Μάθημα 7 ο. Συμπίεση Εικόνας ΤΜΗΥΠ / ΕΕΣΤ 1
|
|
- ΣoφпїЅα Βλαβιανός
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Μάθημα 7 ο Συμπίεση Εικόνας ΤΜΗΥΠ / ΕΕΣΤ 1
2 Εισαγωγή (1) Οι τεχνικές συμπίεσης βασίζονται στην απόρριψη της πλεονάζουσας πληροφορίας Ανάγκες που καλύπτονται Εξοικονόμηση μνήμης Ελάττωση χρόνου και εύρους ζώνης μετάδοσης Ιδιαίτερα μεγάλη η σημασία της συμπίεσης στις 2-D και 3-D εφαρμογές Κατηγορίες τεχνικών συμπίεσης Απωλεστικές Μη απωλεστικές ΤΜΗΥΠ / ΕΕΣΤ 2
3 Εισαγωγή (2) Εκμετάλλευση 3 ειδών πλεονασμού πληροφορίας: 1. Πλεονασμός κωδικοποίησης (per pixel) Μπορούμε να χρησιμοποιήσουμε διαφορετική αναπαράσταση για gray levels που εμφανίζονται με διαφορετικές πιθανότητες (π.χ. κωδικοποίηση Huffman) 2. Πλεονασμός μεταξύ των pixel (interpixel) Μπορούμε να εκμεταλλευτούμε τα επαναλαμβανόμενα μοτίβα ή τις μεγάλες ομαλές επιφάνειες (πχ κωδικοποίηση μήκους διαδρομών) 3. Φυσικο-οπτικός πλεονασμός Αξιοποίηση του τρόπου με τον οποίο αντιλαμβάνεται ο άνθρωπος την οπτική πληροφορία (π.χ. ακμές) ΤΜΗΥΠ / ΕΕΣΤ 3
4 Εισαγωγή (3) Τα βασικά στάδια μιας απωλεστικής τεχνικής: 1. Μετασχηματισμός της εικόνας στο κατάλληλο πεδίο - Πεδίο εικονοστοιχείων (π.χ., ADPCM) - Πεδίο συχνοτήτων (π.χ., DCT, Wavelet) - Πεδίο παραμέτρων μοντέλου (π.χ., στοχαστικά μοντέλα, fractals κλπ) ΤΜΗΥΠ / ΕΕΣΤ 4
5 Εισαγωγή (4) 2. Κβαντισμός των αποτελεσμάτων του 1ου σταδίου - ομοιόμορφος - ανομοιόμορφος - διανυσματικός 3. Προσδιορισμός του λεξικού (codebook design) για την αναπαράσταση των εξόδων του κβαντιστή ΤΜΗΥΠ / ΕΕΣΤ 5
6 Εισαγωγή (5) Παραδείγματα μη απωλεστικών τεχνικών: Κωδικοποίηση Huffman Bit plane coding Constant Area Coding Contour Tracing Κωδικοποίηση Μήκους Διαδρομών Συμπίεση LZW Κωδικοποίηση με Πρόβλεψη... Παραδείγματα απωλεστικών τεχνικών: Κωδικοποίηση με Πρόβλεψη (και κβαντισμό) Κωδικοποίηση με Μετασχηματισμούς και πολλές άλλες ΤΜΗΥΠ / ΕΕΣΤ 6
7 Κωδικοποίηση Huffman (1) Έστω εικόνα ΝxΜ που αναπαριστάται με Β bits/pixel. Μπορούμε να εκτιμήσουμε την συνάρτηση πυκνότητας πιθανότητας p(i) κατασκευάζοντας το ιστόγραμμά της. Κωδικοποίηση Εντροπίας: αντιστοιχίζουμε μικρές κωδικές λέξεις στα επίπεδα φωτεινότητας που εμφανίζονται με μεγάλη πιθανότητα και μεγάλες κωδικές λέξεις σε αυτά που εμφανίζονται σπανιότερα. Τα μήκη των λέξεων επιλέγονται έτσι ώστε το μέσο μήκος να ελαχιστοποιείται. Από την Θεωρία Πληροφορίας ισχύει: H B L H B1 όπου H(B) η εντροπία της εικόνας. ΤΜΗΥΠ / ΕΕΣΤ 7
8 Κωδικοποίηση Huffman (2) i= Κατασκευή του δέντρου Huffman i= i=3 i=0 i=4 i=5 i=6 i= Δημιουργία των κωδικών λέξεων i=0 i=3 i=2 i=1 i=4 i=5 i=6 i=7 ΤΜΗΥΠ / ΕΕΣΤ 8
9 Κωδικοποίηση Μήκους Διαδρομών Έστω x1 x... x 2 M μία γραμμή εικόνας και x i οι τιμές φωτεινότητας των pixels. Μπορεί να θεωρηθεί ότι η γραμμή αποτελείται από k τμήματα με μήκος l και φωτεινότητα g,, i i 1 i k και να αναπαρασταθεί με ζεύγη g, ως εξής: i l x, x g, l, g, l,, i g, l 1, M l i Για δυαδικές εικόνες, μόνο τα μήκη είναι απαραίτητο να κωδικοποιηθούν (συνήθως με προθεματικό τρόπο) Για επιπλέον συμπίεση, μπορεί να χρησιμοποιηθεί κωδικοποίηση Huffman για τα μήκη. ΤΜΗΥΠ / ΕΕΣΤ 9 k k
10 Παράδειγμα Παράδειγμα γραμμής δυαδικής εικόνας και αναπαράστασή της με ζεύγη g i, l i k 10 l l l l l l l l l l ,3, 0,6, 1,1, 0,1, 1,1, 0,1, 1,1, 0,3, 1,4, 0,8 3,6,1,1,1,1,1,3,4,8 Πιθανότητα εμφάνισης του 0 : p Μέγιστο μήκος των 0 : M=2 m Επιτυγχάνεται Συμπίεση C: M 1 p C m (1 p ) ΤΜΗΥΠ / ΕΕΣΤ 10
11 Τροποποιημένη Κωδικοποίηση Read Είναι μία επέκταση της κωδικοποίησης μήκους διαδρομών στις δύο διαστάσεις. Εκμεταλλευόμαστε την συσχέτιση μεταξύ των διαδοχικών γραμμών της εικόνας. Κάθε καινούρια γραμμή κωδικοποιείται με βάση την προηγούμενή της. Η READ χρησιμοποιεί 3 στοιχεία μετάβασης στην τρέχουσα γραμμή, a0, a1, a2, και 2 στην γραμμή αναφοράς,. b 1,b 2 ΤΜΗΥΠ / ΕΕΣΤ 11
12 Συμπίεση LZW (1) Ο δημοφιλέστερος μη-απωλεστικός αλγόριθμος συμπίεσης ψηφιακής εικόνας (TIFF, GIF). Η εικόνα αντιμετωπίζεται ως μία μονοδιάστατη ακολουθία bits. Δημιουργείται ένας πίνακας κωδικών λέξεων που αντιστοιχίζονται στις διάφορες ακολουθίες bits. ΤΜΗΥΠ / ΕΕΣΤ 12
13 Συμπίεση LZW (2) Οι πρώτες 256 κωδικές λέξεις αντιστοιχίζονται στις τιμές Η λέξη #257 στο Clear code και η #258 στο EOI. Οι υπόλοιπες λέξεις αντιστοιχίζονται σε ακολουθίες bits που εμφανίζονται στην εικόνα. Τα bits αναπαράστασης των κωδικών λέξεων αυξάνονται σταδιακά Clear code EOI string string ΤΜΗΥΠ / ΕΕΣΤ 13
14 Άλλες μη-απωλεστικές τεχνικές Bit plane coding Αποσύνθεση σε L δυαδικές εικόνες και διαφορετική κωδικοποίηση ανάλογα με τη «βαρύτητά» τους Constant Area Coding Υποδιαίρεση σε υποεικόνες και προθεματική κωδικοποίηση των υποεικόνων ανάλογα με το αν είναι Λευκές, Μαύρες ή Μικτές (0, 10, 11). Στην τελευταία περίπτωση αποστέλλεται όλη η υποεικόνα Contour Tracing Βρίσκεται το σύνολο των «ισοϋψών» καμπυλών της εικόνας και κωδικοποιούνται με αποδοτικό τρόπο ΤΜΗΥΠ / ΕΕΣΤ 14
15 Μη Απωλεστική Κωδικοποίηση με Πρόβλεψη (1) Συνήθως τα δεδομένα της εικόνας σε μία γειτονιά είναι συσχετισμένα μεταξύ τους, οπότε είναι δυνατόν να «προβλέψουμε» την τιμή ενός pixel με βάση αυτά που βρίσκονται στην γειτονιά του. Για κάθε pixel (x,y) αποθηκεύουμε τη «νέα» πληροφορία που περιέχει. «Νέα» πληροφορία είναι η διαφορά της προβλεφθείσας από την πραγματική τιμή του pixel. ΤΜΗΥΠ / ΕΕΣΤ 15
16 Μη Απωλεστική Κωδικοποίηση με Πρόβλεψη (2) Για κάθε pixel της εικόνας, η διάταξη πρόβλεψης παράγει την αναμενόμενη τιμή βασισμένη στις προηγούμενες εισόδους (pixels). Η τιμή αυτή στρογγυλοποιείται στον κοντινότερο ακέραιο. Το λάθος πρόβλεψης είναι Η αρχική τιμή μπορεί να ανακατασκευαστεί χωρίς απώλειες ως εξής f r όπου : e n f n f n fˆ n f e f n n r m [ ˆ fr round fn] round ai fn i i1 ΤΜΗΥΠ / ΕΕΣΤ 16
17 Μη Απωλεστική Κωδικοποίηση με Πρόβλεψη (3) Διάταξη συμπίεσης Διάταξη ανακατασκευής Για την ανακατασκευή απαιτείται η αποστολή των συντελεστών πρόβλεψης και του κωδικοποιημένου σφάλματος. ΤΜΗΥΠ / ΕΕΣΤ 17
18 Απωλεστική Κωδικοποίηση με Πρόβλεψη (1) Για καλύτερη συμπίεση εφαρμόζουμε κβαντισμό στο e n Σε αυτή την περίπτωση το λάθος πρόβλεψης κβαντίζεται σε ένα περιορισμένο εύρος τιμών. Η διαδικασία της κβάντισης είναι μη αντιστρέψιμη και απωλεστική (χάνεται πληροφορία). ΤΜΗΥΠ / ΕΕΣΤ 18
19 Απωλεστική Κωδικοποίηση με Πρόβλεψη (2) Διάταξη συμπίεσης Διάταξη ανακατασκευής ΤΜΗΥΠ / ΕΕΣΤ 19
20 Απωλεστική Κωδικοποίηση με Πρόβλεψη (3) Ο σχεδιασμός του προβλεπτή* : Έστω ότι επιλέγεται μονοδιάστατη κωδικοποίηση (τύπου DPCM) σε κάθε γραμμή της εικόνας. Κάθε γραμμή f(m) μοντελοποιείται σαν στάσιμη AR διαδικασία: όπου το ε(m) είναι όρος λευκού Γκαουσιανού προσθετικού θορύβου, ασυσχέτιστος με το f(m). Οι παράμετροι του μοντέλου AR, μέσω του οποίου αναπαράγεται η f(m), είναι ίσες με τους συντελεστές του προβλεπτή της f(m). * Παρόμοιος είναι και ο σχεδιασμός του προβλεπτή για τη μη απωλεστική διαδικασία ΤΜΗΥΠ / ΕΕΣΤ 20
21 Απωλεστική Κωδικοποίηση με Πρόβλεψη (4) Το κβαντισμένο σφάλμα e q (m) εκπέμπεται στον δέκτη: Η γραμμή f(m) ανακατασκευάζεται ως εξής: Οι συντελεστές πρόβλεψης βρίσκονται λύνοντας το σύστημα (όπου R(k) η συνάρτηση αυτοσυσχέτισης): ΤΜΗΥΠ / ΕΕΣΤ 21
22 Απωλεστική Κωδικοποίηση με Πρόβλεψη (5) Τα μονοδιάστατα μοντέλα πρόβλεψης επεκτείνονται σε δισδιάστατα της μορφής: Η εύρεση των παραμέτρων του 2D-AR μοντέλου γίνεται επεκτείνοντας στις 2 διαστάσεις την προηγούμενη διαδικασία Για βέλτιστη επιλογή AR μοντέλου πρόβλεψης ελαχιστοποιείται το μέσο τετραγωνικό σφάλμα: ΤΜΗΥΠ / ΕΕΣΤ 22
23 Απωλεστική Κωδικοποίηση με Πρόβλεψη (6) Όταν χρησιμοποιείται αιτιατή πρόβλεψη, τότε αυτή βασίζεται μόνο σε ήδη ανακατασκευασμένες τιμές του παρελθόντος ΤΜΗΥΠ / ΕΕΣΤ 23
24 Απωλεστική Κωδικοποίηση με Πρόβλεψη (7) Για την ελαχιστοποίηση λύνουμε ένα σύστημα της μορφής: Οι συντελεστές αυτοσυσχέτισης μπορούν να εκτιμηθούν ως: Η ψηφιακή εικόνα ανακατασκευάζεται στο δέκτη ως εξής: ΤΜΗΥΠ / ΕΕΣΤ 24
25 Απωλεστική Κωδικοποίηση με Πρόβλεψη (8) Γενικά: Η τεχνική κωδικοποίησης DPCM με πρόβλεψη είναι σχετικά απλή και μπορεί εύκολα να υλοποιηθεί σε λογισμικό ή υλικό. Ο λόγος συμπίεσης που επιτυγχάνεται είναι μέτριος. Είναι ευαίσθητη στο θόρυβο καναλιού. Ο κρουστικός θόρυβος μπορεί να διαδοθεί σε όλο το μήκος μιας γραμμής ή και σε ολόκληρη την εικόνα. ΤΜΗΥΠ / ΕΕΣΤ 25
26 Κωδικοποίηση με Μετασχηματισμούς (1) Πρόκειται για απωλεστική μέθοδο συμπίεσης με καλό λόγο συμπίεσης. Επιλέγουμε και κωδικοποιούμε τους συντελεστές του μετασχηματισμού οι οποίοι περιέχουν την μεγάλη ενέργεια, και απορρίπτουμε τους υπόλοιπους. Η εικόνα ανακτάται (με απώλειες) μέσω του αντιστρόφου μετασχηματισμού. F T f f T F 1 [ ] [ ] ΤΜΗΥΠ / ΕΕΣΤ 26
27 Κωδικοποίηση με Μετασχηματισμούς (2) Διάγραμμα Βαθμίδων της Κωδικοποίησης / Αποκωδικοποίησης μέσω Μετασχηματισμών Μία πλήρης τεχνική συμπίεσης, μπορεί μεν να έχει στη βάση της τη συμπίεση μέσω μετασχηματισμών, αλλά εφαρμόζει και περαιτέρω συμπιέσεις, π.χ., zig-zag, run-length coding, Huffman. ΤΜΗΥΠ / ΕΕΣΤ 27
28 Κωδικοποίηση με Μετασχηματισμούς (3) Γραμμικός Μετασχηματισμός: Έστω f το διάνυσμα που αναπαριστά μία εικόνα μεγέθους L = N M, τότε το μετασχηματισμένο διάνυσμα F δίνεται από τη σχέση: F Af όπου Α είναι ο πίνακας μετασχηματισμού. Ο αντίστροφος μετασχηματισμός ορίζεται ως εξής: f 1 A F Ορθομοναδιαίος μετασχηματισμός: * T T * AA A A I ΤΜΗΥΠ / ΕΕΣΤ 28
29 Κωδικοποίηση με Μετασχηματισμούς (4) Ένας ορθομοναδιαίος μετασχηματισμός ικανοποιεί τη συνθήκη διατήρησης της ενέργειας: f L L f( k) F( k) k1 k1 F Η περισσότερη ενέργεια συγκεντρώνεται στον DC όρο και σε μερικούς χαμηλής συχνότητας. Μεταβλητός αριθμός bits μπορεί να αντιστοιχισθεί στους άλλους συντελεστές. Οι συντελεστές F(k), 1 k L κβαντίζονται χρησιμοποιώντας L κβαντιστές. Η αποκωδικοποίηση γίνεται εφαρμόζοντας τον αντίστροφο μετασχηματισμό στο διάνυσμα συντελεστών. ΤΜΗΥΠ / ΕΕΣΤ 29
30 Κωδικοποίηση με Μετασχηματισμούς (5) Σχεδιαστικές αποφάσεις : Επιλογή του συγκεκριμένου μετασχηματισμού που θα χρησιμοποιηθεί (DFT, WHT, DCT, DST κτλ.). Επιλογή των διαστάσεων του μπλοκ της εικόνας στο οποίο θα εφαρμοστεί ο μετασχηματισμός (8x8, 16x16) Καθορισμός του αριθμού των bits n k που αντιστοιχίζονται σε κάθε συντελεστή F(k), k=1,,l. Αν ο μέσος αριθμός bits/στίγμα είναι Β τότε ισχύει: 1 L nk L k 1 Οι κβαντισμένοι συντελεστές μπορούν να κωδικοποιηθούν με Huffman για επιπλέον συμπίεση. B ΤΜΗΥΠ / ΕΕΣΤ 30
31 Κωδικοποίηση με Μετασχηματισμούς (6) Η μέση παραμόρφωση εξαιτίας του κβαντισμού των συντελεστών δίνεται από τη σχέση: L 1 2 L 1 2 E EF( k) Q F( k) kq( nk) L L k1 k1 όπου Q[.] συμβολίζει τον κβαντισμό, σ k2 τη διασπορά του συντελεστή F(k) και q(n k ) τη συνάρτηση παραμόρφωσης του κβαντιστή (μονότονη και φθίνουσα με q(0)=1 και q( )=0 ). Μια δυνατή εκλογή του n k δίνεται από τη σχέση: round( n ), n B 1 log 1 log L k k 2 2 2k 2 k 2 L k 1 ΤΜΗΥΠ / ΕΕΣΤ 31 K1
32 Κωδικοποίηση με Μετασχηματισμούς (7) Δεδομένου του n k, μπορεί στη συνέχεια να γίνει σχεδιασμός του βέλτιστου κβαντιστή για τον κάθε συντελεστή του μετασχηματισμού βάσει της πυκνότητας πιθανότητας του κάθε συντελεστή. Οι κβαντισμένοι συντελεστές κωδικοποιούνται με Huffman για επιπλέον συμπίεση. Για την αποκωδικοποίηση γίνεται πρώτα αποκωδικοποίηση Huffman. Οι μετασχηματισμένοι συντελεστές είναι: 2 ˆ Fk ( ) 1 ( ) k k K Fk 0 K k L Το μπλοκ της εικόνας ανακτάται εφαρμόζοντας τον αντίστροφο μετασχηματισμό: 1 fˆ A Fˆ Για να αναιρέσουμε την κανονικοποίηση που είχε γίνει κατά τη συμπίεση ώστε να έχουν διασπορά 1 ΤΜΗΥΠ / ΕΕΣΤ 32
33 Ο Μετασχηματισμός DCT 1-D DCT & IDCT N 1 k 2 xn ( )cos (2n1), 0k N1 Ck ( ) 2N n0 0, ύ N 1 1 k wkck ( ) ( )cos (2n1), 0n N1 xn ( ) N 2N k0 0, ύ όπου wk ( ) 1/2, k 0 1, 1 k N 1 ΤΜΗΥΠ / ΕΕΣΤ 33
34 Υπολογισμός του DCT μέσω DFT DCT 1. yn ( ) xn ( ) x(2n1 n), 0n2N1 2. Y( k) DFT{ y( n)}, 0 k 2N 1 3. Ck ( ) IDCT k j 2N e Y( k), 0k N 1 k j 2N 0, αλλού k j 2N e C( k), 0k N 1 1. Y( k) 0, k N e C(2 N k), N 1k 2N 1 2. yn ( ) IDFTYk { ( )}, 0 n2n 1 yn ( ), 0n N1 3. xn ( ) 0, ύ Ο μετασχηματισμός 2-D DCT μπορεί να υπολογιστεί μέσω του 1-D DCT με τη μέθοδο γραμμών-στηλών Ερμηνεία της μεγάλης ενεργειακής συγκέντρωσης ΤΜΗΥΠ / ΕΕΣΤ 34
35 Κωδικοποίηση των συντελεστών του DCT Μετασχηματισμός DCT Αντιστοίχιση bits κβαντισμού σε block 8x8 ο αριθμός bits ανά συντελεστή είναι ανάλογος της μεταβλητότητάς του ΤΜΗΥΠ / ΕΕΣΤ 35
36 Κωδικοποίηση των συντελεστών του DCT Υπο-εικόνα 16x16, Αντιστοίχιση bits στους συντελεστές DCT ΤΜΗΥΠ / ΕΕΣΤ 36
37 Συμπίεση: Διαδικασία συμπίεσης με DCT 1. Διαίρεση σε block 2. Μετασχηματισμός DCT 3. Επιλογή συντελεστών (μέθοδοι: ζώνης, κατωφλίου) 4. Κβάντιση και αποθήκευση συντελεστών Αποσυμπίεση: 1. Αντιστροφή κβάντισης με το βήμα κβαντισμού 2. Ανακατασκευή block 3. Μετασχηματισμός IDCT 4. Επανένωση των block ΤΜΗΥΠ / ΕΕΣΤ 37
38 Παραδείγματα συμπίεσης (1) 126:1 51:1 28:1 15:1 8:1 4:1 Αρχική ΤΜΗΥΠ / ΕΕΣΤ 38
39 Παραδείγματα συμπίεσης (2) 126:1 51:1 28:1 15:1 8:1 4:1 Αρχική ΤΜΗΥΠ / ΕΕΣΤ 39
40 Παραδείγματα συμπίεσης (3) (α) Αρχική εικόνα. (β) Εικόνα κωδικοποιημένη με 50% ποιότητα. (γ) Εικόνα κωδικοποιημένη με 90% ποιότητα. ΤΜΗΥΠ / ΕΕΣΤ 40
Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 6 η : Συμπίεση Εικόνας. Καθ. Κωνσταντίνος Μπερμπερίδης Πολυτεχνική Σχολή Μηχανικών Η/Υ & Πληροφορικής
Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 6 η : Συμπίεση Εικόνας Καθ. Κωνσταντίνος Μπερμπερίδης Πολυτεχνική Σχολή Μηχανικών Η/Υ & Πληροφορικής Σκοποί ενότητας Εισαγωγή στη συμπίεση εικόνας Μη απωλεστικες
Συμπίεση Πολυμεσικών Δεδομένων
Συμπίεση Πολυμεσικών Δεδομένων Εισαγωγή στο πρόβλημα και επιλεγμένες εφαρμογές Παράδειγμα 2: Συμπίεση Εικόνας ΔΠΜΣ ΜΥΑ, Ιούνιος 2011 Εισαγωγή (1) Οι τεχνικές συμπίεσης βασίζονται στην απόρριψη της πλεονάζουσας
Σημείωμα Αδειοδότησης
Μελέτη Περιπτώσεων στη Λήψη Αποφάσεων Σημείωμα Αδειοδότησης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου άδειας
Ψηφιακή Επεξεργασία Εικόνας
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ψηφιακή Επεξεργασία Εικόνας Ενότητα 6 : Κωδικοποίηση & Συμπίεση εικόνας Ιωάννης Έλληνας Τμήμα Η/ΥΣ Άδειες Χρήσης Το παρόν εκπαιδευτικό
Συμπίεση Δεδομένων
Συμπίεση Δεδομένων 2014-2015 Στοιχεία Επεξεργασίας Σήματος Δρ. Ν. Π. Σγούρος 2 Εργοδικές Διαδικασίες Η μέση τιμή διαφόρων στιγμιότυπων της διαδικασίας (στατιστική μέση τιμή) ταυτίζεται με τη χρονική μέση
Συµπίεση Εικόνας: Το πρότυπο JPEG
ΒΕΣ : Συµπίεση και Μετάδοση Πολυµέσων ΒΕΣ Συµπίεση και Μετάδοση Πολυµέσων Συµπίεση Εικόνας: Το πρότυπο JPEG ΒΕΣ : Συµπίεση και Μετάδοση Πολυµέσων Εισαγωγή Σχεδιάστηκε από την οµάδα Joint Photographic Experts
Θεώρημα κωδικοποίησης πηγής
Κωδικοποίηση Kωδικοποίηση πηγής Θεώρημα κωδικοποίησης πηγής Καθορίζει ένα θεμελιώδες όριο στον ρυθμό με τον οποίο η έξοδος μιας πηγής πληροφορίας μπορεί να συμπιεσθεί χωρίς να προκληθεί μεγάλη πιθανότητα
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ, ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ, ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 4: ΣΥΣΤΗΜΑΤΑ ΠΟΛΥΜΕΣΩΝ Θεωρητικές Ασκήσεις (# ): ειγµατοληψία, κβαντοποίηση και συµπίεση σηµάτων. Στην τηλεφωνία θεωρείται ότι το ουσιαστικό περιεχόµενο της
χωρίςναδηµιουργείταιαίσθησηαπώλειαςτηςποιότηταςτηςανακατασκευασµένηςεικόνας.
Το πρότυπο JPEG για κωδικοποίησηση εικόνας Το JPEG, που υιοθετήθηκε από την Joint Photographic Experts Group, είναι ένα πρότυπο που χρησιµοποιείταιευρέωςγιατησυµπίεσηακίνητωνεικόνων, µε µέσο λόγο συµπίεσης
ΒΕΣ 04: Συµπίεση και Μετάδοση Πολυµέσων. Περιεχόµενα. Βιβλιογραφία. Συµπίεση εικόνων: Το πρότυπο JPEG. Εισαγωγή. Ευθύς µετασχηµατισµός DCT
ΒΕΣ : Συµπίεση και Μετάδοση Πολυµέσων Συµπίεση εικόνων: Το πρότυπο JPEG Περιεχόµενα Εισαγωγή Ο µετασχηµατισµός DCT Το πρότυπο JPEG Προετοιµασία εικόνας / µπλοκ Ευθύς µετασχηµατισµός DCT Κβαντισµός Κωδικοποίηση
Περιεχόµενα. ΕΠΛ 422: Συστήµατα Πολυµέσων. Βιβλιογραφία. Εισαγωγή. Συµπίεση εικόνων: Το πρότυπο JPEG. Εισαγωγή. Ευθύς µετασχηµατισµός DCT
Περιεχόµενα ΕΠΛ : Συστήµατα Πολυµέσων Συµπίεση εικόνων: Το πρότυπο JPEG Εισαγωγή Ο µετασχηµατισµός DCT Το πρότυπο JPEG Προετοιµασία εικόνας / µπλοκ Ευθύς µετασχηµατισµός DCT Κβαντισµός Κωδικοποίηση ηµιουργία
Τεχνολογία Πολυμέσων. Ενότητα # 11: Κωδικοποίηση εικόνων: JPEG Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής
Τεχνολογία Πολυμέσων Ενότητα # 11: Κωδικοποίηση εικόνων: JPEG Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ. Ενότητα 6: Κωδικοποίηση & Συμπίεση Εικόνας
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ Ενότητα 6: Κωδικοποίηση & Συμπίεση Εικόνας Ιωάννης Έλληνας Τμήμα Υπολογιστικών Συστημάτων Άδειες Χρήσης Το
Συµπίεση Ψηφιακών Εικόνων: Συµπίεση µε Απώλειες. Πρότυπα Συµπίεσης Εικόνων
ΤΨΣ 5: Ψηφιακή Επεξεργασία Εικόνας ΤΨΣ 5 Ψηφιακή Επεξεργασία Εικόνας Συµπίεση Ψηφιακών Εικόνων: Συµπίεση µε απώλειες Πρότυπα Συµπίεσης Εικόνων Τµήµα ιδακτικής της Τεχνολογίας και Ψηφιακών Συστηµάτων Πανεπιστήµιο
Τεράστιες ανάγκες σε αποθηκευτικό χώρο
ΣΥΜΠΙΕΣΗ Τεράστιες ανάγκες σε αποθηκευτικό χώρο Παράδειγμα: CD-ROM έχει χωρητικότητα 650MB, χωρά 75 λεπτά ασυμπίεστου στερεοφωνικού ήχου, αλλά 30 sec ασυμπίεστου βίντεο. Μαγνητικοί δίσκοι χωρητικότητας
Συμπίεση Δεδομένων
Συμπίεση Δεδομένων 2013-2014 JPEG 2000 Δρ. Ν. Π. Σγούρος 2 JPEG 2000 Βασικά χαρακτηριστικά Επιτρέπει συμπίεση σε εξαιρετικά χαμηλούς ρυθμούς όπου η συμπίεση με το JPEG εισάγει μεγάλες παραμορφώσεις Ενσωμάτωση
Συμπίεση Δεδομένων
Συμπίεση Δεδομένων 2014-2015 Κβάντιση Δρ. Ν. Π. Σγούρος 2 Άσκηση 5.1 Για ένα σήμα που έχει τη σ.π.π. του σχήματος να υπολογίσετε: μήκος του δυαδικού κώδικα για Ν επίπεδα κβάντισης για σταθερό μήκος λέξης;
ιαφορική εντροπία Σεραφείµ Καραµπογιάς
ιαφορική εντροπία Σεραφείµ Καραµπογιάς Για πηγές διακριτού χρόνου µε συνεχές αλφάβητο, των οποίων οι έξοδοι είναι πραγµατικοί αριθµοί, ορίζεται µια άλλη ποσότητα που µοιάζει µε την εντροπία και καλείται
Συμπίεση Δεδομένων
Συμπίεση Δεδομένων 2014-2015 Ρυθμός κωδικοποίησης Ένας κώδικας που απαιτεί L bits για την κωδικοποίηση μίας συμβολοσειράς N συμβόλων που εκπέμπει μία πηγή έχει ρυθμό κωδικοποίησης (μέσο μήκος λέξης) L
Συμπίεση Δεδομένων
Συμπίεση Δεδομένων 014-015 Μοναδικά Αποκωδικοποιήσιμοι Κώδικες Δρ. Ν. Π. Σγούρος Έλεγος μοναδικής Αποκωδικοποίησης Γενικοί ορισμοί Έστω δύο κωδικές λέξεις α,β με μήκη,m και
Group (JPEG) το 1992.
Μέθοδοι Συμπίεσης Εικόνας Πρωτόκολλο JPEG Συμπίεση Εικόνας: Μείωση αποθηκευτικού χώρου Ευκολία στη μεταφορά αρχείων Δημιουργήθηκε από την ομάδα Joint Photographic Experts Group (JPEG) το 1992. Ονομάστηκε
Συμπίεση Δεδομένων
Συμπίεση Δεδομένων 2014-2015 Κβάντιση Δρ. Ν. Π. Σγούρος 2 Αναλογικά Ψηφιακά Σήματα Αναλογικό Σήμα x t, t [t min, t max ], x [x min, x max ] Δειγματοληψία t n, x t x n, n = 1,, N Κβάντιση x n x(n) 3 Αλφάβητο
Κωδικοποίηση εικόνων κατά JPEG
Κωδικοποίηση εικόνων κατά JPEG Εισαγωγή Προετοιµασία της εικόνας ρυθµός Ακολουθιακός απωλεστικός ρυθµός Εκτεταµένος απωλεστικός ρυθµός Μη απωλεστικός ρυθµός Ιεραρχικός ρυθµός Τεχνολογία Πολυµέσων 09-1
Μάθημα 8 ο. Ανίχνευση Ακμών ΤΜΗΥΠ / ΕΕΣΤ 1
Μάθημα 8 ο Ανίχνευση Ακμών ΤΜΗΥΠ / ΕΕΣΤ 1 Εισαγωγή (1) Οι ακμές είναι βασικά χαρακτηριστικά της εικόνας. Ένας αποδεκτός ορισμός της ακμής είναι ο ακόλουθος: «Το σύνορο μεταξύ δύο ομοιογενών περιοχών με
Μάθημα 8 ο. Ανίχνευση Ακμών ΤΜΗΥΠ / ΕΕΣΤ 1
Μάθημα 8 ο Ανίχνευση Ακμών ΤΜΗΥΠ / ΕΕΣΤ 1 Εισαγωγή (1) Οι ακμές είναι βασικά χαρακτηριστικά της εικόνας Προς το παρόν δεν υπάρχει ακόμα ένας ευρέως αποδεκτός ορισμός της ακμής. Εδώ θα θεωρούμε ως ακμή:
Μετάδοση Πολυμεσικών Υπηρεσιών Ψηφιακή Τηλεόραση
Χειμερινό Εξάμηνο 2013-2014 Μετάδοση Πολυμεσικών Υπηρεσιών Ψηφιακή Τηλεόραση 5 η Παρουσίαση : Ψηφιακή Επεξεργασία Εικόνας Διδάσκων: Γιάννης Ντόκας Σύνθεση Χρωμάτων Αφαιρετική Παραγωγή Χρώματος Χρωματικά
Συστήματα Πολυμέσων. Ενότητα 6: Συμπίεση Ψηφιακής Εικόνας. Θρασύβουλος Γ. Τσιάτσος Τμήμα Πληροφορικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 6: Συμπίεση Ψηφιακής Εικόνας Θρασύβουλος Γ. Τσιάτσος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Τμήμα Μηχανικών Η/Υ και Πληροφορικής
Τμήμα Μηχανικών Η/Υ και Πληροφορικής Εργαστήριο Επεξεργασίας Σημάτων και Τηλεπικοινωνιών Ασύρματες και Κινητές Επικοινωνίες Κωδικοποίηση καναλιού Τι θα δούμε στο μάθημα Σύντομη εισαγωγή Γραμμικοί κώδικες
ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ. Κεφάλαιο 3 : Πηγές Πληροφορίας Χρήστος Ξενάκης. Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων
ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ Κεφάλαιο 3 : Πηγές Πληροφορίας Χρήστος Ξενάκης Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων Περιεχόμενα Διακριτές Πηγές Πληροφορίας χωρίς μνήμη Ποσότητα πληροφορίας της πηγής Κωδικοποίηση
Διαδικασία Ψηφιοποίησης (1/2)
Διαδικασία Ψηφιοποίησης (1/2) Η διαδικασία ψηφιοποίησης περιλαμβάνει: Φιλτράρισμα και δειγματοληψία Κβαντισμό και κωδικοποίηση Φιλτράρισμα και δειγματοληψία Κβαντισμός και κωδικοποίηση Κβαντισμός Τα αναλογικά
MPEG-4: Βασικά Χαρακτηριστικά
MPEG-4 MPEG-4: Βασικά Χαρακτηριστικά Σχεδιάστηκε ώστε να καλύπτει ευρύ φάσμα ρυθμών, από 5 kbps εώς 10 Mbps Εκτός από τη συμπίεση δίνει έμφαση και στην αλληλεπίδραση με το χρήστη Χρησιμοποιεί αντικείμενα
Κωδικοποίηση βίντεο (H.261 / DVI)
Κωδικοποίηση βίντεο (H.261 / DVI) Αρχές κωδικοποίησης βίντεο Εισαγωγή στο H.261 Κωδικοποίηση βίντεο Ροή δεδοµένων Εισαγωγή στο DVI Κωδικοποίηση ήχου και εικόνων Κωδικοποίηση βίντεο Ροή δεδοµένων Τεχνολογία
Ψηφιακές Τηλεπικοινωνίες
Ψηφιακές Τηλεπικοινωνίες Κωδικοποίηση Αναλογικής Πηγής: Κβάντιση Εισαγωγή Αναλογική πηγή: μετά από δειγματοληψία γίνεται διακριτού χρόνου άπειρος αριθμός bits/έξοδο για τέλεια αναπαράσταση Θεωρία Ρυθμού-Παραμόρφωσης
ΕΡΓΑΣΙΑ #2 Να κωδικοποιήσετε τρεις εικόνες (baboon, boat, lighthouse) χρησιμοποιώντας το σύστημα DPCM και βασίζοντας την πρόβλεψή σας σε γειτονικά εικ
ΕΡΓΑΣΙΑ #1 Να κωδικοποιήσετε τρεις εικόνες (baboon, boat, lighthouse) χρησιμοποιώντας το σύστημα DPCM και βασίζοντας την πρόβλεψή σας σε γειτονικά εικονοστοιχεία (περίπτωση #5 του σχήματος). Χρησιμοποιείστε
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ,
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ, ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 4: ΣΥΣΤΗΜΑΤΑ ΠΟΛΥΜΕΣΩΝ Ακαδηµαϊκό Έτος 004 005, Χειµερινό Εξάµηνο Καθ.: Νίκος Τσαπατσούλης ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ Η εξέταση αποτελείται από δύο µέρη. Το πρώτο περιλαµβάνει
Παλμοκωδική Διαμόρφωση. Pulse Code Modulation (PCM)
Παλμοκωδική Διαμόρφωση Pulse Code Modulation (PCM) Pulse-code modulation (PCM) Η PCM είναι ένας στοιχειώδης τρόπος διαμόρφωσης που δεν χρησιμοποιεί φέρον! Το μεταδιδόμενο (διαμορφωμένο) σήμα PCM είναι
Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας. Ακαδημαϊκό Έτος Παρουσίαση Νο. 2. Δισδιάστατα Σήματα και Συστήματα #1
Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ακαδημαϊκό Έτος 009-0 Παρουσίαση Νο. Δισδιάστατα Σήματα και Συστήματα # Βασικοί ορισμοί () Κάθε εικόνα είναι ένα δισδιάστατο (-D) σήμα. Αναλογική εικόνα: x α Ψηφιακή
DIP_06 Συμπίεση εικόνας - JPEG. ΤΕΙ Κρήτης
DIP_06 Συμπίεση εικόνας - JPEG ΤΕΙ Κρήτης Συμπίεση εικόνας Το μέγεθος μιας εικόνας είναι πολύ μεγάλο π.χ. Εικόνα μεγέθους Α4 δημιουργημένη από ένα σαρωτή με 300 pixels ανά ίντσα και με χρήση του RGB μοντέλου
ΤΕΙ ΚΡΗΤΗΣ ΤΜ. ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡ/ΚΗΣ & ΠΟΛΥΜΕΣΩΝ ΔΙΔΑΣΚΩΝ: Δρ. Γ. ΓΑΡΔΙΚΗΣ. Κωδικοποίηση εικόνας
ΤΕΙ ΚΡΗΤΗΣ ΤΜ. ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡ/ΚΗΣ & ΠΟΛΥΜΕΣΩΝ ΔΙΔΑΣΚΩΝ: Δρ. Γ. ΓΑΡΔΙΚΗΣ 2 Κωδικοποίηση εικόνας Ακολουθία από ψηφιοποιημένα καρέ (frames) που έχουν συλληφθεί σε συγκεκριμένο ρυθμό frame rate (π.χ. 10fps,
Η κωδικοποίηση των συντελεστών DC
Η κωδικοποίηση των συντελεστών DC Γιακάθευποπίνακαηδιαφορά, d,του DC συντελεστήτουαπότοσυντελεστή DC τουπροηγούµενουυποπίνακαοδηγούνταιστονκωδικοποιητήεντροπίας (variable length coding VLC). Στονκωδικοποιητήηδιαφοράκατατάσσεταιανάλογαµετοµέγεθόςτηςστοακόλουθοπίνακα,
Τμήμα Μηχανικών Η/Υ και Πληροφορικής
Τμήμα Μηχανικών Η/Υ και Πληροφορικής Εργαστήριο Επεξεργασίας Σημάτων και Τηλεπικοινωνιών Κινητά Δίκτυα Επικοινωνιών Μέρος Α: Τηλεπικοινωνιακά Θέματα: Τεχνικές Κωδικοποίησης Πηγής Η Περίπτωση της Φωνής
Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας. Ακαδημαϊκό Έτος Παρουσίαση Νο. 2. Δισδιάστατα Σήματα και Συστήματα #1
Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ακαδημαϊκό Έτος 06-7 Παρουσίαση Νο. Δισδιάστατα Σήματα και Συστήματα # Βασικοί ορισμοί () Κάθε εικόνα είναι ένα δισδιάστατο (-D) σήμα. Αναλογική εικόνα: x t, t,
Μάθημα 10 ο. Περιγραφή Σχήματος ΤΜΗΥΠ / ΕΕΣΤ 1
Μάθημα 10 ο Περιγραφή Σχήματος ΤΜΗΥΠ / ΕΕΣΤ 1 Εισαγωγή (1) Η περιγραφή μίας περιοχής μπορεί να γίνει: Με βάση τα εξωτερικά χαρακτηριστικά (ακμές, όρια). Αυτή η περιγραφή προτιμάται όταν μας ενδιαφέρουν
Συστήματα Πολυμέσων. Ενότητα 3: Εισαγωγικά θέματα Συμπίεσης. Θρασύβουλος Γ. Τσιάτσος Τμήμα Πληροφορικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 3: Εισαγωγικά θέματα Συμπίεσης Θρασύβουλος Γ. Τσιάτσος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ, ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ, ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΒΕΣ 04: ΣΥΜΠΙΕΣΗ ΚΑΙ ΜΕΤΑ ΟΣΗ ΠΟΛΥΜΕΣΩΝ Ακαδηµαϊκό Έτος 2007 2008, Χειµερινό Εξάµηνο 6 Νοεµβρίου 2007 Φροντιστηριακή Άσκηση 2: (I) Εντροπία,
Θέματα Συστημάτων Πολυμέσων. Ενότητα # 7: JPEG Διδάσκων: Γεώργιος Πολύζος Τμήμα: Μεταπτυχιακό Πρόγραμμα Σπουδών Επιστήμη των Υπολογιστών
Θέματα Συστημάτων Πολυμέσων Ενότητα # 7: JPEG Διδάσκων: Γεώργιος Πολύζος Τμήμα: Μεταπτυχιακό Πρόγραμμα Σπουδών Επιστήμη των Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Ακαδηµαϊκό Έτος , Χειµερινό Εξάµηνο ιδάσκων Καθ.: Νίκος Τσαπατσούλης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ, ΤΜΗΜΑ Ι ΑΚΤΙΚΗΣ ΤΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΤΨΣ 50: ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ Ακαδηµαϊκό Έτος 005 006, Χειµερινό Εξάµηνο Καθ.: Νίκος Τσαπατσούλης ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ Η εξέταση
Μάθημα Εισαγωγή στις Τηλεπικοινωνίες Κωδικοποίηση πηγής- καναλιού Μάθημα 9o
Μάθημα Εισαγωγή στις Τηλεπικοινωνίες Κωδικοποίηση πηγής- καναλιού Μάθημα 9o ΕΘΝΙΚΟ & ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τομέας Επικοινωνιών και Επεξεργασίας Σήματος Τμήμα Πληροφορικής & Τηλεπικοινωνιών
Ψηφιακές Τηλεπικοινωνίες. Κωδικοποίηση Κυματομορφής
Ψηφιακές Τηλεπικοινωνίες Κωδικοποίηση Κυματομορφής Σύνδεση με τα Προηγούμενα Οι τεχνικές κωδικοποίησης αναλογικής πηγής διακρίνονται σε τεχνικές κωδικοποίησης κυματομορφής τεχνικές ανάλυσης σύνθεσης Οι
Παλμοκωδική Διαμόρφωση. Pulse Code Modulation (PCM)
Παλμοκωδική Διαμόρφωση Pulse Code Modulation (PCM) Pulse-code modulation (PCM) Η PCM είναι ένας στοιχειώδης τρόπος διαμόρφωσης που δεν χρησιμοποιεί φέρον! Το μεταδιδόμενο (διαμορφωμένο) σήμα PCM είναι
Αρχές κωδικοποίησης. Τεχνολογία Πολυµέσων 08-1
Αρχές κωδικοποίησης Απαιτήσεις κωδικοποίησης Είδη κωδικοποίησης Βασικές τεχνικές κωδικοποίησης Κωδικοποίηση Huffman Κωδικοποίηση µετασχηµατισµών Κβαντοποίηση διανυσµάτων ιαφορική κωδικοποίηση Τεχνολογία
Συστήματα Επικοινωνιών ΙI
+ Διδάσκων: Δρ. Κ. Δεμέστιχας e-mail: cdemestichas@uowm.gr Συστήματα Επικοινωνιών ΙI Παλμοκωδική διαμόρφωση (PCM) I + Ιστοσελίδα nιστοσελίδα του μαθήματος: n https://eclass.uowm.gr/courses/icte302/ + Περιεχόμενα
Τεχνολογία Πολυμέσων. Ενότητα # 8: Αρχές κωδικοποίησης Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής
Τεχνολογία Πολυμέσων Ενότητα # 8: Αρχές κωδικοποίησης Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του
Αρχές κωδικοποίησης. Τεχνολογία Πολυμέσων και Πολυμεσικές Επικοινωνίες 08-1
Αρχές κωδικοποίησης Απαιτήσεις κωδικοποίησης Είδη κωδικοποίησης Κωδικοποίηση εντροπίας Διαφορική κωδικοποίηση Κωδικοποίηση μετασχηματισμών Στρωματοποιημένη κωδικοποίηση Κβαντοποίηση διανυσμάτων Τεχνολογία
Θεωρία Πληροφορίας. Διάλεξη 4: Διακριτή πηγή πληροφορίας χωρίς μνήμη. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής
Θεωρία Πληροφορίας Διάλεξη 4: Διακριτή πηγή πληροφορίας χωρίς μνήμη Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Ατζέντα Διακριτή πηγή πληροφορίας χωρίς μνήμη Ποσότητα πληροφορίας της πηγής Κωδικοποίηση
Ψηφιακές Τηλεπικοινωνίες. Θεωρία Ρυθμού Παραμόρφωσης
Ψηφιακές Τηλεπικοινωνίες Θεωρία Ρυθμού Παραμόρφωσης Θεωρία Ρυθμού-Παραμόρφωσης Θεώρημα Κωδικοποίησης Πηγής: αν έχω αρκετά μεγάλο μπλοκ δεδομένων, μπορώ να φτάσω κοντά στην εντροπία Πιθανά Προβλήματα: >
HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών
HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών Σημάτων Διάλεξη 12: Δειγματοληψία και ανακατασκευή (IV) Παρεμβολή (Interpolation) Γενικά υπάρχουν πολλοί τρόποι παρεμβολής, π.χ. κυβική παρεμβολή (cubic spline
Μετάδοση Πολυμεσικών Υπηρεσιών Ψηφιακή Τηλεόραση
Χειμερινό Εξάμηνο 2013-2014 Μετάδοση Πολυμεσικών Υπηρεσιών Ψηφιακή Τηλεόραση 3 η Παρουσίαση : Συμπίεση Διδάσκων: Γιάννης Ντόκας Εισαγωγή 2 Συμπίεση πληροφορίας πολυμέσων 3 Γιατί χρειάζεται συμπίεση? 4
Παρουσίαση Νο. 6 Αποκατάσταση εικόνας
Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Παρουσίαση Νο. 6 Αποκατάσταση εικόνας Εισαγωγή (1/2) Αναίρεση υποβάθμισης που μπορεί να οφείλεται: Στο οπτικό σύστημα (θόλωμα λόγω κακής εστίασης, γεωμετρικές παραμορφώσεις...)
Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών Τμήμα Φυσικής Εισαγωγή στα Συστήματα Τηλεπικοινωνιών Συστήματα Παλμοκωδικής Διαμόρφωσης
Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών Τμήμα Φυσικής Εισαγωγή στα Συστήματα Τηλεπικοινωνιών Συστήματα Παλμοκωδικής Διαμόρφωσης Καθηγητής Ι. Τίγκελης itigelis@phys.uoa.gr ΚΒΑΝΤΙΣΗ Διαδικασία με την
Χρήστος Ξενάκης. Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων
ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ Κεφάλαιο 9 : Κανάλι-Σύστημα Χρήστος Ξενάκης Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων Περιεχόμενα Ομιλίας Χωρητικότητα Χ ό καναλιού Το Gaussian κανάλι επικοινωνίας Τα διακριτά
Τηλεπικοινωνιακά Συστήματα ΙΙ
Τηλεπικοινωνιακά Συστήματα ΙΙ Διάλεξη 11: Κωδικοποίηση Πηγής Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Ατζέντα 1. Αλγόριθμοι κωδικοποίησης πηγής Αλγόριθμος Fano Αλγόριθμος Shannon Αλγόριθμος Huffman
Ψηφιακές Τηλεπικοινωνίες. Βέλτιστος Δέκτης
Ψηφιακές Τηλεπικοινωνίες Βέλτιστος Δέκτης Σύνδεση με τα Προηγούμενα Επειδή το πραγματικό κανάλι είναι αναλογικό, κατά τη διαβίβαση ψηφιακής πληροφορίας, αντιστοιχίζουμε τα σύμβολα σε αναλογικές κυματομορφές
Ψηφιακή Επεξεργασία Εικόνας
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ψηφιακή Επεξεργασία Εικόνας Ενότητα 4 : Δειγματοληψία και κβάντιση (Sampling and Quantization) Ιωάννης Έλληνας Τμήμα Η/ΥΣ Άδειες
Επεξεργασία Πολυµέσων. Δρ. Μαρία Κοζύρη Π.Μ.Σ. «Εφαρµοσµένη Πληροφορική» Τµήµα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Πανεπιστήµιο Θεσσαλίας
Π.Μ.Σ. «Εφαρµοσµένη Πληροφορική» Τµήµα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Πανεπιστήµιο Θεσσαλίας Ενότητα 4: Συµπίεση Εικόνας 2 Συµπίεση Εικόνας Μείωση Πλεονασµού: Το σήµα εικόνας παρουσιάζει
Θέματα Συστημάτων Πολυμέσων
Θέματα Συστημάτων Πολυμέσων Ενότητα # 6: Στοιχεία Θεωρίας Πληροφορίας Διδάσκων: Γεώργιος K. Πολύζος Τμήμα: Μεταπτυχιακό Πρόγραμμα Σπουδών Επιστήμη των Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ Κβάντιση και Κωδικοποίηση ΨΗΦΙΑΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ Χειμερινό Εξάμηνο Τμήμα Πληροφορικής και Τηλεπικοινωνίων Νικόλαος Χ. Σαγιάς Αναπληρωτής Καθηγητής Webpage: http://eclass.uop.gr/courses/tst15
Ραδιοτηλεοπτικά Συστήματα Ενότητα 5: Ψηφιοποίηση και συμπίεση σημάτων ήχου
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ραδιοτηλεοπτικά Συστήματα Ενότητα 5: Ψηφιοποίηση και συμπίεση σημάτων ήχου Δρ. Νικόλαος- Αλέξανδρος Τάτλας Τμήμα Ηλεκτρονικών
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ, ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ, ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 422: ΣΥΣΤΗΜΑΤΑ ΠΟΛΥΜΕΣΩΝ Ακαδηµαϊκό Έτος 2004 2005, Χειµερινό Εξάµηνο Φροντιστηριακή Άσκηση 3: Εντροπία, κωδικοποίηση Quadtree 1. Εντροπία 22 Σεπτεµβρίου 2004
Χρήστος Ξενάκης. Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων
ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ Κεφάλαιο 10 : Κωδικοποίηση καναλιού Χρήστος Ξενάκης Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων Περιεχόμενα Ομιλίας Απόσταση και βάρος Hamming Τεχνικές και κώδικες ανίχνευσης &
Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας. Παρουσίαση Νο. 1. Εισαγωγή
Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ακαδημαϊκό Έτος 2015-16 Παρουσίαση Νο. 1 Εισαγωγή Τι είναι η εικόνα; Οτιδήποτε μπορούμε να δούμε ή να απεικονίσουμε Π.χ. Μια εικόνα τοπίου αλλά και η απεικόνιση
Δ10. Συμπίεση Δεδομένων
Συμπίεση Δεδομένων 203-204 Κωδικοποίηση εικονοροής (Video) Δρ. Ν. Π. Σγούρος 2 Ανάλυση Οθονών Δρ. Ν. Π. Σγούρος 3 Πρωτόκολλα μετάδοσης εικονοροών Πρωτόκολλο Ρυθμός (Hz) Φίλμ 23.976 ATSC 24 PAL,DVB-SD,DVB-HD
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ. Ενότητα 4: Δειγματοληψία και Κβάντιση Εικόνας
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ Ενότητα 4: Δειγματοληψία και Κβάντιση Εικόνας Ιωάννης Έλληνας Τμήμα Υπολογιστικών Συστημάτων Άδειες Χρήσης
Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας. Παρουσίαση Νο. 3. Δισδιάστατα σήματα και συστήματα #2
Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ακαδημαϊκό Έτος 2015-16 Παρουσίαση Νο. 3 Δισδιάστατα σήματα και συστήματα #2 Πληροφορία πλάτους-φάσης (1/4) Ο μετασχηματισμός Fourier διακριτού χρόνου είναι μιγαδική
Ασκήσεις Επεξεργασίας Εικόνας
Ασκήσεις Επεξεργασίας Εικόνας. Εύρεση στοιχείων μιας περιοχής με ιδιότητα συγκεκριμένης γειτονιάς Άσκηση. Έστω δύο υποσύνολα πίνακα εικόνας S και S2 η οποία φαίνεται στο σχήμα παρακάτω. Για σύνολο τιμών
Συστήματα Επικοινωνιών
Συστήματα Επικοινωνιών Ενότητα 9: Παλμοκωδική Διαμόρφωση (PCM) Μιχαήλ Λογοθέτης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Περιγραφή της μεθόδου παλμοκωδικής
0, αλλιώς. Σεραφείµ Καραµπογιάς. Παράδειγµα 1 Η πηγή X(t) είναι στατική Gaussian µε µέση τιµή µηδέν και φασµατική πυκνότητα ισχύος.
Παράδειγµα Η πηγή X(t) είναι στατική Gussin µε µέση τιµή µηδέν και φασµατική πυκνότητα ισχύος S X ( f ) 70, f < 00Hz 0, αλλιώς S X ( f ) 00 00 f 50 Λύση: 60 40 0 30 0 0 30 0 40 60 Ο ρυθµός που απαιτείται
Εξομοίωση Τηλεπικοινωνιακού Συστήματος Βασικής Ζώνης
Πανεπιστήμιο Πατρών Τμήμα Μηχ. Η/Υ & Πληροφορικής Ακαδημαϊκό Έτος 009-010 Ψ Η Φ Ι Α Κ Ε Σ Τ Η Λ Ε Π Ι Κ Ο Ι Ν Ω Ν Ι ΕΣ η Εργαστηριακή Άσκηση: Εξομοίωση Τηλεπικοινωνιακού Συστήματος Βασικής Ζώνης Στην άσκηση
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΗΛΕΚΤΡΟΝΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΣΥΓΚΡΙΣΗ ΜΕΘΟΔΩΝ ΠΡΟΒΛΕΨΗΣ ΜΕΤΑΞΥ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ, ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ, ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΒΕΣ 04: ΣΥΜΠΙΕΣΗ ΚΑΙ ΜΕΤΑ ΟΣΗ ΠΟΛΥΜΕΣΩΝ Ακαδηµαϊκό Έτος 2007 2008, Χειµερινό Εξάµηνο 13 Νοεµβρίου 2007 Φροντιστηριακή Άσκηση 3: (I) Συµπίεση
Επεξεργασία Χαρτογραφικής Εικόνας
Επεξεργασία Χαρτογραφικής Εικόνας ιδάσκων: Αναγνωστόπουλος Χρήστος Αλγόριθµος JPEG για έγχρωµες εικόνες Είδη αρχείων εικόνων Συµπίεση video και ήχου Μπλόκ x Τιµές - 55 Αρχική πληροφορία, 54 54 75 6 7 75
Τεχνολογία Πολυμέσων. Ενότητα # 12: Κωδικοποίηση βίντεο: H.26x Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής
Τεχνολογία Πολυμέσων Ενότητα # 12: Κωδικοποίηση βίντεο: H.26x Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου
Επεξεργασία Πολυµέσων. Δρ. Μαρία Κοζύρη Π.Μ.Σ. «Εφαρµοσµένη Πληροφορική» Τµήµα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Πανεπιστήµιο Θεσσαλίας
Π.Μ.Σ. «Εφαρµοσµένη Πληροφορική» Τµήµα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Πανεπιστήµιο Θεσσαλίας Ενότητα 3: Επισκόπηση Συµπίεσης 2 Θεωρία Πληροφορίας Κωδικοποίηση Θεµελιώθηκε απο τον Claude
Δομές Δεδομένων και Αλγόριθμοι
Δομές Δεδομένων και Αλγόριθμοι Χρήστος Γκόγκος ΤΕΙ Ηπείρου Χειμερινό Εξάμηνο 2014-2015 Παρουσίαση 20 Huffman codes 1 / 12 Κωδικοποίηση σταθερού μήκους Αν χρησιμοποιηθεί κωδικοποίηση σταθερού μήκους δηλαδή
7ο ΕΡΓΑΣΤΗΡΙΟ AAAABBBBAAAAABBBBBBCCCCCCCCCCCCCCBBABAAAABBBBBBCCCCD
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΛΑΜΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΣΧΕΔΙΑΣΜΟΣ ΚΑΙ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2010 11 Ιστοσελίδα μαθήματος: http://eclass.teilam.gr/di288 1 Συμπίεση
Μάθημα 9 ο. Κατάτμηση Εικόνας ΤΜΗΥΠ / ΕΕΣΤ 1
Μάθημα 9 ο Κατάτμηση Εικόνας ΤΜΗΥΠ / ΕΕΣΤ Εισαγωγή () Η κατάτμηση έχει ως στόχο να υποδιαιρέσει την εικόνα σε συνιστώσες περιοχές και αντικείμενα. Μία περιοχή αναμένεται να έχει ομοιογενή χαρακτηριστικά
ΗΜΥ 100 Εισαγωγή στην Τεχνολογία
ΗΜΥ 100 Εισαγωγή στην Τεχνολογία Δρ. Στέλιος Τιμοθέου ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΑ ΘΕΜΑΤΑ ΜΑΣ ΣΗΜΕΡΑ Αναλογικά και ψηφιακά συστήματα Μετατροπή
Δ11 Δ12. Συμπίεση Δεδομένων
Συμπίεση Δεδομένων 2013-2014 Κωδικοποιητές εικονοροής (Video) Δρ. Ν. Π. Σγούρος 2 Κωδικοποιητές Εικονοροών ITU-T VCEG H.261 (1990) ISO/IEC MPEG H.263 (1995/9 6) MPEG-2 (H.262) (1994/9 5) H.263+ (1997/98)
Συστήματα Επικοινωνιών ΙI
+ Διδάσκων: Δρ. Κ. Δεμέστιχας e-mail: cdemestichas@uowm.gr Συστήματα Επικοινωνιών ΙI M-κά συστήματα διαμόρφωσης: Μ-PSK, M-FSK, M-QAM, DPSK + Ιστοσελίδα nιστοσελίδα του μαθήματος: n https://eclass.uowm.gr/courses/icte302/
ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ. Εισαγωγή στα Σήµατα Εισαγωγή στα Συστήµατα Ανάπτυγµα - Μετασχηµατισµός Fourier Μετασχηµατισµός Z
ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Εισαγωγή στα Σήµατα Εισαγωγή στα Συστήµατα Ανάπτυγµα - Μετασχηµατισµός Fourier Μετασχηµατισµός Laplace Μετασχηµατισµός Z Εφαρµογές Παράδειγµα ενός ηλεκτρικού συστήµατος Σύστηµα Παράδειγµα
Ψηφιακή Επεξεργασία Σημάτων
Ψηφιακή Επεξεργασία Σημάτων Ενότητα 7: Μετατροπή Σήματος από Αναλογική Μορφή σε Ψηφιακή Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Μετατροπή Αναλογικού Σήματος σε Ψηφιακό Είδη Δειγματοληψίας: Ιδανική
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Κ 17 Επικοινωνίες ΙΙ Χειμερινό Εξάμηνο Διάλεξη 7 η Νικόλαος Χ. Σαγιάς Επίκουρος Καθηγητής Webpage: http://eclass.uop.gr/courses/tst15
Συστήματα Επικοινωνιών ΙI
+ Διδάσκων: Δρ. Κ. Δεμέστιχας e-mail: cdemestichas@uowm.gr Συστήματα Επικοινωνιών ΙI Διαφορική Παλμοκωδική Διαμόρφωση + Ιστοσελίδα nιστοσελίδα του μαθήματος: n https://eclass.uowm.gr/courses/icte302/ +
ΑΣΚΗΣΗ 2 ΒΑΣΙΚΑ ΚΑΙ ΣΥΝΘΕΤΑ ΣΗΜΑΤΑ ΔΥΟ ΔΙΑΣΤΑΣΕΩΝ - ΕΙΚΟΝΑΣ
ΑΣΚΗΣΗ 2 ΒΑΣΙΚΑ ΚΑΙ ΣΥΝΘΕΤΑ ΣΗΜΑΤΑ ΔΥΟ ΔΙΑΣΤΑΣΕΩΝ - ΕΙΚΟΝΑΣ Αντικείμενο: Κατανόηση και αναπαράσταση των βασικών σημάτων δύο διαστάσεων και απεικόνισης αυτών σε εικόνα. Δημιουργία και επεξεργασία των διαφόρων
Συστήµατα και Αλγόριθµοι Πολυµέσων
Συστήµατα και Αλγόριθµοι Πολυµέσων Ιωάννης Χαρ. Κατσαβουνίδης Οµιλία #5: Αρχές Επεξεργασίας Σηµάτων Πολυµέσων 7 Νοεµβρίου 2005 Επανάληψη Θεωρία Πληροφορίας Εντροπία: H ( P) i= 0 Κωδικοποίηση Huffman 3
Κωδικοποίηση βίντεο (MPEG)
(MEG) Εισαγωγή στο MEG-1 Κωδικοποίηση βίντεο οµή βίντεο Κωδικοποίηση ήχου Ροή δεδοµένων Τεχνολογία Πολυµέσων 11-1 Εισαγωγή στο MEG-1 MEG (Motion ictures Experts Group) ίντεο και ήχος υψηλής ποιότητας ιανοµή
Παρουσίαση Νο. 5 Βελτίωση εικόνας
Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Παρουσίαση Νο. 5 Βελτίωση εικόνας Εισαγωγή Η βελτίωση γίνεται σε υποκειμενική βάση Η απόδοση εξαρτάται από την εφαρμογή Οι τεχνικές είναι συνήθως ad hoc Τονίζει
Μεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες» Ψηφιακή Επεξεργασία Εικόνας. Εισηγητής Αναστάσιος Κεσίδης
Μεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες» Ψηφιακή Επεξεργασία Εικόνας Εισηγητής Αναστάσιος Κεσίδης Χωρικά φίλτρα Χωρικά φίλτρα Γενικά Σε αντίθεση με τις σημειακές πράξεις και μετασχηματισμούς, στα
Κεφάλαιο 3 Συμπίεση Βίντεο
Κεφάλαιο 3 Συμπίεση Βίντεο Σύνοψη Στο κεφάλαιο αυτό εξετάζουμε τους βασικούς τρόπους με τους οποίους το πρότυπο MPEG (και συγκεκριμένα το MPEG-2) προβλέπει τη συμπίεση του σήματος βίντεο. Η ανάγκη για
ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΑΝΑΛΥΣΗ FOURIER ΔΙΑΚΡΙΤΩΝ ΣΗΜΑΤΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ. Διακριτός Μετασχηματισμός Fourier DFT
ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΑΝΑΛΥΣΗ FOURIER ΔΙΑΚΡΙΤΩΝ ΣΗΜΑΤΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ Διακριτός Μετασχηματισμός Fourier DFT Διακριτός μετασχηματισμός συνημιτόνου DCT discrete cosine transform Η σχέση αποτελεί «πυρήνα»