Θέματα Συστημάτων Πολυμέσων
|
|
- Ανδρόνικος Μαγγίνας
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Θέματα Συστημάτων Πολυμέσων Ενότητα # 6: Στοιχεία Θεωρίας Πληροφορίας Διδάσκων: Γεώργιος K. Πολύζος Τμήμα: Μεταπτυχιακό Πρόγραμμα Σπουδών Επιστήμη των Υπολογιστών
2 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου άδειας χρήσης, η άδεια χρήσης αναφέρεται ρητώς. 2
3 Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα. Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα στο Πανεπιστήμιο Αθηνών» έχει χρηματοδοτήσει μόνο τη αναδιαμόρφωση του εκπαιδευτικού υλικού. Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος «Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς πόρους. 3
4 Σκοποί ενότητας Εισαγωγή στην θεωρία πληροφορίας Παρουσίαση των διακριτών τύπων κωδικοποίησης Κατανόηση των ιδιοτήτων και των σκοπών των τύπων κωδικοποίησης 4
5 Περιεχόμενα ενότητας (1 από 2) Θεωρία Πληροφορίας Μοντέλο συστήματος ψηφιακών επικοινωνιών Λογαριθμική αποτίμηση της πληροφορίας Αμοιβαία πληροφορία Εσωτερική πληροφορία Η εσωτερική πληροφορία είναι συμμετρική Υπό συνθήκη Εσωτερική πληροφορία Μέση αμοιβαία πληροφορία Μέση εσωτερική πληροφορία - Εντροπία Συνάρτηση δυαδικής εντροπίας Υπό συνθήκη εντροπία 5
6 Περιεχόμενα ενότητας (2 από 2) Κωδικοποίηση πηγής Κωδικοποίηση πηγής διακριτών γεγονότων χωρίς μνήμη Κωδικές λέξεις σταθερού μήκους (fixed length) Κωδικές λέξεις μεταβλητού μήκους (variable length) Θεώρημα κωδικοποίησης πηγής Κωδικοποίηση Huffman Κωδικοποίηση Huffman για ζεύγη γραμμάτων Κωδικοποίηση μήκους σειρών (Run Length Coding) Κατηγοριοποίηση τεχνικών κωδικοποίησης 6
7 Θεωρία Πληροφορίας Μάθημα: Θέματα Συστημάτων Πολυμέσων Ενότητα # 6: Στοιχεία Θεωρίας Πληροφορίας Διδάσκων: Γεώργιος Κ. Πολύζος Τμήμα: Μεταπτυχιακό Πρόγραμμα Σπουδών Επιστήμη των Υπολογιστών
8 Μοντέλο συστήματος ψηφιακών επικοινωνιών Digital Channel ( modem ) Αναπαράσταση του αρχικού σήματος με μεγάλη πιστότητα Ψηφιακό κανάλι με βελτιωμένη αντιμετώπιση σφαλμάτων (συνήθως αναλογικό) 8
9 Λογαριθμική αποτίμηση της πληροφορίας Έστω Χ και Υ διακριτές τυχαίες μεταβλητές με πιθανές τιμές x i, i=1,2,..,n και y i, i=1,2,..,m αντίστοιχα. Παρατηρούμε το γεγονός Y = y i και θέλουμε να ποσοτικοποιήσουμε την πληροφορία που μας δίνει η εμφάνιση του γεγονότος για το γεγονός Χ = x i, i=1,2,..,n. Το πρόβλημα είναι η επιλογή της κατάλληλης μετρικής για την πληροφορία. 9
10 Αμοιβαία Πληροφορία (1 από 2) Αν Χ και Υ είναι στατιστικά ανεξάρτητες, η εμφάνιση του Υ=y i δε μας δίνει πληροφορία για την εμφάνιση του Χ=x i. Αν Χ και Υ είναι πλήρως εξαρτημένες, ώστε η εμφάνιση του Υ = y i να καθορίζει την εμφάνιση του Χ = x i, τότε το περιεχόμενο της πληροφορίας είναι αυτό που παρέχεται από το γεγονός Χ = x i. Κατάλληλη μετρική είναι ο αλγόριθμος αναλογίας της υπό συνθήκη πιθανότητας. δια την πιθανότητα P (X = x i Y = y i ) = P(x i y i ) P (X = x i ) = P(x i ) 10
11 Αμοιβαία Πληροφορία (2 από 2) Έτσι, η ποσότητα πληροφορίας που παρέχει το γεγονός Υ = y i για το γεγονός Χ = x i ορίζεται ως I (x i ;y i ) = log P (x i y i ) P(x i ) (2.2.1) To I(x i ;y i ) ονομάζεται αμοιβαία πληροφορία μεταξύ των x i και y i. 11
12 Μονάδες Πληροφορίας Οι μονάδες του I(x i ;y i ) ορίζονται από την βάση του αλγόριθμου, που συνήθως είναι 2 ή e. Όταν η βάση του αλγόριθμου είναι 2 τότε οι μονάδες του I(x i ;y i ) είναι δυφία. Όταν η βάση του αλγόριθμου είναι e τότε οι μονάδες του I(x i ;y i ) είναι νατς (Natural Unit of Information - nats). 12
13 Εσωτερική Πληροφορία Όταν οι τυχαίες μεταβλητές Χ και Υ είναι στατιστικά ανεξάρτητες τότε P(x i y i ) = P(x i ) και συνεπώς I(x i ;y i )=0 Όταν οι τυχαίες μεταβλητές Χ και Υ είναι πλήρως εξαρτημένες, η υπό συνθήκη πιθανότητα στον αριθμητή της εξίσωσης είναι η ένωση και έτσι: I (x i ;y i ) = log 1 P(x i ) = -logp(x i ) Αυτό είναι η πληροφορία του γεγονότος Χ = x i, που ονομάζουμε εσωτερική πληροφορία του γεγονότος Χ = x i και ορίζεται ως: I (x i ) = log 1 (2.2.3) (2.2.2) P(x i ) = -logp(x i ) 13
14 Νέα.. Θεωρούμε πως ένα πολύ πιθανό γεγονός παρέχει λιγότερη πιθανότητα από ένα λιγότερο πιθανό γεγονός. Αν έχω μόνο ένα πιθανό γεγονός x (συμβαίνει πάντα) με πιθανότητα P(x) = 1, τότε I(x i ) = 0. 14
15 Παράδειγμα υπολογισμού πληροφορίας Έστω ότι υπάρχει διακριτή πηγή πληροφορίας που εκπέμπει δυαδικό ψηφίο (0 ή 1), με ίση πιθανότητα κάθε r s δεύτερα. Η παρεχόμενη πληροφορία από κάθε γεγονός είναι: I (x i ) = - log 2 P(x i ) = -log =1bit Έστω αλλεπάλληλα και στατιστικά ανεξάρτητα γεγονότα. Θεωρούμε ομάδα από k παραγόμενα δυφία στο χρονικό πλαίσιο kr s. Υπάρχουν συνολικά Μ = 2 k ισοπίθανες ομάδες δυφίων με πιθανότητα 1/Μ = 2 -k. Η εσωτερική πληροφορία μίας ομάδας σε χρόνο kr s είναι: I (x i ') =- log 2 2 -k = kbits 15
16 Η αμοιβαία πληροφορία είναι συμμετρική Γυρνώντας στον ορισμό της αμοιβαίας πληροφορίας (2.2.1), πολλαπλασιάζουμε τον αριθμητή και παρανομαστή με την πιθανότητα P(y i ). P(x i y j ) P(x i ) = P(x i y j )P(y j ) P(x i )P(y j ) = P(x i, y j ) P(x i )P(y j ) = P(y j x i ) P(y j ) Άρα: I (x i ;y j ) = I (y j ;x i ) H πληροφορία που μας δίνει το Υ = y i για το Χ = x i είναι ίση με την πληροφορία που μας δίνει το Χ = x i για το Υ = y i. 16
17 Παράδειγμα: Κανάλι δυαδικής εισόδου-εξόδου (1 από 3) Θεωρούμε Χ και Υ δυαδικές τυχαίες μεταβλητές που αναπαριστούν την είσοδο και έξοδο ενός καναλιού. Τα σύμβολα εισόδου είναι ισοπίθανα ενώ τα σύμβολα εξόδου εξαρτώνται από την είσοδο με βάση τις υπό συνθήκη πιθανότητες: 0 1-p 0 0 p 1 P(Y = 0 X = 0) =1- p 0 P(Y =1 X = 0) = p p 1 p 0 1 P(Y =1 X =1) =1- p 1 P(Y = 0 X =1) = p 1 Ορίζουμε την αμοιβαία πληροφορία για την εμφάνιση του Χ = 0 και Χ = 1 δεδομένου ότι Υ = 0. 17
18 Παράδειγμα: Κανάλι δυαδικής εισόδου-εξόδου (2 από 3) Από τις πιθανότητες παίρνουμε ότι: P(Y = 0) = P(Y = 0 X = 0)P(X = 0)+ P(Y = 0 X =1)P(X =1) = 1 2 (1- p 0 + p 1 ) P(Y =1) = P(Y =1 X = 0)P(X = 0)+ P(Y =1 X =1)P(X =1) = 1 2 (1- p 1 + p 0 ) Η αμοιβαία πληροφορία για το Χ = 0 δεδομένου του Υ = 0 είναι I (x i ; y j ) = I (0;0)=log 2 P(Y = 0 X = 0) P(Y = 0) = log 2 2(1- p 0 ) 1- p 0 + p 1 Ομοίως δεδομένου του Υ = 0, η αμοιβαία πληροφορία για την εμφάνιση του Χ = 1 είναι: I (x i ; y j ) = I (1;0) = log 2 2p 1 1- p 0 + p 1 18
19 Παράδειγμα: Κανάλι δυαδικής εισόδου-εξόδου (3 από 3) Έστω ότι p 0 = p 1 = 0 (κανάλι χωρίς θόρυβο) Η έξοδος χαρακτηρίζει την είσοδο με απόλυτη σιγουριά I (0;0) = log 2 2 =1bit Έστω ότι p 0 = p 1 = ½ Το κανάλι δε μπορεί να χρησιμοποιηθεί I (0;0) = log 2 1= 0bit Έστω ότι p 0 = p 1 = ¼ τότε I (0;0) = log = I (0;1) = log = -1bit Παρατηρούμε ότι η αμοιβαία πληροφορία μεταξύ ενός ζεύγους γεγονότων μπορεί να είναι και αρνητική! 19
20 Υπό συνθήκη εσωτερική πληροφορία Ορίζουμε την υπό συνθήκη εσωτερική πληροφορία ως εξής I (x i ;y j ) = log 2 1 P(xi y j ) = -logp(x i y j ) (2.2.5) Συνδυάζοντας τις 2.2.1, και καταλήγουμε στην (2.2.6) I (x i ;y j ) = I(x i )- I (x i y j ) Ερμηνεύουμε το I(x i ;y i ) ως την εσωτερική πληροφορία του Χ = x i δεδομένου ότι Υ = y j. Εφόσον I(x i )>=0 και I(x i y i )>=0 συνεπάγεται ότι I(x i ;y i ) 0 όταν I(x i y i )>I(x i ) I(x i ;y i )>0 όταν I(x i y i )<I(x i ) 20
21 Μέση αμοιβαία πληροφορία Υπολογίζουμε την μέση αμοιβαία πληροφορία ενός ζεύγους γεγονότων (x i, y j ) ζυγίζοντας (weighting) το I(x i ;y i ) με την πιθανότητα εμφάνισης του κοινού γεγονότος και αθροίζοντας όλους τους πιθανούς συνδυασμούς. Έτσι: I (X;Y) = n å i=1 n å P(x i, y j )I (x i ;y j )= i=1 n å i=1 n P(x å P(x i, y j )log i, y j ) 2 P(x i )P(y j ) i=1 (2.2.7) Παρατηρούμε ότι I(Χ;Υ) = 0 όταν Χ, Υ είναι στατιστικά ανεξάρτητες Επίσης γενικότερα ισχύει ότι I(Χ;Υ) 0 21
22 Μέση εσωτερική πληροφορία - Εντροπία Υπολογίζουμε την εντροπία πηγής, Η(Χ) n H(X) = åp(x i )I (x i ) = åp(x i )logp(x i ) i=1 n i=1 (2.2.8) όπου Χ είναι το αλφάβητο της πηγής και Η(Χ) η μέση εσωτερική πληροφορία κάθε γράμματος. Αν όλα τα γράμματα είναι ισοπίθανα τότε P(x i ) = 1/n για κάθε i και επομένως n 1 H(X) = (2.2.9) å i=1 n log 1 n = logn Γενικότερα Η(Χ)<=logn για κάθε σετ από πιθανότητες εμφάνισης γραμμάτων. Δηλαδή, η εντροπία μεγιστοποιείται όταν τα γεγονότα είναι ισοπίθανα. 22
23 Συνάρτηση δυαδικής εντροπίας Η πηγή εκπέμπει ακολουθία ανεξάρτητων γραμμάτων με έξοδο 0 και 1 με πιθανότητα q και 1-q αντίστοιχα. Η εντροπία είναι H(X) = H(q) = -q- logq-(1-q)log(1-q) (2.2.10) H συνάρτηση δυαδικής εντροπίας Η(q) παρουσιάζεται στο διπλανό σχήμα στο οποίο παρατηρούμε ότι μεγιστοποιείται όταν q=1/2 όπου Η(1/2)=1 23
24 Υπό συνθήκη εντροπία Η μέση υπό συνθήκη εσωτερική πληροφορία ονομάζεται υπό συνθήκη εντροπία και ορίζεται ως εξής n m H(X Y) = å å P(x i, y j )log 1 (2.2.11) P(xi y j ) i=1 j=1 Η(Χ Υ) είναι η πληροφορία στο Χ αφότου συμβεί το Υ. Συνδυάζοντας τα 2.2.7, και καταλήγουμε στο (2.2.12) I(X;Y) = H(X)- H(X Y) Δεδομένου του Ι(Χ;Υ)>=0, συνεπάγεται ότι Η(Χ)>=Η(Χ Υ) αν και μόνο αν Χ, Υ είναι στατιστικά ανεξάρτητες. Αν Η(Χ) είναι το μέσο ποσό άγνοιας πριν συμβεί το Υ, τότε Ι(Χ;Υ) είναι το μέσο ποσό άγνοιας που πήραμε για το σετ Χ όταν παρατηρούσαμε το σετ Υ. Δεδομένου ότι Η(Χ)>=Η(Χ Υ), είναι ξεκάθαρο ότι η συνθήκη στο σετ Υ δεν αυξάνει την εντροπία. 24
25 Παράδειγμα 2: Κανάλι δυαδικής εισόδου-εξόδου Υπολογίζουμε τα Η(X Y) και I(X;Y) για το ίδιο κανάλι δυαδικής εισόδου-εξόδου όταν p 0 =p 1 =p, P(X=0)=q, P(X=1)=1-q και το κανάλι είναι συμμετρικό. Η εντροπία είναι H(X) = H(q) = -q- logq-(1- q)log(1- q) Η(Χ Υ) είναι η υπό συνθήκη εντροπία όπως ορίζεται από την Η Η(Χ Υ) περιγράφεται συναρτήσει του q με παράμετρο το p στο διάγραμμα της σελίδας Η Ι(Χ;Υ) περιγράφεται στο διάγραμμα της σελίδας 25
26 Δυαδικό κανάλι εισόδου εξόδου (1 από 2) 26
27 Δυαδικό κανάλι εισόδου εξόδου (2 από 2) 27
28 Περίληψη Εσωτερική Πληροφορία (ενός γεγονότος x i ) I(x i ) = - log 2 P(x i ) (σε δυφία) Εντροπία (πηγές με αλφάβητο Χ) μέση εσωτερική πληροφορία H(X) = - i P(x i ) log 2 P(x i ) (σε δυφία) 28
29 Κωδικοποίηση πηγής Μάθημα: Θέματα Συστημάτων Πολυμέσων, Ενότητα # 6: Στοιχεία Θεωρίας Πληροφορίας Διδάσκων: Γεώργιος Κ. Πολύζος, Τμήμα: Μεταπτυχιακό Πρόγραμμα Σπουδών Επιστήμη των Υπολογιστών
30 Κωδικοποίηση πηγής διακριτών γεγονότων χωρίς μνήμη (1 από 2) Χωρίς μνήμη: τα σύμβολα/γεγονότα είναι στατιστικά ανεξάρτητα Ρεαλιστικά σπάνια περίπτωση Πεπερασμένο αλφάβητο συμβόλων x i, i = 1, 2,..., L Με πιθανότητα P(x i ), i = 1, 2,..., L Εντροπία: H(X) = - i P(x i ) log 2 P(x i ) log 2 L 04-30
31 Κωδικοποίηση πηγής διακριτών γεγονότων χωρίς μνήμη (2 από 2) (Μέσο) κόστος αναπαράστασης : R (δυφία/σύμβολο) Αποδοτικότητα κωδικοποίησης = H(X) / R Κωδικοποιημένες λέξεις σταθερού μήκους R = log 2 L 04-31
32 Κωδικές λέξεις σταθερού μήκους R = log 2 L Αν L είναι δύναμη του 2 R = log 2 L αν τα σύμβολα είναι ισοπίθανα αποδοτικότητα= 1 Αλλιώς η αποδοτικότητα βελτιώνεται κωδικοποιώντας ομάδες συμβόλων 04-32
33 Κωδικές λέξεις μεταβλητού μήκους (1 από 2) Κωδικοποίηση εντροπίας: βρες την κωδικοποίηση που αναθέτει μικρές κωδικοποιημένες λέξεις στα πιο πιθανά σύμβολα και μεγαλύτερες λέξεις στα πιο σπάνια Τότε συνήθως η κωδικοποιημένη έξοδος είναι μικρότερη παράδειγμα: κωδικοποίηση Morse(1800s): (Επιθυμητές) Ιδιότητες κωδικοποίησης Μοναδική αποκωδικοποίηση Ακαριαία αποκωδικοποιήσιμη 33
34 Κωδικές λέξεις μεταβλητού μήκους Συνθήκη προθέματος (2 από 2) Δεν υπάρχει κωδικοποιημένη λέξη με μήκος l < k που να είναι όμοια στα πρώτα l δυφία με μια άλλη λέξη μήκους k > l. Αν η κωδικοποίηση τηρεί την συνθήκη προθέματος, είναι ακαριαία αποκωδικοποιήσιμη 34
35 Θεώρημα κωδικοποίησης πηγής Έστω X σύνολο από σύμβολα από την πηγή διακριτών γεγονότων χωρίς μνήμη με πεπερασμένη εντροπία H(X). Είναι πιθανό να βρεθεί κωδικοποίηση που τηρεί την συνθήκη προθέματος και έχει μέσο μήκος R που ικανοποιεί το: H(X) < R < H(X)
36 Παράδειγμα: Κωδικοποίηση πηγής μεταβλητού μήκους (1 από 2) 36
37 Παράδειγμα: Κωδικοποίηση πηγής μεταβλητού μήκους (2 από 2) 37
38 Κωδικοποίηση Huffman x 1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 Βέλτιστη κωδικοποίηση Παρόμοια κωδικοποίηση εντροπίας είναι η αριθμητική κωδικοποίηση 38
39 Κωδικοποίηση Huffman για ζεύγη γραμμάτων Encoding Pairs of Letters (99%) Encoding Single Letters (97.9%) 39
40 Κωδικοποίηση μήκους σειρών (1 από 2) Κωδικοποιεί ακολουθίες ίδιων συμβόλων (αντί να επαναλαμβάνει τα σύμβολα) σημειώνοντας το σύμβολο και τις εμφανίσεις του Χρησιμοποιεί χαρακτήρες διαφυγής (escape characters) Παράδειγμα: byte-stuffing! = χαρακτήρας διαφυγής!! =! 40
41 Κωδικοποίηση μήκους σειρών (2 από 2) Παράδειγμα κωδικοποίησης μήκους σειρών Κείμενο: ABCCCCCCCCDEFGGG Κωδικοποιημένο κείμενο:abc!8defggg Κέρδη κωδικοποίησης του C : 3/8 Όριο «ελάχιστου αριθμού εμφανίσεων» προς αντικατάσταση e.g., 4 συνεχόμενα ίδια σύμβολα σε αυτό το παράδειγμα μιας και η αντικατάσταση από μόνη της κοστίζει 3 σύμβολα (σύμβολο, χαρακτήρας διαφυγήςκαι αριθμός επαναλήψεων) 41
42 Κατηγοριοποίηση τεχνικών κωδικοποίησης (1 από 2) Κωδικοποίηση εντροπίας Κωδικοποίηση πηγής Κωδικοποίηση μήκους γραμμές (RLE) Κωδικοποίηση Huffman Αριθμητική κωδικοποίηση Πρόβλεψη Μετασχηματισμός Κωδικοποίηση πολλών επιπέδων (layered coding) DPMC DM FFT DCT Θέση δυφίου Yποδειγματοληψία Υποπεδίων Κβαντοποίηση διανυσμάτων 42
43 Κατηγοριοποίηση τεχνικών κωδικοποίησης (2 από 2) Υβριδική κωδικοποίηση JPEG MPEG H.261 DVI RTV, DVI PLV 43
44 Τέλος Ενότητας # 6 Μάθημα: Θέματα Συστημάτων Πολυμέσων Ενότητα # 6: Στοιχεία Θεωρίας Πληροφορίας Διδάσκων: Γεώργιος Κ. Πολύζος Τμήμα: Μεταπτυχιακό Πρόγραμμα Σπουδών Επιστήμη των Υπολογιστών
Τεχνολογία Πολυμέσων. Ενότητα # 7: Θεωρία πληροφορίας Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής
Τεχνολογία Πολυμέσων Ενότητα # 7: Θεωρία πληροφορίας Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα.
Τεχνολογία Πολυμέσων. Ενότητα # 8: Αρχές κωδικοποίησης Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής
Τεχνολογία Πολυμέσων Ενότητα # 8: Αρχές κωδικοποίησης Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του
Θεωρία πληροφοριών. Τεχνολογία Πολυµέσων 07-1
Θεωρία πληροφοριών Εισαγωγή Αµοιβαία πληροφορία Εσωτερική πληροφορία Υπό συνθήκη πληροφορία Παραδείγµατα πληροφορίας Μέση πληροφορία και εντροπία Παραδείγµατα εντροπίας Εφαρµογές Τεχνολογία Πολυµέσων 07-
Θέματα Συστημάτων Πολυμέσων
Θέματα Συστημάτων Πολυμέσων Ενότητα # 5: Βασική Θεωρία Πληροφορίας Διδάσκων: Γεώργιος Πολύζος Τμήμα: Μεταπτυχιακό Πρόγραμμα Σπουδών Επιστήμη των Υπολογιστών Άδειες χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Ψηφιακή Επεξεργασία Εικόνας
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ψηφιακή Επεξεργασία Εικόνας Ενότητα 6 : Κωδικοποίηση & Συμπίεση εικόνας Ιωάννης Έλληνας Τμήμα Η/ΥΣ Άδειες Χρήσης Το παρόν εκπαιδευτικό
Θέματα Συστημάτων Πολυμέσων. Ενότητα # 7: JPEG Διδάσκων: Γεώργιος Πολύζος Τμήμα: Μεταπτυχιακό Πρόγραμμα Σπουδών Επιστήμη των Υπολογιστών
Θέματα Συστημάτων Πολυμέσων Ενότητα # 7: JPEG Διδάσκων: Γεώργιος Πολύζος Τμήμα: Μεταπτυχιακό Πρόγραμμα Σπουδών Επιστήμη των Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Θέματα Συστημάτων Πολυμέσων. Ενότητα # 8: MPEG Διδάσκων: Γεώργιος Πολύζος Τμήμα: Μεταπτυχιακό Πρόγραμμα Σπουδών Επιστήμη των Υπολογιστών
Θέματα Συστημάτων Πολυμέσων Ενότητα # 8: MPEG Διδάσκων: Γεώργιος Πολύζος Τμήμα: Μεταπτυχιακό Πρόγραμμα Σπουδών Επιστήμη των Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Χρήστος Ξενάκης. Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων
ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ Κεφάλαιο 2 : Πληροφορία και Εντροπία Χρήστος Ξενάκης Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων Περιεχόμενα Πληροφορία Μέτρο πληροφορίας Μέση πληροφορία ή Εντροπία Από κοινού εντροπία
Τεχνολογία Πολυμέσων. Ενότητα # 11: Κωδικοποίηση εικόνων: JPEG Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής
Τεχνολογία Πολυμέσων Ενότητα # 11: Κωδικοποίηση εικόνων: JPEG Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου
ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ. Κεφάλαιο 2 : Πληροφορία και Εντροπία Διάλεξη: Κώστας Μαλιάτσος Χρήστος Ξενάκης, Κώστας Μαλιάτσος
ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ Κεφάλαιο 2 : Πληροφορία και Εντροπία Διάλεξη: Κώστας Μαλιάτσος Χρήστος Ξενάκης, Κώστας Μαλιάτσος Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων Περιεχόμενα Πιθανότητες Πληροφορία Μέτρο
Τηλεπικοινωνιακά Συστήματα ΙΙ
Τηλεπικοινωνιακά Συστήματα ΙΙ Διάλεξη 11: Κωδικοποίηση Πηγής Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Ατζέντα 1. Αλγόριθμοι κωδικοποίησης πηγής Αλγόριθμος Fano Αλγόριθμος Shannon Αλγόριθμος Huffman
Θεωρία Πιθανοτήτων & Στατιστική
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ & Στατιστική Ενότητα η : Τυχαίες Μεταβλητές, Συναρτήσεις Κατανομής Πιθανότητας. Γεώργιος Ζιούτας Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών
Δίαυλος Πληροφορίας. Η λειτουργία του περιγράφεται από:
Δίαυλος Πληροφορίας Η λειτουργία του περιγράφεται από: Πίνακας Διαύλου (μαθηματική περιγραφή) Διάγραμμα Διαύλου (παραστατικός τρόπος περιγραφής της λειτουργίας) Πίνακας Διαύλου Χρησιμοποιούμε τις υπό συνθήκη
Τεχνολογία Πολυμέσων. Ενότητα # 12: Κωδικοποίηση βίντεο: H.26x Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής
Τεχνολογία Πολυμέσων Ενότητα # 12: Κωδικοποίηση βίντεο: H.26x Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου
Ψηφιακές Τηλεπικοινωνίες
Ψηφιακές Τηλεπικοινωνίες Θεωρία Πληροφορίας: Χωρητικότητα Καναλιού Χωρητικότητα Καναλιού Η θεωρία πληροφορίας περιλαμβάνει μεταξύ άλλων: κωδικοποίηση πηγής κωδικοποίηση καναλιού Κωδικοποίηση πηγής: πόση
Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές. 6 ο Μάθημα. Λεωνίδας Αλεξόπουλος Λέκτορας ΕΜΠ. url:
στους Ηλεκτρονικούς Υπολογιστές 6 ο Μάθημα Λεωνίδας Αλεξόπουλος Λέκτορας ΕΜΠ email: leo@mail.ntua.gr url: http://users.ntua.gr/leo Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ. Κεφάλαιο 3 : Πηγές Πληροφορίας Χρήστος Ξενάκης. Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων
ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ Κεφάλαιο 3 : Πηγές Πληροφορίας Χρήστος Ξενάκης Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων Περιεχόμενα Διακριτές Πηγές Πληροφορίας χωρίς μνήμη Ποσότητα πληροφορίας της πηγής Κωδικοποίηση
Συστήματα Πολυμέσων. Ενότητα 7: Συμπίεση Εικόνας κατά JPEG. Θρασύβουλος Γ. Τσιάτσος Τμήμα Πληροφορικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 7: Συμπίεση Εικόνας κατά JPEG Θρασύβουλος Γ. Τσιάτσος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Ψηφιακές Τηλεπικοινωνίες
Ψηφιακές Τηλεπικοινωνίες Θεωρία Πληροφορίας: Κωδικοποίηση Πηγής Ψηφιακή Μετάδοση Υπάρχουν ιδιαίτερα εξελιγμένες τεχνικές αναλογικής μετάδοσης (που ακόμη χρησιμοποιούνται σε ορισμένες εφαρμογές) Επίσης,
Συμπίεση Δεδομένων
Συμπίεση Δεδομένων 2014-2015 Ρυθμός κωδικοποίησης Ένας κώδικας που απαιτεί L bits για την κωδικοποίηση μίας συμβολοσειράς N συμβόλων που εκπέμπει μία πηγή έχει ρυθμό κωδικοποίησης (μέσο μήκος λέξης) L
Εισαγωγή στη θεωρία πληροφορίας
Θεωρία πληροφορίας Εισαγωγή στη θεωρία πληροφορίας Τηλεπικοινωνιακά συστήματα Όλα τα τηλεπικοινωνιακά συστήματα σχεδιάζονται για να μεταφέρουν πληροφορία Σε κάθε τηλεπικοινωνιακό σύστημα υπάρχει μια πηγή
Αρχές κωδικοποίησης. Τεχνολογία Πολυμέσων και Πολυμεσικές Επικοινωνίες 08-1
Αρχές κωδικοποίησης Απαιτήσεις κωδικοποίησης Είδη κωδικοποίησης Κωδικοποίηση εντροπίας Διαφορική κωδικοποίηση Κωδικοποίηση μετασχηματισμών Στρωματοποιημένη κωδικοποίηση Κβαντοποίηση διανυσμάτων Τεχνολογία
Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Ψηφιακή Σχεδίαση
Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Ψηφιακή Σχεδίαση Ενότητα 9: Ελαχιστοποίηση και Κωδικοποίηση Καταστάσεων, Σχεδίαση με D flip-flop, Σχεδίαση με JK flip-flop, Σχεδίαση με T flip-flop Δρ. Μηνάς
Ψηφιακή Επεξεργασία Εικόνας
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ψηφιακή Επεξεργασία Εικόνας Ενότητα 7 : Πρότυπο συμπίεσης JPEG Ιωάννης Έλληνας Τμήμα Η/ΥΣ Άδειες Χρήσης Το παρόν εκπαιδευτικό
Τεχνολογία Πολυμέσων. Ενότητα # 14: Κωδικοποίηση βίντεο: Η.264 Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής
Τεχνολογία Πολυμέσων Ενότητα # 14: Κωδικοποίηση βίντεο: Η.264 Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου
Τεχνολογία Πολυμέσων. Ενότητα # 4: Ήχος Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής
Τεχνολογία Πολυμέσων Ενότητα # 4: Ήχος Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα. Το
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Ενότητα 13: Αλγόριθμοι-Μεγάλων ακεραίων- Εκθετοποίηση- Πολλαπλασιασμός πινάκων -Strassen Μαρία Σατρατζέμη Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ. Ενότητα 6: Κωδικοποίηση & Συμπίεση Εικόνας
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ Ενότητα 6: Κωδικοποίηση & Συμπίεση Εικόνας Ιωάννης Έλληνας Τμήμα Υπολογιστικών Συστημάτων Άδειες Χρήσης Το
Αρχές κωδικοποίησης. Τεχνολογία Πολυµέσων 08-1
Αρχές κωδικοποίησης Απαιτήσεις κωδικοποίησης Είδη κωδικοποίησης Βασικές τεχνικές κωδικοποίησης Κωδικοποίηση Huffman Κωδικοποίηση µετασχηµατισµών Κβαντοποίηση διανυσµάτων ιαφορική κωδικοποίηση Τεχνολογία
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ
Θ.Ε. ΠΛΗ22 (2012-13) ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ #4. Έκδοση v2 με διόρθωση τυπογραφικού λάθους στο ερώτημα 6.3 Στόχος: Βασικό στόχο της 4 ης εργασίας αποτελεί η εξοικείωση με τα μέτρα ποσότητας πληροφορίας τυχαίων
Ψηφιακές Τηλεπικοινωνίες. Θεωρία Ρυθμού Παραμόρφωσης
Ψηφιακές Τηλεπικοινωνίες Θεωρία Ρυθμού Παραμόρφωσης Θεωρία Ρυθμού-Παραμόρφωσης Θεώρημα Κωδικοποίησης Πηγής: αν έχω αρκετά μεγάλο μπλοκ δεδομένων, μπορώ να φτάσω κοντά στην εντροπία Πιθανά Προβλήματα: >
Υπολογιστικά & Διακριτά Μαθηματικά
Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 5: Αναδρομικές σχέσεις - Υπολογισμός Αθροισμάτων Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για
Χρήστος Ξενάκης. Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων
ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ Κεφάλαιο 9 : Κανάλι-Σύστημα Χρήστος Ξενάκης Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων Περιεχόμενα Ομιλίας Χωρητικότητα Χ ό καναλιού Το Gaussian κανάλι επικοινωνίας Τα διακριτά
Πρόλογος 1. 1 Μαθηµατικό υπόβαθρο 9
Πρόλογος 1 Μαθηµατικό υπόβαθρο 7 1 Μαθηµατικό υπόβαθρο 9 1.1 Η αριθµητική υπολοίπων.............. 10 1.2 Η πολυωνυµική αριθµητική............ 14 1.3 Θεωρία πεπερασµένων οµάδων και σωµάτων.... 17 1.4 Πράξεις
Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος
Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Χιωτίδης Γεώργιος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Θεωρία Πιθανοτήτων & Στατιστική
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ & Στατιστική Ενότητα 4 η : Χαρακτηριστικά Τυχαίων Μεταβλητών. Γεώργιος Ζιούτας Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Α.Π.Θ.
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Ενότητα 7β: Όρια Αλγόριθμων Ταξινόμησης Μαρία Σατρατζέμη Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commos.
Συστήματα Πολυμέσων. Ενότητα 6: Συμπίεση Ψηφιακής Εικόνας. Θρασύβουλος Γ. Τσιάτσος Τμήμα Πληροφορικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 6: Συμπίεση Ψηφιακής Εικόνας Θρασύβουλος Γ. Τσιάτσος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Ανάκτηση Πληροφορίας
Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Ανάκτηση Πληροφορίας Διδάσκων: Φοίβος Μυλωνάς fmylonas@ionio.gr Διάλεξη #08 Συµπίεση Κειµένων Φοίβος Μυλωνάς fmylonas@ionio.gr Ανάκτηση Πληροφορίας 1 Άδεια χρήσης
Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ
Διακριτά Μαθηματικά Ι Ενότητα 2: Γεννήτριες Συναρτήσεις Μέρος 1 Διδάσκων: Χ. Μπούρας (bouras@cti.gr) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Υπολογιστικά & Διακριτά Μαθηματικά
Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 4: Διατάξεις Μεταθέσεις Συνδυασμοί Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Ψηφιακή Επεξεργασία Εικόνας
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ψηφιακή Επεξεργασία Εικόνας Ενότητα 8 : Πρότυπο συμπίεσης JPEG2000 Ιωάννης Έλληνας Τμήμα Η/ΥΣ Άδειες Χρήσης Το παρόν εκπαιδευτικό
Τεχνολογία Πολυμέσων. Ενότητα # 10: Κωδικοποίηση ήχου Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής
Τεχνολογία Πολυμέσων Ενότητα # 10: Κωδικοποίηση ήχου Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα.
Ανάκτηση Πληροφορίας
Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Ανάκτηση Πληροφορίας Διδάσκων: Φοίβος Μυλωνάς fmylonas@ionio.gr Διάλεξη #06 Πιθανοτικό Μοντέλο 1 Άδεια χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Στατιστική Επιχειρήσεων Ι
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Τεχνολογικό Εκπαιδευτικό Ίδρυμα Πειραιά Στατιστική Επιχειρήσεων Ι Ενότητα 2: Τυχαίες Μεταβλητές Μιλτιάδης Χαλικιάς, Επίκουρος Καθηγητής Τμήμα Διοίκησης Επιχειρήσεων Άδειες Χρήσης Το
Θεωρία Πιθανοτήτων & Στατιστική
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ & Στατιστική Ενότητα 4 η : Χαρακτηριστικά Τυχαίων Μεταβλητών. Γεώργιος Ζιούτας Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Α.Π.Θ.
Θεωρία Πληροφορίας. Διάλεξη 4: Διακριτή πηγή πληροφορίας χωρίς μνήμη. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής
Θεωρία Πληροφορίας Διάλεξη 4: Διακριτή πηγή πληροφορίας χωρίς μνήμη Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Ατζέντα Διακριτή πηγή πληροφορίας χωρίς μνήμη Ποσότητα πληροφορίας της πηγής Κωδικοποίηση
Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές. 5 ο Μάθημα. Λεωνίδας Αλεξόπουλος Λέκτορας ΕΜΠ. url:
στους Ηλεκτρονικούς Υπολογιστές 5 ο Μάθημα Λεωνίδας Αλεξόπουλος Λέκτορας ΕΜΠ email: leo@mail.ntua.gr url: http://users.ntua.gr/leo Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Θεωρία τησ Πληροφορίασ (Θ) ΔΙΔΑΚΩΝ: Δρ. Αναςτάςιοσ Πολίτησ
Θεωρία τησ Πληροφορίασ (Θ) Ενότητα 4: Συμπίεςη χωρίσ Απώλειεσ ΔΙΔΑΚΩΝ: Δρ. Αναςτάςιοσ Πολίτησ ΧΟΛΗ ΣΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΣΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗ ΣΕ Άδειεσ Χρήςησ Σο παρόν εκπαιδευτικό υλικό υπόκειται
Τεχνολογία Πολυμέσων. Ενότητα # 9: Κωδικοποίηση εντροπίας Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής
Τεχνολογία Πολυμέσων Ενότητα # 9: Κωδικοποίηση εντροπίας Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του
Υπολογιστικά & Διακριτά Μαθηματικά
Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 7: Ανεξάρτητα ενδεχόμενα Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως
Λογισμός 3. Ενότητα 19: Θεώρημα Πεπλεγμένων (γενική μορφή) Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 19: Θεώρημα Πεπλεγμένων (γενική μορφή) Μιχ. Γ. Μαριάς Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΜΕ ΧΡΗΣΗ Η/Υ
ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΜΕ ΧΡΗΣΗ Η/Υ Ενότητα 11: Επιλογή μεταβλητών στην παλινδρόμηση Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες,
Εισαγωγή στις Τηλεπικοινωνίες
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Εισαγωγή στις Τηλεπικοινωνίες Ενότητα 3: Δειγματοληψία και Ανακατασκευή Σημάτων Όνομα Καθηγητή: Δρ. Ηρακλής Σίμος Τμήμα: Ηλεκτρονικών
Θεωρία Πιθανοτήτων & Στατιστική
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ & Στατιστική Ενότητα 5 η : Θεωρητικές Κατανομές Πιθανότητας για Διακριτή Τυχαία Μεταβλητή. Γεώργιος Ζιούτας Τμήμα Ηλεκτρολόγων Μηχανικών
Εισαγωγή στην Επιστήμη των Υπολογιστών
Εισαγωγή στην Επιστήμη των Υπολογιστών Ενότητα 2: Αποθήκευση Δεδομένων: Κώδικες, 1ΔΩ Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης Διδάσκων: Θεόδωρος Τσιλιγκιρίδης Μαθησιακοί Στόχοι Η Ενότητα 2 διαπραγματεύεται
Προγραμματισμός Ηλεκτρονικών Υπολογιστών 1
Προγραμματισμός Ηλεκτρονικών Υπολογιστών 1 Ενότητα 3: Άλγεβρα Βοole και Λογικές Πράξεις Δρ. Φραγκούλης Γεώργιος Τμήμα Ηλεκτρολογίας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ενότητα 18: Επίλυση Γενικών Γραμμικών Προβλημάτων Σαμαράς Νικόλαος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ενότητα 1: Δυϊκή Θεωρία, Οικονομική Ερμηνεία Δυϊκού Προβλήματος Σαμαράς Νικόλαος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Γενικά Μαθηματικά Ι. Ενότητα 17: Αριθμητική Ολοκλήρωση, Υπολογισμός Μήκους Καμπύλης Λουκάς Βλάχος Τμήμα Φυσικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 7: Αριθμητική Ολοκλήρωση, Υπολογισμός Μήκους Καμπύλης Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Λογισμός 3. Ενότητα 18: Θεώρημα Πεπλεγμένων (Ειδική περίπτωση) Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 18: Θεώρημα Πεπλεγμένων (Ειδική περίπτωση) Μιχ. Γ. Μαριάς Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ. Ενότητα : ΔΙΑΚΡΙΤΟΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ενότητα : ΔΙΑΚΡΙΤΟΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER Aναστασία Βελώνη Τμήμα Η.Υ.Σ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό
Πληροφορική. Ενότητα 4 η : Κωδικοποίηση & Παράσταση Δεδομένων. Ι. Ψαρομήλιγκος Τμήμα Λογιστικής & Χρηματοοικονομικής
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Πληροφορική Ενότητα 4 η : Κωδικοποίηση & Παράσταση Δεδομένων Ι. Ψαρομήλιγκος Τμήμα Λογιστικής & Χρηματοοικονομικής Άδειες Χρήσης
Συστήματα Πολυμέσων. Ενότητα 2: Εισαγωγικά θέματα Ψηφιοποίησης. Θρασύβουλος Γ. Τσιάτσος Τμήμα Πληροφορικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 2: Εισαγωγικά θέματα Ψηφιοποίησης Θρασύβουλος Γ. Τσιάτσος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Συστήματα Πολυμέσων Ενότητα 4: Συμπίεση. Επικ. Καθηγητής Συνδουκάς Δημήτριος Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά)
Συστήματα Πολυμέσων Ενότητα 4: Συμπίεση Επικ. Καθηγητής Συνδουκάς Δημήτριος Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Θεωρία Πιθανοτήτων & Στατιστική
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ & Στατιστική Ενότητα 3 η : Τυχαίες Μεταβλητές, Συναρτήσεις Κατανομής Πιθανότητας. Γεώργιος Ζιούτας Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών
Οικονομετρία. Απλή Παλινδρόμηση Βασικές έννοιες και τυχαίο σφάλμα. Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης. Διδάσκων: Λαζαρίδης Παναγιώτης
Οικονομετρία Απλή Παλινδρόμηση Βασικές έννοιες και τυχαίο σφάλμα Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης Διδάσκων: Λαζαρίδης Παναγιώτης Μαθησιακοί Στόχοι Γνώση και κατανόηση των εισαγωγικών εννοιών που
Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ
Θεωρία Υπολογισμού Ενότητα 26: Καθολική Μηχανή Turing Τμήμα Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που
Επεξεργασία Πολυµέσων. Δρ. Μαρία Κοζύρη Π.Μ.Σ. «Εφαρµοσµένη Πληροφορική» Τµήµα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Πανεπιστήµιο Θεσσαλίας
Π.Μ.Σ. «Εφαρµοσµένη Πληροφορική» Τµήµα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Πανεπιστήµιο Θεσσαλίας Ενότητα 3: Επισκόπηση Συµπίεσης 2 Θεωρία Πληροφορίας Κωδικοποίηση Θεµελιώθηκε απο τον Claude
Θεώρημα κωδικοποίησης πηγής
Κωδικοποίηση Kωδικοποίηση πηγής Θεώρημα κωδικοποίησης πηγής Καθορίζει ένα θεμελιώδες όριο στον ρυθμό με τον οποίο η έξοδος μιας πηγής πληροφορίας μπορεί να συμπιεσθεί χωρίς να προκληθεί μεγάλη πιθανότητα
Σεραφείµ Καραµπογιάς. Πηγές Πληροφορίας και Κωδικοποίηση Πηγής 6.3-1
Ο αλγόριθµος Lempel-iv Ο αλγόριθµος Lempel-iv ανήκει στην κατηγορία των καθολικών universal αλγορίθµων κωδικοποίησης πηγής δηλαδή αλγορίθµων που είναι ανεξάρτητοι από τη στατιστική της πηγής. Ο αλγόριθµος
ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ. ΕΝΟΤΗΤΑ: Γραμμικές Συναρτήσεις Διάκρισης. ΔΙΔΑΣΚΟΝΤΕΣ: Βλάμος Π. Αυλωνίτης Μ. ΙΟΝΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ
ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ ΕΝΟΤΗΤΑ: Γραμμικές Συναρτήσεις Διάκρισης ΙΟΝΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΔΙΔΑΣΚΟΝΤΕΣ: Βλάμος Π. Αυλωνίτης Μ. Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Εισαγωγή στις Τηλεπικοινωνίες
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Εισαγωγή στις Τηλεπικοινωνίες Ενότητα 4: Κβάντιση και Κωδικοποίηση Σημάτων Όνομα Καθηγητή: Δρ. Ηρακλής Σίμος Τμήμα: Ηλεκτρονικών
ΤΕΧΝΟΛΟΓΙΑ, ΚΑΙΝΟΤΟΜΙΑ ΚΑΙ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΤΗΤΑ 9 Ο εξάμηνο Χημικών Μηχανικών
ΤΕΧΝΟΛΟΓΙΑ, ΚΑΙΝΟΤΟΜΙΑ ΚΑΙ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΤΗΤΑ 9 Ο εξάμηνο Χημικών Μηχανικών Γιώργος Μαυρωτάς, Αν.Καθηγητής ΕΜΠ mavrotas@chemeng.ntua.gr ΑΝΑΛΥΣΗ ΕΥΑΙΣΘΗΣΙΑΣ ΑΝΑΛΥΣΗ ΡΙΣΚΟΥ Άδεια Χρήσης Το παρόν εκπαιδευτικό
Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ
Θεωρία Υπολογισμού Ενότητα 13: Ελαχιστοποίηση αυτομάτων Τμήμα Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που
ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ Ενότητα # 7: Θεωρία Πιθανοτήτων (Πείραμα Τύχης) Εβελίνα Κοσσιέρη Τμήμα Λογιστικής και Χρηματοοικονομικής
11 ο ΕΡΓΑΣΤΗΡΙΟ ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα 11 ο ΕΡΓΑΣΤΗΡΙΟ ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ενότητα: Μ/Σ FOURIER Aναστασία Βελώνη Τμήμα Η.Υ.Σ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
Περιεχόμενα Ορισμός και λειτουργία των μηχανών Turing Θεωρία Υπολογισμού Ενότητα 20: Μηχανές Turing: Σύνθεση και Υπολογισμοί Επ. Καθ. Π. Κατσαρός Τμήμ
Θεωρία Υπολογισμού Ενότητα 20: Μηχανές Turing: Σύνθεση και Υπολογισμοί Τμήμα Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,
Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ
Διακριτά Μαθηματικά Ι Ενότητα 2: Γεννήτριες Συναρτήσεις Μέρος 2 Διδάσκων: Χ. Μπούρας (bouras@cti.gr) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Πιθανότητες. Συνάρτηση κατανομής πιθανότητας Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Πιθανότητες Συνάρτηση κατανομής πιθανότητας Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε
Θεωρία της Πληροφορίας 3 ο Εξάμηνο
Σμήμα Πληροφορικής & Επικοινωνιών Θεωρία της Πληροφορίας 3 ο Εξάμηνο Τομέας Τηλεπικοινωνιών και Δικτύων Δρ. Αναστάσιος Πολίτης Καθηγητής Εφαρμογών 1 Διεξαγωγή και Εξέταση του Μαθήματος Μάθημα Πώς? 13 Διαλέξεις.
Στατιστική Ι. Ενότητα 9: Κατανομή t-έλεγχος Υποθέσεων. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών
Στατιστική Ι Ενότητα 9: Κατανομή t-έλεγχος Υποθέσεων Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για
Εισαγωγή στην Πληροφορική & τον Προγραμματισμό
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Εισαγωγή στην Πληροφορική & τον Προγραμματισμό Ενότητα 3 η : Κωδικοποίηση & Παράσταση Δεδομένων Ι. Ψαρομήλιγκος Χ. Κυτάγιας Τμήμα
( ) log 2 = E. Σεραφείµ Καραµπογιάς
Παρατηρούµε ότι ο ορισµός της Η βασίζεται στη χρονική µέση τιµή. Για να ισχύει ο ορισµός αυτός και για µέση τιµή συνόλου πρέπει η πηγή να είναι εργοδική, δηλαδή H ( X) ( ) = E log 2 p k Η εντροπία µιας
Θεωρία Πληροφορίας. Διάλεξη 5: Διακριτή πηγή πληροφορίας με μνήμη. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής
Θεωρία Πληροφορίας Διάλεξη 5: Διακριτή πηγή πληροφορίας με μνήμη Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Ατζέντα 1. Διακριτές πηγές πληροφορίας με μνήμη Μαρκοβιανές αλυσίδες Τάξη μακροβιανών αλυσίδων
Οργάνωση Υπολογιστών
Οργάνωση Υπολογιστών Επιμέλεια: Γεώργιος Θεοδωρίδης, Επίκουρος Καθηγητής Ανδρέας Εμερετλής, Υποψήφιος Διδάκτορας Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών 1 Άδειες Χρήσης Το παρόν υλικό
Εισαγωγή στους Αλγορίθμους Φροντιστήριο 1
Εισαγωγή στους Αλγορίθμους Φροντιστήριο 1 Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
Ψηφιακή Σχεδίαση. Ενότητα: ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ No:01. Δρ. Μηνάς Δασυγένης. Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών
Ψηφιακή Σχεδίαση Ενότητα: ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ No:01 Δρ. Μηνάς Δασυγένης mdasyg@ieee.org Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Εργαστήριο Ψηφιακών Συστημάτων και Αρχιτεκτονικής Υπολογιστών http:
ΒΟΗΘΗΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ
Ε.Μ.Π. ΣΧΟΛΗ ΑΡΧΙΤΕΚΤΟΝΩΝ ΤΟΜΕΑΣ ΣΥΝΘΕΣΕΩΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΑΙΧΜΗΣ ΠΕΡΙΟΧΗ ΟΙΚΟΔΟΜΙΚΗΣ ntua ACADEMIC OPEN COURSES ΒΟΗΘΗΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΤΗΣ ΟΙΚΟΔΟΜΙΚΗΣ II Β. ΤΣΟΥΡΑΣ Επίκουρος Καθηγητής Άδεια
Βιομηχανικοί Ελεγκτές
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τ.Τ Βιομηχανικοί Ελεγκτές Ενότητα #13: Ψηφιακός Έλεγχος Κωνσταντίνος Αλαφοδήμος Τμήματος Μηχανικών Αυτοματισμού Τ.Ε. Άδειες Χρήσης Το παρόν εκπαιδευτικό
7 ο ΕΡΓΑΣΤΗΡΙΟ ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα 7 ο ΕΡΓΑΣΤΗΡΙΟ ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ενότητα: ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE Aναστασία Βελώνη Τμήμα Η.Υ.Σ Άδειες Χρήσης Το παρόν εκπαιδευτικό
Αυτοματοποιημένη χαρτογραφία
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Αυτοματοποιημένη χαρτογραφία Ενότητα # 3: Ψηφιακός χάρτης διαχείριση - 1 ο μέρος Ιωάννης Γ. Παρασχάκης Τμήμα Αγρονόμων & Τοπογράφων Μηχανικών
Χρήστος Ξενάκης. Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων
ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ Κεφάλαιο 3 : Πηγές Πληροφορίας Χρήστος Ξενάκης Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων Περιεχόμενα Διακριτές Πηγές Πληροφορίας χωρίς μνήμη Ποσότητα πληροφορίας της πηγής Κωδικοποίηση
Θέματα Συστημάτων Πολυμέσων. Ενότητα #3: Ιδιότητες μέσων Διδάσκων: Γεώργιος K. Πολύζος Τμήμα: Μεταπτυχιακό Πρόγραμμα Σπουδών Επιστήμη των Υπολογιστών
Θέματα Συστημάτων Πολυμέσων Ενότητα #3: Ιδιότητες μέσων Διδάσκων: Γεώργιος K. Πολύζος Τμήμα: Μεταπτυχιακό Πρόγραμμα Σπουδών Επιστήμη των Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Συμπίεση Δεδομένων
Συμπίεση Δεδομένων 014-015 Μοναδικά Αποκωδικοποιήσιμοι Κώδικες Δρ. Ν. Π. Σγούρος Έλεγος μοναδικής Αποκωδικοποίησης Γενικοί ορισμοί Έστω δύο κωδικές λέξεις α,β με μήκη,m και
ΕΥΦΥΗΣ ΕΛΕΓΧΟΣ. Ενότητα #11: Ασαφής Αριθμητική. Αναστάσιος Ντούνης Τμήμα Μηχανικών Αυτοματισμού Τ.Ε.
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΥΦΥΗΣ ΕΛΕΓΧΟΣ Ενότητα #11: Ασαφής Αριθμητική Αναστάσιος Ντούνης Τμήμα Μηχανικών Αυτοματισμού Τ.Ε. Άδειες Χρήσης Το παρόν εκπαιδευτικό
Κεφάλαιο 2 Πληροφορία και εντροπία
Κεφάλαιο 2 Πληροφορία και εντροπία Άσκηση. Έστω αλφάβητο Α={0,} και δύο πηγές p και q. Έστω οτι p(0)=-r, p()=r, q(0)=-s και q()=s. Να υπολογιστούν οι σχετικές εντροπίες Η(Α,p/q) και Η(Α,q/p). Να γίνει
Μαθηματικά. Ενότητα 6: Ασκήσεις Ορίων Συνάρτησης. Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής
Μαθηματικά Ενότητα 6: Ασκήσεις Ορίων Συνάρτησης Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ, ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ, ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 422: ΣΥΣΤΗΜΑΤΑ ΠΟΛΥΜΕΣΩΝ Ακαδηµαϊκό Έτος 2004 2005, Χειµερινό Εξάµηνο Φροντιστηριακή Άσκηση 3: Εντροπία, κωδικοποίηση Quadtree 1. Εντροπία 22 Σεπτεµβρίου 2004
Συστήματα Πολυμέσων. Ενότητα 3: Εισαγωγικά θέματα Συμπίεσης. Θρασύβουλος Γ. Τσιάτσος Τμήμα Πληροφορικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 3: Εισαγωγικά θέματα Συμπίεσης Θρασύβουλος Γ. Τσιάτσος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative