Ονοματεπώνυμο: Ερώτημα: Σύνολο Μονάδες: Βαθμός:
|
|
- Ιόλη Πολύμνια Καρράς
- 8 χρόνια πριν
- Προβολές:
Transcript
1 ΕΤΥ: Ανάλυση Απόδοσης Πληροφοριακών Συστημάτων Χειμερινό Εξάμηνο Τελική Εξέταση 28/02/15 Διάρκεια Εξέτασης: 3 Ώρες Ονοματεπώνυμο: Αριθμός Μητρώου: Υπογραφή: Ερώτημα: Σύνολο Μονάδες: Βαθμός: Το ανά χείρας φύλλο εξέτασης περιέχει 6 σελίδες και 6 ερωτήματα. Παρατηρήστε πως το σύνολο των βαθμών των θεμάτων είναι 12 ενώ για την επίτευξη μέγιστης δυνατής βαθμολογίας αρκούν 10 βαθμοί. Καλή επιτυχία! Ερώτημα 1 (2 μονάδες) Απαντήστε στις παρακάτω ερωτήσεις σημειώνοντας ΣΩΣΤΟ ή ΛΑΘΟΣ. (αʹ) Αν μία τυχαία μεταβλητή Τ είναι εκθετικά κατανεμημένη, τότε Pr{T > 2 T 1} = Pr{T > 1}. (αʹ) ΣΩΣΤΟ (βʹ) Ο νόμος του Little ισχύει ακόμα και για ουρές που δεν μπορούν να περιγραφούν με διαδικασίες Markov. (βʹ) ΣΩΣΤΟ (γʹ) Αν τόσο ο ρυθμός αφίξεων όσο και ο ρυθμός εξυπηρέτησης σε ένα σύστημα αναμονής διπλασιαστούν, ο μέσος χρόνος απόκρισης θα μείνει ο ίδιος. (γʹ) ΛΑΘΟΣ (δʹ) Αν σε ένα σύστημα που μπορεί και εξυπηρετεί 3 πελάτες το λεπτό, φθάνουν 3 κατά μέσο όρο πελάτες το λεπτό, η ουρά του θα μένει πάντα άδεια. (δʹ) ΛΑΘΟΣ (εʹ) Κατά την εφαρμογή της μεθόδου Lagrange για την εύρεση της MaxEnt κατανομής, δεδομένης της μέσης τιμής και της διασποράς, χρησιμοποιούμε 3 πολλαπλασιαστές. (εʹ) ΣΩΣΤΟ Ερώτημα 2 (2 μονάδες) Σε κάθε μία από τις παρακάτω ερωτήσεις επιλέξτε τη σωστή απάντηση. (αʹ) Ποιο είναι το μεγαλύτερο δυνατό μήκος της ουράς σε ένα M/G/2/3 σύστημα αναμονής? (βʹ) Σε ένα Birth/Death μοντέλο μίας ουράς, Ο χρόνος μεταξύ διαδοχικών αφίξεων έχει ακολουθεί γεωμετρική κατανομή. Ο αριθμός των πελατών που εξυπηρετούνται δεν μπορεί να υπερβεί τον αριθμό 1.
2 Α.Α.Π.Σ Τελική Εξέταση - Σελίδα 2 από 6 28/02/15 Ο αριθμός των πελατών στο σύστημα ακολουθεί την εκθετική κατανομή. Ο ρυθμός αφίξεων είναι ο ίδιος για όλες τις καταστάσεις Κανένα από τα παραπάνω (γʹ) Σε ένα M/M/1 σύστημα αναμονής, αν ο ρυθμός αφίξεων (λ) = ρυθμός εξυπηρέτησης (μ), τότε π = 1 στη μόνιμη κατάσταση. π i > 0 για κάθε i. Η ουρά δεν ορίζει birth-death διαδικασία. Δεν υπάρχει λύση μόνιμης κατάστασης. π = 0 στη μόνιμη κατάσταση. (δʹ) Ποια από τις παρακάτω κατανομές έχει τη μέγιστη εντροπία? π = [1/4, 1/2, 1/8, 1/8] π = [1/4, 1/4, 1/4, 1/4] π = [1/2, 0, 1/2, 0] π = [0, 1, 0, 0] (εʹ) Άνθρωποι καταφθάνουν σε έναν τηλεφωνικό θάλαμο σύμφωνα με μία διαδικασία Poisson με έναν ρυθμό λ ανθρώπων την ώρα, ενώ η διάρκεια της κάθε κλήσης είναι εκθετικά κατανεμημένη τυχαία μεταβλητή με μέση τιμή 2 λεπτά. Θεωρείστε πως η πολιτική της τηλεφωνικής εταιρείας είναι να εγκαθιστά επιπλέον τηλεφωνικούς θαλάμους αν οι πελάτες περιμένουν στην ουρά κατά μέσο όρο 3 ή περισσότερα λεπτά. Πόσοι πελάτες πρέπει να φθάνουν την ώρα ώστε να δικαιολογηθεί η εγκατάσταση δεύτερου τηλεφωνικού θαλάμου? Δεν έχουμε επαρκή στοιχεία για την απάντηση. Ερώτημα 3 (2 μονάδες) Απαντήστε σύντομα στις παρακάτω ερωτήσεις. (αʹ) Θεωρείστε το παρακάτω μητρώο πιθανοτήτων μετάβασης μιας αλυσίδας Markov διακριτού χρόνου: α β 0.1 γ 0.9 Ποια η τιμή των παραμέτρων α, β, γ? (αʹ) α = β = 0.1, γ = 0 (βʹ) Θεωρείστε το παρακάτω μητρώο πιθανοτήτων μετάβασης μιας αλυσίδας Markov διακριτού χρόνου: α 1 α Για ποια τιμή του α η οριακή κατανομή της αλυσίδας Markov είναι η π = [2/3, 1/3]? (βʹ) α = 0.6 (γʹ) Σχεδιάστε μία αλυσίδα που έχει 3 καταστάσεις, εκ των οποίων η μία δέχεται επισκέψεις το πολύ πεπερασμένο αριθμό φορών και οι άλλες δύο άπειρο αριθμό φορών (με πιθανότητα 1). Λύση: Η αλυσίδα θα πρέπει να αποτελείτε από μία μεταβατική κατάσταση και από δύο επαναληπτικές. Για παράδειγμα:
3 Α.Α.Π.Σ Τελική Εξέταση - Σελίδα 3 από 6 28/02/15 (δʹ) Μία αλυσίδα Markov παίρνει τις τιμές 1, 2, 3, 4. Από την i μπορεί να προχωρήσει σε οποιαδήποτε j > i με ίση πιθανότητα. Η κατάσταση 4 είναι απορροφητική. Αρχίζοντας από την κατάσταση 1, πόσα βήματα θα χρειαστούν κατά μέσο όρο για να φτάσουμε στην κατάσταση 4? Λύση: Η αλυσίδα που περιγράφει η εκφώνηση είναι η παρακάτω: Για να βρούμε τον μέσο αριθμό βημάτων που θα χρειαστούν για να φτάσουμε στην κατάσταση 4, λύνουμε την αναδρομή, όπως είδαμε και στο μάθημα. Συγκεκριμένα, έχουμε: 1 1 μ = (1 + μ ) (1 + μ ) μ = (1 + μ ) μ = 1 Οπότε με πίσω αντικατάσταση λύνουμε το σύστημα και βρίσκουμε: μ = (δʹ) 11/6 Ερώτημα 4 (2 μονάδες) Θεωρείστε ένα M/G/1 σύστημα αναμονής στο οποίο οι πελάτες φθάνουν με ρυθμό 6 πελάτες την ώρα. Θεωρείστε τα εξής δύο σενάρια: i. Ο χρόνος εξυπηρέτησης είναι ακριβώς 5 λεπτά/πελάτη. ii. O χρόνος εξυπηρέτησης είναι κανονικά κατανεμημένη τυχαία μεταβλητή με μέση τιμή 4 λεπτά και διασπορά 4 λεπτά. Κατά πόσο τοις εκατό μικρότερη είναι η ουρά στο δεύτερο σενάριο? (Υπενθυμίζεται ο τύπος της διασποράς μίας τυχαίας μεταβλητής: Var[X] = E[X ] (E[X]) ) Λύση: Η κατανομή του χρόνου εξυπηρέτησης στο πρώτο σενάριο είναι ντετερμινιστική. Συνεπώς θα ισχύει: Var[X ] = 0 E[X ] = (E[X ]) = 25 λεπτά Επίσης, μ = [X ] = 0.2 πελάτες/λεπτό και λ = 6 πελάτες/ώρα = 0.1 πελάτες/λεπτό. Συνεπώς, το utilization του συστήματος θα είναι ρ = λ μ =. Οπότε για το μέσο αριθμό πελατών στην ουρά στο σενάριο 1 έχουμε: E[N Q ] = λ E[X ] 2(1 ρ ) = 1 4
4 Α.Α.Π.Σ Τελική Εξέταση - Σελίδα 4 από 6 28/02/15 Αντίστοιχα στο δεύτερο σενάριο έχουμε Var[X ] = 4 λεπτά E[X ] = 4 λεπτά + 16 λεπτά = 20 λεπτά Επίσης, μ = = 0.25 πελάτες/λεπτό και το utilization θα είναι, ρ [X ] = λ μ = 0.4. Συνεπώς αντικαθιστώντας στον παραπάνω τύπο παίρνουμε E[N Q ] = λ E[X ] 2(1 ρ ) = 1 6 Παρατηρούμε λοιπόν πως η ουρά στο 2ο σενάριο είναι μικρότερη κατά = 1/12 1/4 33% Ερώτημα 5 (2 μονάδες) Θεωρείστε το κλειστό δίκτυο συστημάτων αναμονής εκθετικής εξυπηρέτησης που φαίνεται στο παρακάτω σχήμα: Οι μέσοι ρυθμοί εξυπηρέτησης των συστημάτων Q, Q και Q είναι μ = 0.5, μ = 1 και μ = 0.5 αντίστοιχα. (αʹ) Αν το σύστημα έχει συνολικά 3 χρήστες, να χρησιμοποιήσετε τον αλγόριθμο MVA και να βρείτε το μέσο αριθμό πελατών, N i σε κάθε σύστημα Q i, i = 1, 2, 3. Λύση: Από το νόμο εξαναγκασμένης ροής για αυτήν την περίπτωση έχουμε: λ = 0.6λ λ = 0.5λ + 0.2λ + 0.4λ Το οποίο δίνει: λ = 1.667λ και λ = 1.389λ. Επιλέγοντας το Q σαν σύστημα αναφοράς παίρνουμε τα Visit ratios V = 1 V = V = 1.389
5 Α.Α.Π.Σ Τελική Εξέταση - Σελίδα 5 από 6 28/02/15 Χρησιμοποιώντας τα παραπάνω, τα βήματα του MVA θα έχουν ως εξής: (1) m = 0 N = 0 N = 0 N = 0 (2) m = 1 W = 2 W = 1 W = 2 λ = +.+(.) = N = 0.31 N = N = (3) m = 2 W = 2.62 W = W = λ =.+(..)+(..) = 0.23 N = N = N = (4) m = 3 W = W = W = λ =.+(..)+(..) = N = N = N = Άρα ο μέσος αριθμός πελατών σε κάθε σύστημα θα είναι: N = 0.875, N = 0.674, N = (βʹ) Θεωρείστε το ίδιο σύστημα με M χρήστες, όπου το M πολύ μεγάλο. Πώς θα κατανεμηθούν οι M χρήστες στα τρία συστήματα αναμονής? Λύση: Παρατηρήστε πως αν επιλέξουμε λ = μ = 0.5, τότε οι σχετικές χρησιμοποιήσεις των συστημάτων θα είναι u = 1, u = 0.833, u = Συνεπώς παρατηρούμε πως το bottleneck του συστήματος είναι το σύστημα Q. Αυτό σημαίνει πως για αρκετά μεγάλο M, θα υπάρχει πάντα ένας ή περισσότεροι πελάτες στο Q και συνεπώς ο ρυθμός αναχωρήσεων από το σύστημα αυτό θα προσεγγίζει τον ρυθμό εξυπηρέτησής του, μ = 0.5. Συνεπώς, για μεγάλο M, έχουμε: λ = μ = 0.5 Χρησιμοποιώντας αυτό μαζί με το νόμο εξαναγκασμένης ροής, παίρνουμε: λ = 0.5/1.389 = 0.36 Άρα για M, θα έχουμε: Πραγματικό Throughput: (λ, λ, λ ) = (0.36, 0.60, 0.50) Πραγματικό Utilization: (ρ, ρ, ρ ) = (0.72, 0.60, ρ 1) Συνεπώς με χρήση του αποτελέσματος: λ = = 0.6 [1] N i = ρ i 1 ρ i παίρνουμε τελικά, N = 2.57 N = 1.5 N = (M 4.07)
6 Α.Α.Π.Σ Τελική Εξέταση - Σελίδα 6 από 6 28/02/15 Ερώτημα 6 (2 μονάδες) Θεωρείστε την αλυσίδα Markov με το παρακάτω διάγραμμα μετάβασης: (αʹ) Να βρεθεί η πιθανότητα Pr{X = 4 X = 2}. Λύση: Η πιθανότητα μετάβασης 2-βημάτων από την κατάσταση 2 στην κατάσταση 4 μπορεί να βρεθεί απαριθμώντας όλες τις δυνατές ακολουθίες. Είναι οι {2 1 4} and {2 4 4}. Οπότε, Pr{X = 4 X = 2} = = 7 18 (βʹ) Υπάρχουν οι πιθανότητες μόνιμης κατάστασης? Αν ναι, υπολογίστε τες αν όχι εξηγήστε γιατί. Λύση: Οι πιθανότητες μόνιμης κατάστασης δεν υπάρχουν επειδή η αλυσίδα δεν είναι αμείωτη. Οι οριακές πιθανότητες θα εξαρτώνται από την αρχική κατάσταση. (γʹ) Ποια είναι η πιθανότητα να επισκεφτούμε τελικά την κατάσταση 4, δεδομένου πως η αρχική κατάσταση είναι Χ = 1? Λύση: Για να βρούμε την πιθανότητα απορρόφησης στην κατάσταση 4, λύνουμε την αναδρομή των πιθανοτήτων όπως είδαμε και στο μάθημα, προσέχοντας πως a = 1 και a = 0, αφού η κατάσταση αυτή είναι επίσης απορροφητική. Συγκεκριμένα, έχουμε: a = 1 6 a a a a = a a [2] a = 1 3 a a a = 1 3 a [3] Οπότε λύνοντας το σύστημα των [2] και [3], βρίσκουμε: a =.
Ανάλυση Απόδοσης Πληροφοριακών Συστημάτων
Ανάλυση Απόδοσης Πληροφοριακών Συστημάτων Διάλεξη 6: Εισαγωγή στην Ουρά M/G/1 Δρ Αθανάσιος Ν Νικολακόπουλος ΜΔΕ Επιστήμης και Τεχνολογίας Υπολογιστών Τμήμα Μηχανικών Η/Υ & Πληροφορικής 18 Νοεμβρίου 2016
Ηρώων Πολυτεχνείου 9, Ζωγράφου, Αθήνα, Τηλ: , Fax: URL
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Τομέας Επικοινωνιών, Ηλεκτρονικής & Συστημάτων Πληροφορικής Εργαστήριο Διαχείρισης και Βέλτιστου Σχεδιασμού Δικτύων - NETMODE
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Τομέας Επικοινωνιών, Ηλεκτρονικής & Συστημάτων Πληροφορικής Εργαστήριο Διαχείρισης και Βέλτιστου Σχεδιασμού Δικτύων - NETMODE
Ηρώων Πολυτεχνείου 9, Ζωγράφου, Αθήνα, Τηλ: , Fax: URL
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Τομέας Επικοινωνιών, Ηλεκτρονικής & Συστημάτων Πληροφορικής Εργαστήριο Διαχείρισης και Βέλτιστου Σχεδιασμού Δικτύων - NETMODE
Θέμα 1 (20%) (α) Πότε είναι εργοδικό το παραπάνω σύστημα; Για πεπερασμένο c, το σύστημα είναι πάντα εργοδικό.
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Τομέας Επικοινωνιών, Ηλεκτρονικής & Συστημάτων Πληροφορικής Εργαστήριο Διαχείρισης & Βέλτιστου Σχεδιασμού Δικτύων - NETMODE
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Συστήματα Γεννήσεων Θανάτων: 1. Σφαιρικές & Λεπτομερείς Εξισώσεις Ισορροπίας 2. Ουρές Markov M/M/1, M/M/1/N Βασίλης Μάγκλαρης maglaris@netmode.ntua.gr 27/3/2019 ΔΙΑΔΙΚΑΣΙΑ
Μοντελοποίηση, Ανάλυση και Σχεδιασμός Στοχαστικών Συστημάτων
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ Μοντελοποίηση, Ανάλυση και Σχεδιασμός Στοχαστικών Συστημάτων Ακαδ. Έτος 208-209 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Επικ. Καθηγητής
Τεχνικές Εκτίμησης Υπολογιστικών Συστημάτων Ενότητα 3: Μοντέλα Θεωρίας Αναμονής
Τεχνικές Εκτίμησης Υπολογιστικών Συστημάτων Ενότητα 3: Μοντέλα Θεωρίας Αναμονής Γαροφαλάκης Ιωάννης Πολυτεχνική Σχολή Τμήμα Μηχ/κών Η/Υ & Πληροφορικής Σκοποί ενότητας Κατά τη διάρκεια των καθημερινών μας
Μοντελοποίηση, Ανάλυση και Σχεδιασμός Στοχαστικών Συστημάτων
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ Μοντελοποίηση, Ανάλυση και Σχεδιασμός Στοχαστικών Συστημάτων Ακαδ. Έτος 2017-2018 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Επικ. Καθηγητής
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Η Ουρά Μ/Μ/1/N Σφαιρικές & Τοπικές Εξισώσεις Ισορροπίας Βασίλης Μάγκλαρης maglaris@netmode.ntua.gr 22/3/2017 ΔΙΑΔΙΚΑΣΙΑ ΓΕΝΝΗΣΕΩΝ ΘΑΝΑΤΩΝ (1/4) Birth Death Processes
Καθ. Γιάννης Γαροφαλάκης. ΜΔΕ Επιστήμης και Τεχνολογίας Υπολογιστών Τμήμα Μηχανικών Η/Υ & Πληροφορικής
Α Α Π Σ Δ 11: Ε Σ Α M/G/1 Καθ Γιάννης Γαροφαλάκης ΜΔΕ Επιστήμης και Τεχνολογίας Υπολογιστών Τμήμα Μηχανικών Η/Υ & Πληροφορικής Το σύστημα αναμονής M/G/1 I Θεωρούμε ένα σύστημα στο οποίο οι πελάτες φθάνουν
/ / 38
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-37: Εφαρµοσµένες Στοχαστικές ιαδικασίες - Εαρινό Εξάµηνο 205-6 ιδάσκων : Π. Τσακαλίδης Φροντιστήριο 0 Επιµέλεια : Σοφία Σαββάκη Ασκηση. Ο Κώστας πηγαίνει
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Παράμετροι Ουρών Αναμονής Βασίλης Μάγκλαρης maglaris@netmode.ntua.gr 13/3/2019 ΠΑΡΑΜΕΤΡΟΙ (1/3) Ένταση φορτίου (traffic intensity) Σε περίπτωση 1 ουράς, 1 εξυπηρετητή:
P (M = n T = t)µe µt dt. λ+µ
Ουρές Αναμονής Σειρά Ασκήσεων 1 ΑΣΚΗΣΗ 1. Εστω {N(t), t 0} διαδικασία αφίξεων Poisson με ρυθμό λ, και ένα χρονικό διάστημα η διάρκεια του οποίου είναι τυχαία μεταβλητή T, ανεξάρτητη της διαδικασίας αφίξεων,
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Παραδείγματα χρήσης ουρών Μ/Μ/c/K και αξιολόγησης συστημάτων αναμονής Β. Μάγκλαρης, Σ. Παπαβασιλείου 5-6-2014 Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
200, δηλαδή : 1 p Y (y) = 0, αλλού
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-7: Πιθανότητες - Χειµερινό Εξάµηνο 05 ιδάσκων : Π. Τσακαλίδης Φροντιστήριο 6 ιακριτές Τυχαίες Μεταβλητές Επιµέλεια : Σοφία Σαββάκη Ασκηση. Η εταιρεία
Γραπτή Εξέταση στο Μάθημα "ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ" 6ο Εξάμηνο Ηλεκτρολόγων Μηχ. & Μηχ. Υπολογιστών Θέματα και Λύσεις. μ 1.
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Τομέας Επικοινωνιών, Ηεκτρονικής & Συστημάτων Πηροφορικής Εργαστήριο Διαχείρισης και Βέτιστου Σχεδιασμού Δικτύων - NETMODE
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Διαδικασίες Birth-Death, Ουρές Markov:
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Διαδικασίες Birth-Death, Ουρές Markov: 1. Διαγράμματα Μεταβάσεων Εργοδικών Καταστάσεων, Εξισώσεις Ισορροπίας 2. Προσομοιώσεις, Άσκηση Προσομοίωσης Ουράς M/M/1/10 Βασίλης
Ορισµός. (neighboring) καταστάσεων. ηλαδή στην περίπτωση αλυσίδας Markov. 1.2 ιαµόρφωση µοντέλου
200-04-25. ιαδικασίες γεννήσεων-θανάτων. Ορισµός Οι διαδικασίες γεννήσεων-θανάτων (birth-death rocesses) αποτελούν µια σπουδαία κλάση αλυσίδων Markov (διακριτού ή συνεχούς χρόνου). Η ιδιαίτερη συνθήκη
Τεχνικές Εκτίμησης Υπολογιστικών Συστημάτων 1ο Σετ Ασκήσεων - Λύσεις
Τεχνικές Εκτίμησης Υπολογιστικών Συστημάτων ο Σετ Ασκήσεων - Λύσεις Νοέμβριος - Δεκέμβριος 205 Ερώτημα (α). Η νοσοκόμα ακολουθεί μια Ομογενή Μαρκοβιανή Αλυσίδα Διακριτού Χρόνου με χώρο καταστάσεων το σύνολο
1 + ρ ρ ρ3. iπ i = Q = λ λ i=0. n=0 tn. n! Qn, t 0
Στοχαστικές Διαδικασίες ΙΙ Ιανουάριος 07 Διαδικασίες Markov σε Συνεχή Χρόνο - Παραδείγματα Μ. Ζαζάνης Πρόβλημα. Εστω ένα σύστημα M/M//3 στο οποίο οι αφίξεις είναι Poisson με ρυθμό λ και οι δύο υπηρέτες
Διαδικασίες Markov Υπενθύμιση
Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Επίδοση Υπολογιστικών Συστημάτων Α.-Γ. Σταφυλοπάτης Διαδικασίες Markov Υπενθύμιση Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό
ΔΕΟ13 - Επαναληπτικές Εξετάσεις 2010 Λύσεις
ΔΕΟ - Επαναληπτικές Εξετάσεις Λύσεις ΘΕΜΑ () Το Διάγραμμα Διασποράς εμφανίζεται στο επόμενο σχήμα. Από αυτό προκύπτει καταρχήν μία θετική σχέση μεταξύ των δύο μεταβλητών. Επίσης, από το διάγραμμα φαίνεται
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Διαδικασίες Birth-Death, Ουρές Markov: 1. Διαγράμματα Μεταβάσεων Εργοδικών Καταστάσεων 2. Εξισώσεις Ισορροπίας 3. Προσομοιώσεις Βασίλης Μάγκλαρης maglaris@netmode.ntua.gr
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Δίκτυα Ουρών Β. Μάγκλαρης, Σ. Παπαβασιλείου 10-7-2014 Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως
Ο Π Ε Υ Ελάχιστα γραμμών Ο *maximin (A) Π Ε Υ * minimax (B)
ΑΣΚΗΣΗ Β Μέγιστο στήλης Ο Π Ε Υ Ελάχιστα γραμμών Ο 60 5 55 65 5*maximin (A) Π 50 75 70 45 45 Ε 56 30 30 50 30 Υ 40 30 35 55 30 *60 75 70 65 minimax (B) Επειδή maximin (A) minimax (B) δεν υπάρχει ισορροπία
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-317: Εφαρµοσµένες Στοχαστικές ιαδικασίες -Εαρινό Εξάµηνο 2016 ιδάσκων : Π.
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-317: Εφαρµοσµένες Στοχαστικές ιαδικασίες -Εαρινό Εξάµηνο 2016 ιδάσκων : Π. Τσακαλίδης Λύσεις 3ης Σειράς Ασκήσεων Ασκηση 1. Χρησιµοποιούµε µια αλυσίδα
Μοντελοποίηση, Ανάλυση και Σχεδιασμός Στοχαστικών Συστημάτων
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ Μοντελοποίηση, Ανάλυση και Σχεδιασμός Στοχαστικών Συστημάτων Ακαδ. Έτος 2017-2018 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Επικ. Καθηγητής
Στατιστική Ι-Θεωρητικές Κατανομές Ι
Στατιστική Ι-Θεωρητικές Κατανομές Ι Γεώργιος Κ. Τσιώτας Τμήμα Οικονομικών Επιστημών Σχολή Κοινωνικών Επιστημών Πανεπιστήμιο Κρήτης 12 Δεκεμβρίου 2012 Περιγραφή 1 Θεωρητικές Κατανομές Η Χρήση των Θεωρητικών
H επίδραση των ουρών στην κίνηση ενός δικτύου
H επίδραση των ουρών στην κίνηση ενός δικτύου Ηεπίδραση των ριπών δεδοµένων Όταν οι αφίξεις γίνονται κανονικά ή γίνονται σε απόσταση η µία από την άλλη, τότε δεν υπάρχει καθυστέρηση Arrival s 1 2 3 4 1
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Εισαγωγή (1/2) Βασίλης Μάγκλαρης maglaris@netmode.ntua.gr 1/3/2017 ΠΕΡΙΕΧΟΜΕΝΑ (1/3) http://www.netmode.ntua.gr/main/index.php?option=com_content&task=view& id=130&itemid=48
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Επισκόπηση Γνώσεων Πιθανοτήτων Κατανομή Poisson & Εκθετική Κατανομή Διαδικασία Markov Γεννήσεων Θανάτων (Birth Death Markov Processes) Βασίλης Μάγκλαρης maglaris@netmode.ntua.gr
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-317: Εφαρµοσµένες Στοχαστικές ιαδικασίες - Εαρινό Εξάµηνο ιδάσκων : Π.
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-317: Εφαρµοσµένες Στοχαστικές ιαδικασίες - Εαρινό Εξάµηνο 2015-16 ιδάσκων : Π. Τσακαλίδης Φροντιστήριο 4 Επιµέλεια : Σοφία Σαββάκη Ασκηση 1. Βρίσκεστε
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Ουρές //1 εν σειρά, Θεώρημα Burke Ανοικτά Δίκτυα Ουρών arkov, Θεώρημα Jackson Εφαρμογή σε Δίκτυα Μεταγωγής Πακέτου Κλειστά Δίκτυα Ουρών arkov, Θεώρημα Gordon- Newell
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Εκθετική Κατανομή, Στοχαστικές Ανελίξεις Διαδικασίες Απαρίθμησης, Κατανομή Poisson
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Εκθετική Κατανομή, Στοχαστικές Ανελίξεις Διαδικασίες Απαρίθμησης, Κατανομή Poisson Βασίλης Μάγκλαρης maglaris@netmode.ntua.gr 9/3/2016 Άδεια Χρήσης Το παρόν εκπαιδευτικό
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Δίκτυα Ουρών - Παραδείγματα Β. Μάγκλαρης, Σ. Παπαβασιλείου 17-7-2014 Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Επισκόπηση Γνώσεων Πιθανοτήτων (2/2) Διαδικασία Γεννήσεων Θανάτων Η Ουρά Μ/Μ/1
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Επισκόπηση Γνώσεων Πιθανοτήτων (2/2) Διαδικασία Γεννήσεων Θανάτων Η Ουρά Μ/Μ/1 Βασίλης Μάγκλαρης maglaris@netmode.ntua.gr 15/3/2017 Η ΔΙΑΔΙΚΑΣΙΑ ΚΑΤΑΜΕΤΡΗΣΗΣ ΓΕΓΟΝΟΤΩΝ
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Εισαγωγή (2/2) Επισκόπηση Γνώσεων Πιθανοτήτων (1/2)
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Εισαγωγή (2/2) Επισκόπηση Γνώσεων Πιθανοτήτων (1/2) Βασίλης Μάγκλαρης maglaris@netmode.ntua.gr 8/3/2017 ΠΑΡΑΜΕΤΡΟΙ (1/4) (Επανάληψη) Ένταση φορτίου (traffic intensity)
Markov. Γ. Κορίλη, Αλυσίδες. Αλυσίδες Markov
Γ. Κορίλη, Αλυσίδες Markov 3- http://www.seas.upe.edu/~tcom5/lectures/lecture3.pdf Αλυσίδες Markov Αλυσίδες Markov ιακριτού Χρόνου Υπολογισµός Στάσιµης Κατανοµής Εξισώσεις Ολικού Ισοζυγίου Εξισώσεις Λεπτοµερούς
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Άσκηση Προσομοίωσης Στατιστικές Εξόδου Ουράς Μ/Μ/1 - Θεώρημα Burke Ανοικτά Δίκτυα Ουρών Μ/Μ/1 - Θεώρημα Jackson
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Άσκηση Προσομοίωσης Στατιστικές Εξόδου Ουράς Μ/Μ/1 - Θεώρημα Burke Ανοικτά Δίκτυα Ουρών Μ/Μ/1 - Θεώρημα Jackson Βασίλης Μάγκλαρης maglaris@netmode.ntua.gr 26/4/2017 ΠΡΟΣΟΜΟΙΩΣΗ
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Ουρές //1 εν Σειρά - Θεώρημα Burke Ανοικτά Δίκτυα Ουρών arkov - Θεώρημα Jackson Εφαρμογή σε Δίκτυα Μεταγωγής Πακέτου Βασίλης Μάγκλαρης maglaris@netmode.ntua.gr 25/4/2018
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Εφαρμογές Θεωρήματος Jackson: (i) Δίκτυα Μεταγωγής Πακέτου (ii) Υπολογιστικά Μοντέλα Πολυεπεξεργασίας Βασίλης Μάγκλαρης maglaris@netmode.ntua.gr 3/5/2017 ΑΝΟΙΚΤΑ ΔΙΚΤΥΑ
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-217: Πιθανότητες-Χειµερινό Εξάµηνο ιδάσκων : Π. Τσακαλίδης
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-27: Πιθανότητες-Χειµερινό Εξάµηνο 205- ιδάσκων : Π. Τσακαλίδης Λύσεις Τέταρτης Σειράς Ασκήσεων Ασκηση. (αʹ) Σύµφωνα µε το αξίωµα της κανονικοποίησης,
P (M = 9) = e 9! =
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-317: Εφαρµοσµένες Στοχαστικές ιαδικασίες - Εαρινό Εξάµηνο 2016 ιδάσκων : Π. Τσακαλίδης 5ο Φροντιστήριο Ασκηση 1. ύο ποµποί ο Α και ο Β στέλνουν ανεξάρτητα
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Συστήματα Γεννήσεων Θανάτων (I) 1. Σφαιρικές & Τοπικές Εξισώσεις Ισορροπίας 2. Ουρές Markov M/M/1, M/M/1/N Βασίλης Μάγκλαρης maglaris@netmode.ntua.gr 21/3/2018 ΔΙΑΔΙΚΑΣΙΑ
Εργαστηριακή Άσκηση Το σύστημα αναμονής M/G/1
Εργαστηριακή Άσκηση 2011-2012 Το σύστημα αναμονής M/G/1 Γιάννης Γαροφαλάκης, Καθηγητής Αθανάσιος Ν.Νικολακόπουλος, Υποψ. Διδάκτορας Σκοπός της παρούσας εργασίας είναι η εξερεύνηση των βασικών ιδιοτήτων
p(x, y) = 1 (x + y) = 3x + 6, x = 1, 2 (x + y) = 3 + 2y, y = 1, 2, 3 p(1, 1) = = 2 21 p X (1) p Y (1) = = 5 49
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-27: Πιθανότητες - Χειµερινό Εξάµηνο 206-207 ιδάσκων : Π. Τσακαλίδης Φροντιστήριο 8 Από κοινού συναρτήσεις Τυχαίων Μεταβλητών Επιµέλεια : Κατερίνα Καραγιαννάκη
Τεχνικές Εκτίμησης Υπολογιστικών Συστημάτων Ενότητα 4: Δίκτυα Συστημάτων Αναμονής
Τεχνικές Εκτίμησης Υπολογιστικών Συστημάτων Ενότητα 4: Δίκτυα Συστημάτων Αναμονής Γαροφαλάκης Ιωάννης Πολυτεχνική Σχολή Τμήμα Μηχ/κών Η/Υ & Πληροφορικής Γιατί δίκτυα συστημάτων αναμονής; Τα απλά συστήματα
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Εισαγωγή
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Εισαγωγή Βασίλης Μάγκλαρης maglaris@netmode.ntua.gr Χρύσα Παπαγιάννη chrisap@noc.ntua.gr 24/2/2016 Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Τοµέας Επικοινωνιών, Ηεκτρονικής & Συστηµάτων Πηροφορικής Εργαστήριο ιαχείρισης & Βετίστου Σχεδιασµού ικτύων - NETMODE Πουτεχνειούποη
Συστήματα Αναμονής. Ενότητα 10: Ουρά Μ/Μ/s. Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ
Συστήματα Αναμονής Ενότητα 10: Ουρά Μ/Μ/s Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Ανοικτά Δίκτυα Ουρών arkov - Θεώρημα Jackson (1) Παράδειγμα Επίδοσης Δικτύου Μεταγωγής Πακέτου (2) Παράδειγμα Ανάλυσης Υπολογιστικού Συστήματος Βασίλης Μάγκλαρης maglaris@netmode.ntua.gr
Δίκτυα Τηλεπικοινωνιών. και Μετάδοσης
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Δίκτυα Τηλεπικοινωνιών και Μετάδοσης Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής & Δρ. Στυλιανός Π. Τσίτσος Επίκουρος Καθηγητής
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Κλειστά Δίκτυα Ουρών Markov Θεώρημα Gordon Newell Αλγόριθμος Buzen Βασίλης Μάγκλαρης maglaris@netmode.ntua.gr 9/5/2018 ΚΛΕΙΣΤΟ ΔΙΚΤΥΟ ΔΥΟ ΕΚΘΕΤΙΚΩΝ ΟΥΡΩΝ Μ = 2 Ουρές,
Λύσεις 4ης Ομάδας Ασκήσεων
ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΙΘΑΝΟΤΗΤΕΣ Γ. ΚΟΝΤΟΓΙΑΝΝΗΣ. Ζυγοβίστι Λύσεις 4ης Ομάδας Ασκήσεων Τμήμα Α Λ αʹ Το συνολικό πλήθος των τερμάτων που θα σημειωθούν είναι X + Y, και η μέση
Θεωρία Τηλεπικοινωνιακής Κίνησης
Θεωρία Τηλεπικοινωνιακής Κίνησης Ενότητα: Ασκήσεις για τις ενότητες 1 2 (Εισαγωγή Θεμελιώδεις σχέσεις) Ιωάννης Μοσχολιός Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σελίδα 2 Περιεχόμενα 1.
Θεωρία Τηλεπικοινωνιακής Κίνησης
Θεωρία Τηλεπικοινωνιακής Κίνησης Ενότητα: Ασκήσεις για τις ενότητες 3 4 (Μαρκοβιανά συστήματα απωλειών Εφαρμογή των τύπων Erlng και Enget) Ιωάννης Μοσχολιός Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Μοντέλα Ουρών Markov και Εφαρμογές:
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Μοντέλα Ουρών Markov και Εφαρμογές: Ουρά Μ/Μ/2 Σύστημα Μ/Μ/Ν/Κ, Erlang-C Σύστημα Μ/Μ/c/c, Erlang-B Ανάλυση & Σχεδιασμός Τηλεφωνικών Κέντρων Βασίλης Μάγκλαρης maglaris@netmode.ntua.gr
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Παράμετροι Συστημάτων Αναμονής Τύπος Little. Β. Μάγκλαρης, Σ. Παπαβασιλείου
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Παράμετροι Συστημάτων Αναμονής Τύπος Little Β. Μάγκλαρης, Σ. Παπαβασιλείου 8-5-2014 Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-317: Εφαρµοσµένες Στοχαστικές ιαδικασίες - Εαρινό Εξάµηνο ιδάσκων : Π.
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-317: Εφαρµοσµένες Στοχαστικές ιαδικασίες - Εαρινό Εξάµηνο 2015-16 ιδάσκων : Π Τσακαλίδης Φροντιστήριο 8 Επιµέλεια : Σοφία Σαββάκη Ασκηση 1 Μία Μαρκοβιανή
3.ΟΥΡΕΣ ΑΝΑΜΟΝΗΣ
www.olieclaroom.gr.ουρεσ ΑΝΑΜΟΝΗΣ Ως ουρά αναμονής ή ισοδύναμα ένα σύστημα εξυπηρέτησης, ορίζεται το σύστημα το οποίο παρέχει εξυπηρέτηση σε πελάτες που προσέρχονται σε αυτό. Πρόκειται για τη μοντελοποίηση
Θεωρία Τηλεπικοινωνιακής Κίνησης Ενότητα 2: Θεμελιώδεις σχέσεις
Θεωρία Τηλεπικοινωνιακής Κίνησης Ενότητα 2: Θεμελιώδεις σχέσεις Μιχαήλ Λογοθέτης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Περιγραφή βασικών μοντέλων τηλεπικοινωνιακής
που αντιστοιχεί στον τυχαίο αριθμό 0.6 δίνει ισχύ P Y Να βρεθεί η μεταβλητή k 2.
(μονάδα παραγωγής ενέργειας) Έχουμε μια απομακρυσμένη μονάδα παραγωγής ενέργειας. Η ζήτηση σε ενέργεια καλύπτεται από διάφορες πηγές. Η ισχύς εξόδου της ανεμογεννήτριας εξαρτάται από την ταχύτητα ανέμου
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΘΕΩΡΙΑ ΟΥΡΩΝ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΘΕΩΡΙΑ ΟΥΡΩΝ Ακαδ. Έτος 2011-2012 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Διδάσκων επί Συμβάσει Π.Δ 407/80 v.koutras@fme.aegean.gr
Μοντελοποίηση, Ανάλυση και Σχεδιασμός Στοχαστικών Συστημάτων
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ Μοντελοποίηση, Ανάλυση και Σχεδιασμός Στοχαστικών Συστημάτων Ακαδ. Έτος 2016-2017 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Λέκτορας
p k = (1- ρ) ρ k. E[N(t)] = ρ /(1- ρ).
ΚΕΦΑΛΑΙΟ 2: CAM 2.1 Συστήµατα Μ/Μ/1 2.1.1 Ανασκόπηση θεωρίας Η ουρά Μ/Μ/1 είναι η πιο σηµαντική διαδικασία ουράς Άφιξη: ιαδικασία Poisson Εξυπηρέτηση: Ακολουθεί εκθετική κατανοµή Εξυπηρετητής: Ένας Χώρος
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Παράμετροι Συστημάτων Αναμονής Τύπος Little
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Παράμετροι Συστημάτων Αναμονής Τύπος Little Βασίλης Μάγκλαρης maglaris@netmode.ntua.gr 2/3/2016 Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Κεφάλαιο 6: Προσομοίωση ενός συστήματος αναμονής
Κεφάλαιο 6: Προσομοίωση ενός συστήματος αναμονής Τεχνικές Εκτίμησης Υπολογιστικών Συστημάτων Γιάννης Γαροφαλάκης Αν. Καθηγητής ιατύπωση του προβλήματος (1) Τα συστήματα αναμονής (queueing systems), βρίσκονται
3. Προσομοίωση ενός Συστήματος Αναμονής.
3. Προσομοίωση ενός Συστήματος Αναμονής. 3.1. Διατύπωση του Προβλήματος. Τα συστήματα αναμονής (queueing systems), βρίσκονται πίσω από τα περισσότερα μοντέλα μελέτης της απόδοσης υπολογιστικών συστημάτων,
ΗΥ-217-ΠΙΘΑΝΟΤΗΤΕΣ-ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ 2016 ΔΙΔΑΣΚΩΝ: ΠΑΝΑΓΙΩΤΗΣ ΤΣΑΚΑΛΙΔΗΣ
ΗΥ-217-ΠΙΘΑΝΟΤΗΤΕΣ-ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ 2016 ΔΙΔΑΣΚΩΝ: ΠΑΝΑΓΙΩΤΗΣ ΤΣΑΚΑΛΙΔΗΣ ΦΡΟΝΤΙΣΤΗΡΙΑ 6-7: ΔΙΑΚΡΙΤΕΣ ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ ΕΠΙΜΕΛΕΙΑ: ΓΙΑΝΝΟΠΟΥΛΟΣ ΜΙΧΑΛΗΣ Τυχαία Μεταβλητή (Τ.Μ.): Συνάρτηση πραγματικών τιμών
Απλα Συστήματα Αναμονής Υπενθύμιση
Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Επίδοση Υπολογιστικών Συστημάτων Α.-Γ. Σταφυλοπάτης Απλα Συστήματα Αναμονής Υπενθύμιση Άδεια Χρήσης Το παρόν εκπαιδευτικό
Χρησιμοποιείται για να δηλώσουμε τους διάφορους τύπους ουρών. A/B/C. Κατανομή εξυπηρετήσεων
Συμβολισμός Kedel Χρησιμοποιείται για να δηλώσουμε τους διάφορους τύπους ουρών. A/B/C Κατανομή αφίξεων Κατανομή εξυπηρετήσεων Αριθμός των εξυπηρετητών Όπου Α,Β μπορεί να είναι: M κατανομή Posso G κατανομή
Pr(10 X 15) = Pr(15 X 20) = 1/2, (10.2)
Κεφάλαιο 10 Συνεχείς τυχαίες μεταβλητές Σε αυτό το κεφάλαιο θα εξετάσουμε τις ιδιότητες που έχουν οι συνεχείς τυχαίες μεταβλητές. Εκείνες οι Τ.Μ. X, δηλαδή, των οποίων το σύνολο τιμών δεν είναι διακριτό,
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Κλειστά Δίκτυα Ουρών Markov - Αλγόριθμος Buzen Μοντέλο Παράλληλης Επεξεργασίας Έλεγχος Ροής Άκρου σε Άκρο (e2e) στο Internet Βασίλης Μάγκλαρης maglaris@netmode.ntua.gr
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΞΕΤΑΣΕΙΣ (16/06/2010, 18:00)
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών Θεματική Ενότητα Διοίκηση Επιχειρήσεων & Οργανισμών ΔΕΟ 13 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος 2009-2010 ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΞΕΤΑΣΕΙΣ (16/06/2010, 18:00) Να απαντηθούν
f(y) dy = b a dy = b a x f(x) dx = b a dx = x 2 = b2 a 2 2(b a) b a dx = = (a2 + ab + b 2 )(b a) 3(b a)
Κεφάλαιο 11 Συνεχείς κατανομές και ο Ν.Μ.Α. Στο προηγούμενο κεφάλαιο ορίσαμε την έννοια της συνεχούς τυχαίας μεταβλητής, και είδαμε τις βασικές της ιδιότητες. Εδώ θα περιγράψουμε κάποιους ιδιαίτερους τύπους
DEPARTMENT OF STATISTICS
SCHOOL OF INFORMATION SCIENCES & TECHNOLOGY DEPARTMENT OF STATISTICS POSTGRADUATE PROGRAM Elements of Markovian Processes and Queueing Processes with Numerical Applications By Erold Ajdini A THESIS Submitted
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Κλειστά Δίκτυα Ουρών Markov Θεώρημα Gordon Newell Αλγόριθμος Buzen Βασίλης Μάγκλαρης maglaris@netmode.ntua.gr 10/5/2017 ΚΛΕΙΣΤΟ ΔΙΚΤΥΟ ΔΥΟ ΕΚΘΕΤΙΚΩΝ ΟΥΡΩΝ Μ = 2 Ουρές,
ΠΙΘΑΝΟΤΗΤΕΣ -ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ(τελικές εξετάσεις πλη12)
ΠΙΘΑΝΟΤΗΤΕΣ -ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ(τελικές εξετάσεις πλη) Για διακριτή τυχαία μεταβλητή ισχύει μία συνάρτηση πιθανότητας ικανοποιεί τις ακόλουθες δύο ιδιότητες: (α) ( ) 0, για κάθε i,, i (β) ( i ) i S Παράδειγμα
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (Εξ. Ιουνίου - 02/07/08) ΕΠΙΛΕΓΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ
Ονοματεπώνυμο:......... Α.Μ....... Ετος... ΑΙΘΟΥΣΑ:....... I. (περί τις 55μ. = ++5++. Σωστό ή Λάθος: ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (Εξ. Ιουνίου - //8 ΕΠΙΛΕΓΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ (αʹ Αν AB = BA όπου A, B τετραγωνικά και
ΚΕΦΑΛΑΙΟ 2ο ΠΡΟΣΟΜΟΙΩΣΗ ΔΙΑΚΡΙΤΩΝ ΓΕΓΟΝΟΤΩΝ
ΚΕΦΑΛΑΙΟ 2ο ΠΡΟΣΟΜΟΙΩΣΗ ΔΙΑΚΡΙΤΩΝ ΓΕΓΟΝΟΤΩΝ 2.1 Εισαγωγή Η μέθοδος που θα χρησιμοποιηθεί για να προσομοιωθεί ένα σύστημα έχει άμεση σχέση με το μοντέλο που δημιουργήθηκε για το σύστημα. Αυτό ισχύει και
0 1 0 0 0 1 p q 0 P =
Στοχαστικές Ανελίξεις - Σεπτέμβριος 2015 ΟΔΗΓΙΕΣ (1) Απαντήστε σε όλα τα θέματα. Τα θέματα είναι ισοδύναμα. (2) Οι απαντήσεις να είναι αιτιολογημένες. Απαντήσεις χωρίς να φαίνεται η απαιτούμενη εργασία
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Εφαρμογές Κλειστών Δικτύων Ουρών Markov: 1. Ανάλυση Window Flow Control σε Δίκτυα Υπολογιστών 2. Αξιολόγηση Συστημάτων Πολύ-προγραμματισμού (Multitasking) Γενίκευση Μοντέλων
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Μοντέλα Ουρών Markov και Εφαρμογές:
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Μοντέλα Ουρών Markov και Εφαρμογές: Ουρά Μ/Μ/2 Σύστημα Μ/Μ/Ν/Κ, Erlang-C Σύστημα Μ/Μ/c/c, Erlang-B Ανάλυση & Σχεδιασμός Τηλεφωνικών Κέντρων Βελτιστοποίηση Μέσου Μήκους
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΕΛΙΚΕΣ ΕΞΕΤΑΣΕΙΣ (11/05/2011, 9:00)
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών Θεματική Ενότητα Διοίκηση Επιχειρήσεων & Οργανισμών ΔΕΟ 3 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος 00-0 ΤΕΛΙΚΕΣ ΕΞΕΤΑΣΕΙΣ (/05/0, 9:00) Να απαντηθούν 4 από τα 5
Y = X 1 + X X N = X i. i=1
Κεφάλαιο 7 Διακριτές κατανομές Στο προηγούμενο κεφάλαιο είδαμε πως η έννοια της τυχαίας μεταβλητής Τ.Μ., δηλαδή μιας τυχαίας ποσότητας X που προσδιορίζεται από το σύνολο τιμών της S και την πυκνότητά της
Ασκήσεις μελέτης της 4 ης διάλεξης. ), για οποιοδήποτε μονοπάτι n 1
Οικονομικό Πανεπιστήμιο Αθηνών, Τμήμα Πληροφορικής Μάθημα: Τεχνητή Νοημοσύνη, 2016 17 Διδάσκων: Ι. Ανδρουτσόπουλος Ασκήσεις μελέτης της 4 ης διάλεξης 4.1. (α) Αποδείξτε ότι αν η h είναι συνεπής, τότε h(n
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Επισκόπηση Αναλυτικών Τεχνικών Θεωρίας Πιθανοτήτων για Εφαρμογή σε Ουρές Αναμονής M/G/1
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Επισκόπηση Αναλυτικών Τεχνικών Θεωρίας Πιθανοτήτων για Εφαρμογή σε Ουρές Αναμονής M/G/1 Απόδειξη Τύπου Little Ιδιότητα PASTA (Poisson Arrivals See Time Averages) Βασικοί
Κανονική Κατανομή. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Ασκήσεις για ΑΕΙ και ΤΕΙ. Kglykos.gr. σε Κανονική Κατανομή. τεχνικές. 73 άλυτες ασκήσεις.
Κανονική Κατανομή Κώστας Γλυκός Ασκήσεις για ΑΕΙ και ΤΕΙ σε Κανονική Κατανομή τεχνικές 73 άλυτες ασκήσεις Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 6 9 7. 3 0 0. 8 8. 8 8 Kglykos.gr 3 / 1 0 / 0 1 6 εκδόσεις Καλό
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Ανάλυση Ουράς Αναμονής M/G/1 Αρχές Ανάλυσης Ουράς M/G/1 Ενσωματωμένη Αλυσίδα Markov (Embedded Markov Chain) Τύποι Pollaczeck - Khinchin (P-K) για Ουρές M/G/1 Μέσες Τιμές
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Διαδικασίες Γεννήσεων - Θανάτων Εξισώσεις Ισορροπίας - Ουρές Μ/Μ/1, M/M/1/N Προσομοίωση Ουράς Μ/Μ/1/Ν
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Διαδικασίες Γεννήσεων - Θανάτων Εξισώσεις Ισορροπίας - Ουρές Μ/Μ/1, M/M/1/N Προσομοίωση Ουράς Μ/Μ/1/Ν Βασίλης Μάγκλαρης maglaris@netmode.ntua.gr 23/3/2016 Άδεια Χρήσης
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Ανάλυση Μεταγωγής Πακέτου - Μοντέλο M/M/1 Βασίλης Μάγκλαρης maglaris@netmode.ntua.gr 25/4/2018 ΟΥΡΑ Μ/Μ/2 (επανάληψη) Αφίξεις Poisson με ομοιόμορφο μέσο ρυθμό λ k = λ
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuig Systems Επισκόπηση Γνώσεων Πιθανοτήτων Βασίλης Μάγκλαρης maglaris@etmode.tua.gr 7/3/2018 1 Η ΔΙΑΔΙΚΑΣΙΑ ΚΑΤΑΜΕΤΡΗΣΗΣ ΓΕΓΟΝΟΤΩΝ POISSON Η τυχαία εμφάνιση παλμών περιγράφεται σαν
Έλεγχος υποθέσεων και διαστήματα εμπιστοσύνης
1 Έλεγχος υποθέσεων και διαστήματα εμπιστοσύνης Όπως γνωρίζουμε από προηγούμενα κεφάλαια, στόχος των περισσότερων στατιστικών αναλύσεων, είναι η έγκυρη γενίκευση των συμπερασμάτων, που προέρχονται από
Λύσεις 2ης Ομάδας Ασκήσεων
ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΙΘΑΝΟΤΗΤΕΣ Γ. ΚΟΝΤΟΓΙΑΝΝΗΣ. (Μπάλες Λύσεις ης Ομάδας Ασκήσεων Τμήμα Α Λ (αʹ Έστω A το ενδεχόμενο να επιλέξουμε τουλάχιστον μια άσπρη μπάλα. Θα υπολογίσουμε
Στοχαστικές Ανελίξεις- Φεβρουάριος 2015
Στοχαστικές Ανελίξεις- Φεβρουάριος 2015 ΟΔΗΓΙΕΣ (1) Απαντήστε σε όλα τα θέματα. Τα θέματα είναι ισοδύναμα. (2) Οι απαντήσεις να είναι αιτιολογημένες. Απαντήσεις χωρίς να φαίνεται η απαιτούμενη εργασία
α n z n = 1 + 2z 2 + 5z 3 n=0
Η ύλη συνοπτικά... Στοιχειώδης συνδυαστική Γεννήτριες συναρτήσεις Σχέσεις αναδρομής Θεωρία Μέτρησης Polyá Αρχή Εγκλεισμού - Αποκλεισμού Η ύλη συνοπτικά... Γεννήτριες συναρτήσεις Τι είναι η γεννήτρια Στην
Μοντελοποίηση, Ανάλυση και Σχεδιασμός Στοχαστικών Συστημάτων
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ Μοντελοποίηση, Ανάλυση και Σχεδιασμός Στοχαστικών Συστημάτων Ακαδ. Έτος 2017-2018 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Επικ. Καθηγητής
ίκτυα Επικοινωνίας Υπολογιστών
ίκτυα Επικοινωνίας Υπολογιστών Ενότητα: Ασκήσεις για την ενότητα 5 (Στοιχεία Θεωρίας Τηλεπικοινωνιακής Κίνησης) Ιωάννης Μοσχολιός Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σελίδα 2 Περιεχόμενα
ΣΤΟΧΑΣΤΙΚΕΣ ΙΑ ΙΚΑΣΙΕΣ
ΣΤΟΧΑΣΤΙΚΕΣ ΙΑ ΙΚΑΣΙΕΣ Θεωρία Πιθανοτήτων και Στοχαστικές ιαδικασίες, Κ. Πετρόπουλος Τµ. Επιστήµης των Υλικών Στοχαστικές ιαδικασίες Ορισµός Μία στοχαστική διαδικασία είναι µία οικογένεια τυχαίων µεταβλητών