Χρήση Αντικειμενοστραφούς Προγραμματισμού στον Υπολογιστικό Ηλεκτρομαγνητισμό
|
|
- ῬαΧάβ Δοξαράς
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Χρήση Αντικειμενοστραφούς Προγραμματισμού στον Υπολογιστικό Ηλεκτρομαγνητισμό Εφαρμογή Εργαλεία Υλοποίηση βιβλιοθήκης για προσομοίωση Η/Μ διατάξεων με MAS Γλώσσα Προγραμματισμού C++ Τεχνικές OOP Κληρονομικότητα (Inheritance) Πολυμορφισμός (Polymorphism) Απόκρυψη Πληροφορίας (Information hiding) Ενθυλάκωση (Encapsulation)
2 Αντικείμενα και κλάσεις Κλάσεις γεωμετρίας point2d, point3d, coord_cart geom, geom_linear, geom_planar, geom_cyl_2d, geom_cyl_3d Κλάσεις διανυσμάτων vector_cart3d, vector_sph, vector_cyl Κλάσεις Η/Μ πηγών (AS) wire, source3d, dipole, aux_source Κλάσεις βασικών Η/Μ διατάξεων mas_object_2d, pec_mas_object_2d, mas_object_3d, pec_mas_object_3d, pec_cylinder, infinite_strip,
3 Κληρονομικότητα και πολυμορφισμός Κληρονομικότητα source3d dipole aux_source geom_l inear geom_p lanar geom geom_c yl_2d geom_c yl_3d pec_mas_o bject_2d cyl_cap acitor pec_cyl inder Πολυμορφισμός Κατασκευαστές κλάσεων (class constructors) [MAS_OBJECT_2D::GetEMField_in] (positive k, POINT2D p2d) (positive k, positive rho, double phi)
4 Απόκρυψη πληροφορίας Ενθυλάκωση private ιδιότητες (protected, public) αφαιρετικότητα (π. χ. x, y, z συντεταγμένες του point3d) διεπαφή μέσω συγκεκριμένων μεθόδων (π.χ. wire::geti0()) τμήματα κώδικα σε μαύρο κουτί (βιβλιοθήκες)
5 2D πρόβλημα σκέδασης από αγώγιμο κύλινδρο απείρου μήκους 1. Γεωμετρία του προβλήματος προσπίπτον πεδίο: επίπεδο κύμα (ΤΜ πόλωση) εσωτερικό πεδίο: μηδενικό (τέλειος αγωγός) E S? E INC ẑ jk0x E0e αέρας {ε 0, μ 0 } E IN y 0 x R αγώγιμος κύλινδρος
6 2D πρόβλημα σκέδασης από αγώγιμο κύλινδρο απείρου μήκους 2. Ισοδύναμο πρόβλημα MAS Επιλογή βοηθητικών πηγών: Ν ευθύγραμμες ρευματικές κατανομές απείρου μήκους κατά z, με άγνωστο πλάτος διέγερσης Τοποθέτηση βοηθητικών πηγών: σύμμορφη επιφάνεια Εκμετάλλευση της γεωμετρικής συμμετρίας του προβλήματος E INC ẑ jk0x E0e E S ẑc i N 1 I i H 2 0 k i d ενιαία περιοχή με χαρακτηριστικά {ε 0, μ 0 } y βοηθητικές πηγές x R
7 2D πρόβλημα σκέδασης από αγώγιμο κύλινδρο απείρου μήκους 3. Επίλυση ισοδύναμου προβλήματος Collocation Points (CPs) και εφαρμογή των οριακών συνθηκών του προβλήματος Σε κάθε CP ισχύει: E INC E Άγνωστα μεγέθη: τα ρευματικά πλάτη I i S E IN 0 βοηθητικές πηγές Κατάστρωση του Ν Επίλυση του γραμμικού συστήματος Ν πίνακα του γραμμικού συστήματος d y x R Collocation Points
8 2D πρόβλημα σκέδασης από αγώγιμο κύλινδρο απείρου μήκους 4. Παρουσίαση της λύσης του προβλήματος (RCS) R = 1.6 λ, Ν = 60, d = 0.3 R
9 2D πρόβλημα σκέδασης από αγώγιμο κύλινδρο απείρου μήκους 5. Σφάλματα και Αιτιολόγηση
10 Κατάστρωση γεωμετρίας (1) Κλάσεις: point2d, pec_object_2d Διακριτοποίηση: grid = (stopphi - startphi)/nos Παραμετρικές εξισώσεις: phi = startphi + grid*( i*phidir) x = x0 + r*cos(phi) // Κανονικοποιημένα σε λ y = y0 + r*sin(phi)
11 Κατάστρωση γεωμετρίας (2) Ορισμός συντεταγμένων: cp[i].init(x[i], y[i]) // cp, as point2d as[i].init(x[i], y[i]) Ορισμός AS και CP: wires[i].set(as): Μέθοδος της wire (aux. source) setcp(cp), setas(wires): Μέθοδοι της pec_object_2d E wire zˆ C I H i 2 0 k wire
12 Κατάστρωση επίλυσης (1) Βασικές μεταβλητές: double_complex** KernelArray double_complex* ConstantVector, currents; Δημιουργία γραμμικού συστήματος: PEC_object_2D::BuildLinearSystem(&KernelArray, &ConstantVector, Amplitude, k, direction) E S ẑc i N 1 I i H 2 0 k i
13 Κατάστρωση επίλυσης (2) Επίλυση συστήματος: LinearSystemSolver_LU_Decomposition(KernelArray, ConstantVector, currents, size) Χρησιμοποίηση λύσεων για παράγωγα μεγέθη (ΔE BC, RCS) PEC_object_2D::LoadCurrents(currents) E E INC INC ẑ E jk0x E0 S e E IN 0
14 Βοηθητικά Εργαλεία Προγραμματισμό με C/C++ GNU Scientific Library (Bessel/Hankel) LU Decomposition nrutil.c και nrutil.h (για την LU decomposition) Προγραμματισμό με Fortran LU Decomposition Numerical Recipes in Fortran (link) Προγραμματισμό με Java Μιγαδικοί αριθμοί και συναρτήσεις στη Java Παράδειγμα Κλήσης Συναρτήσεων Βιβλιοθήκης σε C με Java Υλοποίηση Συναρτήσεων Bessel Βοηθητικοί κώδικες σε Java (Hankel, LU, complex, κτλ.)
Αναστασιάδου Μηνοδώρα Τατιανή Ιατρόπουλος Βησσαρίων. Δρ. Αναστασίου Χρήστος. Τμήμα Μηχανικών Πληροφορικής Τ.Ε. Τ. Ε. Ι. Κεντρικής Μακεδονίας
Εφαρμογή της Μεθόδου των Βοηθητικών Πηγών (Method of Auxiliary Sources - MAS) στην Ανάλυση Ηλεκτρομαγνητικής Σκέδασης από Διηλεκτρικές, Τοπικά Μη-λείες Επιφάνειες Σπουδαστές: Αναστασιάδου Μηνοδώρα Τατιανή
ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΤΕΧΝΙΚΕΣ ΓΙΑ ΣΥΣΤΗΜΑΤΑ ΜΕΤΑΔΟΣΗΣ ΠΛΗΡΟΦΟΡΙΑΣ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΤΕΧΝΙΚΕΣ ΓΙΑ ΣΥΣΤΗΜΑΤΑ ΜΕΤΑΔΟΣΗΣ ΠΛΗΡΟΦΟΡΙΑΣ Δ.-Θ. Κακλαμάνη, Καθηγήτρια ΕΜΠ Δρ. Σ. Καπελλάκη,
ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΤΕΧΝΙΚΕΣ ΓΙΑ ΣΥΣΤΗΜΑΤΑ ΜΕΤΑΔΟΣΗΣ ΠΛΗΡΟΦΟΡΙΑΣ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΤΕΧΝΙΚΕΣ ΓΙΑ ΣΥΣΤΗΜΑΤΑ ΜΕΤΑΔΟΣΗΣ ΠΛΗΡΟΦΟΡΙΑΣ Διδάσκουσα: Δ.-Θ. Κακλαμάνη Web Sites: http://olympos.esd.ece.ntua.gr
ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΤΕΧΝΙΚΕΣ ΓΙΑ ΣΥΣΤΗΜΑΤΑ ΜΕΤΑΔΟΣΗΣ ΠΛΗΡΟΦΟΡΙΑΣ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΤΕΧΝΙΚΕΣ ΓΙΑ ΣΥΣΤΗΜΑΤΑ ΜΕΤΑΔΟΣΗΣ ΠΛΗΡΟΦΟΡΙΑΣ Αντικειμενοστραφής προγραμματισμός Web Sites:
ΑΡΦΕ ΑΝΣΙΚΕΙΜΕΝΟΣΡΕΥΟΤ ΠΡΟΓΡΑΜΜΑΣΙΜΟΤ. Ιωάννης Φατζηλυγερούδης Αναπληρωτής Καθηγητής Τμήμα Μηχ/κών Η/Υ και Πληροφορικής Πανεπιστήμιο Πατρών
ΑΡΦΕ ΑΝΣΙΚΕΙΜΕΝΟΣΡΕΥΟΤ ΠΡΟΓΡΑΜΜΑΣΙΜΟΤ Ιωάννης Φατζηλυγερούδης Αναπληρωτής Καθηγητής Τμήμα Μηχ/κών Η/Υ και Πληροφορικής Πανεπιστήμιο Πατρών ΜΟΡΥΕ ΠΡΟΓΡΑΜΜΑΣΙΜΟΤ Διαδικασιακός ή Διαδικαστικός (Procedural)
ΠΛΗΡΟΦΟΡΙΚΗ Ι JAVA Τμήμα θεωρίας με Α.Μ. σε 8 & 9 18/10/07
ΠΛΗΡΟΦΟΡΙΚΗ Ι JAVA Τμήμα θεωρίας με Α.Μ. σε 8 & 9 18/10/07 Αλγόριθμος: Βήμα προς βήμα διαδικασία για την επίλυση κάποιου προβλήματος. Το πλήθος των βημάτων πρέπει να είναι πεπερασμένο. Αλλιώς: Πεπερασμένη
FORTRAN & Αντικειμενοστραφής Προγραμματισμός ΣΝΜΜ 2017
FORTRAN & Αντικειμενοστραφής Προγραμματισμός ΣΝΜΜ 2017 M8 Αντικειμενοστραφής Προγραμματισμός - Ασκήσεις Γεώργιος Παπαλάμπρου Επικ. Καθηγητής ΕΜΠ Εργαστήριο Ναυτικής Μηχανολογίας george.papalambrou@lme.ntua.gr
Αντικειµενοστραφής Προγραµµατισµός
Κλάσεις Αντικειµενοστραφής Προγραµµατισµός Κλάσεις Αντικείµενα Ιεραρχία κλάσεων Κλάσεις. Ιδιότητες Συµπεριφορά Ιδιότητες (Μεταβλητές) Συµπεριφορά (Μέθοδοι) Κληρονοµικότητα Μέθοδοι επικάλυψης Η χρήση του
FORTRAN & Αντικειμενοστραφής Προγραμματισμός ΣΝΜΜ 2016
FORTRAN & Αντικειμενοστραφής Προγραμματισμός ΣΝΜΜ 2016 M8 Αντικειμενοστραφής Προγραμματισμός Δρ. Γεώργιος Παπαλάμπρου Επικ. Καθηγητής ΕΜΠ Εργαστήριο Ναυτικής Μηχανολογίας george.papalambrou@lme.ntua.gr
Αντικειμενοστραφής Προγραμματισμός
Κλάσεις Αντικειμενοστραφής Προγραμματισμός Κλάσεις-Αντικείμενα Ένα παράδειγμα Συναρτήσεις κατασκευής (Constructors) Συνάρτηση καταστροφής (Destructor) Συναρτήσεις πρόσβασης (Access Functions) Συνάρτηση
Οντοκεντρικός Προγραμματισμός
Οντοκεντρικός Προγραμματισμός Ενότητα 1: Αντικειμενοστραφής Προγραμματισμός Εισαγωγή OBJECT-ORIENTED PROGRAMMING ΔΙΔΑΣΚΟΝΤΕΣ: Iωάννης Χατζηλυγερούδης, Χρήστος Μακρής Πολυτεχνική Σχολή Τμήμα Μηχανικών Η/Υ
Σύνθεση και Κληρονομικότητα
Σύνθεση και Κληρονομικότητα Σύνθεση (composition) Κληρονομικότητα (inheritance) Υπερφόρτωση κληρονομημένων μελών Εικονικές συναρτήσεις και Πολυμορφισμός Αφηρημένες (abstract) βασικές κλάσεις 1 Σύνθεση
ηµιουργία νέου τύπου δεδοµένων από το χρήστη
ηµιουργία νέου τύπου δεδοµένων από το χρήστη program create_a_type type chemical_element character (len=2) integer end type type (chemical_element) type (chemical_element) :: argon,carbon,neon :: Periodic_Table(109)
02 Αντικειμενοστρεφής Προγραμματισμός
02 Αντικειμενοστρεφής Προγραμματισμός Τεχνολογία Λογισμικού Τμήμα Πληροφορικής & Τηλεπικοινωνιών, ΕΚΠΑ Εαρινό εξάμηνο 2016 17 Δρ. Κώστας Σαΐδης saiko@di.uoa.gr Αντικειμενοστρέφεια Στον προγραμματισμό object
Εισαγωγή στον Προγραμματισμό με C++
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Εισαγωγή στον Προγραμματισμό με C++ Ενότητα # 9: Εισαγωγή στον Αντικειμενοστραφή Προγραμματισμό Κωνσταντίνος Κουκουλέτσος Τμήμα
Αρχές Τεχνολογίας Λογισμικού Εργαστήριο
Αρχές Τεχνολογίας Λογισμικού Εργαστήριο Κωδικός Μαθήματος: TP323 Ώρες Εργαστηρίου: 2/εβδομάδα (Διαφάνειες Νίκου Βιδάκη) 1 JAVA Inheritance Εβδομάδα Νο. 3 2 Προηγούμενο μάθημα (1/2) Τι είναι αντικείμενο?
Προγραμματισμός Ι. Εισαγωγή στην C++ Δημήτρης Μιχαήλ. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο
Προγραμματισμός Ι Εισαγωγή στην C++ Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Η γλώσσα C++ Σχεδιάστηκε το 1979 από τον Bjarne Stroustrup στα Bell Laboratories Βασίζεται
Σύνθεση και Κληρονομικότητα
Σύνθεση και Κληρονομικότητα Σύνθεση (composition) Κληρονομικότητα (inheritance) Υπερφόρτωση κληρονομημένων μελών Εικονικές συναρτήσεις και Πολυμορφισμός Αφηρημένες (abstract) βασικές κλάσεις 1 Σύνθεση
2.3 ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ
O z είναι πραγματικός, αν και μόνο αν Ο z είναι φανταστικός, αν και μόνο αν β) Αν και να αποδείξετε ότι ο αριθμός είναι πραγματικός, ενώ ο αριθμός είναι φανταστικός. 9. Να βρείτε το γεωμετρικό τόπο των
FORTRAN & Αντικειμενοστραφής Προγραμματισμός ΣΝΜΜ 2017
FORTRAN & Αντικειμενοστραφής Προγραμματισμός ΣΝΜΜ 2017 M8 Αντικειμενοστραφής Προγραμματισμός Γεώργιος Παπαλάμπρου Επικ. Καθηγητής ΕΜΠ Εργαστήριο Ναυτικής Μηχανολογίας george.papalambrou@lme.ntua.gr ΕΜΠ/ΣΝΜΜ
Αντικειμενοστρεφής Προγραμματισμός
Αντικειμενοστρεφής Προγραμματισμός Διδάσκουσα: Αναπλ. Καθηγήτρια Ανδριάνα Πρέντζα aprentza@unipi.gr Εργαστηριακός Συνεργάτης: Δρ. Βασιλική Κούφη vassok@unipi.gr Περιεχόμενα Java Classes Java Objects Java
Κεφάλαιο V : Εργαστηριακές ασκήσεις που αφορούν δηµιουργία κλάσεων στη Java.
Κεφάλαιο V : Εργαστηριακές ασκήσεις που αφορούν δηµιουργία κλάσεων στη Java. Στο παρόν κεφάλαιο παρουσιάζονται εργαστηριακές ασκήσεις οι οποίες αφορούν τη δηµιουργία και την χρήση κλάσεων στη Java. Ποιο
Λογισµικό (Software SW) Γλώσσες
Λογισµικό (Software SW) Γλώσσες Προγραµµατισµού Οι γενιές των γλωσσών προγραµµατισµού Προβλήµατα που επιλύονται σε ένα περιβάλλον στο οποίο ο άνθρωπος πρέπει να προσαρµόζεται στα χαρακτηριστικά της µηχανής
Εξεταστέα ύλη Άλγεβρας Α Λυκείου Σχολικό έτος Εξεταστέα ύλη Γεωμετρίας Α Λυκείου Σχολικό έτος
Εξεταστέα ύλη Άλγεβρας Α Λυκείου Σχολικό έτος 2015-2016 Κεφάλαιο 1ο Παράγραφοι: 1.1, 1.2 Κεφάλαιο 2ο Παράγραφοι: 2.3, 2.4 Κεφάλαιο 3ο Παράγραφοι: 3.1, 3.3 Κεφάλαιο 4ο Παράγραφοι: 4.1, 4.2 Κεφάλαιο 6ο Παράγραφοι:
ΤΕΧΝΙΚΕΣ ΑΝΤΙΚΕΙΜΕΝΟΣΤΡΑΦΟΥΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ. Κλάσεις και Αντικείμενα Μέθοδοι
ΤΕΧΝΙΚΕΣ ΑΝΤΙΚΕΙΜΕΝΟΣΤΡΑΦΟΥΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ Κλάσεις και Αντικείμενα Μέθοδοι Παράδειγμα Θέλουμε ένα πρόγραμμα που να προσομοιώνει την κίνηση ενός αυτοκινήτου, το οποίο κινείται και τυπώνει τη θέση του.
11 ΧΡΟΝΙΚΑ ΜΕΤΑΒΑΛΛΟΜΕΝΑ ΠΕΔΙΑ
xx ΤΟΜΟΣ ΙI 11 ΧΡΟΝΙΚΑ ΜΕΤΑΒΑΛΛΟΜΕΝΑ ΠΕΔΙΑ 741 11.1 Διαφορική και ολοκληρωτική μορφή των εξισώσεων Maxwell Ρεύμα μετατόπισης...................................... 741 11.2 Οι εξισώσεις Maxwell σε μιγαδική
Τι χρειάζεται ένας φοιτητής για τη σωστή παρακολούθηση και συμμετοχή στο μαθημα;
Εισαγωγή Τι χρειάζεται ένας φοιτητής για τη σωστή παρακολούθηση και συμμετοχή στο μαθημα; 1. Σελίδα μαθήματος Εγγραφή Ο κάθε φοιτητής πρέπει να κάνει εγγραφή στη σελίδα του μαθήματος στην πλατφόρμα e-class
Κλάσεις. Κατηγορίες Αντικειµένων. Κλάσεις. Φυσικά Αντικείµενα. Χώρος = Οµάδα Φυσικών Αντικειµένων. Πρόγραµµα = Οµάδα
Αντικειµενοστραφής Προγραµµατισµός Αντικείµενα Ιεραρχία κλάσεων. Ιδιότητες Συµπεριφορά Ιδιότητες (Μεταβλητές) Συµπεριφορά (Μέθοδοι) Κληρονοµικότητα Μέθοδοι επικάλυψης Η χρήση του this και του super Αντικειµενοστραφής
ΒΙΒΛΙΑ ΒΙΒΛΙΑ
ΠΑΡΑΡΤΗΜΑ 05 ΠΛΗΡΟΦΟΡΙΚΗ Σύγκριση της Διδακτέας-εξεταστέας ύλης του πανελλαδικώς εξεταζόμενου μαθήματος «ΠΛΗΡΟΦΟΡΙΚΗ» (πρώην Περιβάλλον), της Γ τάξης ημερήσιου Γενικού Λυκείου, μεταξύ του σχολικού έτους
ΠΛΗΡΟΦΟΡΙΚΗ Ι JAVA Τμήμα θεωρίας με Α.Μ. σε 3, 7, 8 & 9 17/1/08
ΠΛΗΡΟΦΟΡΙΚΗ Ι JAVA Τμήμα θεωρίας με Α.Μ. σε 3, 7, 8 & 9 17/1/08 Constructors (Κατασκευαστές) Ειδικός τύπος μεθόδων που δημιουργούν αντικείμενα μιας κλάσης και: Εκτελούνται κατά την αρχικοποίηση των αντικειμένων
ΤΕΧΝΙΚΕΣ ΑΝΤΙΚΕΙΜΕΝΟΣΤΡΑΦΟΥΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ. Κλάσεις και Αντικείμενα Μέθοδοι
ΤΕΧΝΙΚΕΣ ΑΝΤΙΚΕΙΜΕΝΟΣΤΡΑΦΟΥΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ Κλάσεις και Αντικείμενα Μέθοδοι Παράδειγμα 1 Θέλουμε ένα πρόγραμμα που να προσομοιώνει την κίνηση ενός αυτοκινήτου, το οποίο κινείται και τυπώνει τη θέση του.
ΠΕΡΙΕΧΟΜΕΝΑ ΤΟΜΟΣ Ι ΕΙΣΑΓΩΓΗ 1
ΤΟΜΟΣ Ι ΕΙΣΑΓΩΓΗ 1 1 ΟΙ ΒΑΣΙΚΟΙ ΝΟΜΟΙ ΤΟΥ ΗΛΕΚΤΡΟΣΤΑΤΙΚΟΥ ΠΕΔΙΟΥ 7 1.1 Μονάδες και σύμβολα φυσικών μεγεθών..................... 7 1.2 Προθέματα φυσικών μεγεθών.............................. 13 1.3 Αγωγοί,
Με τι ασχολείται ο αντικειμενοστραφής προγραμματισμός
1 2 Η Αρχή Ο αντικειμενοστραφής προγραμματισμός άρχισε να χρησιμοποιείται από τους προγραμματιστές, όταν ουσιαστικά ο διαδικαστικός (δομημένος) προγραμματισμός, δεν μπορούσε να ανταποκριθεί στις νέες απαιτήσεις
Αντικειμενοστρεφής Προγραμματισμός Ενότητα 2: Κλάσεις. Επικ. Καθηγητής Συνδουκάς Δημήτριος Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά)
Αντικειμενοστρεφής Προγραμματισμός Ενότητα 2: Κλάσεις Επικ. Καθηγητής Συνδουκάς Δημήτριος Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Αντικειμενοστρέφεια. Henri Matisse, Harmony in Red, Κωστής Σαγώνας Νίκος Παπασπύρου
Αντικειμενοστρέφεια Henri Matisse, Harmony in Red, 1908 Κωστής Σαγώνας Νίκος Παπασπύρου Ορισμοί αντικειμενοστρέφειας Ποιοι είναι οι ορισμοί των παρακάτω; Αντικειμενοστρεφής
Διαγράμματα Κλάσεων στη Σχεδίαση
Διαγράμματα Κλάσεων στη Σχεδίαση περιεχόμενα παρουσίασης Αφηρημένες κλάσεις Ιδιότητες Λειτουργίες Απλοί τύποι Συσχετίσεις Εξάρτηση Διεπαφές αφηρημένες κλάσεις Οι αφηρημένες κλάσεις δεν μπορούν να δημιουργήσουν
Εισαγωγή. 1 Γενικά. 2 Προγράμματα σε C++ 5 Νοεμβρίου 2012
Εισαγωγή 5 Νοεμβρίου 2012 1 Γενικά Η C++ αναπτύχθηκε με στόχο την ενσωμάτωση χαρακτηριστικών του αντικειμενοστρεφούς προγραμματισμού στη διαδικαστική C. Δεν θεωρείται αμιγής αντικειμενοστρεφής γλώσσα αλλά
ΤΕΧΝΙΚΕΣ ΑΝΤΙΚΕΙΜΕΝΟΣΤΡΑΦΟΥΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ. Αντικείμενα με πίνακες. Constructors. Υλοποίηση Στοίβας
ΤΕΧΝΙΚΕΣ ΑΝΤΙΚΕΙΜΕΝΟΣΤΡΑΦΟΥΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ Αντικείμενα με πίνακες. Constructors. Υλοποίηση Στοίβας Στην άσκηση αυτή θα υλοποιήσετε μια κλάση Geometric η οποία διαχειρίζεται μια γεωμετρική ακολουθία ακεραίων
Αντικειμενοστρεφής Προγραμματισμός
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Αντικειμενοστρεφής Προγραμματισμός Ενότητα 1: Εισαγωγή Γρηγόρης Τσουμάκας, Επικ. Καθηγητής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
ΑΛΕΞΑΝΔΡΕΙΟ ΤΕΙ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ
ΑΛΕΞΑΝΔΡΕΙΟ ΤΕΙ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ Εμπειρική Μελέτη της Εξέλιξης της Ποιότητας του Κώδικα Ανοιχτού Λογισμικού Τριανταφυλλίδου Νόνα ΑΜ:05/2777
ΑΝΤΙΚΕΙΜΕΝΟΣΤΡΑΦΗΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ. Θεόδωρος Γ. Λάντζος Διάλεξη Νο1
ΑΝΤΙΚΕΙΜΕΝΟΣΤΡΑΦΗΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Θεόδωρος Γ. Λάντζος Διάλεξη Νο1 Κανόνες Ομαλής Λειτουργίας Ερχόμαστε στην ώρα μας Δεν καπνίζουμε και τρώμε εντός της αίθουσας Επιτρέπετε το νερό, τα αναψυκτικά και ο
(Διαφάνειες Νίκου Βιδάκη)
(Διαφάνειες Νίκου Βιδάκη) JAVA Inheritance Εβδομάδα Νο. 3 2 Προηγούμενο μάθημα (1/2) Τι είναι αντικείμενο? Ανάλυση αντικειμένων Πραγματικά αντικείμενα Καταστάσεις Συμπεριφορές Αντικείμενα στον προγραμματισμό
Κληρονομικότητα. Παύλος Εφραιμίδης pefraimi <at> ee.duth.gr. Java Κληρονομικότητα 1
Κληρονομικότητα Παύλος Εφραιμίδης pefraimi ee.duth.gr Java Κληρονομικότητα 1 Ιεραρχίες Κλάσεων Στην Java (και γενικότερα στον αντικειμενοστραφή προγραμματισμό) μπορεί από μία να κλάση να δημιουργηθεί
Προγραμματισμός Ι. Κλάσεις και Αντικείμενα. Δημήτρης Μιχαήλ. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο
Προγραμματισμός Ι Κλάσεις και Αντικείμενα Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Κλάσεις Η γενική μορφή μιας κλάσης είναι η εξής: class class-name { private data and
2.5. Απλές λύσεις κυματικών εξισώσεων σε δύο και τρεις διαστάσεις
ΚΕ. Εισαγωγή στην φυσική της κυματικής κίνησης.-0.5. Απλές λύσεις κυματικών εξισώσεων σε δύο και τρεις διαστάσεις.5.1 Σφαιρικά κύματα ως απλές λύσεις της εξίσωσης d Alembet στις τρεις διαστάσεις.5. Κυλινδρικά
ΕΠΛ233 Βιβλιοθήκες και Προσδιοριστές Πρόσβασης στην JAVA
Βιβλιοθήκες και Προσδιοριστές Πρόσβασης στην JAVA 2 «Μονάδα Μετάφρασης» 2 «Μονάδα Μετάφρασης» Όταν δημιουργείται ένα αρχείο πηγαίου κώδικα στην Java, το αρχείο καλείται µονάδα µετάφρασης (compilation unit)
FORTRAN και Αντικειμενοστραφής Προγραμματισμός
FORTRAN και Αντικειμενοστραφής Προγραμματισμός Παραδόσεις Μαθήματος 2016 Δρ Γ Παπαλάμπρου Επίκουρος Καθηγητής ΕΜΠ georgepapalambrou@lmentuagr Εργαστήριο Ναυτικής Μηχανολογίας (Κτίριο Λ) Σχολή Ναυπηγών
ΑΝΤΙΚΕΙΜΕΝΟΣΤΡΑΦΕΙΣ ΓΛΩΣΣΕΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ Ιανουάριος 2007 Οι απαντήσεις να είναι καθαρογραμμένες με ευδιάκριτους όλους του χαρακτήρες.
ΑΝΤΙΚΕΙΜΕΝΟΣΤΡΑΦΕΙΣ ΓΛΩΣΣΕΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ Ιανουάριος 2007 Οι απαντήσεις να είναι καθαρογραμμένες με ευδιάκριτους όλους του χαρακτήρες. Θέμα 1. α) Δημιουργήστε μια κλάση αντικειμένων Tetragono η οποία
ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΠΙΠΕΔΟ ΣΠΟΥΔΩΝ Προπτυχιακό ΚΩΔΙΚΟΣ ΜΑΘΗΜΑΤΟΣ GD2520
ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΠΙΠΕΔΟ ΣΠΟΥΔΩΝ Προπτυχιακό ΚΩΔΙΚΟΣ ΜΑΘΗΜΑΤΟΣ GD2520 ΕΞΑΜΗΝΟ ΣΠΟΥΔΩΝ Πέμπτο ΤΙΤΛΟΣ ΜΑΘΗΜΑΤΟΣ Αντικειμενοστρεφής Προγραμματισμός ΑΥΤΟΤΕΛΕΙΣ ΔΙΔΑΚΤΙΚΕΣ
Προγραµµατιστικές τεχνικές
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Αγρονόµων Τοπογράφων Μηχανικών Προγραµµατιστικές τεχνικές Βασίλειος Βεσκούκης ρ. Ηλεκτρολόγος Μηχανικός & Μηχανικός Υπολογιστών ΕΜΠ v.vescoukis@cs.ntua.gr Ρωµύλος Κορακίτης
Εαρινό. Ύλη εργαστηρίου, Ασκήσεις Java
Εξάμηνο Μάθημα Τίτλος 2017 2018 Εαρινό Αντικειμενοστραφής Προγραμματισμός Ι Ύλη εργαστηρίου, Ασκήσεις Java Ημερομηνία Εργαστήριο 5 ο Α. Ύλη εργαστηρίου 5.1 Έννοιες αντικειμενοστραφούς προγραμματισμού,
Μαθηματικά Α Τάξης Γυμνασίου
Μαθηματικά Α Τάξης Γυμνασίου Διδακτικό Έτος 2018-2019 Ι. Διδακτέα ύλη Από το βιβλίο «Μαθηματικά Α Γυμνασίου» των Ιωάννη Βανδουλάκη, Χαράλαμπου Καλλιγά, Νικηφόρου Μαρκάκη, Σπύρου Φερεντίνου. Κεφ. 1 ο :
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Προγραμματισμός Η/Υ. Ι. Ψαρομήλιγκος Χ. Κυτάγιας
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Προγραμματισμός Η/Υ Ενότητα 6 η : Εισαγωγή στον Αντικειμενοστραφή Προγραμματισμό Ι. Ψαρομήλιγκος Χ. Κυτάγιας Τμήμα Λογιστικής
Εισαγωγή σε αντικειμενοστραφή concepts. Και λίγη C#
Εισαγωγή σε αντικειμενοστραφή concepts Και λίγη C# Κλάσεις Κλάση: τύπος δεδομένων που αποτελεί συλλογή πεδίων, ορισμών συναρτήσεων/μεθόδων και ορισμών άλλων τύπων δεδομένων. Αντίστοιχο σκεπτικό με struct
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ Ενότητα 6: Λογισμικό Υπολογιστών Γλώσσες Προγραμματισμού Πασχαλίδης Δημοσθένης Τμήμα Διαχείρισης Εκκλησιαστικών Κειμηλίων Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε
ΤΕΧΝΙΚΕΣ ΑΝΤΙΚΕΙΜΕΝΟΣΤΡΑΦΟΥΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ. Στατικές μέθοδοι και μεταβλητές Εσωτερικές κλάσεις
ΤΕΧΝΙΚΕΣ ΑΝΤΙΚΕΙΜΕΝΟΣΤΡΑΦΟΥΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ Στατικές μέθοδοι και μεταβλητές Εσωτερικές κλάσεις Στατικές μέθοδοι Τι σημαίνει το keyword static στον ορισμό της main μεθόδου? Τι είναι μια στατική μέθοδος?
ΤΕΧΝΙΚΕΣ ΑΝΤΙΚΕΙΜΕΝΟΣΤΡΑΦΟΥΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ. Κλάσεις και Αντικείμενα
ΤΕΧΝΙΚΕΣ ΑΝΤΙΚΕΙΜΕΝΟΣΤΡΑΦΟΥΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ Κλάσεις και Αντικείμενα Η εξέλιξη των γλωσσών προγραμματισμού Η εξέλιξη των γλωσσών προγραμματισμού είναι μια διαδικασία αφαίρεσης Στην αρχή ένα πρόγραμμα ήταν
Το μαθηματικό μοντέλο της FDTD (1)
(Fe Dfferece - Tme Doma) Το μαθηματικό μοντέλο της FDTD () Η FDTD αποτελεί μια από τις πιο δημοφιλείς μεθόδους για την αριθμητική επίλυση των εξισώσεων του Mawell. Το μαθηματικό της μοντέλο βασίζεται στη
Βασικές Αρχές Προγραμματισμού
Βασικές Αρχές Προγραμματισμού Κεφάλαιο 1 Εισαγωγή Προβλήματα Πρόβλημα: Μία κατάσταση η οποία χρήζει αντιμετώπισης, απαιτεί λύση, η δε λύση της οποίας δεν είναι γνωστή, ούτε προφανής Π.χ. Το πρόβλημα του
Εργαστήριο Java. Διδάσκουσα: Εργαστηριακοί Συνεργάτες:
Εργαστήριο Java Διδάσκουσα: Πρέντζα Ανδριάνα aprentza@unipi.gr Εργαστηριακοί Συνεργάτες: Γεωργιοπούλου Ρούλα Λύβας Χρήστος roulageorio@ssl-unipi.gr clyvas@unipi.gr Εργαστήριο 8 Πακέτα (Packages) Access
Εισαγωγή στην επιστήμη των υπολογιστών
Εισαγωγή στην επιστήμη των υπολογιστών Λογισμικό Υπολογιστών Γλώσσες Προγραμματισμού 1 Εξέλιξη Οι γλώσσες προγραμματισμού είναι σύνολα από προκαθορισμένες λέξεις οι οποίες συνδυάζονται σε προγράμματα σύμφωνα
Τεχνολογία Λογισμικού
Τμήμα Πληροφορικής & Τηλεπικοινωνιών, ΕΚΠΑ Τεχνολογία Λογισμικού 8ο Εξάμηνο 2018 19 Αντικειμενοστραφής ανάλυση και σχεδιασμός Δρ. Κώστας Σαΐδης saiko@di.uoa.gr Αντικειμενοστραφής ανάλυση και σχεδιασμός
Η Γλώσσα Προγραµµατισµού C++ (The C++ Programming Language)
1 Η Γλώσσα Προγραµµατισµού C++ (The C++ Programming Language) ηµήτριος Κατσαρός, Ph.D. Χειµώνας 2005 ιάλεξη 9η 2 Ιστοσελίδα του µαθήµατος http://skyblue.csd.auth.gr/~dimitris/courses/cpp_fall05.htm Θα
Δομή Διάλεξης. Εύρεση επαγόμενων επιφανειακών φορτίων. Εύρεση δύναμης που ασκείται στο πραγματικό φορτίο και αποθηκευμένης ηλεκτροστατικής ενέργειας.
Μέθοδος Ειδώλων Δομή Διάλεξης 1 ο παράδειγμα εφαρμογής μεθόδου ειδώλων για εύρεση δυναμικού με δεδομένες οριακές συνθήκες και ύπαρξη συμμετρίας: Φορτίο πάνω από άπειρο επίπεδο αγωγό. Εύρεση επαγόμενων
ΓΡΑΜΜΕΣ ΜΕΤΑΦΟΡΑΣ. a) Ομοαξονική γραμμή b) Γραμμή εδάφους c) Τρίκλωνη γραμμή d) Δισύρματη γραμμή (συνεστραμμένο καλώδιο)
ΓΡΑΜΜΕΣ ΜΕΤΑΦΟΡΑΣ a) Ομοαξονική γραμμή b) Γραμμή εδάφους c) Τρίκλωνη γραμμή d) Δισύρματη γραμμή (συνεστραμμένο καλώδιο) 1 ΜΕΤΑΔΟΣΗ ΠΛΗΡΟΦΟΡΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΗ ΖΕΥΞΗ ΠΡΟΒΛΗΜΑΤΑ ΜΕΤΑΔΟΣΗΣ ΕΞΑΣΘΕΝΙΣΗ ΓΡΑΜΜΙΚΕΣ
Ενδεικτική περιγραφή μαθήματος
ΜΑΘΗΜΑ: ΔΙΔΑΣΚΩΝ: ΤΜΗΜΑ: Αντικειμενοστρεφής Προγραμματισμός Συνδουκάς Δημήτριος Διοίκησης Επιχειρήσεων (Γρεβενά) Ενδεικτική περιγραφή μαθήματος 1. Εισαγωγή. Ο Bjarne Stroustrup, εργαζόμενος στα εργαστήρια
Outline. 4 Object-Oriented Programming
Προγραμματισμός Ηλεκτρονικών Υπολογιστών Φιλοσοφίες γλωσσών προγραμματισμού Διδάσκων: Στάθης Ζάχος Επιμέλεια Διαφανειών: Μάκης Αρσένης CoReLab ΣΗΜΜΥ - Ε.Μ.Π. Ιανουάριος 2016 ιδάσκων: Στάθης Ζάχος ( CoReLab
ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ: 1. ΑΛΓΕΒΡΑΣ ΚΑΙ ΓΕΩΜΕΤΡΙΑΣ Β ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ Γ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ 2
ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ: 1. ΑΛΓΕΒΡΑΣ ΚΑΙ ΓΕΩΜΕΤΡΙΑΣ Β ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ Γ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ 2. ΜΑΘΗΜΑΤΙΚΩΝ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ
Λογισμικό για Μαθηματικά
Λογισμικό για Μαθηματικά Γεώργιος Χρ. Μακρής http://users.sch.gr/gmakris 6 Αυγούστου 2012 Λογισμικό 2 Λογισμικό Με τον όρο λογισμικό υπολογιστών, ή λογισμικό (software), ορίζεται η συλλογή από προγράμματα
Κλάσεις και Αντικείµενα
Κλάσεις και Αντικείµενα Γρηγόρης Τσουµάκας Τµήµα Πληροφορικής, Αριστοτέλειο Πανεπιστήµιο Θεσσαλονίκης Κλάσεις και Αντικείµενα 2 Τα αντικείµενα σε µια αντικειµενοστρεφή γλώσσα προγραµµατισµού, µοντελοποιούν
Περιγραφή Συστηµάτων Αυτοµάτου Ελέγχου
ΚΕΣ : Αυτόµατος Έλεγχος ΚΕΣ Αυτόµατος Έλεγχος Περιγραφή Συστηµάτων Αυτοµάτου Ελέγχου ΚΕΣ : Αυτόµατος Έλεγχος Βιβλιογραφία Ενότητας Παρασκευόπουλος [5]: Κεφάλαιο 3, Ενότητες 3. 3.8 Παρασκευόπουλος [5]:
Στο σχήµα φαίνεται η σύνδεση τριών γραµµών µικροταινίας κοινής χαρακτηριστικής αντίστασης. Προσδιορίστε τον πίνακα σκέδασης.
Στο σχήµα φαίνεται η σύνδεση τριών γραµµών µικροταινίας κοινής χαρακτηριστικής αντίστασης. Προσδιορίστε τον πίνακα σκέδασης. 0,, 3, 3 Παράδειγµα 3 0 3 0 (α) (β) (α) Σύνδεση τριών όµοιων γραµµών µικροταινίας.
Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου
Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου Αριθμοί 1. ΑΡΙΘΜΟΙ Σύνολο Φυσικών αριθμών: Σύνολο Ακέραιων αριθμών: Σύνολο Ρητών αριθμών: ακέραιοι με Άρρητοι αριθμοί: είναι οι μη ρητοί π.χ. Το σύνολο Πραγματικών
Επίλυση Εξισώσεων. Συστήµατα γραµµικών εξισώσεων. λύση ... = ... ηµοκρίτειο Πανεπιστήµιο Θράκης Τµήµα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών
Συστήµατα γραµµικών εξισώσεων m m... n... n mn M n b M b m µη-οµογενείς Μπορεί να υπάρχει µία, πολλές ή καµία λύση Προγραµµατισµός µε χρήση MATLAB 58 ΈστωΈστω το σύστηµα: 5 λύση: 7/3, 8/3 συντεταγµένες
Κ ε φ α λ ά ( ) ( ) ηµθ + = ( )
ΑΣΚΗΣΗ ίνονται οι µιγαδικοί αριθµοί z + 0i για τους οποίους ισχύει: z 4 =. z i. Να δείξετε ότι z =. ii. Αν επιπλέον ισχύει Re( z) Im( z) iii. = να υπολογίσετε τους παραπάνω µιγαδικούς αριθµούς. Για τους
Α Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α. Ι. Διδακτέα ύλη
Α Τάξη Γυμνασίου Από το βιβλίο «Μαθηματικά Α Γυμνασίου» των Ιωάννη Βανδουλάκη, Χαράλαμπου Καλλιγά, Νικηφόρου Μαρκάκη, Σπύρου Φερεντίνου, έκδοση 01. Κεφ. 1 ο : Οι φυσικοί αριθμοί 1. Πρόσθεση, αφαίρεση και
ΠΕΡΙΕΧΟΜΕΝΑ 1. ΙΑΝΥΣΜΑΤΙΚΗ ΑΝΑΛΥΣΗ. 1.3.1 Μετατροπή από καρτεσιανό σε κυλινδρικό σύστηµα... 6 1.3.2 Απειροστές ποσότητες... 7
ΠΕΡΙΕΧΟΜΕΝΑ 1. ΙΑΝΥΣΜΑΤΙΚΗ ΑΝΑΛΥΣΗ 1.1 Φυσικά µεγέθη... 1 1.2 ιανυσµατική άλγεβρα... 2 1.3 Μετατροπές συντεταγµένων... 6 1.3.1 Μετατροπή από καρτεσιανό σε κυλινδρικό σύστηµα... 6 1.3.2 Απειροστές ποσότητες...
Δισδιάστατη Αγωγή Θερμότητας: Γραφικές Μέθοδοι Ανάλυσης
Δισδιάστατη Αγωγή Θερμότητας: Γραφικές Μέθοδοι Ανάλυσης ΜΜΚ 312 Μεταφορά Θερμότητας Τμήμα Μηχανολόγων Μηχανικών και Μηχανικών Παραγωγής Διάλεξη 6 ΜΜΚ 312 Μεταφορά Θερμότητας Κεφάλαιο 4 1 Εισαγωγή Μέχρι
ΣΧΟΛΗ ΕΜΦΕ ΤΟΜΕΑΣ ΦΥΣΙΚΗΣ ΦΥΣΙΚΗ ΙΙ (ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΣ Ι) η ΣΕΙΡΑ ΑΣΚΗΣΕΩΝ. Ν. Τράκας, Ι. Ράπτης 2/4/2018
ΣΧΟΛΗ ΕΜΦΕ ΤΟΜΕΑΣ ΦΥΣΙΚΗΣ ΦΥΣΙΚΗ ΙΙ (ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΣ Ι) 7-8 η ΣΕΙΡΑ ΑΣΚΗΣΕΩΝ Ν. Τράκας Ι. Ράπτης /4/8 Παράδοση των 3 4 5 μέχρι /4/8 [Σε χειρόγραφη μορφή στο μάθημα ή σε μορφή ενιαίου αρχείου PDF στις
Διδάσκων: Παναγιώτης Ανδρέου
Διάλεξη 6: Αφαιρετικότητα, Βιβλιοθήκες Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Αφαιρετικότητα -Βιβλιοθήκες (packages) Διδάσκων: Παναγιώτης Ανδρέου ΕΠΛ233 Αντικειμενοστρεφής Προγραμματισμός
Πιο συγκεκριμένα, η χρήση του MATLAB προσφέρει τα ακόλουθα πλεονεκτήματα.
i Π Ρ Ο Λ Ο Γ Ο Σ Το βιβλίο αυτό αποτελεί μια εισαγωγή στα βασικά προβλήματα των αριθμητικών μεθόδων της υπολογιστικής γραμμικής άλγεβρας (computational linear algebra) και της αριθμητικής ανάλυσης (numerical
Β Λυκείου - Ασκήσεις Συστήματα. x = 38 3y x = 38 3y x = x = = 11
Να λυθεί το σύστημα: Β Λυκείου - Ασκήσεις Συστήματα x+ 3y= 38 3x y = 2 Θα λύσουμε το σύστημα με τη μέθοδο της αντικατάστασης: x+ 3y= 38 x = 38 3y x = 38 3y x = 38 3y 3x y = 2 338 ( 3y) y= 2 3 38 9y y =
ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 28 ΜΑΪΟΥ 2012 ΑΠΑΝΤΗΣΕΙΣ. y R, η σχέση (1) γράφεται
ΘΕΜΑ Α ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 8 ΜΑΪΟΥ 0 ΑΠΑΝΤΗΣΕΙΣ Α. Θεωρία, σελ. 53, σχολικού βιβλίου. Α. Θεωρία, σελ. 9, σχολικού βιβλίου. Α3. Θεωρία, σελ. 58, σχολικού βιβλίου. Α4. α) Σ, β) Σ,
Το πρόγραμμα HelloWorld.java. HelloWorld. Κλάσεις και Αντικείμενα (2) Ορισμός μιας Κλάσης (1) Παύλος Εφραιμίδης pefraimi <at> ee.duth.
Το πρόγραμμα HelloWorld.java Σχόλια στη Java HelloWorld Παύλος Εφραιμίδης pefraimi ee.duth.gr Java Το πρόγραμμα HelloWorld 1 Java Το πρόγραμμα HelloWorld 2 Σχόλια στη Java ΗγλώσσαJava υποστηρίζει
Μ.Π.Σ. «ΠΡΟΗΓΜΕΝΕΣ ΜΕΘΟΔΟΙ ΚΑΤΑΣΚΕΥΗΣ ΠΡΟΙΟΝΤΩΝ ΑΠΟ ΞΥΛΟ» Μάθημα: Σχεδίαση και Εφαρμογές Διαδραστικών Συστημάτων. Διδάσκοντας: Α.
Μ.Π.Σ. «ΠΡΟΗΓΜΕΝΕΣ ΜΕΘΟΔΟΙ ΚΑΤΑΣΚΕΥΗΣ ΠΡΟΙΟΝΤΩΝ ΑΠΟ ΞΥΛΟ» Μάθημα: Σχεδίαση και Εφαρμογές Διαδραστικών Συστημάτων Διδάσκοντας: Α. Καραγεώργος 24-05-2016 Επαναληπτικές Ερωτήσεις 1. Πότε τα έπιπλα καλούνται
Εισαγωγή στην επιστήμη των υπολογιστών. Λογισμικό Υπολογιστών Κεφάλαιο 9ο Γλώσσες Προγραμματισμού
Εισαγωγή στην επιστήμη των υπολογιστών Λογισμικό Υπολογιστών Κεφάλαιο 9ο Γλώσσες Προγραμματισμού 1 Εξέλιξη Οι γλώσσες προγραμματισμού είναι σύνολα από προκαθορισμένες λέξεις οι οποίες συνδυάζονται σε προγράμματα
Γενικά (για τις γραπτές εξετάσεις)
Αντικειμενοστραφής Προγραμματισμός I (5 ο εξ) Διάλεξη #12 η : Επανάληψη Γαβαλάς Δαμιανός dgavalas@aegean.gr Γενικά (για τις γραπτές εξετάσεις) Δεν υπάρχει αυστηρά ορισμένη «ύλη εξετάσεων» (καθώς δεν έχετε
ΛΥΣΕΙΣ ΕΞΙΣΩΣΗΣ ΚΥΜΑΤΟΣ ΣΤΟΥΣ ΚΥΜΑΤΟΔΗΓΟΥΣ ΔΙΑΦΟΡΩΝ ΔΙΑΤΟΜΩΝ
ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ : Φυσικής και Εφαρμοσμένων Μαθηματικών Μάθημα : Εφαρμοσμένα Μαθηματικά Διδάσκων: Αν. καθηγητής Χρ. Σχοινάς Προαιρετική
Στο σχήμα φαίνεται η σύνδεση τριών γραμμών μικροταινίας κοινής χαρακτηριστικής αντίστασης. Προσδιορίστε τον πίνακα σκέδασης.
Στο σχήμα φαίνεται η σύνδεση τριών γραμμών μικροταινίας κοινής χαρακτηριστικής αντίστασης. Προσδιορίστε τον πίνακα σκέδασης. 0 V, V V, V V 3, V3 Παράδειγμα 3 0 3 0 (α) (β) (α) Σύνδεση τριών όμοιων γραμμών
Δυναμική Μηχανών I. H Μέθοδος των Πεπερασμένων Στοιχείων
Δυναμική Μηχανών I 8 3 H Μέθοδος των Πεπερασμένων Στοιχείων 2015 Δημήτριος Τζεράνης, Ph.D Τμήμα Μηχανολόγων Μηχανικών Ε.Μ.Π. tzeranis@gmail.com Απαγορεύεται οποιαδήποτε αναπαραγωγή χωρίς άδεια Περιεχόμενα
Διάλεξη 1: Κβαντομηχανική σε τρεις διαστάσεις
Διάλεξη : Κβαντομηχανική σε τρεις διαστάσεις Βασικές Αρχές της Κβαντομηχανικής H κατάσταση ενός φυσικού συστήματος περιγράφεται από την κυματοσυνάρτησή του και αποτελεί το πλάτος πιθανότητας να βρεθεί
ΓΥΜΝΑΣΙΟ ΠΟΛΕΜΙΔΙΩΝ ΣΧ. ΧΡΟΝΙΑ
ΓΥΜΝΑΣΙΟ ΠΟΛΕΜΙΔΙΩΝ ΣΧ. ΧΡΟΝΙΑ 2015-16 ΕΞΕΤΑΣΤΕΑ ΥΛΗ Α ΤΑΞΗΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΕΥΧΟΣ Α ΕΝΟΤΗΤΑ 1: ΣΥΝΟΛΑ (Σελ. 25 42) Η Έννοια του Συνόλου Σχέσεις Συνόλων Πράξεις Συνόλων ΕΝΟΤΗΤΑ 2: ΑΡΙΘΜΟΙ (Σελ. 46 83)
ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ 6
ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ 6 ΜΑΘΗΜΑ : ΓΡΑΜΜΙΚΗ ΔΥΝΑΜΙΚΗ ΣΕ ΔΥΟ ΔΙΑΣΤΑΣΕΙΣ Θεωρούμε ένα σύστημα γραμμικών διαφορικών εξισώσεων με σταθερούς πραγματικούς συντελεστές εκφρασμένο στις καρτεσιανές συντεταγμένες
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΑΣ ΔΙΟΙΚΗΣΗΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑΤΙΚΑ Ι 4 ΟΚΤΩΒΡΙΟΥ 2016 ΓΡΑΜΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΕΙΣΑΓΩΓΗ Ι Κεντρική έννοια το μέτρο ή ρυθμός μεταβολής:
Κατασκευαστές. Μέθοδοι Κατασκευής (Constructors).
Κατασκευαστές Μέθοδοι Κατασκευής (Constructors). Οι κατασκευαστές (constructors) είναι μέθοδοι που εκτελούνται όταν κατασκευάζεται ένα αντικείμενο. Μια τάξη μπορεί να έχει αρκετούς κατασκευαστές, οι οποίοι
= 7. Στο σημείο αυτό θα υπενθυμίσουμε κάποιες βασικές ιδιότητες του μετασχηματισμού Laplace, δηλαδή τις
1. Εισαγωγή Δίνεται η συνάρτηση μεταφοράς = = 1 + 6 + 11 + 6 = + 6 + 11 + 6 =. 2 Στο σημείο αυτό θα υπενθυμίσουμε κάποιες βασικές ιδιότητες του μετασχηματισμού Laplace, δηλαδή τις L = 0 # και L $ % &'
Σχόλιο. Κατασκευή των τροχιών της δισδιάστατης γραμμικής δυναμικής.
ΔΥΝΑΜΙΚΑ ΣΥΣΤΗΜΑΤΑ : ΕΞΕΛΙΞΗ ΣΤΟΥΣ ΧΩΡΟΥΣ ΚΑΤΑΣΤΑΣΕΩΝ 55 Σχόλιο. Κατασκευή των τροχιών της δισδιάστατης γραμμικής δυναμικής. Η δισδιάστατη γραμμική δυναμική ορίζεται στο ευκλείδειο επίπεδο από ένα σύστημα
Οντοκεντρικός Προγραμματισμός
Οντοκεντρικός Προγραμματισμός Ενότητα 2: Η ΓΛΩΣΣΑ JAVA Βασικά Δομικά Στοιχεία ΔΙΔΑΣΚΟΝΤΕΣ: Ιωάννης Χατζηλυγερούδης, Χρήστος Μακρής Πολυτεχνική Σχολή Τμήμα Μηχανικών Η/Υ & Πληροφορικής ΔΟΜΙΚΑ ΣΤΟΙΧΕΙΑ ΔΟΜΙΚΑ
1 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΞΕΤΑΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗΣ 2014
ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΛΥΚΕΙΟ ΑΝΑΒΡΥΤΩΝ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΞΕΤΑΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗΣ ΘΕΜΑ ο Α. Έστω μια συνάρτηση f: Α R η οποία είναι. Να γράψετε τον ορισμό της αντίστροφης συνάρτησης
ΠΛΗΡΟΦΟΡΙΚΗ ΙΙ (JAVA) 11/3/2008
ΠΛΗΡΟΦΟΡΙΚΗ ΙΙ (JAVA) 11/3/2008 Κατασκευαστές (Constructors) Ειδικός τύπος μεθόδων, οι οποίες: - είναι public και έχουν το ίδιο όνομα με αυτό της κλάσης - χρησιμοποιούνται για να αρχικοποιήσουν κάποιες