχολή Θετικών επιστημών Τμήμα Μαθηματικό Απομαγνητοφώνηση αποσπάσματος από Β Λυκείου

Διαβάστε περισσότερα

Εφαρμογές των Τεχνολογιών της Πληροφορίας και των Επικοινωνιών στη διδασκαλία και τη μάθηση

Εφαρμογές των Τεχνολογιών της Πληροφορίας και των Επικοινωνιών στη διδασκαλία και τη μάθηση Εφαρμογές των Τεχνολογιών της Πληροφορίας και των Επικοινωνιών στη διδασκαλία και τη μάθηση Ενότητα: Εργασίες Διδάσκων: Βασίλης Κόμης, Καθηγητής komis@upatras.gr www.ecedu.upatras.gr/komis/ Τμήμα Επιστημών

Διαβάστε περισσότερα

Βάσεις Περιβαλλοντικών Δεδομένων

Βάσεις Περιβαλλοντικών Δεδομένων Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Βάσεις Περιβαλλοντικών Δεδομένων Ενότητα 3: Μοντέλα βάσεων δεδομένων Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται

Διαβάστε περισσότερα

Έλεγχος Ποιότητας Φαρμάκων

Έλεγχος Ποιότητας Φαρμάκων Έλεγχος Ποιότητας Φαρμάκων Ενότητα 6: Κουππάρης Μιχαήλ Τμήμα Χημείας Εργαστήριο Αναλυτικής Χημείας Συσκευές Αποσάθρωση Δισκίων (ενός καλαθιού (δεξιά) και δύο καλαθιών (αριστερά) 2 Συσκευή Αποσάθρωσης 4

Διαβάστε περισσότερα

ΑΝΤΙΚΕΙΜΕΝΟΣΤΡΑΦΗΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΑΝΤΙΚΕΙΜΕΝΟΣΤΡΑΦΗΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων ΑΝΤΙΚΕΙΜΕΝΟΣΤΡΑΦΗΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ενότητα 10: Πρότυπα Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά

Διαβάστε περισσότερα

Μυελού των Οστών Ενότητα #1: Ερωτήσεις κατανόησης και αυτόαξιολόγησης

Μυελού των Οστών Ενότητα #1: Ερωτήσεις κατανόησης και αυτόαξιολόγησης Δωρεά Κυττάρων Αίματος και Μυελού των Οστών Ενότητα #1: Ερωτήσεις κατανόησης και αυτόαξιολόγησης για τη Δωρεά Κυττάρων Αίματος και Μυελού των Οστών Αλέξανδρος Σπυριδωνίδης Σχολή Επιστημών Υγείας Τμήμα

Διαβάστε περισσότερα

Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη

Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη Ενότητα 8: Η Οικονομική πολιτική της Ευρωπαϊκής Ένωσης Γρηγόριος Ζαρωτιάδης Άδειες Χρήσης Το

Διαβάστε περισσότερα

Φιλοσοφία της Ιστορίας και του Πολιτισμού

Φιλοσοφία της Ιστορίας και του Πολιτισμού Φιλοσοφία της Ιστορίας και του Πολιτισμού Ενότητα 1: Εισαγωγή στις έννοιες Ιστορίας και Πολιτισμού Λάζου Άννα Εθνικὸ και Καποδιστριακὸ Πανεπιστήμιο Aθηνών Τμήμα Φιλοσοφίας Παιδαγωγικής και Ψυχολογίας Φιλοσοφία

Διαβάστε περισσότερα

Εισαγωγή στους Υπολογιστές

Εισαγωγή στους Υπολογιστές Εισαγωγή στους Υπολογιστές Εργαστήριο 2 Καθηγητές: Αβούρης Νικόλαος, Παλιουράς Βασίλης, Κουκιάς Μιχαήλ, Σγάρμπας Κυριάκος Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Άσκηση 2 ου εργαστηρίου

Διαβάστε περισσότερα

Εισαγωγή στους Αλγορίθμους Φροντιστήριο 3

Εισαγωγή στους Αλγορίθμους Φροντιστήριο 3 Εισαγωγή στους Αλγορίθμους Φροντιστήριο 3 Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Βέλτιστος Έλεγχος Συστημάτων

Βέλτιστος Έλεγχος Συστημάτων Βέλτιστος Έλεγχος Συστημάτων Ενότητα 10: Δυναμικός προγραμματισμός Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σημείωμα Αδειοδότησης Το παρόν

Διαβάστε περισσότερα

Εισαγωγή στους Αλγορίθμους Φροντιστήριο 7

Εισαγωγή στους Αλγορίθμους Φροντιστήριο 7 Εισαγωγή στους Αλγορίθμους Φροντιστήριο 7 Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Λογικός Προγραμματισμός Ασκήσεις

Λογικός Προγραμματισμός Ασκήσεις Λογικός Προγραμματισμός Ασκήσεις Παναγιώτης Σταματόπουλος Τμήμα Πληροφορικής και Τηλεπικοινωνιών Περιεχόμενα 1. Α Ομάδα Ασκήσεων "Λογικού Προγραμματισμού" Ακαδημαϊκού Έτους 2010-11... 3 1.1 Άσκηση 1...

Διαβάστε περισσότερα

P (B) P (B A) = P (AB) = P (B). P (A)

P (B) P (B A) = P (AB) = P (B). P (A) Πιθανότητες και Στατιστική Ενότητα 2: Δεσμευμένη πιθανότητα και στοχαστική ανεξαρτησία Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών Αθήνα 2015 Διαισθητική έννοια ανεξαρτησίας Διαισθητική

Διαβάστε περισσότερα

Πρακτική Άσκηση σε σχολεία της δευτεροβάθμιας εκπαίδευσης

Πρακτική Άσκηση σε σχολεία της δευτεροβάθμιας εκπαίδευσης Πρακτική Άσκηση σε σχολεία της δευτεροάθμιας εκπαίδευσης Ενότητα : Κρίσιμα συμάντα Δέσποινα Πόταρη, Γιώργος Ψυχάρης Σχολή Θετικών επιστημών Τμήμα Μαθηματικό 3.4. H συνάρτηση = α + Η ευθεία με εξίσωση =

Διαβάστε περισσότερα

Θερμοδυναμική. Ανοικτά Ακαδημαϊκά Μαθήματα. Πίνακες Νερού Υπέρθερμου Ατμού. Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής

Θερμοδυναμική. Ανοικτά Ακαδημαϊκά Μαθήματα. Πίνακες Νερού Υπέρθερμου Ατμού. Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Πίνακες Νερού Υπέρθερμου Ατμού Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής Διπλ. Ναυπηγός Μηχανολόγος Μηχανικός M.Sc. Διασφάλιση Ποιότητας,

Διαβάστε περισσότερα

Εισαγωγή στην Διοίκηση Επιχειρήσεων

Εισαγωγή στην Διοίκηση Επιχειρήσεων Εισαγωγή στην Διοίκηση Επιχειρήσεων Ενότητα 7: ΑΣΚΗΣΕΙΣ ΜΕΓΕΘΟΥΣ ΕΠΙΧΕΙΡΗΣΗΣ Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Διδακτική των εικαστικών τεχνών Ενότητα 2

Διδακτική των εικαστικών τεχνών Ενότητα 2 Διδακτική των εικαστικών τεχνών Ενότητα 2 Ουρανία Κούβου Εθνικὸ καi Καποδιστριακὸ Πανεπιστήμιο Αθηνών Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία Ενότητα 2. Το παιδικό σχέδιο ως γνωστική διεργασία:

Διαβάστε περισσότερα

Γενική Φυσική Ενότητα: Ταλαντώσεις

Γενική Φυσική Ενότητα: Ταλαντώσεις Γενική Φυσική Ενότητα: Ταλαντώσεις Όνομα Καθηγητή: Γεώργιος Βούλγαρης Τμήμα: Μαθηματικό Σελίδα 2 1. Ερωτήσεις Ταλαντώσεων... 4 1.1 Ερώτηση 1... 4 2. Ασκήσεις Ταλαντώσεων... 4 2.1 Άσκηση 1... 4 2.2 Άσκηση

Διαβάστε περισσότερα

ΠΛΗΡΟΦΟΡΙΚΗ Ι Ενότητα 3: Συναρτήσεις

ΠΛΗΡΟΦΟΡΙΚΗ Ι Ενότητα 3: Συναρτήσεις ΠΛΗΡΟΦΟΡΙΚΗ Ι Ενότητα 3: Συναρτήσεις Μιχάλης Δρακόπουλος Σχολή Θετικών επιστημών Τμήμα Μαθηματικών Συναρτήσεις 60 Ροή ελέγχου Είναι η σειρά µε την οποία εκτελούνται οι εντολές. Μέχρι τώρα, «σειριακή»,

Διαβάστε περισσότερα

Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 1: Δικτυωτή Ανάλυση (Θεωρία Γράφων)

Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 1: Δικτυωτή Ανάλυση (Θεωρία Γράφων) Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 1: Δικτυωτή Ανάλυση (Θεωρία Γράφων) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων

Διαβάστε περισσότερα

Εισαγωγή στους Αλγορίθμους Φροντιστήριο 6

Εισαγωγή στους Αλγορίθμους Φροντιστήριο 6 Εισαγωγή στους Αλγορίθμους Φροντιστήριο 6 Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός Κεφάλαιο Γ.4: Ολοκλήρωση με Αντικατάσταση Όνομα Καθηγητή: Γεώργιος Ν. Μπροδήμας Τμήμα Φυσικής Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Σχεδίαση Ολοκληρωμένων Κυκλωμάτων Μέρος Α-Ενότητα 5: Φωτολιθογραφία. Αγγελική Αραπογιάννη Τμήμα Πληροφορικής και Τηλεπικοινωνιών

Σχεδίαση Ολοκληρωμένων Κυκλωμάτων Μέρος Α-Ενότητα 5: Φωτολιθογραφία. Αγγελική Αραπογιάννη Τμήμα Πληροφορικής και Τηλεπικοινωνιών Σχεδίαση Ολοκληρωμένων Κυκλωμάτων Αγγελική Αραπογιάννη Τμήμα Πληροφορικής και Τηλεπικοινωνιών Κατασκευή των Μασκών 2 Η διαδικασία της Φωτολιθογραφίας 1. Η προετοιμασία του υποστρώματος. 2. Η επικάλυψη

Διαβάστε περισσότερα

Εισαγωγή στους Αλγορίθμους Φροντιστήριο 1

Εισαγωγή στους Αλγορίθμους Φροντιστήριο 1 Εισαγωγή στους Αλγορίθμους Φροντιστήριο 1 Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

ΑΝΤΙΚΕΙΜΕΝΟΣΤΡΑΦΗΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΑΝΤΙΚΕΙΜΕΝΟΣΤΡΑΦΗΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων ΑΝΤΙΚΕΙΜΕΝΟΣΤΡΑΦΗΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ενότητα 7: Υπερφόρτωση διμελών τελεστών Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Δομές δεδομένων Άσκηση αυτοαξιολόγησης 3-4 Παναγιώτα Φατούρου Τμήμα Επιστήμης Υπολογιστών Ενότητες 3 & 4: ένδρα, Σύνολα & Λεξικά Ασκήσεις και Λύσεις Άσκηση 1 Γράψτε

Διαβάστε περισσότερα

Διοικητική Λογιστική

Διοικητική Λογιστική Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Διοικητική Λογιστική Ενότητα 6: Μέθοδοι ς Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά Το έργο

Διαβάστε περισσότερα

Εισαγωγή στη Δικτύωση Υπολογιστών

Εισαγωγή στη Δικτύωση Υπολογιστών Εισαγωγή στη Δικτύωση Υπολογιστών Ενότητα 4: Το Επίπεδο Δικτύου Δημήτριος Τσώλης Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διαχείρισης Πολιτισμικού Περιβάλλοντος και Νέων Τεχνολογιών Στόχοι Μαθήματος

Διαβάστε περισσότερα

Εφαρμογές πληροφορικής σε θέματα πολιτικού μηχανικού

Εφαρμογές πληροφορικής σε θέματα πολιτικού μηχανικού ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εφαρμογές πληροφορικής σε θέματα πολιτικού μηχανικού Ενότητα 4: Εφαρμογές λογιστικών φύλλων στη Στατική: Γεωμετρικά μεγέθη πολυγωνικά

Διαβάστε περισσότερα

Ηλεκτρονική. Ενότητα 9: Τρανζίστορ Επίδρασης Πεδίου (FET) Αγγελική Αραπογιάννη Τμήμα Πληροφορικής και Τηλεπικοινωνιών

Ηλεκτρονική. Ενότητα 9: Τρανζίστορ Επίδρασης Πεδίου (FET) Αγγελική Αραπογιάννη Τμήμα Πληροφορικής και Τηλεπικοινωνιών Ηλεκτρονική Αγγελική Αραπογιάννη Τμήμα Πληροφορικής και Τηλεπικοινωνιών Περιεχόμενο ενότητας (1 από 2) Τύποι τρανζίστορ επίδρασης πεδίου (JFET, MOSFET, MESFET). Ομοιότητες και διαφορές των FET με τα διπολικά

Διαβάστε περισσότερα

Διοίκηση Εξωτερικής Εμπορικής Δραστηριότητας

Διοίκηση Εξωτερικής Εμπορικής Δραστηριότητας Διοίκηση Εξωτερικής Εμπορικής Δραστηριότητας Ενότητα 8: Αξιολόγηση και επιλογή αγορών στόχων από ελληνική εταιρία στον κλάδο παραγωγής και εμπορίας έτοιμου γυναικείου Καθ. Αλεξανδρίδης Αναστάσιος Δρ. Αντωνιάδης

Διαβάστε περισσότερα

Οντοκεντρικός Προγραμματισμός

Οντοκεντρικός Προγραμματισμός Οντοκεντρικός Προγραμματισμός Ενότητα 8: C++ ΒΙΒΛΙΟΗΚΗ STL, ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ Δομές Δεδομένων ΔΙΔΑΣΚΟΝΤΕΣ: Ιωάννης Χατζηλυγερούδης, Χρήστος Μακρής Πολυτεχνική Σχολή Τμήμα Μηχανικών Η/Υ & Πληροφορικής Δομές

Διαβάστε περισσότερα

Αλγόριθμοι και πολυπλοκότητα Δυναμικός Προγραμματισμός

Αλγόριθμοι και πολυπλοκότητα Δυναμικός Προγραμματισμός ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Αλγόριθμοι και πολυπλοκότητα Δυναμικός Προγραμματισμός Ιωάννης Τόλλης Τμήμα Επιστήμης Υπολογιστών Δυναμικός Προγραμματισμός Δυναμικός Προγραμματισμός 1 Περίληψη

Διαβάστε περισσότερα

Λογιστική Κόστους Ενότητα 11: Λογισμός Κόστους (1)

Λογιστική Κόστους Ενότητα 11: Λογισμός Κόστους (1) Λογιστική Κόστους Ενότητα 11: Λογισμός Κόστους (1) Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για

Διαβάστε περισσότερα

Σχεδίαση Δικτύων Υπολογιστών

Σχεδίαση Δικτύων Υπολογιστών Σχεδίαση Δικτύων Υπολογιστών Ενότητα 6: Δρομολόγηση κατάστασης ζεύξης Άγγελος Μιχάλας Τμήμα Μηχανικών Πληροφορικής ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Βέλτιστος Έλεγχος Συστημάτων

Βέλτιστος Έλεγχος Συστημάτων Βέλτιστος Έλεγχος Συστημάτων Ενότητα 4: Το γενικευμένο πρόβλημα βέλτιστου ελέγχου για συστήματα συνεχούς Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών

Διαβάστε περισσότερα