Αναπαράςταςθ Γνϊςθσ ςτον Παγκόςμιο Ιςτό Ενότθτα 3: RDF Περιγραφι Πόρων Ιςτοφ, Μζροσ 3 ο Σθμαςιολογία & SPARQL
|
|
- θάνα Σπανού
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Αναπαράςταςθ Γνϊςθσ ςτον Παγκόςμιο Ιςτό Ενότθτα 3: RDF Περιγραφι Πόρων Ιςτοφ, Μζροσ 3 ο Σθμαςιολογία & SPARQL Ιωάννθσ Χατηθλυγεροφδθσ Πολυτεχνικι χολι Σμιμα Μθχ/κϊν Η/Τπολογιςτϊν & Πλθροφορικισ
2 Περιεχόμενα ενότθτασ Μζροσ 3 ο RDF Schema - SPARQL 1. θμαςιολογία 2. υλογιςμόσ 3. Ερωτιματα SPARQL 4. φνοψθ Ενότθτασ 2/38
3 RDF και RDFS - θμαςιολογία
4 θμαςιολογία RDF και RDFS Μζςω κατθγορθματικισ λογικισ με ιςότθτα Προςζγγιςθ: o Θεμελιϊδθ ςτοιχεία ςτακερζσ Resource, Class, Property, subclassof o Χριςθ κεωρίασ λιςτϊν κλπ nil, cons(x,l), first(l), rest(l), item(x,l), list(l) o υνικθσ μορφι αξιωμάτων ςθμαςιολογίασ: Type(subClassOf, Property) (Η subclassof είναι ιδιόηηηα ) o ΚΛ με ιςότθτα, οι μεταβλθτζσ ξεκινοφν με?, ζμμεςθ κακολικι ποςοτικοποίθςθ ( ) 4/38
5 Βαςικά κατθγοριματα PropVal(P, R, V) (αναπαράζηαζη πρόηαζης RDF) Type(R, T) (ανηί ηοσ PropVal(type, R, T): ο πόρος R είναι ηύποσ T) Δηλ. Type(?r,?t) PropVal(type,?r,?t) 5/38
6 Κλάςεισ Όλεσ οι κλάςεισ είναι ςτιγμιότυπα τθσ Class: Type(Class, Class), Type(Resource, Class) Type(Property, Class), Type(Literal, Class) Η Resource είναι θ γενικότερθ κλάςθ όλεσ οι κλάςεισ και οι ιδιότθτεσ είναι πόροι: Type(?p, Property) Type(?p, Resource) Type(?c, Class) Type(?c, Resource) Σο κατθγόρθμα ςε μια πρόταςθ είναι ιδιότθτα PropVal(?p,?r,?c) Type(?p, Property) 6/38
7 Ιδιότθτα type Ιδιότθτα type o Type(type, Property) PropVal(type, type, Property) (Το type είναι ιδιόηηηα) o Type(?r,?c) (Type(?r, Resource) Type(?c, Class)) (Η type μπορεί να ιζτύει για πόροσς και έτει μια κλάζη ως ηιμή ηης) 7/38
8 Ιδιότθτα FuncProp Βοθκθτικι ιδιότθτα FuncProp o υναρτθςιακι ιδιότθτα=ιδιότθτα που αποτελεί ςυνάρτθςθ, δθλ. ςυςχετίηει ζνα πόρο με μια τιμι το πολφ o Οι ςυναρτθςιακζσ ιδιότθτεσ δεν αποτελοφν ζννοια τθσ RDF, αλλά χρθςιμοποιοφνται για αξιωματοποίθςθ άλλων κεμελιωδϊν ςτοιχείων o Η ςτακερά FuncProp: αναπαριςτά τθν κλάςθ όλων των ςυναρτθςιακϊν ιδιοτιτων. Type(?p, FuncProp) (Type(?p, Property)?r?v1?v2 (PropVal(?p,?r,?v1) PropVal(?p,?r,?v2)?v1 v2)) Η p είναι μια ςυναρτηςιακή ιδιότητα, αν και μόνο αν είναι ιδιότητα και δεν υπάρχουν r, v1, v2 τζτοια ώςτε να ιςχφουν οι ςχζςεισ p(r,v1) και p(r,v2) όταν v1 v2. 8/38
9 Τποςταςιοποιθμζνεσ προτάςεισ Όλεσ είναι πόροι, θ Statement είναι ςτιγμιότυπο τθσ Class: Type(?s, Statement) Type(?s, Resource) Type(Statement, Class) Μια πρόταςθ μπορεί να αναλυκεί ςτα μζρθ τθσ τριάδασ RDF: Type(?st, Statement)?p?r?v(PropVal(Predicate,?st,?p) PropVal(Subject,?st,?r) PropVal(Object,?st,?v)) Οι ιδιότθτεσ Subject, Predicate και Object είναι ςυναρτθςιακζσ ιδιότθτεσ (: κάκε πρόταςθ ζχει ακριβϊσ ζνα υποκείμενο, ζνα κατθγόρθμα, ζνα αντικείμενο): Type(Subject, FuncProp) Type(Predicate, FuncProp) Type(Object, FuncProp) 9/38
10 Τποςταςιοποιθμζνεσ προτάςεισ Πλθροφορίεσ τυποποίθςθσ: PropVal(Subject,?st,?r) (Type(?st, Statement) Type(?r, Resource)) PropVal(Predicate,?st,?p) (Type(?st, Statement) Type(?p, Property)) PropVal(Object,?st,?v) (Type(?st, Statement) (Type(?v, Resource) Type(?v, Literal))) (Αν ηο Object εμθανιζηεί ως ιδιόηηηα ζε μια πρόηαζη RDF, ηόηε πρέπει να ιζτύει για κάποια σποζηαζιοποιημένη πρόηαζη και να παίρνει ως ηιμή είηε πόρο είηε λεκηικό). 10/38
11 Τποδοχείσ Όλοι είναι πόροι: Είναι λίςτεσ: Type(?c, Container) Type(?c, Resource) Type(?c, Container) list(?c) Οι υποδοχείσ είναι πολυςφνολα (bags), ακολουκίεσ (sequences) ι εναλλακτικά (alternatives): Type(?c, Container) (Type(?c, Bag) Type(?c, Seq) Type(?c, Alt)) Σα πολυςφνολα και οι ακολουκίεσ (sequences) είναι ξζνα μεταξφ τουσ: (Type(?c, Bag) Type(?c, Seq)) 11/38
12 Τποκλάςεισ και υποϊδιότθτεσ Η subclassof είναι ιδιότθτα: Type(subClassOf, Property) Αν μια κλάςθ C είναι υποκλάςθ τθσ C τότε όλα τα ςτιγμιότυπα τθσ C είναι και ςτιγμιότυπα τθσ C : PropVal(subClassOf,?c,?c ) (Type(?c, Class) Type(?c, Class)?x(Type(?x,?c) Type(?x,?c ))) Σα ίδια και για τθν subpropertyof: Type(subPropertyOf, Property) PropVal(subPropertyOf,?p,?p ) (Type(?p, Property) Type(?p, Property)?r?v(PropVal(?p,?r,?v) PropVal(?p,?r,?v))) 12/38
13 Περιοριςμοί Κάκε πόροσ περιοριςμοφ (constraint resource) είναι πόροσ: PropVal(subClassOf, ConstraintResource, Resource) Οι ιδιότθτεσ περιοριςμοφ (constraint properties) είναι ιδιότθτεσ, που είναι και πόροι περιοριςμοφ: Type(?cp, ConstraintProperty) (Type (?cp, ConstraintResource) (Type(?cp, Property)) Σα domain και range είναι ιδιότθτεσ περιοριςμοφ: Type(domain, ConstraintProperty) Type(range, ConstraintProperty) 13/38
14 Περιοριςμοί Σα domain και range ορίηουν το πεδίο οριςμοφ και το ςφνολο τιμϊν μιασ ιδιότθτασ αντίςτοιχα. Πεδίο οριςμοφ μιασ ιδιότθτασ P: το ςφνολο αντικειμζνων για τα οποία ιςχφει θ Ρ. Αν D είναι το πεδίο οριςμοφ, τότε για κάκε P(x, y), x D. PropVal(domain,?p,?d)?x?y(PropVal(?p,?x,?y) Type(?x,?d)) Πεδίο τιμϊν μιασ ιδιότθτασ Ρ: το ςφνολο όλων των τιμϊν που μπορεί να πάρει θ P. Αν R είναι το ςφνολο τιμϊν, τότε για κάκε P(x, y), y R. PropVal(range,?p,?r)?x?y(PropVal(?p,?x,?y) Type(?x,?r)) 14/38
15 Περιοριςμοί Οι παρακάτω τφποι εξάγονται μζςω ςυμπεραςμοφ από τουσ προθγοφμενουσ. PropVal(domain, range, Property) PropVal(range, range, Property) PropVal(domain, domain, Property) PropVal(range, range, Property) Με βάςθ τθν παραπάνω τυποποίθςθ τθσ ςθμαςιολογίασ μποροφν να εξαχκοφν ςυμπεράςματα. Π.χ. αν domain(acadstaffmem, teaches) και SubClassOf(acadStaffMem, staffmem) και ιςχφει teaches(db, Jhatzis) τότε εξάγεται ότι acadstaff(jhatzis). 15/38
16 υλλογιςμόσ/υμπεραςμόσ ςε RDF και RDFS
17 υλλογιςμόσ/υμπεραςμόσ Με βάςθ το προθγοφμενο αξιωματικό ςφςτθμα οριςμοφ ςθμαςιολογίασ για RDF και RDFS, κα μποροφςε να οριςτεί ζνα ςφςτθμα αυτόματου ςυλλογιςμοφ από προτάςεισ RDF και RDFS. Μειονζκτθμα: υψθλι πολυπλοκότθτα, χαμθλι αποδοτικότθτα (λόγω ΚΛΠΣ). Τπάρχει ζνα ςφςτθμα ςυλλογιςμοφ που αντιςτοιχεί ςε μια ςθμαςιολογία RDF, και είναι ακριβζσ και πλιρεσ γι αυτιν, και που λειτουργεί απ ευκείασ ςε προτάςεισ/τριάδεσ RDF, χωρίσ διαμεςολάβθςθ ενδιάμεςθσ μετατροπισ ςε ΚΛΠΣ. Σο ςφςτθμα αυτό διακζτει κανόνεσ τθσ μορφισ: ΑΝ το Ε περιζχει ςυγκεκριμζνεσ τριάδεσ ΣΟΣΕ πρόςκεςε ςτο Ε ςυγκεκριμζνεσ επί πλζον τριάδεσ (το Ε είναι ζνα ςφνολο τριάδων RDF) 17/38
18 υλλογιςμόσ/υμπεραςμόσ Βαςικά παραδείγματα κανόνων ςυμπεραςμοφ: ΑΝ το Ε περιζχει τθν τριάδα (?x,?p,?y) ΣΟΣΕ το Ε επίςθσ περιζχει τθν τριάδα (?p, rdf:type, rdf:property) (οποιοςδιποτε πόροσ?p που χρθςιμοποιείται ςτθ κζςθ τθσ ιδιότθτασ μιασ τριάδασ μπορεί να κεωρθκεί μζλοσ τθσ κλάςθσ rdf:property μζςω ςυμπεραςμοφ) ΑΝ το Ε περιζχει τισ τριάδεσ (?u, rdfs:subclassof,?v) και (?v, rdfs:subclassof,?w) ΣΟΣΕ το Ε επίςθσ περιζχει τθν τριάδα (?u, rdfs:subclassof,?w) (μεταβατικότθτα τθσ ςχζςθσ τθσ υποκλάςθσ) 18/38
19 υλλογιςμόσ/υμπεραςμόσ Βαςικά παραδείγματα κανόνων ςυμπεραςμοφ: ΑΝ το Ε περιζχει τισ τριάδεσ (?x, rdf:type,?u) και (?u, rdfs:subclassof,?v) ΣΟΣΕ το Ε επίςθσ περιζχει τθν τριάδα (?x, rdf:type,?v) (νόθμα τθσ ιδιότθτασ rdfs:subclassof) ΑΝ το Ε περιζχει τισ τριάδεσ (?x,?p,?y) και (?p, rdfs:range,?u) ΣΟΣΕ το Ε επίςθσ περιζχει τθν τριάδα (?y, rdf:type,?u) (οποιοςδιποτε πόροσ?y που εμφανίηεται ωσ τιμι τθσ ιδιότθτασ?p μπορεί να κεωρθκεί μζλοσ του ςυνόλου τιμϊν τθσ?p μζςω ςυμπεραςμοφ-χριςθ οριςμϊν ςυνόλου τιμϊν όχι για περιοριςμό, αλλά ςυμπεραςμό των μελϊν του ςυνόλου) 19/38
20 Ερωτιματα SPARQL
21 Ερωτιματα SPARQL Η υποβολι ερωτθμάτων ςε ζγγραφο RDF με χριςθ γλωςςϊν ερωτθμάτων βαςιςμζνων ςε XML (π.χ. XPath) είναι προβλθματικι, λόγω πολλϊν παραλλαγϊν αναπαράςταςθσ περιγραφϊν. Χρθςιμοποιείται θ SPARQL ωσ το υπό υιοκζτθςθ πρότυπο από το W3C. 21/38
22 Βαςικά ερωτιματα SPARQL Βαςίηονται ςτθν ταφτιςθ υποδειγμάτων/προτφπων γράφων Απλοφςτερο υπόδειγμα γράφου: υπόδειγμα/πρότυπο τριάδασ Μοιάηει με τριάδα RDF, αλλά επιτρζπονται μεταβλθτζσ ςτισ κζςεισ υποκειμζνου, κατθγοριματοσ ι αντικειμζνου Ο ςυνδυαςμόσ υποδειγμάτων τριάδων παράγει ζνα βαςικό υπόδειγμα γράφου Απαιτείται ακριβισ ταφτιςθ με κάποιο γράφο 22/38
23 Βαςικά ερωτιματα SPARQL Απλό παράδειγμα: PREFIX rdf: PREFIX rdfs: SELECT?c WHERE {?c rdf:type rdfs:class. } Ερμηνεία: τα υποδείγματα τριάδων, όπου rdf:type είναι η ιδιότητα και rdfs:class το αντικείμενο (ανάκτηςη όλων των κλάςεων) 23/38
24 Βαςικά ερωτιματα SPARQL άλλο παράδειγμα: PREFIX uni: < SELECT?i WHERE {?i rdf:type rdfs:course. } Ερμηνεία: ανάκτθςθ όλων των ςτιγμιοτφπων τθσ κλάςθσ course 24/38
25 Δομι select-from-where Δομι select-from-where o SELECT: κακορίηει τον αρικμό και τθ ςειρά των προσ ανάκτθςθ δεδομζνων o FROM: προςδιορίηει τθν πθγι των δεδομζνων (προαιρετικό) o WHERE: επιβάλλει περιοριςμοφσ ςτισ δυνατζσ απαντιςεισ Π.χ. SELECT?x?y WHERE {?x uni:phone?y. } Ερμηνεία: ανάκτθςθ όλων των τθλεφϊνων των μελϊν του προςωπικοφ 25/38
26 Δομι select-from-where SELECT?x?y WHERE {?x rdf:type uni:lecturer ; uni:phone?y. } SELECT?x?y WHERE {?x rdf:type uni:lecturer.?x uni:phone?y. } Ερμηνεία: ανάκτθςθ όλων των τθλεφϊνων των μελϊν του προςωπικοφ 1. Ο όροσ?x rdf:type uni:lecturer ςυγκεντρϊνει όλα τα ςτιγμιότυπα τθσ κλάςθσ Lecturer και ςυνδζει το αποτζλεςμα με τθν μεταβλθτι?x 2. Σο uni:phone?y ςυγκεντρϊνει όλεσ τισ τριάδεσ με κατθγόρθμα phone 3. Η ζμμεςη ςυνζνωςη (implicit join) (λόγω του «;») περιορίηει τισ τριάδεσ αυτζσ ςε κείνεσ με κοινό υποκείμενο με τισ πρϊτεσ (?x) 26/38
27 Χριςθ FILTER SELECT?n WHERE {?x rdf:type uni:course ; uni:istaughtby : ?c uni:name?n. FILTER (?c =?x). } Ερμηνεία: ανάκτθςθ όλων των μακθμάτων που διδάςκονται από τον διδάςκοντα με κωδικό (ID) Σο FILTER χρθςιμοποιείται για υπόδειξθ ενόσ λογικοφ περιοριςμοφ. Εδϊ ο περιοριςμόσ είναι θ άμεςη ςυνζνωςη (explicit join) των μεταβλθτϊν?c και?x (χριςθ τελεςτι ιςότθτασ «=»). 27/38
28 Προαιρετικά υποδείγματα Μζχρι τϊρα επιςτρζφεται απάντθςθ αν υπάρχει πλιρθσ ταφτιςθ υποδείγματοσ ςτθ βάςθ γνϊςθσ υχνά όμωσ απαιτείται μεγαλφτερθ ευελιξία o Για παράδειγμα: <uni:lecturer rdf:about="949352"> <uni:name>grig. Antoniou</uni:name> </uni:lecturer> <uni:lecturer rdf:about="949318"> <uni:name>john Hatzis</uni:name> <uni: >ihatz@cti.gr</uni: > </uni:lecturer> SELECT?name? WHERE {?x rdf:type uni:lecturer ; uni:name?name ; uni: ? . } Δεν επιςτρζφει το όνομα του άλλου λζκτορα επειδι δεν ζχει .?name John Hatzis? ihatz@cti.gr 28/38
29 Προαιρετικά υποδείγματα Χριςθ του OPTIONAL <uni:lecturer rdf:about="949352"> <uni:name>grig. Antoniou</uni:name> </uni:lecturer> <uni:lecturer rdf:about="949318"> <uni:name>john Hatzis</uni:name> </uni:lecturer> SELECT?name? WHERE {?x rdf:type uni:lecturer ; uni:name?name ; OPTIONAL {?x uni: ? } }?name John Hatzis Grigoris Antoniou? ihatz@cti.gr 29/38
30 φνοψθ Ενότθτασ RDF
31 φνοψθ Ενότθτασ Σο RDF παρζχει μια βάςθ για τθν αναπαράςταςθ και τθν επεξεργαςία μεταδεδομζνων Σο RDF διακζτει ζνα μοντζλο δεδομζνων που βαςίηεται ςε γράφουσ. Οι βαςικζσ ζννοιζσ του είναι: πόροσ, ιδιότητα και πρόταςη. Κάκε πρόταςθ είναι μια τριάδα πόροσ-ιδιότθτα-τιμι. Για τθν υποςτιριξθ τθσ ςυντακτικισ διαλειτουργικότθτασ, το RDF ζχει μια ςφνταξθ που βαςίηεται ςτθν XML. Η XML και το RDF αλλθλοςυμπλθρϊνονται, επειδι το RDF υποςτθρίηει τθ ςυντακτικι διαλειτουργικότθτα. Η φιλοςοφία του RDF είναι αποκεντρωμζνθ και επιτρζπει το ςταδιακό χτίςιμο τθσ γνϊςθσ, κακϊσ και το διαμοιραςμό και τθν επαναχρθςιμοποίθςι τθσ. Σο RDF είναι ανεξάρτθτο από το πεδίο εφαρμογισ. Σο RDF Schema παρζχει ζνα μθχανιςμό για τθν περιγραφι ςυγκεκριμζνων πεδίων. 31/38
32 φνοψθ Ενότθτασ Σο RDF Schema είναι μια ςτοιχειϊδθσ γλϊςςα οντολογιϊν. Παρζχει ςυγκεκριμζνα κεμελιϊδθ ςτοιχεία μοντελοποίθςθσ με ςτακερό νόθμα. Οι ζννοιεσ-κλειδιά του RDF Schema είναι οι κλάςεισ, οι ςχζςεισ υποκλάςθσ, οι ιδιότθτεσ, οι ςχζςεισ υποϊδιότθτασ και οι περιοριςμοί ςτο πεδίο οριςμοφ και ςτο ςφνολο τιμϊν. Τπάρχουν γλϊςςεσ ερωτθμάτων για τα RDF και RDFS, ςτισ οποίεσ περιλαμβάνεται θ SPARQL. 32/38
33 Χρθματοδότθςθ Σο παρόν εκπαιδευτικό υλικό ζχει αναπτυχκεί ςτo πλαίςιo του εκπαιδευτικοφ ζργου του διδάςκοντα. Σο ζργο «Ανοικτά Ακαδθμαϊκά Μακιματα ςτο Πανεπιςτιμιο Ακθνών» ζχει χρθματοδοτιςει μόνο τθν αναδιαμόρφωςθ του εκπαιδευτικοφ υλικοφ. Σο ζργο υλοποιείται ςτο πλαίςιο του Επιχειρθςιακοφ Προγράμματοσ «Εκπαίδευςθ και Δια Βίου Μάκθςθ» και ςυγχρθματοδοτείται από τθν Ευρωπαϊκι Ζνωςθ (Ευρωπαϊκό Κοινωνικό Σαμείο) και από εκνικοφσ πόρουσ. 33/38
34 θμείωμα Ιςτορικοφ Εκδόςεων Ζργου Σο παρόν ζργο αποτελεί τθν ζκδοςθ /38
35 θμείωμα Αναφοράσ Copyright: Πανεπιςτιμιον Πατρϊν, Ιωάννθσ Χατηθλυγεροφδθσ, «Αναπαράςταςθ Γνϊςθσ ςτον Παγκόςμιο Ιςτό. RDF». Ζκδοςθ: 1.0. Πάτρα Διακζςιμο από τθ δικτυακι διεφκυνςθ: 35/38
36 θμείωμα Αδειοδότθςθσ Σο παρόν υλικό διατίκεται με τουσ όρουσ τθσ άδειασ χριςθσ Creative Commons Αναφορά, Μθ Εμπορικι Χριςθ Παρόμοια Διανομι 4.0 *1+ ι μεταγενζςτερθ, Διεκνισ Ζκδοςθ. Εξαιροφνται τα αυτοτελι ζργα τρίτων π.χ. φωτογραφίεσ, διαγράμματα κ.λ.π., τα οποία εμπεριζχονται ςε αυτό και τα οποία αναφζρονται μαηί με τουσ όρουσ χριςθσ τουσ ςτο «θμείωμα Χριςθσ Ζργων Σρίτων». [1] Ωσ Μθ Εμπορικι ορίηεται θ χριςθ: που δεν περιλαμβάνει άμεςο ι ζμμεςο οικονομικό όφελοσ από τθν χριςθ του ζργου, για το διανομζα του ζργου και αδειοδόχο που δεν περιλαμβάνει οικονομικι ςυναλλαγι ωσ προχπόκεςθ για τθ χριςθ ι πρόςβαςθ ςτο ζργο που δεν προςπορίηει ςτο διανομζα του ζργου και αδειοδόχο ζμμεςο οικονομικό όφελοσ (π.χ. διαφθμίςεισ) από τθν προβολι του ζργου ςε διαδικτυακό τόπο Ο δικαιοφχοσ μπορεί να παρζχει ςτον αδειοδόχο ξεχωριςτι άδεια να χρθςιμοποιεί το ζργο για εμπορικι χριςθ, εφόςον αυτό του ηθτθκεί.
37 Διατιρθςθ θμειωμάτων Οποιαδιποτε αναπαραγωγι ι διαςκευι του υλικοφ κα πρζπει να ςυμπεριλαμβάνει: το θμείωμα Αναφοράσ το θμείωμα Αδειοδότθςθσ τθ διλωςθ Διατιρθςθσ θμειωμάτων το θμείωμα Χριςθσ Ζργων Σρίτων (εφόςον υπάρχει) μαηί με τουσ ςυνοδευόμενουσ υπερςυνδζςμουσ. 37/38
38 θμείωμα Χριςθσ Ζργων Σρίτων Οι διαφάνειεσ είναι κατά μεγάλο μζροσ βαςιςμζνεσ ςτο βιβλίο "Ειςαγωγι ςτον θμαςιολογικό Ιςτό", των Grigoris Antoniou και Frank van Harmelen, Β' ΖΚδοςθ, 2009 (Ελλθνικι Ζκδοςθ). 38/38
ΑΝΑΠΑΡΑΣΤΑΣΗ ΓΝΩΣΗΣ ΣΤΟΝ ΠΑΓΚΟΣΜΙΟ ΙΣΤΟ
ΑΝΑΠΑΡΑΣΤΑΣΗ ΓΝΩΣΗΣ ΣΤΟΝ ΠΑΓΚΟΣΜΙΟ ΙΣΤΟ RDF Schema (RDFS) Ι. Χατζηλυγερούδης RDF vs RDFS Η RDF 1. Περιγράφει συγκεκριμένους πόρους και (προτασιακές) σχέσεις μεταξύ τους Αλλά δεν 2. περιγράφει τύπους πόρων
Αναπαράςταςθ Γνώςθσ ςτον Παγκόςμιο Ιςτό Ενότθτα 2: XML Δομθμζνα Ζγγραφα Ιςτοφ, Μζροσ 4 ο XPath
Αναπαράςταςθ Γνώςθσ ςτον Παγκόςμιο Ιςτό Ενότθτα 2: XML Δομθμζνα Ζγγραφα Ιςτοφ, Μζροσ 4 ο XPath Ιωάννθσ Χατηθλυγεροφδθσ Πολυτεχνικι Σχολι Τμιμα Μθχ/κών Η/Υπολογιςτών & Πλθροφορικισ Περιεχόμενα ενότθτασ
Οντοκεντρικόσ Προγραμματιςμόσ
Οντοκεντρικόσ Προγραμματιςμόσ Ενότθτα 2: Η ΓΛΩΣΣΑ JAVA Βιβλιοκικεσ Ιωάννθσ Χατηθλυγεροφδθσ Πολυτεχνικι Σχολι Τμιμα Μθχανικών Η/Υ & Πλθροφορικισ ΒΙΒΛΙΟΘΗΚΗ JAVA ΒΑΙΚΗ ΒΙΒΛΙΟΘΗΚΗ JAVA Ζνα ςφνολο κλάςεων
Επιχειρηςιακή Έρευνα και εφαρμογζσ με την χρήςη του λογιςμικοφ R
Επιχειρηςιακή Έρευνα και εφαρμογζσ με την χρήςη του λογιςμικοφ R Ενότητα 7 η : Το πρόβλημα τησ Μεταφοράσ Κων/νοσ Κουνετάσ, Επίκουροσ Κακθγθτισ Νίκοσ Χατηθςταμοφλου, Υπ. Δρ. Οικονομικισ Επιςτιμθσ Σχολι
Οντοκεντρικόσ Προγραμματιςμόσ
Οντοκεντρικόσ Προγραμματιςμόσ Ενότθτα 7: C++ TEMPLATES, ΤΠΕΡΦΟΡΣΩΗ ΣΕΛΕΣΩΝ, ΕΞΑΙΡΕΕΙ Templates Ιωάννθσ Χατηθλυγεροφδθσ Πολυτεχνικι χολι Σμιμα Μθχανικών Η/Τ & Πλθροφορικισ Templates Ειςαγωγι Templates o
Αναπαράςταςθ Γνώςθσ ςτον Παγκόςμιο Ιςτό Ενότθτα 5: Κανόνεσ Λογικι και Συμπεραςμόσ
Αναπαράςταςθ Γνώςθσ ςτον Παγκόςμιο Ιςτό Ενότθτα 5: Κανόνεσ Λογικι και Συμπεραςμόσ Ιωάννησ Χατζηλυγεροφδησ Πολυτεχνικι Σχολι Τμιμα Μθχ/κών Η/Υπολογιςτών & Πλθροφορικισ Περιεχόμενα ενότθτασ 1. Λογικι & Κανόνεσ
Τεχνικζσ Ανάλυςησ Διοικητικών Αποφάςεων
Τεχνικζσ Ανάλυςησ Διοικητικών Αποφάςεων Ενότητα 3: υςτιματα ουρϊν αναμονισ Κακθγθτισ Γιάννθσ Γιαννίκοσ χολι Οργάνωςθσ και Διοίκθςθσ Επιχειριςεων Σμιμα Διοίκθςθσ Επιχειριςεων Σκοποί ενότητασ Μελζτθ ςυςτθμάτων
ΘΕΡΜΟΔΤΝΑΜΙΚΗ IΙ. Ενότθτα 4: Χθμικζσ αντιδράςεισ αερίων τακερά Χθμικισ Ιςορροπίασ Πρότυπθ Ελεφκερθ Ενζργεια
ΘΕΡΜΟΔΤΝΑΜΙΚΗ IΙ Ενότθτα 4: Χθμικζσ αντιδράςεισ αερίων τακερά Χθμικισ Ιςορροπίασ Πρότυπθ Ελεφκερθ Ενζργεια ογομών Μπογοςιάν Πολυτεχνικι χολι Σμιμα Χθμικών Μθχανικών κοποί ενότθτασ κοπόσ τθσ ενότθτασ αυτισ
Διδακτικι τθσ Γλϊςςασ Ι
Διδακτικι τθσ Γλϊςςασ Ι Ενότθτα 1: Ειςαγωγικά Μαριάννα Κoνδφλθ Σχολι Ανκρωπιςτικϊν και Κοινωνικϊν Επιςτθμϊν Τ.Ε.Ε.Α.Π.Η. Σκοποί ενότθτασ Να καταρριφκοφν οι προεπιςτθμονικοί μφκοι για τθ γλϊςςα Να αναδειχκεί
Οντοκεντρικόσ Ρρογραμματιςμόσ
Οντοκεντρικόσ Ρρογραμματιςμόσ Ενότθτα 7: C++ TEMPLATES, ΥΡΕΦΟΤΩΣΗ ΤΕΛΕΣΤΩΝ, ΕΞΑΙΕΣΕΙΣ Υπερφόρτωςθ Τελεςτών Ιωάννθσ Χατηθλυγεροφδθσ Ρολυτεχνικι Σχολι Τμιμα Μθχανικών Η/Υ & Ρλθροφορικισ Υπερφόρτωςθ Τελεςτών
Αποτυπώςεισ & Τεκμηρίωςη Αντικειμζνων
Ανοικτά Ακαδθμαϊκά Μακιματα ςτο ΤΕΙ Ιονίων Νιςων Αποτυπώςεισ & Τεκμηρίωςη Αντικειμζνων Ενότητα 3: Συγγραφι εργαςιών Το περιεχόμενο του μακιματοσ διατίκεται με άδεια Creative Commons εκτόσ και αν αναφζρεται
Τεχνικό Σχζδιο - CAD
Ανοικτά Ακαδθμαϊκά Μακιματα ςτο ΤΕΙ Ιονίων Νιςων Τεχνικό Σχζδιο - CAD Ενότητα 2: Τεχνικό Σχζδιο με τθ βοικεια Η/Υ Το περιεχόμενο του μακιματοσ διατίκεται με άδεια Creative Commons εκτόσ και αν αναφζρεται
Aντιπτζριςθ (ΕΠ027) Ενότθτα 12
ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΚΣΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΣΑ Aντιπτζριςθ (ΕΠ027) Ενότθτα 12: Σακτικι διπλοφ μικτοφ τεπάν-αρκίσ Παρτεμιάν Σμιμα Επιςτιμθσ Φυςικισ Αγωγισ και Ακλθτιςμοφ Θεςςαλονίκθσ Άδειεσ
Κλαςικι Ηλεκτροδυναμικι
Κλαςικι Ηλεκτροδυναμικι Ενότθτα 21: Διάδοςθ θλεκτρομαγνθτικών κυμάτων Ανδρζασ Τερηισ Σχολι Θετικών Επιςτθμών Τμιμα Φυςικισ Σκοποί ενότθτασ Σκοπόσ τθσ ενότθτασ είναι να ςυνεχίςει τθν μελζτθ που αφορά τθν
Αναπαράςταςθ Γνϊςθσ ςτον Παγκόςμιο Ιςτό Ενότθτα 3: RDF Περιγραφι Πόρων Ιςτοφ, Μζροσ 1 ο RDF
Αναπαράςταςθ Γνϊςθσ ςτον Παγκόςμιο Ιςτό Ενότθτα 3: RDF Περιγραφι Πόρων Ιςτοφ, Μζροσ 1 ο RDF Ιωάννθσ Χατηθλυγεροφδθσ Πολυτεχνικι Σχολι Τμιμα Μθχ/κϊν Θ/Υπολογιςτϊν & Πλθροφορικισ Μζροσ 1 ο RDF 1. Ειςαγωγι
Αναπαράςταςθ Γνϊςθσ ςτον Παγκόςμιο Ιςτό Ενότθτα 2: XML Δομθμζνα Ζγγραφα Ιςτοφ, Μζροσ 2 ο - DTD
Αναπαράςταςθ Γνϊςθσ ςτον Παγκόςμιο Ιςτό Ενότθτα 2: XML Δομθμζνα Ζγγραφα Ιςτοφ, Μζροσ 2 ο - DTD Ιωάννθσ Χατηθλυγεροφδθσ Πολυτεχνικι Σχολι Τμιμα Μθχ/κϊν Η/Υπολογιςτϊν & Πλθροφορικισ Περιεχόμενα ενότθτασ
Aντιπτζριςη (ΕΠ027) Ενότητα 10
ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΚΣΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΣΑ Aντιπτζριςη (ΕΠ027) Ενότητα 10: Σακτικι Απλοφ τεπάν-αρκίσ Παρτεμιάν Σμιμα Επιςτιμθσ Φυςικισ Αγωγισ και Ακλθτιςμοφ Θεςςαλονίκθσ Άδειεσ Χρήςησ
Ερωτήσεις επανάληψης. Ενδοκρινείς αδένες. Τμήμα Ιαηρικής Πανεπιζηήμιο Παηρών
Ερωτήσεις επανάληψης Ενδοκρινείς αδένες Τμήμα Ιαηρικής Πανεπιζηήμιο Παηρών Υπόφυςη Ποια είδθ ορμονϊν γνωρίηετε με βάςθ τον τρόπο δράςθσ τουσ; Ποιοι είναι οι διαφορετικοί τρόποι μετάδοςθσ του ςιματοσ εντόσ
ΘΕΡΜΟΔΤΝΑΜΙΚΗ Ι. Ενότθτα 3: Μθδενικόσ Νόμοσ - Ζργο. ογομϊν Μπογοςιάν Πολυτεχνικι χολι Σμιμα Χθμικϊν Μθχανικϊν
ΘΕΡΜΟΔΤΝΑΜΙΚΗ Ι Ενότθτα 3: Μθδενικόσ Νόμοσ - Ζργο ογομϊν Μπογοςιάν Πολυτεχνικι χολι Σμιμα Χθμικϊν Μθχανικϊν κοποί ενότθτασ κοπόσ τθσ ενότθτασ αυτισ είναι θ περιγραφι των οριςμϊν και των κεμελιωδϊν εννοιϊν
Ψθφιακι Επεξεργαςία ιματοσ
Ελλθνικι Δθμοκρατία Σεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Ψθφιακι Επεξεργαςία ιματοσ Ενότθτα 4 : Μετατροπι Αναλογικοφ ιματοσ ςε Ψθφιακό Κωνςταντίνοσ Αγγζλθσ 1 Ανοιχτά Ακαδημαϊκά Μαθήματα ςτο ΤΕΙ Ηπείρου
Ειδικζσ Ναυπηγικζσ Καταςκευζσ και Ιςτιοφόρα κάφη (Ε)
Ανοικτά Ακαδημαϊκά Μαθήματα Σεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνασ Ειδικζσ Ναυπηγικζσ Καταςκευζσ και Ιςτιοφόρα κάφη (Ε) Ενδεικτική επίλυςη άςκηςησ 1 Δρ. Θωμάσ Π. Μαηαράκοσ Τμιμα Ναυπθγϊν Μθχανικϊν ΤΕ Το
Αναπαράςταςθ Γνώςθσ ςτον Παγκόςμιο Ιςτό Ενότθτα 3: RDF Περιγραφι Πόρων Ιςτοφ, Μζροσ 2 ο RDF Schema
Αναπαράςταςθ Γνώςθσ ςτον Παγκόςμιο Ιςτό Ενότθτα 3: RDF Περιγραφι Πόρων Ιςτοφ, Μζροσ 2 ο RDF Schema Ιωάννθσ Χατηθλυγεροφδθσ Πολυτεχνικι Σχολι Τμιμα Μθχ/κών Η/Υπολογιςτών & Πλθροφορικισ Περιεχόμενα ενότθτασ
ΘΕΡΜΟΔΤΝΑΜΙΚΗ Ι. Ενότθτα 1: Βαςικά χαρακτθριςτικά τθσ Θερμοδυναμικισ. ογομϊν Μπογοςιάν Πολυτεχνικι χολι Σμιμα Χθμικϊν Μθχανικϊν
ΘΕΡΜΟΔΤΝΑΜΙΚΗ Ι Ενότθτα 1: Βαςικά χαρακτθριςτικά τθσ Θερμοδυναμικισ ογομϊν Μπογοςιάν Πολυτεχνικι χολι Σμιμα Χθμικϊν Μθχανικϊν κοποί ενότθτασ κοπόσ τθσ ενότθτασ αυτισ είναι θ περιγραφι των οριςμϊν και και
Ψθφιακά Ηλεκτρονικά. Ενότθτα 5 : Ανάλυςθ κυκλώματοσ με D και JK FLIP- FLOP Φώτιοσ Βαρτηιώτθσ
Ελλθνικι Δθμοκρατία Σεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Ψθφιακά Ηλεκτρονικά Ενότθτα 5 : Ανάλυςθ κυκλώματοσ με D και JK FLIP- FLOP Φώτιοσ Βαρτηιώτθσ 1 Ανοιχτά Ακαδημαϊκά Μαθήματα ςτο ΤΕΙ Ηπείρου Σμιμα
ΘΕΡΜΟΔΤΝΑΜΙΚΘ IΙ. Ενότθτα 11: Διαλυτότθτα Ιδανικά διαλφματα ογομών Μπογοςιάν Πολυτεχνικι χολι Σμιμα Χθμικών Μθχανικών
ΘΕΡΜΟΔΤΝΑΜΙΚΘ IΙ Ενότθτα 11: Διαλυτότθτα Ιδανικά διαλφματα ογομών Μπογοςιάν Πολυτεχνικι χολι Σμιμα Χθμικών Μθχανικών κοποί ενότθτασ κοπόσ τθσ ενότθτασ αυτισ είναι o οριςμόσ του ιδανικοφ διαλφματοσ με βάςθ
ΔΙΔΑΚΤΙΚΗ ΤΗΣ ΠΑΙΔΑΓΩΓΙΚΗΣ ΓΥΜΝΑΣΤΙΚΗΣ ΙΙ
ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΚΣΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΣΑ ΔΙΔΑΚΤΙΚΗ ΤΗΣ ΠΑΙΔΑΓΩΓΙΚΗΣ ΓΥΜΝΑΣΤΙΚΗΣ ΙΙ Ενότθτα 1: Οργάνωςθ μακιματοσ Χατηόπουλοσ Δθμιτρθσ Σχολι Επιςτιμθσ Φυςικισ Αγωγισ και Ακλθτιςμοφ
Οντοκεντρικόσ Προγραμματιςμόσ
Οντοκεντρικόσ Προγραμματιςμόσ Ενότθτα 2: Η ΓΛΩΣΣΑ JAVA Κληρονομικότητα Ιωάννησ Χατζηλυγεροφδησ Πολυτεχνικι Σχολι Τμιμα Μθχανικϊν Η/Υ & Πλθροφορικισ ΚΛΗΡΟΝΟΜΙΚΟΣΗΣΑ ΚΛΗΡΟΝΟΜΙΚΟΣΗΣΑ Μθχανιςμόσ υλοποίθςθσ
Ειςαγωγή ςτη διδακτική των γλωςςών
ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΚΣΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΣΑ Ειςαγωγή ςτη διδακτική των γλωςςών Ενότητα 2: Μζκοδοι διδαςκαλίασ I Άννα Μουτι, Α.Π.Θ & Πανεπιςτιμιο Θεςςαλίασ Άδειεσ Χρήςησ Σο παρόν εκπαιδευτικό
Οντοκεντρικόσ Προγραμματιςμόσ
Οντοκεντρικόσ Προγραμματιςμόσ Ενότθτα 2: Η ΓΛΩΑ JAVA Βαςικά Δομικά Στοιχεία Ιωάννθσ Χατηθλυγεροφδθσ Πολυτεχνικι χολι Σμιμα Μθχανικών Η/Τ & Πλθροφορικισ ΔΟΜΙΚΑ ΣΟΙΧΕΙΑ ΓΟΜΙΚΑ ΣΟΙΥΔΙΑ JAVA Βαςικά Πακζτα
Τεχνικζσ Ανάλυςησ Διοικητικών Αποφάςεων
Τεχνικζσ Ανάλυςησ Διοικητικών Αποφάςεων Ενότητα 7: Ειςαγωγι ςτο Δυναμικό Προγραμματιςμό Κακθγθτισ Γιάννθσ Γιαννίκοσ Σχολι Οργάνωςθσ και Διοίκθςθσ Επιχειριςεων Τμιμα Διοίκθςθσ Επιχειριςεων Σκοποί ενότητασ
Διαγλωςςική Επικοινωνία
ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΚΣΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΣΑ Διαγλωςςική Επικοινωνία Ενότητα 6 : Μετάφραςθ και εκδόςεισ Ελζνθ Καςάπθ Άδειεσ Χρήςησ Σο παρόν εκπαιδευτικό υλικό υπόκειται ςε άδειεσ χριςθσ
Ψθφιακι Επεξεργαςία ιματοσ
Ελλθνικι Δθμοκρατία Σεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Ψθφιακι Επεξεργαςία ιματοσ Ενότθτα 6 : Κβαντιςμόσ Καταςτάςεων Κωνςταντίνοσ Αγγζλθσ 1 Ανοιχτά Ακαδημαϊκά Μαθήματα ςτο ΤΕΙ Ηπείρου Σμιμα Μθχανικϊν
Οντοκεντρικόσ Προγραμματιςμόσ
Οντοκεντρικόσ Προγραμματιςμόσ Ενότθτα 7: C++ TEMPLATES, ΤΠΕΡΦΟΡΣΩΗ ΣΕΛΕΣΩΝ, ΕΞΑΙΡΕΕΙ Χειριςμόσ Εξαιρζςεων Ιωάννθσ Χατηθλυγεροφδθσ Πολυτεχνικι χολι Σμιμα Μθχανικϊν Η/Τ & Πλθροφορικισ Χειριςμόσ Εξαιρζςεων
Παράγοντεσ υμμετοχήσ Ενηλίκων ςτην Εκπαίδευςη: Ζητήματα Κινητοποίηςησ και Πρόςβαςησ ςε Οργανωμζνεσ Εκπαιδευτικζσ Δραςτηριότητεσ
ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΚΣΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΣΑ Παράγοντεσ υμμετοχήσ Ενηλίκων ςτην Εκπαίδευςη: Ζητήματα Κινητοποίηςησ και Πρόςβαςησ ςε Οργανωμζνεσ Εκπαιδευτικζσ Δραςτηριότητεσ Ενότητα 6:
Aντιπτζριςη (ΕΠ027) Ενότητα 5
ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΚΣΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΣΑ Aντιπτζριςη (ΕΠ027) Ενότητα 5: Lift Στεπάν-Σαρκίσ Παρτεμιάν Τμιμα Επιςτιμθσ Φυςικισ Αγωγισ και Ακλθτιςμοφ Θεςςαλονίκθσ Άδειεσ Χρήςησ Το παρόν
ΠΟΤΔΗ ΣΗ ΤΝΟΠΣΙΚΗ ΠΑΡΑΔΟΗ ΚΑΙ ΣΗΝ Q
ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΚΣΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΣΑ ΠΟΤΔΗ ΣΗ ΤΝΟΠΣΙΚΗ ΠΑΡΑΔΟΗ ΚΑΙ ΣΗΝ Q Ενότητα 7: Φιλολογικζσ και Λογοτεχνικζσ Εξαρτιςεισ / Το Παράδειγμα των Παραβολών Αικατερίνθ Τςαλαμποφνθ
Ψθφιακι Επεξεργαςία ιματοσ
Ελλθνικι Δθμοκρατία Σεχνολογικό Εκπαιδευτικό Κδρυμα Ηπείρου Ψθφιακι Επεξεργαςία ιματοσ Ενότθτα 5 : Θεϊρθμα Shanon Κωνςταντίνοσ Αγγζλθσ 1 Ανοιχτά Ακαδημαϊκά Μαθήματα ςτο ΤΕΙ Ηπείρου Σμιμα Μθχανικϊν Πλθροφορικισ
Αναπαράςταςθ Γνϊςθσ ςτον Παγκόςμιο Ιςτό Ενότθτα 2: XML Δομθμζνα Ζγγραφα Ιςτοφ, Μζροσ 1 ο - XML
Αναπαράςταςθ Γνϊςθσ ςτον Παγκόςμιο Ιςτό Ενότθτα 2: XML Δομθμζνα Ζγγραφα Ιςτοφ, Μζροσ 1 ο Ιωάννθσ Χατηθλυγεροφδθσ Πολυτεχνικι Σχολι Τμιμα Μθχ/κϊν Η/Υπολογιςτϊν & Πλθροφορικισ Περιεχόμενα ενότθτασ Μζροσ
ΔΙΔΑΚΤΙΚΗ ΤΗΣ ΠΑΙΔΑΓΩΓΙΚΗΣ ΓΥΜΝΑΣΤΙΚΗΣ ΙΙ
ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΚΣΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΣΑ ΔΙΔΑΚΤΙΚΗ ΤΗΣ ΠΑΙΔΑΓΩΓΙΚΗΣ ΓΥΜΝΑΣΤΙΚΗΣ ΙΙ Ενότθτα 3: Κοινωνικζσ ικανότθτεσ και «ευ αγωνίηεςκαι» Χατηόπουλοσ Δθμιτρθσ Σχολι Επιςτιμθσ Φυςικισ
Επιχειρηςιακή Ζρευνα και εφαρμογζσ με την χρήςη του λογιςμικοφ R
Επιχειρηςιακή Ζρευνα και εφαρμογζσ με την χρήςη του λογιςμικοφ R Ενότητα 5 η : Η Μζθοδοσ Simplex Παρουςίαςη τησ μεθόδου Κων/νοσ Κουνετάσ, Επίκουροσ Κακθγθτισ Νίκοσ Χατηθςταμοφλου, Υπ. Δρ. Οικονομικισ Επιςτιμθσ
Εκκλθςιαςτικό Δίκαιο ΙΙΙ (Μεταπτυχιακό)
ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΚΣΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΣΑ Εκκλθςιαςτικό Δίκαιο ΙΙΙ (Μεταπτυχιακό) Ενότθτα 1θ: Συςτιματα χωριςμοφ κράτουσ - κρθςκευμάτων Κυριάκοσ Κυριαηόπουλοσ Άδειεσ Χριςθσ Το παρόν
ΔΙΔΑΚΤΙΚΗ ΤΗΣ ΠΑΙΔΑΓΩΓΙΚΗΣ ΓΥΜΝΑΣΤΙΚΗΣ ΙΙ
ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΚΣΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΣΑ ΔΙΔΑΚΤΙΚΗ ΤΗΣ ΠΑΙΔΑΓΩΓΙΚΗΣ ΓΥΜΝΑΣΤΙΚΗΣ ΙΙ Ενότητα 4: Στόχοι τθσ εκπαίδευςθσ Χατηόπουλοσ Δθμιτρθσ Σχολι Επιςτιμθσ Φυςικισ Αγωγισ και Ακλθτιςμοφ
Αναπαράςταςθ Γνϊςθσ ςτον Παγκόςμιο Ιςτό Ενότθτα 1: Ειςαγωγι Το όραμα του Σθμαςιολογικοφ Ιςτοφ
Αναπαράςταςθ Γνϊςθσ ςτον Παγκόςμιο Ιςτό Ενότθτα 1: Ειςαγωγι Το όραμα του Σθμαςιολογικοφ Ιςτοφ Ιωάννθσ Χατηθλυγεροφδθσ Πολυτεχνικι Σχολι Τμιμα Μθχ/κϊν Η/Υπολογιςτϊν & Πλθροφορικισ Περιεχόμενα ενότθτασ 1.
Aντιπτζριςη (ΕΠ027) Ενότητα 6
ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΚΣΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΣΑ Aντιπτζριςη (ΕΠ027) Ενότητα 6: Backhand Overhead Clear Στεπάν-Σαρκίσ Παρτεμιάν Τμιμα Επιςτιμθσ Φυςικισ Αγωγισ και Ακλθτιςμοφ Θεςςαλονίκθσ Άδειεσ
Επιχειρηςιακή Έρευνα και εφαρμογζσ με την χρήςη του λογιςμικοφ R
Επιχειρηςιακή Έρευνα και εφαρμογζσ με την χρήςη του λογιςμικοφ R Ενότητα 10 η : Ακζραιοσ Προγραμματιςμόσ Κων/νοσ Κουνετάσ, Επίκουροσ Κακθγθτισ Νίκοσ Χατηθςταμοφλου, Υπ. Δρ. Οικονομικισ Επιςτιμθσ Σχολι
Ψθφιακι Επεξεργαςία ιματοσ
Ελλθνικι Δθμοκρατία Σεχνολογικό Εκπαιδευτικό Κδρυμα Ηπείρου Ψθφιακι Επεξεργαςία ιματοσ Ενότθτα 9 : Σαχφσ Μεταςχθματιςμόσ Fourier (FFT) Κωνςταντίνοσ Αγγζλθσ 1 Ανοιχτά Ακαδημαϊκά Μαθήματα ςτο ΤΕΙ Ηπείρου
Οντοκεντρικόσ Ρρογραμματιςμόσ
Οντοκεντρικόσ Ρρογραμματιςμόσ Ενότθτα 9: C++ ΕΙΣΟΔΟΣ - ΕΞΟΔΟΣ / ΑΛΦΑΙΘΜΗΤΙΚΑ / ΑΧΕΙΑ Διαχείριςθ Αρχείων Ιωάννθσ Χατηθλυγεροφδθσ Ρολυτεχνικι Σχολι Τμιμα Μθχανικϊν Η/Υ & Ρλθροφορικισ Διαχείριςθ Αρχείων Ιεραρχία
Τεχνολογία Περιβάλλοντοσ: Διαχείριςθ Υγρών Αποβλιτων Ενότθτα 9: Απολφμανςθ. Κορνάροσ Μιχαιλ Πολυτεχνικι Σχολι Τμιμα Χθμικών Μθχανικών
Τεχνολογία Περιβάλλοντοσ: Διαχείριςθ Υγρών Αποβλιτων Ενότθτα 9: Απολφμανςθ Κορνάροσ Μιχαιλ Πολυτεχνικι Σχολι Τμιμα Χθμικών Μθχανικών Απολφμανςθ Η εκροι που προζρχεται από πρωτοβάκμια, δευτεροβάκμια ι τριτοβάκμια
Τεχνθτι Νοθμοςφνθ. Ενότθτα 2: Αναπαράςταςθ Γνϊςθσ και Συλλογιςμόσ. Ιωάννθσ Χατηθλυγεροφδθσ Πολυτεχνικι Σχολι Τμιμα Μθχανικϊν Η/Υ & Πλθροφορικισ
Τεχνθτι Νοθμοςφνθ Ιωάννθσ Χατηθλυγεροφδθσ Πολυτεχνικι Σχολι Τμιμα Μθχανικϊν Η/Υ & Πλθροφορικισ Αναπαράςταςθ Γνϊςθσ και Συλλογιςμόσ Αναπαράςταςθ Γνϊςθσ (1) Οριςμόσ Πϊσ μπορεί καλφτερα και αποδοτικότερα
ΘΕΟΛΟΓΙΑ ΚΑΙΝΗΣ ΔΙΑΘΗΚΗΣ
ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΚΣΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΣΑ ΘΕΟΛΟΓΙΑ ΚΑΙΝΗΣ ΔΙΑΘΗΚΗΣ Ενότητα 6: Παφλοσ. Ευαγγζλιο και Νόμοσ Αικατερίνθ Τςαλαμποφνθ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Διδακτικι τθσ Γλϊςςασ Ι
Διδακτικι τθσ Γλϊςςασ Ι Ενότθτα 5: Η παιδαγωγικι του γραμματιςμοφ Μαριάννα Κoνδφλθ Σχολι Ανκρωπιςτικϊν και Κοινωνικϊν Επιςτθμϊν Τ.Ε.Ε.Α.Π.Η. Σκοποί ενότθτασ Να εντοπιςτοφν οι διαφορζσ προφορικοφ και γραπτοφ
Ειςαγωγή ςτη διδακτική των γλωςςών
ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΚΣΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΣΑ Ειςαγωγή ςτη διδακτική των γλωςςών Ενότητα 5: Μζκοδοι διδαςκαλίασ IV Άννα Μουτι, Α.Π.Θ & Πανεπιςτιμιο Θεςςαλίασ Άδειεσ Χρήςησ Σο παρόν εκπαιδευτικό
ΘΕΟΛΟΓΙΑ ΚΑΙΝΗΣ ΔΙΑΘΗΚΗΣ
ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΚΣΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΣΑ ΘΕΟΛΟΓΙΑ ΚΑΙΝΗΣ ΔΙΑΘΗΚΗΣ Ενότητα 7: Χριςτολογία του κατά Λουκάν Αικατερίνθ Τςαλαμποφνθ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Ειδικά Θζματα Βάςεων Δεδομζνων
Ειδικά Θζματα Βάςεων Δεδομζνων Ενότητα 11: Αντικειμενοςτραφήσ και αντικείμενοςχεςιακζσ βάςεισ Δρ. Τςιμπίρθσ Αλκιβιάδθσ Τμιμα Μθχανικϊν Πλθροφορικισ ΤΕ Άδειεσ Χρήςησ Το παρόν εκπαιδευτικό υλικό υπόκειται
Τεχνθτι Νοθμοςφνθ. Ενότθτα 4: Στρατθγικζσ Ελζγχου Επίλυςθσ. Ιωάννθσ Χατηθλυγεροφδθσ Πολυτεχνικι Σχολι Τμιμα Μθχανικϊν Η/Υ & Πλθροφορικισ
Τεχνθτι Νοθμοςφνθ Ιωάννθσ Χατηθλυγεροφδθσ Πολυτεχνικι Σχολι Τμιμα Μθχανικϊν Η/Υ & Πλθροφορικισ Στρατθγικζσ Ελζγχου Επίλυςθσ Στρατθγικζσ Ελζγχου Επίλυςθσ (1) Η μθ ελεγχόμενθ χριςθ τθσ αρχισ τθσ επίλυςθσ
Επιχειρηςιακή Ζρευνα και εφαρμογζσ με την χρήςη του λογιςμικοφ R
Επιχειρηςιακή Ζρευνα και εφαρμογζσ με την χρήςη του λογιςμικοφ R Ενότητα 6 η : Η Μζθοδοσ Μ και η Μζθοδοσ των Δφο Φάςεων Κων/νοσ Κουνετάσ, Επίκουροσ Κακθγθτισ Νίκοσ Χατηθςταμοφλου, Υπ. Δρ. Οικονομικισ Επιςτιμθσ
Ελλθνικι Δθμοκρατία Σεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Ψθφιακά Ηλεκτρονικά. Ενότθτα 9 : Διαδικαςία φνκεςθσ Φϊτιοσ Βαρτηιϊτθσ
Ελλθνικι Δθμοκρατία Σεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Ψθφιακά Ηλεκτρονικά Ενότθτα 9 : Διαδικαςία φνκεςθσ Φϊτιοσ Βαρτηιϊτθσ 1 Ανοιχτά Σμιμα Ψθφιακά Ηλεκτρονικά Ενότητα 9: Διαδικαςία φνκεςθσ Φϊτιοσ
Τεχνολογία Περιβάλλοντοσ: Διαχείριςθ Στερεών Αποβλιτων Ενότθτα 4: Μθχανικόσ Διαχωριςμόσ. Κορνάροσ Μιχαιλ Πολυτεχνικι Σχολι Τμιμα Χθμικών Μθχανικών
Τεχνολογία Περιβάλλοντοσ: Διαχείριςθ Στερεών Αποβλιτων Ενότθτα 4: Μθχανικόσ Διαχωριςμόσ Κορνάροσ Μιχαιλ Πολυτεχνικι Σχολι Τμιμα Χθμικών Μθχανικών Mθχανικόσ Διαχωριςμόσ Διαχωριςμόσ των διαφόρων υλικών από
ΘΕΡΜΟΔΤΝΑΜΙΚΗ Ι. Ενότθτα 4: Πρϊτοσ Θερμοδυναμικόσ Νόμοσ. ογομϊν Μπογοςιάν Πολυτεχνικι χολι Σμιμα Χθμικϊν Μθχανικϊν
ΘΕΡΜΟΔΤΝΑΜΙΚΗ Ι Ενότθτα 4: Πρϊτοσ Θερμοδυναμικόσ Νόμοσ ογομϊν Μπογοςιάν Πολυτεχνικι χολι Σμιμα Χθμικϊν Μθχανικϊν κοποί ενότθτασ κοπόσ τθσ ενότθτασ αυτισ είναι θ περιγραφι των οριςμϊν και των κεμελιωδϊν
ΔΙΔΑΚΤΙΚΗ ΤΗΣ ΠΑΙΔΑΓΩΓΙΚΗΣ ΓΥΜΝΑΣΤΙΚΗΣ ΙΙ
ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΚΣΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΣΑ ΔΙΔΑΚΤΙΚΗ ΤΗΣ ΠΑΙΔΑΓΩΓΙΚΗΣ ΓΥΜΝΑΣΤΙΚΗΣ ΙΙ Ενότητα 8: Διά βίου άκλθςθ για υγεία (ευκαμψία) Χατηόπουλοσ Δθμιτρθσ Σχολι Επιςτιμθσ Φυςικισ Αγωγισ
Ειςαγωγή ςτη διδακτική των γλωςςών
ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΚΣΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΣΑ Ειςαγωγή ςτη διδακτική των γλωςςών Ενότητα 6: Μζκοδοι διδαςκαλίασ V Τψθλάντθσ Γεϊργιοσ, αναπλθρωτισ κακθγθτισ Άδειεσ Χρήςησ Σο παρόν εκπαιδευτικό
Διαγλωςςική Επικοινωνία
ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΚΣΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΣΑ Διαγλωςςική Επικοινωνία Ενότητα 7 : Εγκυρότθτα κειμζνου πθγι και αξιολόγθςθ πολλαπλών μεταφράςεων Ελζνθ Καςάπθ Άδειεσ Χρήςησ Σο παρόν εκπαιδευτικό
Οντοκεντρικόσ Ρρογραμματιςμόσ
Οντοκεντρικόσ Ρρογραμματιςμόσ Ενότθτα 8: C++ ΒΙΒΛΙΟΗΚΗ STL, ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ Δομζσ Δεδομζνων Ιωάννθσ Χατηθλυγεροφδθσ Ρολυτεχνικι Σχολι Τμιμα Μθχανικών Η/Υ & Ρλθροφορικισ Δομζσ Δεδομζνων Ειςαγωγι Δομζσ ςτακεροφ
Βάςεισ Δεδομζνων Ι. Ενότητα 12: Κανονικοποίηςη. Δρ. Τςιμπίρθσ Αλκιβιάδθσ Τμιμα Μθχανικών Πλθροφορικισ ΤΕ
Βάςεισ Δεδομζνων Ι Ενότητα 12: Κανονικοποίηςη Δρ. Τςιμπίρθσ Αλκιβιάδθσ Τμιμα Μθχανικών Πλθροφορικισ ΤΕ Άδειεσ Χρήςησ Το παρόν εκπαιδευτικό υλικό υπόκειται ςε άδειεσ χριςθσ Creative Commons. Για εκπαιδευτικό
Ψθφιακι Επεξεργαςία ιματοσ
Ελλθνικι Δθμοκρατία Σεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Ψθφιακι Επεξεργαςία ιματοσ Ενότθτα 3 : Παρακφρωςθ Δεδομζνων Κωνςταντίνοσ Αγγζλθσ Ανοιχτά Ακαδημαϊκά Μαθήματα ςτο ΤΕΙ Ηπείρου Σμιμα Μθχανικών
Οντοκεντρικόσ Προγραμματιςμόσ
Οντοκεντρικόσ Προγραμματιςμόσ Ενότθτα 6: C++ ΚΛΑΕΙ, ΚΛΗΡΟΝΟΜΙΚΟΣΗΣΑ, ΠΟΛΤΜΟΡΦΙΜΟ Πολυμορφιςμόσ Ιωάννθσ Χατηθλυγεροφδθσ Πολυτεχνικι χολι Σμιμα Μθχανικϊν Η/Τ & Πλθροφορικισ Πολυμορφιςμόσ Πολυμορφιςμόσ Ειςαγωγι
Παράγοντεσ υμμετοχήσ Ενηλίκων ςτην Εκπαίδευςη: Ζητήματα Κινητοποίηςησ και Πρόςβαςησ ςε Οργανωμζνεσ Εκπαιδευτικζσ Δραςτηριότητεσ
ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΚΣΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΣΑ Παράγοντεσ υμμετοχήσ Ενηλίκων ςτην Εκπαίδευςη: Ζητήματα Κινητοποίηςησ και Πρόςβαςησ ςε Οργανωμζνεσ Εκπαιδευτικζσ Δραςτηριότητεσ Ενότητα 7:
ΕΙΚΟΝΙΚΟ ΕΡΓΑΣΗΡΙΟ ΠΑΙΔΟΚΑΡΔΙΟΛΟΓΙΑ Ενότητα: Φυςιολογία εμβρυϊκισ και περιγεννθτικισ κυκλοφορίασ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΣΙΑ ΠΑΝΕΠΙΣΗΜΙΟ ΚΡΗΣΗ ΕΙΚΟΝΙΚΟ ΕΡΓΑΣΗΡΙΟ ΠΑΙΔΟΚΑΡΔΙΟΛΟΓΙΑ Ενότητα: Φυςιολογία εμβρυϊκισ και περιγεννθτικισ κυκλοφορίασ Ιωάννθσ Γερμανάκθσ Επίκουροσ Κακθγθτισ Παιδιατρικισ, Πανεπιςτιμιο
Ελλθνικι Δθμοκρατία Σεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Ψθφιακά Ηλεκτρονικά. Ενότθτα 11 : Μετρθτζσ Ριπισ Φϊτιοσ Βαρτηιϊτθσ
Ελλθνικι Δθμοκρατία Σεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Ψθφιακά Ηλεκτρονικά Ενότθτα 11 : Μετρθτζσ Ριπισ Φϊτιοσ Βαρτηιϊτθσ 1 Ανοιχτά Σμιμα Ψθφιακά Ηλεκτρονικά Ενότητα 11: Μετρθτζσ Ριπισ Φϊτιοσ Βαρτηιϊτθσ
Βάςεισ Δεδομζνων Ι. Ενότθτα 10: Συνακροιςτικζσ ςυναρτιςεισ. Δρ. Σςιμπίρθσ Αλκιβιάδθσ Σμιμα Μθχανικών Πλθροφορικισ ΣΕ
Βάςεισ Δεδομζνων Ι Ενότθτα 10: Συνακροιςτικζσ ςυναρτιςεισ Δρ. Σςιμπίρθσ Αλκιβιάδθσ Άδειεσ Χριςθσ Σο παρόν εκπαιδευτικό υλικό υπόκειται ςε άδειεσ χριςθσ Creative Commons. Για εκπαιδευτικό υλικό, όπωσ εικόνεσ,
ΘΕΟΛΟΓΙΑ ΚΑΙΝΗΣ ΔΙΑΘΗΚΗΣ
ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΚΣΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΣΑ ΘΕΟΛΟΓΙΑ ΚΑΙΝΗΣ ΔΙΑΘΗΚΗΣ Ενότητα 1: Ειςαγωγι - Ιςτορία ζρευνασ Αικατερίνθ Τςαλαμποφνθ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται ςε
Aντιπτζριςη (ΕΠ027) Ενότητα 9
ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΚΣΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΣΑ Aντιπτζριςη (ΕΠ027) Ενότητα 9: Drive shots Στεπάν-Σαρκίσ Παρτεμιάν Τμιμα Επιςτιμθσ Φυςικισ Αγωγισ και Ακλθτιςμοφ Θεςςαλονίκθσ Άδειεσ Χρήςησ
ΠΟΤΔΗ ΣΗ ΤΝΟΠΣΙΚΗ ΠΑΡΑΔΟΗ ΚΑΙ ΣΗΝ Q
ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΚΣΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΣΑ ΠΟΤΔΗ ΣΗ ΤΝΟΠΣΙΚΗ ΠΑΡΑΔΟΗ ΚΑΙ ΣΗΝ Q Ενότητα 9: Το ιδιαίτερο υλικό του Μτ και Λκ Αικατερίνθ Τςαλαμποφνθ Άδειες Χρήσης Το παρόν εκπαιδευτικό
ΔΙΔΑΚΣΙΚΗ ΣΗ ΠΑΙΔΑΓΩΓΙΚΗ ΓΤΜΝΑΣΙΚΗ ΙΙ
ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΚΣΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΣΑ ΔΙΔΑΚΣΙΚΗ ΣΗ ΠΑΙΔΑΓΩΓΙΚΗ ΓΤΜΝΑΣΙΚΗ ΙΙ Ενότητα 9: Διδαςκαλία ακλοπαιδιϊν ςτο ςχολείο Χατηόπουλοσ Δθμιτρθσ Σχολι Επιςτιμθσ Φυςικισ Αγωγισ και
ΘΕΟΛΟΓΙΑ ΚΑΙΝΗΣ ΔΙΑΘΗΚΗΣ
ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΚΣΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΣΑ ΘΕΟΛΟΓΙΑ ΚΑΙΝΗΣ ΔΙΑΘΗΚΗΣ Ενότητα 13: Πρόςλθψθ τθσ διδαςκαλίασ τθσ ΚΔ από τουσ Πατζρεσ Αικατερίνθ Τςαλαμποφνθ Άδειεσ Χρήςησ Το παρόν εκπαιδευτικό
ΔΙΔΑΚΤΙΚΗ ΤΗΣ ΠΑΙΔΑΓΩΓΙΚΗΣ ΓΥΜΝΑΣΤΙΚΗΣ ΙΙ
ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΚΣΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΣΑ ΔΙΔΑΚΤΙΚΗ ΤΗΣ ΠΑΙΔΑΓΩΓΙΚΗΣ ΓΥΜΝΑΣΤΙΚΗΣ ΙΙ Ενότητα 10: Ψυχοκινθτικι Αγωγι Χατηόπουλοσ Δθμιτρθσ Σχολι Επιςτιμθσ Φυςικισ Αγωγισ και Ακλθτιςμοφ
Ειςαγωγι ςτισ Μεταφραςτικζσ Σπουδζσ
ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΚΣΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΣΑ Ειςαγωγι ςτισ Μεταφραςτικζσ Σπουδζσ Ενότθτα 6 : Θεωρία τθσ μετάφραςθσ Ελζνθ Καςάπθ Άδειεσ Χριςθσ Το παρόν εκπαιδευτικό υλικό υπόκειται ςε άδειεσ
Διδακτικζσ Προςεγγίςεισ Διερευνθτικισ Μάκθςθσ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΣΙΑ ΠΑΝΕΠΙΣΗΜΙΟ ΚΡΗΣΗ Διδακτικζσ Προςεγγίςεισ Διερευνθτικισ Μάκθςθσ Ενότθτα: Ειςαγωγι και Επιςκόπθςθ - Inquiry Based Science Education: Online Course Overview Κάλλια Κατςαμποξάκθ-Hodgetts
Ψθφιακι Επεξεργαςία ιματοσ
Ελλθνικι Δθμοκρατία Σεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Ψθφιακι Επεξεργαςία ιματοσ Ενότθτα 8 : Διακριτόσ Μεταςχθματιςμόσ Fourier Κωνςταντίνοσ Αγγζλθσ 1 Ανοιχτά Ακαδημαϊκά Μαθήματα ςτο ΤΕΙ Ηπείρου Σμιμα
ΠΟΤΔΗ ΣΗ ΤΝΟΠΣΙΚΗ ΠΑΡΑΔΟΗ ΚΑΙ ΣΗΝ Q
ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΚΣΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΣΑ ΠΟΤΔΗ ΣΗ ΤΝΟΠΣΙΚΗ ΠΑΡΑΔΟΗ ΚΑΙ ΣΗΝ Q Ενότητα 1: Περιγραφι και Λφςεισ που προτάκθκαν Αικατερίνθ Τςαλαμποφνθ Άδειεσ Χρήςησ Το παρόν εκπαιδευτικό
Ψθφιακά Ηλεκτρονικά. Ενότθτα 7 : Ελαχιςτοποίθςθ και κωδικοποίθςθ καταςτάςεων Φϊτιοσ Βαρτηιϊτθσ
Ελλθνικι Δθμοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Ψθφιακά Ηλεκτρονικά Ενότθτα 7 : Ελαχιςτοποίθςθ και κωδικοποίθςθ καταςτάςεων Φϊτιοσ Βαρτηιϊτθσ 1 Ανοιχτά Ακαδημαϊκά Μαθήματα ςτο ΤΕΙ Ηπείρου Τμιμα
ΘΕΡΜΟΔΤΝΑΜΙΚΗ Ι. Ενότθτα 11: Μεταπτϊςεισ πρϊτθσ και δεφτερθσ τάξθσ. ογομϊν Μπογοςιάν Πολυτεχνικι χολι Σμιμα Χθμικϊν Μθχανικϊν
ΘΕΡΜΟΔΤΝΑΜΙΚΗ Ι Ενότθτα 11: Μεταπτϊςεισ πρϊτθσ και δεφτερθσ τάξθσ ογομϊν Μπογοςιάν Πολυτεχνικι χολι Σμιμα Χθμικϊν Μθχανικϊν κοποί ενότθτασ κοπόσ τθσ ενότθτασ αυτισ είναι θ ειςαγωγι του παράγοντα τθσ «τάξθσ»
ΣΑ ΑΠΟΚΡΤΦΑ ΕΤΑΓΓΕΛΙΑ
ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΚΣΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΣΑ ΣΑ ΑΠΟΚΡΤΦΑ ΕΤΑΓΓΕΛΙΑ Ενότητα 11: Το Γνωςτικό Ευαγγζλιο του Ιοφδα Αικατερίνθ Τςαλαμποφνθ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Βάςεισ Δεδομζνων Λ. Ενότθτα 8: SQL Γλώςςα χειριςμοφ δεδομζνων. Δρ. Σςιμπίρθσ Αλκιβιάδθσ Σμιμα Μθχανικών Πλθροφορικισ ΣΕ
Βάςεισ Δεδομζνων Λ Ενότθτα 8: SQL Γλώςςα χειριςμοφ δεδομζνων Δρ. Σςιμπίρθσ Αλκιβιάδθσ Άδειεσ Χριςθσ Σο παρόν εκπαιδευτικό υλικό υπόκειται ςε άδειεσ χριςθσ Creative Commons. Για εκπαιδευτικό υλικό, όπωσ
Aντιπτζριςη (ΕΠ027) Ενότητα 2
ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΚΣΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΣΑ Aντιπτζριςη (ΕΠ027) Ενότητα 2: Λαβι ρακζτασ Στεπάν-Σαρκίσ Παρτεμιάν Τμιμα Επιςτιμθσ Φυςικισ Αγωγισ και Ακλθτιςμοφ Θεςςαλονίκθσ Άδειεσ Χρήςησ
Τεχνικζσ Ανάλυςησ Διοικητικών Αποφάςεων
Τεχνικζσ Ανάλυςησ Διοικητικών Αποφάςεων Ενότητα 6: Θ Διαδικαςία Αναλυτικισ Ιεράρχθςθσ και θ Μζκοδοσ MACBETH Κακθγθτισ Γιάννθσ Γιαννίκοσ Σχολι Οργάνωςθσ και Διοίκθςθσ Επιχειριςεων Τμιμα Διοίκθςθσ Επιχειριςεων
Τεχνθτι Νοθμοςφνθ. Ενότθτα 11: Σθμαντικά Δίκτυα. Ιωάννθσ Χατηθλυγεροφδθσ Πολυτεχνικι Σχολι Τμιμα Μθχανικϊν Η/Υ & Πλθροφορικισ
Τεχνθτι Νοθμοςφνθ Ιωάννθσ Χατηθλυγεροφδθσ Πολυτεχνικι Σχολι Τμιμα Μθχανικϊν Η/Υ & Πλθροφορικισ Σθμαντικά Δίκτυα Σθμαντικά Δίκτυα Βαςίηονται ςτθν αίςκθςθ ότι ζνα χαρακτθριςτικό τθσ ανκρϊπινθσ μνιμθσ είναι
ΘΕΟΛΟΓΙΑ ΚΑΙΝΗΣ ΔΙΑΘΗΚΗΣ
ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΚΣΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΣΑ ΘΕΟΛΟΓΙΑ ΚΑΙΝΗΣ ΔΙΑΘΗΚΗΣ Ενότητα 10: Θεολογία των Πράξεων των Αποςτόλων Αικατερίνθ Τςαλαμποφνθ Άδειεσ Χρήςησ Το παρόν εκπαιδευτικό υλικό υπόκειται
Γενικά Μαθηματικά ΙΙ
ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΚΣΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΣΑ Γενικά Μαθηματικά ΙΙ Ενότητα 13 η : Επαναλθπτικι Ενότθτα Λουκάσ Βλάχοσ Κακθγθτισ Αςτροφυςικισ Άδειεσ Χρήςησ Το παρόν εκπαιδευτικό υλικό υπόκειται
Ειδικά Θζματα Βάςεων Δεδομζνων
Ειδικά Θζματα Βάςεων Δεδομζνων Ενότητα 15: Εξόρυξη Δεδομζνων (Data Mining) Δρ. Τςιμπίρθσ Αλκιβιάδθσ Τμιμα Μθχανικϊν Πλθροφορικισ ΤΕ Άδειεσ Χρήςησ Το παρόν εκπαιδευτικό υλικό υπόκειται ςε άδειεσ χριςθσ
ΘΕΜΟΔΥΝΑΜΙΚΘ Ι. Ενότθτα 7: Θεωριματα και ςχζςεισ μερικϊν παραγϊγων Σχζςεισ Maxwell Θερμοδυναμικζσ Καταςτατικζσ Εξιςϊςεισ
ΘΕΜΟΔΥΝΑΜΙΚΘ Ι Ενότθτα 7: Θεωριματα και ςχζςεισ μερικϊν παραγϊγων Σχζςεισ Maxwell Θερμοδυναμικζσ Καταςτατικζσ Εξιςϊςεισ Σογομϊν Μπογοςιάν Ρολυτεχνικι Σχολι Τμιμα Χθμικϊν Μθχανικϊν Σκοποί ενότθτασ Σκοπόσ
ΠΟΤΔΗ ΣΗ ΤΝΟΠΣΙΚΗ ΠΑΡΑΔΟΗ ΚΑΙ ΣΗΝ Q
ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΚΣΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΣΑ ΠΟΤΔΗ ΣΗ ΤΝΟΠΣΙΚΗ ΠΑΡΑΔΟΗ ΚΑΙ ΣΗΝ Q Ενότητα 11: Ο Ματκαίοσ κι ο Λουκάσ ωσ αναγνώςτεσ του Μάρκου Αικατερίνθ Τςαλαμποφνθ Άδειες Χρήσης Το παρόν
Σεχνθτι Νοθμοςφνθ. Ενότθτα 1: Ειςαγωγι. Ιωάννθσ Χατηθλυγεροφδθσ Πολυτεχνικι χολι Σμιμα Μθχανικϊν Η/Τ & Πλθροφορικισ
Σεχνθτι Νοθμοςφνθ Ιωάννθσ Χατηθλυγεροφδθσ Πολυτεχνικι χολι Σμιμα Μθχανικϊν Η/Τ & Πλθροφορικισ Ειςαγωγι Οριςμόσ τθσ Σεχνθτισ Νοθμοςφνθσ Barr and Feigenbaum (ΣΝ) (1) «ΣΝ είναι ο τομζασ τθσ επιςτιμθσ των
Βάςεισ Δεδομζνων Ι. Ενότθτα 11: SQL-Ερωτιματα Ομαδοποίθςθσ με υνζνωςθ Πινάκων. Δρ. Σςιμπίρθσ Αλκιβιάδθσ Σμιμα Μθχανικϊν Πλθροφορικισ ΣΕ
Βάςεισ Δεδομζνων Ι Ενότθτα 11: SQL-Ερωτιματα Ομαδοποίθςθσ με υνζνωςθ Πινάκων Δρ. Σςιμπίρθσ Αλκιβιάδθσ Άδειεσ Χριςθσ Σο παρόν εκπαιδευτικό υλικό υπόκειται ςε άδειεσ χριςθσ Creative Commons. Για εκπαιδευτικό
ΘΕΟΛΟΓΙΑ ΚΑΙΝΗΣ ΔΙΑΘΗΚΗΣ
ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΚΣΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΣΑ ΘΕΟΛΟΓΙΑ ΚΑΙΝΗΣ ΔΙΑΘΗΚΗΣ Ενότητα 8: Θεολογία του κατά Ιωάννθν (πνευματολογία και χριςτολογία) Αικατερίνθ Τςαλαμποφνθ Άδειεσ Χρήςησ Το παρόν
ΘΕΡΜΟΔΤΝΑΜΙΚΘ IΙ. Ενότθτα 12: Κρυοςκοπία Ηεςεοςκοπία Ωςμωτικι πίεςθ ογομϊν Μπογοςιάν Πολυτεχνικι χολι Σμιμα Χθμικϊν Μθχανικϊν
ΘΕΡΜΟΔΤΝΑΜΙΚΘ IΙ Ενότθτα 1: Κρυοςκοπία Ηεςεοςκοπία Ωςμωτικι πίεςθ ογομϊν Μπογοςιάν Πολυτεχνικι χολι Σμιμα Χθμικϊν Μθχανικϊν κοποί ενότθτασ κοπόσ τθσ ενότθτασ αυτισ είναι θ περιγραφι των μεκόδων τθσ ηεςεοςκοπίασ
Αναπαράςταςθ Γνϊςθσ ςτον Παγκόςμιο Ιςτό Ενότθτα 2: XML Δομθμζνα Ζγγραφα Ιςτοφ, Μζροσ 5 ο XSLT
Αναπαράςταςθ Γνϊςθσ ςτον Παγκόςμιο Ιςτό Ενότθτα 2: XML Δομθμζνα Ζγγραφα Ιςτοφ, Μζροσ 5 ο XSLT Ιωάννθσ Χατηθλυγεροφδθσ Πολυτεχνικι χολι Σμιμα Μθχ/κϊν Η/Τπολογιςτϊν & Πλθροφορικισ Περιεχόμενα ενότθτασ Μζροσ
Βάςεισ Δεδομζνων Ι. Ενότθτα 9: SQL-φηευξθ πινάκων. Δρ. Σςιμπίρθσ Αλκιβιάδθσ Σμιμα Μθχανικών Πλθροφορικισ ΣΕ
Βάςεισ Δεδομζνων Ι Ενότθτα 9: SQL-φηευξθ πινάκων Δρ. Σςιμπίρθσ Αλκιβιάδθσ Άδειεσ Χριςθσ Σο παρόν εκπαιδευτικό υλικό υπόκειται ςε άδειεσ χριςθσ Creative Commons. Για εκπαιδευτικό υλικό, όπωσ εικόνεσ, που
Οντοκεντρικόσ Προγραμματιςμόσ
Οντοκεντρικόσ Προγραμματιςμόσ Ενότθτα 3: JAVA: ΕΞΑΙΡΕΕΙ, ΕΙΟΔΟ-ΕΞΟΔΟ, ΝΗΜΑΣΑ Νιματα Ιωάννθσ Χατηθλυγεροφδθσ Πολυτεχνικι χολι Σμιμα Μθχανικών Η/Τ & Πλθροφορικισ ΝΗΜΑΣΑ ΣΗ JAVA ΝΗΜΑΣΑ ΣΗ JAVA (1) Οριςμόσ
ΠΟΤΔΗ ΣΗ ΤΝΟΠΣΙΚΗ ΠΑΡΑΔΟΗ ΚΑΙ ΣΗΝ Q
ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΚΣΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΣΑ ΠΟΤΔΗ ΣΗ ΤΝΟΠΣΙΚΗ ΠΑΡΑΔΟΗ ΚΑΙ ΣΗΝ Q Ενότητα 2: Οι ςφγχρονεσ τάςεισ ςτθν ζρευνα Αικατερίνθ Τςαλαμποφνθ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό