ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ, ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ
|
|
- Δαρείος Βασιλείου
- 8 χρόνια πριν
- Προβολές:
Transcript
1 ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ, ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΒΕΣ 04: ΣΥΜΠΙΕΣΗ ΚΑΙ ΜΕΤΑ ΟΣΗ ΠΟΛΥΜΕΣΩΝ Ακαδηµαϊκό Έτος , Χειµερινό Εξάµηνο 6 Νοεµβρίου 2007 Φροντιστηριακή Άσκηση 2: (I) Εντροπία, (II) Κωδικοποίηση Huffman εικόνων αποχρώσεων του γκρι (III) Προβλεπτική κωδικοποίηση εικόνων (ΙV) Αριθµητική Κωδικοποίηση I. Εντροπία Ας υποθέσουµε ότι ένα αρχείο κειµένου περιέχει µόνο τους χαρακτήρες «a» και «b». Η συχνότητα που εµφανίζεται ο χαρακτήρας «a» στο κείµενο αναπαριστάνεται µε το P(a). Όµοια έχουµε το P(b) για τον χαρακτήρα «b». Συνήθως αναπαριστάνουµε τα P(a) και P(b) σαν πιθανότητες, έτσι έχουµε P(a) + P(b) = 1. Η εντροπία (ή η περιεχόµενη πληροφορία) του αρχείου κειµένου αυτού, µπορεί να υπολογιστεί όπως φαίνεται πιο κάτω: Η = - (P(a) log 2P(a) + P(b) log 2P(b)) Γενικά, αν έχουµε ένα σύνολο από n χαρακτήρες s 1, s 2, s n, που ο κάθε ένας συµβαίνει µε πιθανότητα P(s i), τότε: H = n i= 1 P( S i )log 2 P( s i ) (1) Υπολογίστε το H για P(a) = 0.2, και P(b) = 0.8. (2) Αν χρησιµοποιηθεί η κωδικοποίηση Huffman για την αποθήκευση του κειµένου, πόσα bits χρειαζόµαστε µέσο όρο (συνήθως ονοµάζεται µέσο µήκος κωδικοποιηµένης λέξης (codeword)); (3) Εναλλακτικά µπορούµε να κωδικοποιήσουµε το ίδιο αρχείο κειµένου χρησιµοποιώντας ζεύγη χαρακτήρων, δηλαδή, (a, a), (a, b), (b, a), (b, b). Εάν υποθέσουµε ότι οι εµφανίσεις των «a» και «b» είναι ανεξάρτητες, υπολογίστε τα P(a, a), P(a, b), P(b, a), και P(b, b). Ποια είναι η αντίστοιχη τιµή της εντροπίας (bits/σύµβολο); Ποια είναι η τιµή της εντροπίας σε bit ανά χαρακτήρα? (4) Βασισµένοι στο (3), ποια θα ήταν η κωδικοποίηση Huffman για κάθε ζεύγος χαρακτήρων; Ποιο είναι το αντίστοιχο µέσο µήκος κωδικοποιηµένης λέξης για αυτό το σχήµα κωδικοποίησης; Ποιο είναι το µέσο µήκος κωδικοποίησης ανά χαρακτήρα; (5) Τι παρατηρήσεις µπορείτε να κάνετε, µε βάση τις απαντήσεις σας στις πιο πάνω τέσσερις ερωτήσεις; (6) Τι συµβαίνει αν χρησιµοποιήσουµε τριάδες, δηλαδή, (a, a, a), (a, a, b) (b, b, b) κ.τ.λ. για την κωδικοποίηση του κειµένου; Ποιο θα είναι το µέσο µήκος κωδικοποιηµένης λέξης; Ποιο είναι το µέσο µήκος κωδικοποίησης ανά χαρακτήρα.
2 II. Κωδικοποίηση Huffman Σας δίνεται η εικόνα pouf3.tif µε αποχρώσεις του γκρι (intensity image) (κάντε download από Χρησιµοποιώντας τη Matlab διαβάστε την εικόνα (εντολή imread) και περάστε τη στο χώρο εργασίας της Matlab. (1) Πόσο χώρο µνήµης καταλαµβάνει η ασυµπίεστη εικόνα (χρησιµοποιήστε την εντολή whos); (2) Αποθηκεύστε την εικόνα ως jpg (χρησιµοποιήστε την εντολή imwrite) (3) Βρείτε πόσες διακριτές τιµές φωτεινότητας περιέχει η εικόνα (Υπόδειξη: Χρησιµοποιήστε τη συνάρτηση hist ή imhist για τη δηµιουργία του ιστογράµµατος της εικόνας) (4) Υπολογίστε τις συχνότητες εµφάνισης των παραπάνω τιµών και εκτιµήστε την αντίστοιχη πιθανότητα. ηµιουργήστε το σχετικό ραβδοδιάγραµµα (εντολή bar) και σώστε το ως εικόνα. (5) Κατασκευάστε τις κωδικές λέξεις (codewords) Huffman για τις µη µηδενικές τιµές φωτεινότητας της εικόνας. (6) Υπολογίστε την εντροπία και το µέσο µήκος κωδικής λέξης της εικόνας. (7) Υπολογίστε το βαθµό συµπίεσης που επιτυγχάνεται µε χρήση του κώδικα Huffman. Συγκρίνετε το βαθµό συµπίεσης µε το αντίστοιχο της συµπίεσης JPEG (µπορείτε να χρησιµοποιήσετε την εντολή imfinfo για το σκοπό αυτό). Αιτιολογήσετε τη διαφορά στο βαθµό συµπίεσης.
3 ΙΙΙ. Προβλεπτική κωδικοποίηση εικόνων Συνεχίστε από το βήµα (1) της προηγούµενης άσκησης (έχετε εποµένως φορτώσει στο χώρο εργασίας της Matlab την εικόνα pouf3.tif ). (1) Αφού µετατρέψτε την εικόνα σε µονοδιάστατο διάνυσµα (π.χ. g=f(:)), υπολογίστε τις διαφορές ανάµεσα σε γειτονικά pixel της εικόνας (µπορείτε να χρησιµοποιήσετε την εντολή diff βεβαιωθείτε ότι έχετε µετατρέψει το διάνυσµα g σε double) δηµιουργώντας το διάνυσµα d των διαφορών των pixels. (2) Βρείτε πόσες διακριτές τιµές περιέχει η εικόνα διαφορών (το διάνυσµα d αντιστοιχεί στην πραγµατικότητα στην εικόνα διαφορών) υπολογίζοντας το ιστόγραµµα του διανύσµατος d (εντολή hist). (3) Με βάση τη µορφή των ιστογραµµάτων των ερωτηµάτων ΙΙ.(3) και III.(2) ποια από τις εικόνες f και d συµπιέζεται περισσότερο; (4) Υπολογίστε την εντροπία του διανύσµατος d (δηλαδή της εικόνας διαφορών). (5) Εφαρµόστε κωδικοποίηση µήκους διαδροµής για το διάνυσµα d. Κάθε µη µηδενική τιµή του d στα διαστήµατα [-127-1], [1 127] κωδικοποιείται ως προσηµασµένος ακέραιος. Ο κωδικός χρησιµοποιείται ως σύµβολο που δηλώνει ακολουθία µηδενικών ακολουθούµενη από το πλήθος των συνεχόµενων µηδενικών. ώστε την κωδικοποίηση των πρώτων 26 τιµών του διανύσµατος d. (6) Υπολογίστε τη συµπίεση που επιτυγχάνεται µε την πιο πάνω τεχνική. (7) Κάτω από ποιες προϋποθέσεις η ανωτέρω τεχνική είναι χωρίς απώλειες; (8) Περιγράψτε τη µεθοδολογία αποκωδικοποίησης της εικόνας. Παράδειγµα: Σύµφωνα µε τα παραπάνω η ακολουθία θα κωδικοποιηθεί ως: 3!5-12!6 8 8 (ο κωδικός για το! είναι ο )
4 ΙV. Αριθµητική κωδικοποίηση ίνονται τα παρακάτω τµήµατα ψευδοκώδικα τα οποία επιδεικνύουν τη λειτουργία της Αριθµητικού Κωδικοποιητή. Γράψτε της ανάλογες συναρτήσεις (m-files) σε Matlab που υλοποιούν τον κωδικοποιητή. Υποθέστε ότι ο κωδικοποιητής διαθέτει ένα αρχείο µε της πιθανότητες των συµβόλων και τα αντίστοιχα διαστήµατα (το $ είναι το σύµβολο τερµατισµού της ακολουθίας). Symbol Probability Range A 0.2 [0 0.2) B 0.1 [ ) C 0.2 [ ) D 0.05 [ ) E 0.3 [ ) F 0.05 [ ) $ 0.1 [ ) Ελέγξτε την αποκωδικοποίηση της συµβολοσειράς CDEF$. Estimation of Low and High values BEGIN low=0.0; high=1.0; range=1.0; while (symbol!=terminator) { get(symbol); low = low + range*range_low(symbol); high = low + range*range_high(symbol); range = high low; } output a code so that low <= code < high END Generating Codewrods BEGIN code=0; k=1; while (value(code) < low) { assign 1 to the k-th binary fraction bit; if (value(code) > high) replace the k-th bit by 0; k = k+1; } END
5 Απαντήσεις MCL= Mean Codeword Length, MChL= Mean Character Length I.(1): H = I.(2): MCL = I.(3): H= (bits/symbol) H= (bits/character) I.(4): aa = ab = MCL = ba = bb = ΜChL = I.(5): Παρατηρήσεις: I.(6): aaa => aab => aba => abb => baa => bab => bba => bbb => MCL = MChL = IΙ.(1): Μνήµη ασυµπίεστης εικόνας: bytes IΙ.(2): IΙ.(3): Εντολή για αποθήκευση εικόνας σε jpg: Αριθµός διακριτών τιµών φωτεινότητας: Ιστόγραµµα: IΙ.(4): Συχνότητες εµφάνισης: Πιθανότητες: Ραβδόγραµµα:
6 IΙ.(5): Κωδικές Λέξεις: IΙ.(6): Η = MCL = IΙ.(7): Βαθµός συµπίεσης µε Huffman: Βαθµός συµπίεσης µε JPEG: Η διαφορά στο βαθµό συµπίεσης οφείλεται: IΙΙ.(1): IΙΙ.(2): Εντολή υπολογισµού διανύσµατος διαφοράς: Αριθµός διακριτών τιµών διαφοράς: Ιστόγραµµα: ΙΙΙ.(3): Καλύτερα συµπιέζεται η εικόνα επειδή: ΙΙΙ.(4): Η = ΙΙΙ.(5): Κωδικοποίηση πρώτων 26 τιµών του d: ΙΙΙ.(6): ΙΙΙ.(7): Βαθµός Συµπίεσης: Προϋποθέσεις για να είναι η τεχνική χωρίς απώλειες: ΙΙΙ.(8): Περιγραφή αποκωδικοποίησης:
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ, ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ, ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΒΕΣ 04: ΣΥΜΠΙΕΣΗ ΚΑΙ ΜΕΤΑ ΟΣΗ ΠΟΛΥΜΕΣΩΝ Ακαδηµαϊκό Έτος 2007 2008, Χειµερινό Εξάµηνο 13 Νοεµβρίου 2007 Φροντιστηριακή Άσκηση 3: (I) Συµπίεση
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ, ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ, ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 422: ΣΥΣΤΗΜΑΤΑ ΠΟΛΥΜΕΣΩΝ Ακαδηµαϊκό Έτος 2004 2005, Χειµερινό Εξάµηνο Φροντιστηριακή Άσκηση 3: Εντροπία, κωδικοποίηση Quadtree 1. Εντροπία 22 Σεπτεµβρίου 2004
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ, ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ, ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 4: ΣΥΣΤΗΜΑΤΑ ΠΟΛΥΜΕΣΩΝ Θεωρητικές Ασκήσεις (# ): ειγµατοληψία, κβαντοποίηση και συµπίεση σηµάτων. Στην τηλεφωνία θεωρείται ότι το ουσιαστικό περιεχόµενο της
Ακαδηµαϊκό Έτος , Χειµερινό Εξάµηνο ιδάσκων Καθ.: Νίκος Τσαπατσούλης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ, ΤΜΗΜΑ Ι ΑΚΤΙΚΗΣ ΤΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΤΨΣ 50: ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ Ακαδηµαϊκό Έτος 005 006, Χειµερινό Εξάµηνο Καθ.: Νίκος Τσαπατσούλης ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ Η εξέταση
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ,
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ, ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 4: ΣΥΣΤΗΜΑΤΑ ΠΟΛΥΜΕΣΩΝ Ακαδηµαϊκό Έτος 004 005, Χειµερινό Εξάµηνο Καθ.: Νίκος Τσαπατσούλης ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ Η εξέταση αποτελείται από δύο µέρη. Το πρώτο περιλαµβάνει
Συστήµατα Πολυµέσων Ενδιάµεση Εξέταση: Οκτώβριος 2004
Ενδιάµεση Εξέταση: Οκτώβριος 4 ΜΕΡΟΣ Β: ΑΣΚΗΣΕΙΣ Άσκηση (25 µονάδες): Μια εικόνα αποχρώσεων του γκρι και διαστάσεων 25 x pixel έχει κωδικοποιηθεί κατά PCM µε βάθος χρώµατος 3 bits /pixel. Οι τιµές φωτεινότητας
Ψηφιακή Επεξεργασία Εικόνας
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ψηφιακή Επεξεργασία Εικόνας Ενότητα 6 : Κωδικοποίηση & Συμπίεση εικόνας Ιωάννης Έλληνας Τμήμα Η/ΥΣ Άδειες Χρήσης Το παρόν εκπαιδευτικό
Τεχνολογία Πολυμέσων. Ενότητα # 9: Κωδικοποίηση εντροπίας Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής
Τεχνολογία Πολυμέσων Ενότητα # 9: Κωδικοποίηση εντροπίας Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ. Ενότητα 1: Εισαγωγή στην Ψηφιακή Επεξεργασία Εικόνας
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ Ενότητα 1: Εισαγωγή στην Ψηφιακή Επεξεργασία Εικόνας Ιωάννης Έλληνας Τμήμα Υπολογιστικών Συστημάτων Άδειες
Συμπίεση Δεδομένων
Συμπίεση Δεδομένων 2014-2015 Ρυθμός κωδικοποίησης Ένας κώδικας που απαιτεί L bits για την κωδικοποίηση μίας συμβολοσειράς N συμβόλων που εκπέμπει μία πηγή έχει ρυθμό κωδικοποίησης (μέσο μήκος λέξης) L
Μετάδοση Πολυμεσικών Υπηρεσιών Ψηφιακή Τηλεόραση
Χειμερινό Εξάμηνο 2013-2014 Μετάδοση Πολυμεσικών Υπηρεσιών Ψηφιακή Τηλεόραση 3 η Παρουσίαση : Συμπίεση Διδάσκων: Γιάννης Ντόκας Εισαγωγή 2 Συμπίεση πληροφορίας πολυμέσων 3 Γιατί χρειάζεται συμπίεση? 4
Αρχές κωδικοποίησης. Τεχνολογία Πολυµέσων 08-1
Αρχές κωδικοποίησης Απαιτήσεις κωδικοποίησης Είδη κωδικοποίησης Βασικές τεχνικές κωδικοποίησης Κωδικοποίηση Huffman Κωδικοποίηση µετασχηµατισµών Κβαντοποίηση διανυσµάτων ιαφορική κωδικοποίηση Τεχνολογία
Συµπίεση Εικόνας: Το πρότυπο JPEG
ΒΕΣ : Συµπίεση και Μετάδοση Πολυµέσων ΒΕΣ Συµπίεση και Μετάδοση Πολυµέσων Συµπίεση Εικόνας: Το πρότυπο JPEG ΒΕΣ : Συµπίεση και Μετάδοση Πολυµέσων Εισαγωγή Σχεδιάστηκε από την οµάδα Joint Photographic Experts
Περιεχόµενα. ΕΠΛ 422: Συστήµατα Πολυµέσων. Βιβλιογραφία. Κατηγορίες τεχνικών συµπίεσης. Τεχνικές Συµπίεσης
Περιεχόµενα ΕΠΛ : Συστήµατα Πολυµέσων Συµπίεση εδοµένων: Τεχνικές Συµπίεσης Βιβλιογραφία Κατηγορίες Τεχνικών Συµπίεσης Τεχνικές Εντροπίας Τεχνικές Μήκους ιαδροµής Στατιστικές Κωδικοποίηση Πηγής Μετασχηµατισµού
ΒΕΣ 04: Συµπίεση και Μετάδοση Πολυµέσων. Περιεχόµενα. Βιβλιογραφία. Συµπίεση εικόνων: Το πρότυπο JPEG. Εισαγωγή. Ευθύς µετασχηµατισµός DCT
ΒΕΣ : Συµπίεση και Μετάδοση Πολυµέσων Συµπίεση εικόνων: Το πρότυπο JPEG Περιεχόµενα Εισαγωγή Ο µετασχηµατισµός DCT Το πρότυπο JPEG Προετοιµασία εικόνας / µπλοκ Ευθύς µετασχηµατισµός DCT Κβαντισµός Κωδικοποίηση
Συμπίεση Πολυμεσικών Δεδομένων
Συμπίεση Πολυμεσικών Δεδομένων Εισαγωγή στο πρόβλημα και επιλεγμένες εφαρμογές Παράδειγμα 2: Συμπίεση Εικόνας ΔΠΜΣ ΜΥΑ, Ιούνιος 2011 Εισαγωγή (1) Οι τεχνικές συμπίεσης βασίζονται στην απόρριψη της πλεονάζουσας
ιαφορική εντροπία Σεραφείµ Καραµπογιάς
ιαφορική εντροπία Σεραφείµ Καραµπογιάς Για πηγές διακριτού χρόνου µε συνεχές αλφάβητο, των οποίων οι έξοδοι είναι πραγµατικοί αριθµοί, ορίζεται µια άλλη ποσότητα που µοιάζει µε την εντροπία και καλείται
Αρχές κωδικοποίησης. Τεχνολογία Πολυμέσων και Πολυμεσικές Επικοινωνίες 08-1
Αρχές κωδικοποίησης Απαιτήσεις κωδικοποίησης Είδη κωδικοποίησης Κωδικοποίηση εντροπίας Διαφορική κωδικοποίηση Κωδικοποίηση μετασχηματισμών Στρωματοποιημένη κωδικοποίηση Κβαντοποίηση διανυσμάτων Τεχνολογία
Επεξεργασία Πολυµέσων. Δρ. Μαρία Κοζύρη Π.Μ.Σ. «Εφαρµοσµένη Πληροφορική» Τµήµα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Πανεπιστήµιο Θεσσαλίας
Π.Μ.Σ. «Εφαρµοσµένη Πληροφορική» Τµήµα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Πανεπιστήµιο Θεσσαλίας Ενότητα 3: Επισκόπηση Συµπίεσης 2 Θεωρία Πληροφορίας Κωδικοποίηση Θεµελιώθηκε απο τον Claude
Συµπίεση Ψηφιακών Εικόνων:
ΤΨΣ 5 Ψηφιακή Επεξεργασία Εικόνας Συµπίεση Ψηφιακών Εικόνων: Συµπίεση χωρίς απώλειες Τµήµα ιδακτικής της Τεχνολογίας και Ψηφιακών Συστηµάτων Πανεπιστήµιο Πειραιώς Περιεχόµενα Βιβλιογραφία Περιεχόµενα Ενότητας
Περιεχόµενα. ΕΠΛ 422: Συστήµατα Πολυµέσων. Βιβλιογραφία. Εισαγωγή. Συµπίεση εικόνων: Το πρότυπο JPEG. Εισαγωγή. Ευθύς µετασχηµατισµός DCT
Περιεχόµενα ΕΠΛ : Συστήµατα Πολυµέσων Συµπίεση εικόνων: Το πρότυπο JPEG Εισαγωγή Ο µετασχηµατισµός DCT Το πρότυπο JPEG Προετοιµασία εικόνας / µπλοκ Ευθύς µετασχηµατισµός DCT Κβαντισµός Κωδικοποίηση ηµιουργία
Επεξεργασία Χαρτογραφικής Εικόνας
Επεξεργασία Χαρτογραφικής Εικόνας ιδάσκων: Αναγνωστόπουλος Χρήστος Αρχές συµπίεσης δεδοµένων Ήδη συµπίεσης Συµπίεση εικόνων Αλγόριθµος JPEG Γιατί χρειαζόµαστε συµπίεση; Τα σηµερινά αποθηκευτικά µέσα αδυνατούν
Τεράστιες ανάγκες σε αποθηκευτικό χώρο
ΣΥΜΠΙΕΣΗ Τεράστιες ανάγκες σε αποθηκευτικό χώρο Παράδειγμα: CD-ROM έχει χωρητικότητα 650MB, χωρά 75 λεπτά ασυμπίεστου στερεοφωνικού ήχου, αλλά 30 sec ασυμπίεστου βίντεο. Μαγνητικοί δίσκοι χωρητικότητας
4. ΚΩ ΙΚΟΠΟΙΗΣΗ ΣΕ ΠΕΡΙΒΑΛΛΟΝ ΧΩΡΙΣ
4. ΚΩ ΙΚΟΠΟΙΗΣΗ ΣΕ ΠΕΡΙΒΑΛΛΟΝ ΧΩΡΙΣ ΘΟΡΥΒΟ Στο κεφάλαιο αυτό θα θεωρήσουµε ότι το κανάλι επικοινωνίας είναι ιδανικό, χωρίς θόρυβο, ότι δηλαδή δεν συµβαίνουν σφάλµατα κατά τη µετάδοση της πληροφορίας. Εδώ
Ασκήσεις Επεξεργασίας Εικόνας
Ασκήσεις Επεξεργασίας Εικόνας. Εύρεση στοιχείων μιας περιοχής με ιδιότητα συγκεκριμένης γειτονιάς Άσκηση. Έστω δύο υποσύνολα πίνακα εικόνας S και S2 η οποία φαίνεται στο σχήμα παρακάτω. Για σύνολο τιμών
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ. Ενότητα 6: Κωδικοποίηση & Συμπίεση Εικόνας
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ Ενότητα 6: Κωδικοποίηση & Συμπίεση Εικόνας Ιωάννης Έλληνας Τμήμα Υπολογιστικών Συστημάτων Άδειες Χρήσης Το
Εργαλεία Προγραμματισμού Ψηφιακής Επεξεργασίας Εικόνας: Το Matlab Image Processing Toolbox
ΚΕΣ 03 Αναγνώριση προτύπων και ανάλυση εικόνας Εργαλεία Προγραμματισμού Ψηφιακής Επεξεργασίας Εικόνας: Το Matlab Image Processing Toolbox Τμήμα Επιστήμης και Τεχνολογίας Τηλεπικοινωνιών Πανεπιστήμιο Πελοποννήσου
Τεχνολογία Πολυμέσων. Ενότητα # 8: Αρχές κωδικοποίησης Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής
Τεχνολογία Πολυμέσων Ενότητα # 8: Αρχές κωδικοποίησης Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του
Κωδικοποίηση εικόνων κατά JPEG
Κωδικοποίηση εικόνων κατά JPEG Εισαγωγή Προετοιµασία της εικόνας ρυθµός Ακολουθιακός απωλεστικός ρυθµός Εκτεταµένος απωλεστικός ρυθµός Μη απωλεστικός ρυθµός Ιεραρχικός ρυθµός Τεχνολογία Πολυµέσων 09-1
Θεωρία Πληροφορίας. Διάλεξη 4: Διακριτή πηγή πληροφορίας χωρίς μνήμη. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής
Θεωρία Πληροφορίας Διάλεξη 4: Διακριτή πηγή πληροφορίας χωρίς μνήμη Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Ατζέντα Διακριτή πηγή πληροφορίας χωρίς μνήμη Ποσότητα πληροφορίας της πηγής Κωδικοποίηση
Μάθημα 7 ο. Συμπίεση Εικόνας ΤΜΗΥΠ / ΕΕΣΤ 1
Μάθημα 7 ο Συμπίεση Εικόνας ΤΜΗΥΠ / ΕΕΣΤ 1 Εισαγωγή (1) Οι τεχνικές συμπίεσης βασίζονται στην απόρριψη της πλεονάζουσας πληροφορίας Ανάγκες που καλύπτονται Εξοικονόμηση μνήμης Ελάττωση χρόνου και εύρους
χωρίςναδηµιουργείταιαίσθησηαπώλειαςτηςποιότηταςτηςανακατασκευασµένηςεικόνας.
Το πρότυπο JPEG για κωδικοποίησηση εικόνας Το JPEG, που υιοθετήθηκε από την Joint Photographic Experts Group, είναι ένα πρότυπο που χρησιµοποιείταιευρέωςγιατησυµπίεσηακίνητωνεικόνων, µε µέσο λόγο συµπίεσης
Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 6 η : Συμπίεση Εικόνας. Καθ. Κωνσταντίνος Μπερμπερίδης Πολυτεχνική Σχολή Μηχανικών Η/Υ & Πληροφορικής
Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 6 η : Συμπίεση Εικόνας Καθ. Κωνσταντίνος Μπερμπερίδης Πολυτεχνική Σχολή Μηχανικών Η/Υ & Πληροφορικής Σκοποί ενότητας Εισαγωγή στη συμπίεση εικόνας Μη απωλεστικες
Τεχνικές Συµπίεσης Βίντεο. Δρ. Μαρία Κοζύρη Τµήµα Πληροφορικής Πανεπιστήµιο Θεσσαλίας
Τεχνικές Συµπίεσης Βίντεο Δρ. Μαρία Κοζύρη Τµήµα Πληροφορικής Πανεπιστήµιο Θεσσαλίας Ενότητα 3: Entropy Coding Δρ. Μαρία Κοζύρη Τεχνικές Συµπίεσης Βίντεο Ενότητα 3 2 Θεωρία Πληροφορίας Κωδικοποίηση Θεµελιώθηκε
ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ. Κεφάλαιο 3 : Πηγές Πληροφορίας Χρήστος Ξενάκης. Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων
ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ Κεφάλαιο 3 : Πηγές Πληροφορίας Χρήστος Ξενάκης Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων Περιεχόμενα Διακριτές Πηγές Πληροφορίας χωρίς μνήμη Ποσότητα πληροφορίας της πηγής Κωδικοποίηση
Συστήματα Πολυμέσων. Ενότητα 3: Εισαγωγικά θέματα Συμπίεσης. Θρασύβουλος Γ. Τσιάτσος Τμήμα Πληροφορικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 3: Εισαγωγικά θέματα Συμπίεσης Θρασύβουλος Γ. Τσιάτσος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Προγραμματισμός Ι. Χαρακτήρες. Πανεπιστήμιο Πελοποννήσου Τμήμα Πληροφορικής & Τηλεπικοινωνιών
Χαρακτήρες Πανεπιστήμιο Πελοποννήσου Τμήμα Πληροφορικής & Τηλεπικοινωνιών Νικόλαος Προγραμματισμός Δ. Τσελίκας Ι Χαρακτήρες - Εισαγωγή Έως τώρα έχουμε κατά κύριο λόγο χρησιμοποιήσει τους αριθμητικούς τύπους
ΤΕΧΝΟΛΟΓΙΕΣ ΠΟΛΥΜΕΣΩΝ
ΤΕΧΝΟΛΟΓΙΕΣ ΠΟΛΥΜΕΣΩΝ Κείμενα Ν. Μ. Σγούρος (sgouros@unipi.gr) Επεξεργασία Κειμένων Αναζήτηση Ακολουθιακή Αναζήτηση, Δομές Trie Συμπίεση Huffmann Coding, Run-Length Encoding, Burrows- Wheeler Κρυπτογράφηση
Μέθοδοι Αναπαράστασης Περιοχών
KEΣ 3 Αναγνώριση Προτύπων και Ανάλυση Εικόνας Μέθοδοι Αναπαράστασης Περιοχών ΤµήµαΕπιστήµης και Τεχνολογίας Τηλεπικοινωνιών Πανεπιστήµιο Πελοποννήσου Εισαγωγή Χαρακτηριστικά χώρου Χαρακτηριστικά από µετασχηµατισµό
Ανάκτηση Πληροφορίας
Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Ανάκτηση Πληροφορίας Διδάσκων: Φοίβος Μυλωνάς fmylonas@ionio.gr Διάλεξη #08 Συµπίεση Κειµένων Φοίβος Μυλωνάς fmylonas@ionio.gr Ανάκτηση Πληροφορίας 1 Άδεια χρήσης
Αριθμητική Κωδικοποίηση
Αριθμητική Κωδικοποίηση Ο κώδικας Huffmann είναι βέλτιστος γιατί παράγει συμπαγή κώδικα για δεδομένες πιθανότητες Συμπαγής κώδικας: Δεν υπάρχει άλλος με μικρότερο μέσο μήκος κωδικής λέξης Δεν είναι 100%
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ, ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ, ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 4: ΣΥΣΤΗΜΑΤΑ ΠΟΛΥΜΕΣΩΝ Ακαδηµαϊκό Έτος 004 005, Χειµερινό Εξάµηνο Θεωρητικές Ασκήσεις (# 3): 1. Ο διακριτός µετασχηµατισµός συνηµίτονου (Discrete Cosine Transform)
Εισαγωγή στην Πληροφορική. Α σ κ ή σ ε ι ς σ τ η ν ι α χ ε ί ρ ι σ η Μ ν ή µ η ς. Αντώνης Σταµατάκης
Εισαγωγή στην Πληροφορική Α σ κ ή σ ε ι ς σ τ η ν ι α χ ε ί ρ ι σ η Μ ν ή µ η ς Αντώνης Σταµατάκης Μονάδες µέτρησης µνήµης Η βασική µονάδα µέτρησης της µνήµης στα υπολογιστικά συστήµατα είναι το µπάιτ
Κωδικοποίηση βίντεο (H.261 / DVI)
Κωδικοποίηση βίντεο (H.261 / DVI) Αρχές κωδικοποίησης βίντεο Εισαγωγή στο H.261 Κωδικοποίηση βίντεο Ροή δεδοµένων Εισαγωγή στο DVI Κωδικοποίηση ήχου και εικόνων Κωδικοποίηση βίντεο Ροή δεδοµένων Τεχνολογία
Αριθμητική Κωδικοποίηση
Αριθμητική Κωδικοποίηση Σύμβολο Πιθανότητα a 0,2 b 0,5 c 0,3 Αντιστοίχιση κάθε συμβόλου σε τμήμα του διαστήματος [0, 1] ανάλογα με την πιθανότητα εμφάνισής του. Αναπαράσταση του συμβόλου με έναν αριθμό
Θεωρία Πληροφορίας. Διάλεξη 5: Διακριτή πηγή πληροφορίας με μνήμη. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής
Θεωρία Πληροφορίας Διάλεξη 5: Διακριτή πηγή πληροφορίας με μνήμη Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Ατζέντα 1. Διακριτές πηγές πληροφορίας με μνήμη Μαρκοβιανές αλυσίδες Τάξη μακροβιανών αλυσίδων
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΑΣΚΗΣΗ 5 Ανάπτυξη Προγράμματος Συμπίεσης/Αποσυμπίεσης Αρχείων
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 035: Δομές Δεδομένων και Αλγόριθμοι για Ηλεκτρολόγους Μηχανικούς και Μηχανικούς Υπολογιστών Χειμερινό Εξάμηνο 2012 ΑΣΚΗΣΗ 5 Ανάπτυξη Προγράμματος Συμπίεσης/Αποσυμπίεσης
DIP_06 Συμπίεση εικόνας - JPEG. ΤΕΙ Κρήτης
DIP_06 Συμπίεση εικόνας - JPEG ΤΕΙ Κρήτης Συμπίεση εικόνας Το μέγεθος μιας εικόνας είναι πολύ μεγάλο π.χ. Εικόνα μεγέθους Α4 δημιουργημένη από ένα σαρωτή με 300 pixels ανά ίντσα και με χρήση του RGB μοντέλου
Τεχνολογία Πολυμέσων. Ενότητα # 11: Κωδικοποίηση εικόνων: JPEG Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής
Τεχνολογία Πολυμέσων Ενότητα # 11: Κωδικοποίηση εικόνων: JPEG Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου
Ποιές οι θεµελιώδεις δυνατότητες και ποιοί οι εγγενείς περιορισµοί των υπολογιστών ; Τί µπορούµε και τί δε µπορούµε να υπολογίσουµε (και γιατί);
Μοντελοποίηση του Υπολογισµού Στοιχεία Θεωρίας Υπολογισµού (): Τυπικές Γλώσσες, Γραµµατικές Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Ποιές οι θεµελιώδεις δυνατότητες
Στοιχεία Θεωρίας Υπολογισµού (1): Τυπικές Γλώσσες, Γραµµατικές
Στοιχεία Θεωρίας Υπολογισµού (1): Τυπικές Γλώσσες, Γραµµατικές Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Ο. Τελέλης Πανεπιστήµιο Πειραιώς Θεωρία Υπολογισµού 1 /
( ) log 2 = E. Σεραφείµ Καραµπογιάς
Παρατηρούµε ότι ο ορισµός της Η βασίζεται στη χρονική µέση τιµή. Για να ισχύει ο ορισµός αυτός και για µέση τιµή συνόλου πρέπει η πηγή να είναι εργοδική, δηλαδή H ( X) ( ) = E log 2 p k Η εντροπία µιας
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ 3 Ηµεροµηνία αποστολής στον φοιτητή: 3 Iανουαρίου 004. Τελική ηµεροµηνία αποστολής από τον φοιτητή: 8 Φεβρουαρίου
Ακαδηµαϊκό Έτος , Χειµερινό Εξάµηνο ιδάσκων Καθ.: Νίκος Τσαπατσούλης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ, ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΒΕΣ 04: ΣΥΜΠΙΕΣΗ ΚΑΙ ΜΕΤΑ ΟΣΗ ΠΟΛΥΜΕΣΩΝ Ακαδηµαϊκό Έτος 2005 2006, Χειµερινό Εξάµηνο Καθ.: Νίκος Τσαπατσούλης ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ Η εξέταση αποτελείται
int array[10]; double arr[5]; char pin[20]; Προγραµµατισµός Ι
Εισαγωγή Στον Προγραµµατισµό «C» Πίνακες Πανεπιστήµιο Πελοποννήσου Τµήµα Πληροφορικής & Τηλεπικοινωνιών Νικόλαος Δ. Τσελίκας Νικόλαος Προγραµµατισµός Δ. Τσελίκας Ι Πίνακες στη C Ένας πίνακας στη C είναι
ΑΣΚΗΣΗ 2 ΒΑΣΙΚΑ ΚΑΙ ΣΥΝΘΕΤΑ ΣΗΜΑΤΑ ΔΥΟ ΔΙΑΣΤΑΣΕΩΝ - ΕΙΚΟΝΑΣ
ΑΣΚΗΣΗ 2 ΒΑΣΙΚΑ ΚΑΙ ΣΥΝΘΕΤΑ ΣΗΜΑΤΑ ΔΥΟ ΔΙΑΣΤΑΣΕΩΝ - ΕΙΚΟΝΑΣ Αντικείμενο: Κατανόηση και αναπαράσταση των βασικών σημάτων δύο διαστάσεων και απεικόνισης αυτών σε εικόνα. Δημιουργία και επεξεργασία των διαφόρων
ΕΕ728 Προχωρηµένα Θέµατα Θεωρίας Πληροφορίας 4η διάλεξη (4η έκδοση, 11/3/2013)
ΕΕ728 Προχωρηµένα Θέµατα Θεωρίας Πληροφορίας 4η διάλεξη (4η έκδοση, 11/3/2013) ηµήτρης-αλέξανδρος Τουµπακάρης Τµήµα ΗΜ&ΤΥ, Πανεπιστήµιο Πατρών 5 Μαρτίου 2013 ηµήτρης-αλέξανδρος Τουµπακάρης Προχωρηµένα
Αριθµητική Ολοκλήρωση
Κεφάλαιο 5 Αριθµητική Ολοκλήρωση 5. Εισαγωγή Για τη συντριπτική πλειοψηφία των συναρτήσεων f (x) δεν υπάρχουν ή είναι πολύ δύσχρηστοι οι τύποι της αντιπαραγώγου της f (x), δηλαδή της F(x) η οποία ικανοποιεί
Τηλεπικοινωνιακά Συστήματα ΙΙ
Τηλεπικοινωνιακά Συστήματα ΙΙ Διάλεξη 11: Κωδικοποίηση Πηγής Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Ατζέντα 1. Αλγόριθμοι κωδικοποίησης πηγής Αλγόριθμος Fano Αλγόριθμος Shannon Αλγόριθμος Huffman
ΕΑΠ/ΠΛΗ22/ΑΘΗ-4. 3 η ΟΣΣ
ΕΑΠ/ΠΛΗ22/ΑΘΗ-4 3 η ΟΣΣ 08.02.205 Ν.Δημητρίου Σημείωση: Η παρουσίαση αυτή είναι συμπληρωματική της ύλης των βιβλίων (τόμος Β / μέρη Α,Β και τόμος Α ) καθώς και των 2 παρουσιάσεων στο study.eap.gr (oss3_plh22_digicomms_205,
Θέματα Συστημάτων Πολυμέσων
Θέματα Συστημάτων Πολυμέσων Ενότητα # 6: Στοιχεία Θεωρίας Πληροφορίας Διδάσκων: Γεώργιος K. Πολύζος Τμήμα: Μεταπτυχιακό Πρόγραμμα Σπουδών Επιστήμη των Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
Τετάρτη 5-12/11/2014. ΣΗΜΕΙΩΣΕΙΣ 3 ου και 4 ου ΜΑΘΗΜΑΤΟΣ ΕΙΔΙΚΟΤΗΤΑ: ΤΕΧΝΙΚΟΣ ΕΦΑΡΜΟΓΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΑΡΧΙΤΕΚΤΟΝΙΚΗ Η/Υ Α ΕΞΑΜΗΝΟ
Τετάρτη 5-12/11/2014 ΣΗΜΕΙΩΣΕΙΣ 3 ου και 4 ου ΜΑΘΗΜΑΤΟΣ ΕΙΔΙΚΟΤΗΤΑ: ΤΕΧΝΙΚΟΣ ΕΦΑΡΜΟΓΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΑΡΧΙΤΕΚΤΟΝΙΚΗ Η/Υ Α ΕΞΑΜΗΝΟ ΕΚΠΑΙΔΕΥΤΗΣ: ΤΡΟΧΙΔΗΣ ΠΑΝΑΓΙΩΤΗΣ 1. Παράσταση και οργάνωση δεδομένων
Συµπίεση Ψηφιακών Εικόνων: Συµπίεση µε Απώλειες. Πρότυπα Συµπίεσης Εικόνων
ΤΨΣ 5: Ψηφιακή Επεξεργασία Εικόνας ΤΨΣ 5 Ψηφιακή Επεξεργασία Εικόνας Συµπίεση Ψηφιακών Εικόνων: Συµπίεση µε απώλειες Πρότυπα Συµπίεσης Εικόνων Τµήµα ιδακτικής της Τεχνολογίας και Ψηφιακών Συστηµάτων Πανεπιστήµιο
Εισαγωγή στον Προγραμματισμό
Εισαγωγή στον Προγραμματισμό Ενότητα 3 Λειτουργίες σε Bits, Αριθμητικά Συστήματα Χρήστος Γκουμόπουλος Πανεπιστήμιο Αιγαίου Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων Φύση υπολογιστών Η
Επίλυση Προβληµάτων µε Greedy Αλγόριθµους
Επίλυση Προβληµάτων µε Greedy Αλγόριθµους Περίληψη Επίλυση προβληµάτων χρησιµοποιώντας Greedy Αλγόριθµους Ελάχιστα Δέντρα Επικάλυψης Αλγόριθµος του Prim Αλγόριθµος του Kruskal Πρόβληµα Ελάχιστης Απόστασης
ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 1
ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 1 ΒΑΣΙΚΟΙ ΧΕΙΡΙΣΜΟΙ ΕΙΚΟΝΑΣ Αντικείμενο: Εισαγωγή στις βασικές αρχές της ψηφιακής επεξεργασίας εικόνας χρησιμοποιώντας το MATLAB και το πακέτο Επεξεργασίας Εικόνας. Περιγραφή και αναπαράσταση
ΤΕΙ ΛΑΡΙΣΑΣ ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ
ΤΕΙ ΛΑΡΙΣΑΣ ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΑΡΧΕΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Εισαγωγή στη Θεωρία Πληροφοριών Χρήστου Νικολαΐδη Συµπληρωµατικές Σηµειώσεις (*) & Ασκήσεις (*) Στις σηµειώσεις µου µε
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΝΑΠΤΥΞΗ ΚΑΙ ΣΧΕΔΙΑΣΗ ΛΟΓΙΣΜΙΚΟΥ Η γλώσσα προγραμματισμού C ΕΡΓΑΣΤΗΡΙΟ 3: Πίνακες, βρόχοι, συναρτήσεις 1 Ιουνίου 2017 Το σημερινό εργαστήριο
Συστήµατα και Αλγόριθµοι Πολυµέσων
Συστήµατα και Αλγόριθµοι Πολυµέσων Ιωάννης Χαρ. Κατσαβουνίδης Οµιλία #5: Αρχές Επεξεργασίας Σηµάτων Πολυµέσων 7 Νοεµβρίου 2005 Επανάληψη Θεωρία Πληροφορίας Εντροπία: H ( P) i= 0 Κωδικοποίηση Huffman 3
Group (JPEG) το 1992.
Μέθοδοι Συμπίεσης Εικόνας Πρωτόκολλο JPEG Συμπίεση Εικόνας: Μείωση αποθηκευτικού χώρου Ευκολία στη μεταφορά αρχείων Δημιουργήθηκε από την ομάδα Joint Photographic Experts Group (JPEG) το 1992. Ονομάστηκε
Προγραμματισμός και Χρήση Ηλεκτρονικών Υπολογιστών - Βασικά Εργαλεία Λογισμικού
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΟ ΚΕΝΤΡΟ Προγραμματισμός και Χρήση Ηλεκτρονικών Υπολογιστών - Βασικά Εργαλεία Λογισμικού Μάθημα 9ο Aντώνης Σπυρόπουλος Σφάλματα στρογγυλοποίησης
K24 Ψηφιακά Ηλεκτρονικά 6: Πολυπλέκτες/Αποπολυπλέκτες
K24 Ψηφιακά Ηλεκτρονικά 6: Πολυπλέκτες/Αποπολυπλέκτες TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ ΤΕΧΝΟΛΟΓΙΚΟ Περιεχόμενα 1 2 3 4 Λειτουργία Πολυπλέκτης (Mul plexer) Ο
5.1 Θεωρητική εισαγωγή
ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 5 ΚΩ ΙΚΟΠΟΙΗΣΗ BCD Σκοπός: Η κατανόηση της µετατροπής ενός τύπου δυαδικής πληροφορίας σε άλλον (κωδικοποίηση/αποκωδικοποίηση) µε τη µελέτη της κωδικοποίησης BCD
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητα Ενδιάμεση Εξέταση Ημερομηνία : Σάββατο, 15 Μαρτίου 2014 Διάρκεια : 9.30 11.30 Διδάσκουσα : Άννα Φιλίππου Ονοματεπώνυμο:
ΕΡΓΑΣΤΗΡΙΟ ΠΙΘΑΝΟΤΗΤΩΝ
ΕΡΓΑΣΤΗΡΙΟ ΠΙΘΑΝΟΤΗΤΩΝ ΜΕΡΟΣ Ο ΙΩΝΥΜΙΚΗ ΚΑΤΑΝΟΜΗ Στο εργαστήριο αυτό θα ασχοληθούµε µε την προσοµοίωση της ρίψεως ενός δίκαιου νοµίσµατος. Το µοντέλο το οποίο θα πρέπει να πραγµατοποιήσουµε θα πρέπει να
Κατηγορίες Συμπίεσης. Συμπίεση με απώλειες δεδομένων (lossy compression) π.χ. συμπίεση εικόνας και ήχου
Συμπίεση Η συμπίεση δεδομένων ελαττώνει το μέγεθος ενός αρχείου : Εξοικονόμηση αποθηκευτικού χώρου Εξοικονόμηση χρόνου μετάδοσης Τα περισσότερα αρχεία έχουν πλεονασμό στα δεδομένα τους Είναι σημαντική
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ
ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ ΠΑΡΑΔΕΙΓΜΑΤΑ ΜΕ ΧΡΗΣΗ MATLAB ΑΘΑΝΑΣΙΑ ΚΟΛΟΒΟΥ (Ε.Τ.Ε.Π.) 2012 ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ Ο σκοπός αυτού
ΒΕΣ 04: Συµπίεση και Μετάδοση Πολυµέσων. Περιεχόµενα. Βιβλιογραφία. Εικόνες και Πολυµεσικές Εφαρµογές. Ψηφιακή Επεξεργασία Εικόνας.
ΒΕΣ 04: Συµπίεση και Μετάδοση Πολυµέσων Εικόνα και Πολυµεσικές Εφαρµογές Περιεχόµενα Ψηφιακή Επεξεργασία Εικόνας Σηµειακές µέθοδοι Φίλτρα γειτνίασης Γεωµετρικές µέθοδοι Εικόνες και Πολυµεσικές Εφαρµογές
Συµπίεση δεδοµένων: Εισαγωγή, Κατηγορίες τεχνικών συµπίεσης, Ανάλυση βασικών τεχνικών συµπίεσης
ΒΕΣ 04 Συµπίεση και Μετάδοση Πολυµέσων Συµπίεση δεδοµένων: Εισαγωγή, Κατηγορίες τεχνικών συµπίεσης, Ανάλυση βασικών τεχνικών συµπίεσης Εισαγωγή Ένα σηµαντικό ερώτηµα είναιπάντοτεανµπορεί η πληροφορία να
Κατ οίκον Εργασία ΚE5
Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Χειμερινό Εξάμηνο ΗΜΥ Εισαγωγή στην Τεχνολογία Διδάσκων: Δρ. Στέλιος Τιμοθέου Κατ οίκον Εργασία ΚE5 Ασκήσεις Ασκήσεις:. Μετατρέψτε
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ. Ενότητα 4: Δειγματοληψία και Κβάντιση Εικόνας
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ Ενότητα 4: Δειγματοληψία και Κβάντιση Εικόνας Ιωάννης Έλληνας Τμήμα Υπολογιστικών Συστημάτων Άδειες Χρήσης
ΠΛΗΡΟΦΟΡΙΑΚΑ & ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΑ ΣΥΣΤΗΜΑΤΑ
Οικονοµικό Πανεπιστήµιο Αθηνών Τµήµα ιοικητικής Επιστήµης & Τεχνολογίας ΠΛΗΡΟΦΟΡΙΑΚΑ & ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΑ ΣΥΣΤΗΜΑΤΑ Κεφάλαιο 2 Αριθµητικά Συστήµατα και Αριθµητική Υπολογιστών Γιώργος Γιαγλής Περίληψη Κεφαλαίου
Θεωρία πληροφοριών. Τεχνολογία Πολυµέσων 07-1
Θεωρία πληροφοριών Εισαγωγή Αµοιβαία πληροφορία Εσωτερική πληροφορία Υπό συνθήκη πληροφορία Παραδείγµατα πληροφορίας Μέση πληροφορία και εντροπία Παραδείγµατα εντροπίας Εφαρµογές Τεχνολογία Πολυµέσων 07-
Συμπίεση Δεδομένων
Συμπίεση Δεδομένων 2013-2014 JPEG 2000 Δρ. Ν. Π. Σγούρος 2 JPEG 2000 Βασικά χαρακτηριστικά Επιτρέπει συμπίεση σε εξαιρετικά χαμηλούς ρυθμούς όπου η συμπίεση με το JPEG εισάγει μεγάλες παραμορφώσεις Ενσωμάτωση
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΗ ΑΣΚΗΣΗ 2
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 231: Δομές Δεδομένων και Αλγόριθμοι Εαρινό Εξάμηνο 2013 ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΗ ΑΣΚΗΣΗ 2 Διδάσκων Καθηγητής: Παναγιώτης Ανδρέου Ημερομηνία Υποβολής: 05/03/2013 Ημερομηνία
Μονοδιάστατοι πίνακες Πολυδιάστατοι πίνακες Μέθοδοι Μέθοδοι Recursive Overloading
Μονοδιάστατοι πίνακες Πολυδιάστατοι πίνακες Μέθοδοι Μέθοδοι Recursive Overloading Μονοδιάστατοι πίνακες Οι πίνακες είναι µεταβλητές που έχουν οµαδοποιηθεί µε ένα κοινό όνοµα. ηµιουργία πινάκων µετηδήλωσηnew
ΕΑΠ/ΠΛΗ22/ΑΘΗ-3. 3 η ΟΣΣ
ΕΑΠ/ΠΛΗ22/ΑΘΗ-3 3 η ΟΣΣ 04.02.207 Ν.Δημητρίου Σημείωση: Η παρουσίαση αυτή είναι συμπληρωματική της ύλης των βιβλίων (τόμος Β / μέρη Α,Β και τόμος Α ) καθώς και των 2 παρουσιάσεων στο study.eap.gr (oss3_plh22_digicomms_207,
Εισαγωγή στην Πληροφορική ΓΕΝΙΚΟ ΤΜΗΜΑ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ TEI ΧΑΛΚΙ ΑΣ
Εισαγωγή στην Πληροφορική 1 Περιεχόµενα - Κωδικοποιήσεις - Αριθµητικά Συστήµατα 2 Ηλεκτρονικός Υπολογιστής Είπαµε ότι είναι, µία Ηλεκτρονική Μηχανή, που δουλεύει κάτω από τον έλεγχο εντολών αποθηκευµένων
Εισαγωγή στην επιστήμη των υπολογιστών. Υπολογιστές και Δεδομένα Κεφάλαιο 2ο Αναπαράσταση Δεδομένων
Εισαγωγή στην επιστήμη των υπολογιστών Υπολογιστές και Δεδομένα Κεφάλαιο 2ο Αναπαράσταση Δεδομένων 1 2.1 Τύποι Δεδομένων Τα δεδομένα σήμερα συναντώνται σε διάφορες μορφές, στις οποίες περιλαμβάνονται αριθμοί,
Σκοπός. Εργαστήριο 6 Εντολές Επανάληψης Τα Εργαστηριακά Προγράμματα. Η δομή Επιλογής στη PASCAL. H δομή Επανάληψης στη PASCAL. Η εντολή επανάληψης for
Εργαστήριο 6 Εντολές Επανάληψης Τα Εργαστηριακά Προγράμματα Η δομή Επιλογής στη PASCAL H δομή Επανάληψης στη PASCAL Η εντολή επανάληψης for Σκοπός Η εντολή επανάληψης while. 1 ΕΡΓΑΣΤΗΡΙΟ 6 Εισαγωγή στο
Κωδικοποίηση Πηγής. Δρ. Α. Πολίτης
Κωδικοποίηση Πηγής Coder Decoder Μεταξύ πομπού και καναλιού παρεμβάλλεται ο κωδικοποιητής (coder). Έργο του: η αντικατάσταση των συμβόλων πληροφορίας της πηγής με εναλλακτικά σύμβολα ή λέξεις. Κωδικοποίηση
ΔΙΑΡΘΡΩΣΗ ΠΕΡΙΕΧΟΜΕΝΟΥ
ΑΡΧΙΜΗΔΗΣ ΕΝΙΣΧΥΣΗ ΕΡΕΥΝΗΤΙΚΩΝ ΟΜΑΔΩΝ ΣΤΑ ΤΕΙ 2.2.2.3ζ ΔΙΑΡΘΡΩΣΗ ΠΕΡΙΕΧΟΜΕΝΟΥ ΕΓΧΡΩΜΩΝ ΕΓΓΡΑΦΩΝ Εγχειρίδιο χρήσης λογισμικού ΕΠΙΣΤΗΜΟΝΙΚΟΣ ΥΠΕΥΘΥΝΟΣ: ΣΤΡΟΥΘΟΠΟΥΛΟΣ ΧΑΡΑΛΑΜΠΟΣ ΣΕΡΡΕΣ, ΜΑΙΟΣ 2007 ΠΕΡΙΕΧΟΜΕΝΑ
Μέσα, Πολυµέσα & µέτρηση Πληροφορίας
ΒΕΣ 04 Συµπίεση και Μετάδοση Πολυµέσων Μέσα, Πολυµέσα & µέτρηση Πληροφορίας Νικόλας Τσαπατσούλης Επίκουρος Καθηγητής Π..407/80 Τµήµα Επιστήµης & Τεχνολογίας Τηλεπικοινωνιών Πανεπιστήµιο Πελοποννήσου Επικοινωνία:
Ακαδηµαϊκό Έτος , Χειµερινό Εξάµηνο ιδάσκων Καθ.: Νίκος Τσαπατσούλης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ, ΤΜΗΜΑ Ι ΑΚΤΙΚΗΣ ΤΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΤΨΣ 5: ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ Ακαδηµαϊκό Έτος 5 6, Χειµερινό Εξάµηνο Καθ.: Νίκος Τσαπατσούλης ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ Η εξέταση
Κ15 Ψηφιακή Λογική Σχεδίαση 2: Δυαδικό Σύστημα / Αναπαραστάσεις
Κ15 Ψηφιακή Λογική Σχεδίαση 2: Δυαδικό Σύστημα / Αναπαραστάσεις Γιάννης Λιαπέρδος TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ Δυαδικό Σύστημα Αρίθμησης Περιεχόμενα 1 Δυαδικό
ΑΣΚΗΣΕΙΣ - ΠΙΘΑΝΟΤΗΤΕΣ
ΑΣΚΗΣΕΙΣ - ΠΙΘΑΝΟΤΗΤΕΣ Οµάδα η. Αν Ω={ω,ω,,ω 6 } είναι ο δ.χ ενός πειράµατος τύχης να βρείτε τις πιθανότητες Ρ(ω ),,Ρ(ω 6 ) αν είναι γνωστό ότι αυτές αποτελούν διαδοχικούς όρους αριθµητικής προόδου µε
Τεχνολογία Πολυμέσων. Ενότητα # 7: Θεωρία πληροφορίας Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής
Τεχνολογία Πολυμέσων Ενότητα # 7: Θεωρία πληροφορίας Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα.
ΕΡΓΑΣΤΗΡΙΟ ΜΙΚΡΟΫΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ : Κ. ΠΕΚΜΕΣΤΖΗ
ΠΡΑΞΕΙΣ ΜΕ ΠΡΟΣΗΜΑΣΜΕΝΟΥΣ ΑΡΙΘΜΟΥΣ ΚΥΚΛΩΜΑΤΙΚΕΣ ΕΦΑΡΜΟΓΕΣ ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΠΑΡΑΣΤΑΣΗ ΑΡΙΘΜΩΝ Συμπλήρωμα ως προς 2 Booth, Modified Booth Reduntant αριθμητικά συστήματα Signed Digit αριθμητική Κανονική
Digital Image Processing
Digital Image Processing Intensity Transformations Πέτρος Καρβέλης pkarvelis@gmail.com Images taken from: R. Gonzalez and R. Woods. Digital Image Processing, Prentice Hall, 2008. Image Enhancement: είναι