[1] Εύρεση διαµορφωµερών ελάχιστης ενέργειας µε χρήση του
|
|
- Βεελζεβούλ Θεοτόκης
- 8 χρόνια πριν
- Προβολές:
Transcript
1 1 [1] Εύρεση διαµορφωµερών ελάχιστης ενέργειας µε χρήση του προγράµµατος Spartan 04 v (Wavefunction, Inc., (Ι) Κτίσατε (built 3D) την Αποµορφίνη µε την πρωτονιωµένη της µορφή και µε διαµόρφωση του δεσµού C-Ν + (δηλαδή, µεθινίου-αζώτου) α] ως αξονικού στο χώρο (axial, συντοµογραφία a) & β]ως ισηµερινού στο χώρο (equatorial, συντοµογραφία e) Ελαχιστοποιήστε ενεργειακά τη δοµή των δύο διαµορφωµερών (αξονικού και ισηµερινού) µε χρήση µοριακής µηχανικής (molecular mechanic s MMFF) {ελαχιστοποιεί τη συνολική τάση του µορίου, δηλαδή βελτιστοποιεί τη διάταξη των ατόµων του µορίου στο χώρο} και αποθηκεύσατε (save=>ogdoo2017) τα µόρια ως αρχείο Apoamm (για την περίπτωση του αξονικού διαµορφωµερούς) και ως αρχείο Apoemm (για την περίπτωση του ισηµερινού διαµορφωµερούς). (ΙΙ) Επαναλάβατε διαδοχικά την ίδια διαδικασία για τις ενώσεις µε κωδικούς Der1, Der2 και Der3. Αποθηκεύσατε (save=>ogdoo2017) τα µόρια ως αρχεία Der1amm, Der2amm, Der3amm (για τις περιπτώσεις των αξονικών διαµορφωµερών) και ως αρχεία Der1emm, Der2emm, Der3emm (για τις περιπτώσεις των ισηµερινών διαµορφωµερών). (ΙΙΙ) Ανοίξατε (open) διαδοχικά όλα τα αρχεία που έχετε φτιάξει και αποθηκεύσατέ τα µε καινούργια ονοµασία (save as=>ogdoo2017) ως αρχεία Apoaam1, Der1aam1, Der2aam1, Der3aam1 (για τις περιπτώσεις των αξονικών διαµορφωµερών) και ως αρχεία Apoeam1, Der1eam1, Der2eam1, Der3eam1 (για τις περιπτώσεις των ισηµερινών διαµορφωµερών). Ελαχιστοποιήστε ενεργειακά τις δοµές των δύο αυτών σειρών διαµορφωµερών (αξονικών και ισηµερινών) µε χρήση της ηµιεµπειρικής κβαντοµηχανικής µεθόδου ΑΜ1 (semiempirical quantum mechanic s Austin Model 1) {ελαχιστοποιεί τη συνολική ενέργεια του µορίου µε βελτιστοποίηση των µηκών των δεσµών καθώς και των τιµών των γωνιών και των δίεδρων γωνιών}.
2 2 Παρατήρηση: Η παραπάνω µεθοδολογία µοριακής προσοµοίωσης δυο σταδίων (molecular mechanics=>semiempirical quantum mechanics) για την εύρεση διαµορφωµερών ελάχιστης ενέργειας, ξεκινά από αριθµό (2-6) διαφορετικών/τυχαίων αρχικών διαµορφώσεων των υπό µελέτη ενώσεων. Κατ αυτόν τον τρόπο, µειώνεται ο κίνδυνος εγκλωβισµού σε ένα τοπικό ελάχιστο και οδηγούµαστε σε διαµορφώσεις της ένωσης που παρουσιάζουν απόκλιση ενέργειας το πολύ 10% από την ενέργεια του διαµορφωµερούς µε απόλυτα ελάχιστη ενέργεια (global energy minimum). Αυτό απεικονίζεται στο ακόλουθο σχήµα: Επισηµαίνεται ότι η εύρεση διαµορφωµερών ελάχιστης ενέργειας µε συστηµατική ανάλυση του διαµορφωσιακού χώρου είναι, πολλές φορές, χρονοβόρος αφού απαιτείτε ελαχιστοποίηση ενέργειας για κάθε ένα από τα πιθανά αρχικά διαµορφωµερή της υπό µελέτη ένωσης. Ο αριθµός των πιθανών αρχικών διαµορφωµερών αυξάνει εκθετικά µε τον αριθµό των περιστρεφόµενων (όχι τελικών) δεσµών του µορίου και µε τα βήµατα στρέψης των οριζόµενων από αυτούς δίεδρων γωνιών. Για παράδειγµα, στο µόριο της ένωσης Der3 µε 7 περιστρεφόµενους δεσµούς, αν ακολουθηθεί βήµα στρέψης 30 ο (δηλαδή, 360/30=12 βήµατα συνολικά) προκύπτουν 12 7 (περίπου 36 εκατοµµύρια) αρχικά διαµορφωµερή προς ενεργειακή ελαχιστοποίηση. Έτσι, συνήθως στην πράξη ακολουθείται τυχαία αναζήτηση (προσοµοίωση Monte Carlo), µια µορφή της οποίας χρησιµοποιήθηκε στην παρούσα άσκηση µοριακής προσοµοίωσης.
3 3 [2] Υπολογισµός λιποφιλίας µε χρήση του προγράµµατος MedChem Designer v (Simulations Plus, Inc., Σχεδιάσατε (draw 2D) τις ενώσεις Apo, Der1, Der2 και Der3 στη µη πρωτονιωµένη µορφή τους και καταγράψατε τις τιµές λογαρίθµου συντελεστή µερισµού [S+logP] καθώς και λογαρίθµου συντελεστή κατανοµής [S+logD 7.4 (default p=7.4)]. (σηµείωση: η πρωτονίωση καθώς και η διαµόρφωση δεν επηρεάζουν τα αποτελέσµατα των υπολογισµών).
4 4 ΟΜΕΣ ΕΝΩΣΕΩΝ Apomorphine (Apo) N Apo in its protonated form + N [strong and eficacious DA receptor agonist (both in vitro and in-vivo)] Der1 N Der1 in its protonated form + N [ inactive in-vivo DA receptor agonist] Der2 N Der2 in its protonated form + N [active in-vivo DA receptor agonist] N Der3 in its protonated form + N Der3 [most active in-vivo DA receptor agonist]
5 5 [3] Συλλογή δεδοµένων Καταγράψατε τα αποτελέσµατα (output) των ενεργειών των αξονικών και των ισηµερινών διαµορφώσεων των ενώσεων από τους υπολογισµούς AM1. Καταγράψατε τις αποστάσεις των ατόµων σε αυτά τα διαµορφωµερή σύµφωνα µε το παρακάτω σχήµα: m- center Apo N+ m- m- center center N+ N+ Der1 Der2 m- center N+ Der3
6 6 Εργαστηριακή Εργασία Καταγράψατε στο τετράδιό σας όλα τα στοιχεία που συλλέξατε για τις ενώσεις Apo, Der1, Der2, Der3 και αναλύσατε/εξηγήσατε πιθανούς λόγους της παρατηρούµενης διαφοράς στην in-vivo εκδήλωση της ντοπαµινεργικής αγωνιστικής δράσης. Χρησιµοποιήσατε και το παρακάτω διάγραµµα κατανοµής κατά Boltzmann που είναι σε συνάρτηση µε τη διαφορά ενέργειας δυο διαµορφωµερών µιας ένωσης. F2/F1 = e (E1-E2)/RT (E1>E2)
7 7 Συνολική Καταγραφή Αποτελεσµάτων Apo S+logP= S+logD 7,4 = Conformer Conformation s Energy Distances (N-m & N-Center) Der1 S+logP= S+logD 7,4 = Conformer Conformation s Energy Distances (N-m & N-Center)
8 Der2 S+logP= S+logD 7,4 = 8 Conformer Conformation s Energy Distances (N-m & N-Center) Der3 S+logP= S+logD 7,4 = Conformer Conformation s Energy Distances (N-m & N-Center)
[1] Εύρεση διαμορφωμερών ελάχιστης ενέργειας με χρήση του προγράμματος
1 [1] Εύρεση διαμορφωμερών ελάχιστης ενέργειας με χρήση του προγράμματος Spartan 08 v. 1.2.0 (Wavefunction, Inc., http://www.wavefun.com) (Ι) Κτίσατε (built 3D) την απομορφίνη (apo) και τα παράγωγά της
Εύρεση διαμορφωμερών ελάχιστης ενέργειας με χρήση του προγράμματος Spartan 08 v
Εύρεση διαμορφωμερών ελάχιστης ενέργειας με χρήση του προγράμματος Spartan 08 v. 1.2.0 (Ι) Κτίσατε (built 3D) την απομορφίνη (apo) και τα παράγωγά της (der1, der2 & der3) με την πρωτονιωμένη τους μορφή
2 ο εργαστήριο ιαµορφωτική Ανάλυση Συστηµατική αναζήτηση Τυχαία δειγµατοληψία Μοριακή υναµική 2
ΕΡΓΑΣΤΗΡΙΟΣΧΕ ΙΑΣΜΟΥ ΕΘΝΙΚΟ Ι ΡΥΜΑ ΕΡΕΥΝΩΝ ΙΝΣΤΙΤΟΥΤΟ ΟΡΓΑΝΙΚΗΣ & ΦΑΡΜΑΚΕΥΤΙΚΗΣ ΧΗΜΕΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΜΟΡΙΑΚΗΣ ΑΝΑΛΥΣΗΣ 2 ο εργαστήριο ιαµορφωτική Ανάλυση Συστηµατική αναζήτηση Τυχαία δειγµατοληψία Μοριακή
Μοριακά πρότυπα. Σε τι διαφέρουν από τα μεταλλικά συστήματα; Παραδείγματα τύπων ατόμων. Η έννοια του τύπου ατόμου
Τεχνικές προσομοίωσης και σχεδιασμού υλικών σε ΗΥ Σε τι διαφέρουν από τα μεταλλικά συστήματα; Μοριακά πρότυπα Στα μοριακά συστήματα: Η φύση του δεσμού είναι διαφορετική (ομοιοπολικός δεσμός). Υπάρχει συγκεκριμένη
Επίλυση γεωµετρικών περιορισµών σε µικρά µόρια µε αλγεβρικές µεθόδους
Επίλυση γεωµετρικών περιορισµών σε µικρά µόρια µε αλγεβρικές µεθόδους Επαµεινώνδας. Φριτζίλας Μ Ε Βιοπληροφορικής Τµήµα Βιολογίας ΕΚΠΑ 17 Φεβρουαρίου 2005 Τί σηµαίνει ο τίτλος ; γεωµετρικός περιορισµός:
Περίληψη Κεφαλαίου 3
Περίληψη Κεφαλαίου 3 Λειτουργική οµάδα: άτοµο ή σύνολο ατόµων ενός µορίου που προσδίδει χαρακτηριστική χηµική συµπεριφορά στο µόριο Αλκάνια: κατηγορία υδρογονανθράκων µε γενικό µοριακό τύπο C v H 2v+2
Εισαγωγή στη Μοριακή Προσοµοίωση
Κεφάλαιο 6 Εισαγωγή στη Μοριακή Προσοµοίωση 6.1. Μοριακή Μηχανική 6.1.1. Εισαγωγή στη µεθοδολογία του «απ αρχής» διπλώµατος της πρωτείνης. Η ενέργεια κάθε µορίου µπορεί θεωρητικά να υπολογιστεί µε την
Πρόγνωση δομής πρωτεϊνών (Μέρος Ι)
Πρόγνωση δομής πρωτεϊνών (Μέρος Ι) Βασίλης Προμπονάς, PhD Ερευνητικό Εργαστήριο Βιοπληροφορικής Τμήμα Βιολογικών Επιστημών Νέα Παν/πολη, Γραφείο B161 Πανεπιστήμιο Κύπρου Ταχ.Κιβ. 20537 1678, Λευκωσία ΚΥΠΡΟΣ
Χηµική ισοδυναµία πυρήνων και µοριακή συµµετρία
Χηµική ισοδυναµία πυρήνων και µοριακή συµµετρία Οι χηµικά µη ισοδύναµοι πυρήνες βρίσκονται σε διαφορετικό χηµικό περιβάλλον και όπως ήδη γνωρίζουµε, συντονίζονται σε διαφορετική συχνότητα (παρουσιάζουν
Ενεργειακή ανάλυση βιομορίων
Ενεργειακή ανάλυση βιομορίων Τα βιομόρια ως φυσικά συστήματα πρωτεΐνες, DNA, πεπτίδια, μικρά μόρια (ligands, φάρμακα) Αλληλεπιδράσεις μεταξύ των ατόμων + επίδραση του περιβάλλοντος νερού σταθεροποίηση
Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανολόγων Μηχανικών. Χημεία. Ενότητα 8: Η θεωρία δεσμού σθένους. Τόλης Ευάγγελος
Τμήμα Μηχανολόγων Μηχανικών Χημεία Ενότητα 8: Η θεωρία δεσμού σθένους Τόλης Ευάγγελος e-mail: etolis@uowm.gr Τμήμα Μηχανολόγων Μηχανικών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Ανάλυση ευαισθησίας Ανάλυση ρίσκου
Τεχνολογία, Καινοτομία & Επιχειρηματικότητα, 9 ο εξάμηνο Σχολή Χ-Μ Ανάλυση ευαισθησίας Ανάλυση ρίσκου Γιώργος Μαυρωτάς Αν. καθηγητής ΕΜΠ Εργαστήριο Βιομηχανικής & Ενεργειακής Οικονομίας Τομέας ΙΙ, Σχολή
4.1 Εύρεση του Συνόλου των ιεργασιών Συμμετρίας ενός Μορίου
4. Ομάδες Σημείου ιδακτικοί στόχοι Μετά την ολοκλήρωση της μελέτης του κεφαλαίου αυτού θα μπορείτε να... o ορίζετε την έννοια της ομάδας σημείου ενός μορίου o διακρίνετε τις βασικές κατηγορίες ομάδων σημείου
6. Στατιστικές μέθοδοι εκπαίδευσης
6. Στατιστικές μέθοδοι εκπαίδευσης Μία διαφορετική μέθοδος εκπαίδευσης των νευρωνικών δικτύων χρησιμοποιεί ιδέες από την Στατιστική Φυσική για να φέρει τελικά το ίδιο αποτέλεσμα όπως οι άλλες μέθοδοι,
Οι δομές, οι οποίες δεν περιέχουν τυπικά φορτία υψηλά (δηλαδή είναι 2) είναι:
Answers to Homework Set 3 12162016 1. Πριν από μερικά χρόνια δημοσιεύθηκε η σύνθεση του ιόντος 5 +. Ποια είναι η πλέον πιθανή α) γεωμετρία ηλεκτρονικών ζευγών, και β) μοριακή γεωμετρική δομή του ιόντος
Ε ανάληψη. Α ληροφόρητη αναζήτηση
ΠΛΗ 405 Τεχνητή Νοηµοσύνη Το ική Αναζήτηση Local Search Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Α ληροφόρητη αναζήτηση σε πλάτος, οµοιόµορφου κόστους, σε βάθος,
ΦΥΣΙΚΟΧΗΜΕΙΑ I Ενότητα 11 Διατομικά Μόρια Δημήτρης Κονταρίδης Αναπληρωτής Καθηγητής Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών
ΦΥΣΙΚΟΧΗΜΕΙΑ I Ενότητα 11 Διατομικά Μόρια Δημήτρης Κονταρίδης Αναπληρωτής Καθηγητής Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Ενδεικτική βιβλιογραφία 1. ATKINS, ΦΥΣΙΚΟΧΗΜΕΙΑ P.W. Atkins, J. De Paula (Atkins
Μοριακά Πρότυπα (Μοντέλα)
Μοριακά Πρότυπα (Μοντέλα) ΘΕΩΡΗΤΙΚΟ ΥΠΟΒΑΘΡΟ 1. ΟΜΕΣ LEWIS - ΤΥΠΙΚΟ ΦΟΡΤΙΟ (ΚΕΦ. 9.6, 9.9) 2. ΜΟΡΙΑΚΗ ΓΕΩΜΕΤΡΙΑ - ΤΟ ΜΟΝΤΕΛΟ VSEPR (ΚΕΦ. 10.1) 3. ΥΒΡΙ ΙΣΜΟΣ ΑΤΟΜΙΚΩΝ ΤΡΟΧΙΑΚΩΝ (ΚΕΦ. 10.3) Αναγραφή τύπων
Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D.
Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D. Μη γραμμικός προγραμματισμός: μέθοδοι μονοδιάστατης ελαχιστοποίησης Πανεπιστήμιο Θεσσαλίας Σχολή Θετικών Επιστημών ΤμήμαΠληροφορικής Διάλεξη 6 η /2017 Τι παρουσιάστηκε
ΤΕΧΝΟΛΟΓΙΑ, ΚΑΙΝΟΤΟΜΙΑ ΚΑΙ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΤΗΤΑ 9 Ο εξάμηνο Χημικών Μηχανικών
ΤΕΧΝΟΛΟΓΙΑ, ΚΑΙΝΟΤΟΜΙΑ ΚΑΙ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΤΗΤΑ 9 Ο εξάμηνο Χημικών Μηχανικών Γιώργος Μαυρωτάς, Αν.Καθηγητής ΕΜΠ mavrotas@chemeng.ntua.gr ΑΝΑΛΥΣΗ ΕΥΑΙΣΘΗΣΙΑΣ ΑΝΑΛΥΣΗ ΡΙΣΚΟΥ Άδεια Χρήσης Το παρόν εκπαιδευτικό
Οργανική Χημεία. Κεφάλαιο 4: Στερεοχημεία αλκανίων και κυκλοαλκανίων
Οργανική Χημεία Κεφάλαιο 4: Στερεοχημεία αλκανίων και κυκλοαλκανίων 1. Διατάξεις μορίων στο χώρο Η μορφή των μορίων στο χώρο εξαρτάται από πολλές δυνάμεις Μόριο μπορεί να λάβει διαφορετικές μορφές στο
1.12 Ηλεκτρονιακά κύματα και χημικοί δεσμοί
1.12 Ηλεκτρονιακά κύματα και χημικοί δεσμοί Ο Lewis πρότεινε το μοντέλο του κοινού ηλεκτρονιακού ζεύγους των δεσμών το 1916, σχεδόνμιαδεκαετίαπριναπότηθεωρίατουde Broglie τηςδυαδικότηταςκύματος-σωματιδίου.
Τελεστικοί Ενισχυτές
Θεωρητική Ανάλυση: Τελεστικοί Ενισχυτές 1. Διαβάστε το datasheet του LM741 και συμπληρώστε τις παρακάτω παραμέτρους. Supply Voltage, Input Offset Current, Input Offset Voltage, Input Resistance, Output
1.12 Ηλεκτρονιακά κύματα και χημικοί δεσμοί
1.12 Ηλεκτρονιακά κύματα και χημικοί δεσμοί Ο Lewis πρότεινε το μοντέλο του κοινού ηλεκτρονιακού ζεύγους των δεσμών το 1916, σχεδόνμιαδεκαετίαπριναπότηθεωρίατουde Broglie τηςδυαδικότηταςκύματος-σωματιδίου.
ΕΡΓΑΣΤΗΡΙΟΣΧΕ ΙΑΣΜΟΥ ΕΘΝΙΚΟ Ι ΡΥΜΑ ΕΡΕΥΝΩΝ ΙΝΣΤΙΤΟΥΤΟ ΟΡΓΑΝΙΚΗΣ & ΦΑΡΜΑΚΕΥΤΙΚΗΣ ΧΗΜΕΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΜΟΡΙΑΚΗΣ ΑΝΑΛΥΣΗΣ 1 ο εργαστήριο (Α µέρος) Βασικές αρχές Μοριακής Μοντελοποίησης Μοριακά µοντέλα Συστήµατα
ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΗΛΕΚΤΡΙΚΩΝ
ΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΞΑΝΘΗΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΥΣΗΣ ΗΛΕΚΤΡΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΗΛΕΚΤΡΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ ΙΙΙ
9. ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΜΗΚΟΥΣ
73 9. ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΜΗΚΟΥΣ 9.1 Εισαγωγή Υπενθυμίζεται ότι το αστρονομικό μήκος ενός τόπου είναι η δίεδρη γωνία μεταξύ του αστρονομικού μεσημβρινού του τόπου και του μεσημβρινού του Greenwich. Η γωνία αυτή
Μοριακή δομή Ο2 σύμφωνα με VB διαμαγνητικό
Μοριακή δομή Ο 2 σύμφωνα με VB? διαμαγνητικό Θεωρία Μοριακών Τροχιακών Μolecular Orbital Theory (MO) Τα μοριακά τροχιακά (molecular orbital) είναι κυματοσυναρτήσεις οι οποίες προκύτπουναπότογραμμικόσυνδυασμότωνκυματοσυναρτήσεωντωναο.
Ονοματεπώνυμο: Α.Μ. Μέθοδοι Διδασκαλίας Φυσικής
Ονοματεπώνυμο: Α.Μ. Αθήνα, 28 IAN 2016 Υποθέστε ότι πρόκειται να διδάξετε σε μαθητές Λυκείου τα φαινόμενα: της θέρμανσης και της φωτοβολίας μεταλλικού αγωγού που διαρρέεται από ηλεκτρικό ρεύμα. Περιγράψτε
Εργαστηριακή άσκηση Ιδιότητες οργανικών από προσομοίωση Μοριακής Δυναμικής
Εργαστηριακή άσκηση Ιδιότητες οργανικών από προσομοίωση Μοριακής Δυναμικής Λογισμικό NAMD http://www.ks.uiuc.edu/research/namd/ VMD: Visua Moecuar Dynamics http://www.ks.uiuc.edu/research/vmd/ AmberToos
Βασική Εφικτή Λύση. Βασική Εφικτή Λύση
Αλγεβρική Μορφή Γενική Μορφή Γραµµικού Προγραµµατισµού n µεταβλητών και m περιορισµών Εστω πραγµατικοί αριθµοί a ij, b j, c i R µε 1 i m, 1 j n Αλγεβρική Μορφή Γενική Μορφή Γραµµικού Προγραµµατισµού n
Αριθμητικές Προσομοιώσεις του πρότυπου ISING στις Τρεις Διαστάσεις
Αριθμητικές Προσομοιώσεις του πρότυπου ISING στις Τρεις Διαστάσεις Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εθνικό Μετσόβιο Πολυτεχνείο ΚΟΡΝΑΡΟΣ ΕΥΑΓΓΕΛΟΣ Εισαγωγή ό ή ί ί μ έ ά μ έ Ising μ
ΘΕΩΡΙΑ ΔΕΣΜΟΥ ΣΘΕΝΟΥΣ ΘΕΩΡΙΑ ΜΟΡΙΑΚΩΝ ΤΡΟΧΙΑΚΩΝ
ΕΡΜΗΝΕΙΑ ΣΧΗΜΑΤΙΣΜΟΥ ΧΗΜΙΚΩΝ ΕΣΜΩΝ ΘΕΩΡΙΑ ΔΕΣΜΟΥ ΣΘΕΝΟΥΣ ΘΕΩΡΙΑ ΜΟΡΙΑΚΩΝ ΤΡΟΧΙΑΚΩΝ ΘΕΩΡΙΑ ΕΣΜΟΥ ΣΘΕΝΟΥΣ 1. Κατά την ανάπτυξη ομοιοπολικού δεσμού ανάμεσα σε δύο άτομα, τροχιακά της στιβάδας σθένους του
Κύκλος Επαναληπτικών Διαγωνισμάτων (Προσομοίωσης) Γ ΛΥΚΕΙΟΥ / Απρίλιος 2016 Μάθημα: Φυσική Ομάδας Προσανατολισμού Θετικών Σπουδών.
Κύκλος Επαναληπτικών Διαγωνισμάτων (Προσομοίωσης) Γ ΛΥΚΕΙΟΥ / Απρίλιος 2016 Μάθημα: Φυσική Ομάδας Προσανατολισμού Θετικών Σπουδών. Ονοματεπώνυμο Τμήμα Καθηγητής: ΓΦΣ Επιτηρητής Αίθουσα ΣΤΟΙΧΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ
Χηµεία Γενικής Παιδείας... ιδακτική ενότητα Γενικό µέρος Οργανικής Χηµείας Τµήµα... Απαιτούµενος χρόνος 1 διδακτική ώρα Ηµεροµηνία...
Ισοµέρεια υδρογονανθράκων Φύλλο εργασίας Τάξη B Λυκείου Ονοµατεπώνυµο Μάθηµα Γνωστικό αντικείµενο Χηµεία Γενικής Παιδείας Ισοµέρεια Υδρογονανθράκων.......................... ιδακτική ενότητα Γενικό µέρος
Παρουσίαση 2 η : Αρχές εκτίμησης παραμέτρων Μέρος 1 ο
Εφαρμογές Ανάλυσης Σήματος στη Γεωδαισία Παρουσίαση η : Αρχές εκτίμησης παραμέτρων Μέρος ο Βασίλειος Δ. Ανδριτσάνος Αναπληρωτής Καθηγητής Γεώργιος Χλούπης Επίκουρος Καθηγητής Τμήμα Μηχανικών Τοπογραφίας
ΣΤΕΡΕΟΓΡΑΦΙΚΗ ΑΠΕΙΚΟΝΙΣΗ ΤΟΥ ΕΠΙΠΕΔΟΥ ΤΟΥ ΡΗΓΜΑΤΟΣ ΚΑΙ ΤΩΝ ΚΙΝΗΜΑΤΙΚΩΝ ΑΞΟΝΩΝ
ΣΤΕΡΕΟΓΡΑΦΙΚΗ ΑΠΕΙΚΟΝΙΣΗ ΤΟΥ ΕΠΙΠΕΔΟΥ ΤΟΥ ΡΗΓΜΑΤΟΣ ΚΑΙ ΤΩΝ ΚΙΝΗΜΑΤΙΚΩΝ ΑΞΟΝΩΝ Σκοπός Σκοπός της άσκησης αυτής είναι η στερεογραφική απεικόνιση του επιπέδου του ρήγματος, καθώς και του βοηθητικού επιπέδου
Ασκήσεις. Γράψτε μια δομή Lewis για καθένα από τα παρακάτω μόρια και βρείτε τα τυπικά φορτία των ατόμων. (α) CΟ (β) ΗΝO 3 (γ) ClΟ 3 (δ) ΡΟCl 3
Ασκήσεις Γράψτε μια δομή Lewis για καθένα από τα παρακάτω μόρια και βρείτε τα τυπικά φορτία των ατόμων. (α) CΟ (β) ΗΝO 3 (γ) ClΟ 3 (δ) ΡΟCl 3 Γεωμετρία Μορίων Θεωρία VSEPR Μοριακή γεωμετρία: είναι η διάταξη
ΕΝΟΤΗΤΑ 3: ΦΘΙΝΟΥΣΕΣ ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΣΗΜΕΙΩΣΕΙΣ ΘΕΩΡΙΑΣ
ΚΕΦΑΛΑΙΟ 1 Ο : ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΕΝΟΤΗΤΑ 3: ΦΘΙΝΟΥΣΕΣ ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΣΗΜΕΙΩΣΕΙΣ ΘΕΩΡΙΑΣ Φθίνουσες Μηχανικές ταλαντώσεις Όταν το πλάτος της ταλάντωσης, που εκτελεί ένα σώμα, συνεχώς μειώνεται,
ΑΛΓΟΡΙΘΜΙΚΕΣ ΜΕΘΟΔΟΙ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ
ΑΛΓΟΡΙΘΜΙΚΕΣ ΜΕΘΟΔΟΙ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ ΚΟΥΛΙΝΑΣ ΓΕΩΡΓΙΟΣ Δρ. Μηχανικός Παραγωγής & Διοίκησης ΔΠΘ ΜΕΤΑΕΥΡΕΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ METAHEURISTIC ALGORITHMS Ευφυείς διαδικασίες επαναληπτικής βελτίωσης Χρησιμοποιούν
ΑΛΓΟΡΙΘΜΙΚΕΣ ΜΕΘΟΔΟΙ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ
ΑΛΓΟΡΙΘΜΙΚΕΣ ΜΕΘΟΔΟΙ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ ΚΟΥΛΙΝΑΣ ΓΕΩΡΓΙΟΣ Δρ. Μηχανικός Παραγωγής & Διοίκησης ΔΠΘ The Tabu Search Algorithm Glover, F. (1986). Future paths for integer programming and links to artificial
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑ.Λ. (ΟΜΑ Α Β ) ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ ΔΕΥΤΕΡΑ, 22 ΑΠΡΙΛΙΟΥ 201 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ:ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ
Ε.Μ.Π Τομέας Υδατικών Πόρων Υδραυλικών & Θαλασσίων Έργων Μάθημα: Τεχνολογία Συστημάτων Υδατικών Πόρων 9 ο Εξάμηνο Πολ. Μηχανικών Ε. Μπαλτάς.
Ε.Μ.Π Τομέας Υδατικών Πόρων Υδραυλικών & Θαλασσίων Έργων Μάθημα: Τεχνολογία Συστημάτων Υδατικών Πόρων 9 ο Εξάμηνο Πολ. Μηχανικών Ε. Μπαλτάς Θέμα 1 Σε θέση ποταμού, όπου πρόκειται να κατασκευαστεί ταμιευτήρας,
ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ ΧΗΜΕΙΑΣ ΤΜΗΜΑΤΟΣ ΒΙΟΛΟΓΙΑΣ Φασματοφωτομετρία
1 ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ ΧΗΜΕΙΑΣ ΤΜΗΜΑΤΟΣ ΒΙΟΛΟΓΙΑΣ Φασματοφωτομετρία Ιωάννης Πούλιος Αθανάσιος Κούρας Ευαγγελία Μανώλη ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ ΧΗΜΕΙΑΣ ΤΜΗΜΑ ΧΗΜΕΙΑΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ 54124
Κυκλικοί υδρογονάνθρακες
Κυκλικοί υδρογονάνθρακες C 2 Y C 2 Y C 2 C 2 C n 2n+2 C n 2n : Κορεσμένοι = Ισομερή των αλκενίων C n 2n C n 2n-2 : Μονοακόρεστοι = ισομερή των αλκινίων 1 1. Καύση Αντιδράσεις Αλκανίων C 3 -C 2 -C 3 + 5
Διαμόρφωση-διαμορφωμερή
Οργανική Χημεία Πέτρος Ταραντίλης Αναπληρωτής Καθηγητής Εργαστήριο Χημείας, Τμήμα Επιστήμης Τροφίμων και Διατροφής του Ανθρώπου Ιερά Οδός 75, 118 55 Αθήνα, e-mail: ptara@aua.gr, Τηλ.: 210 529 4262, Fax:
ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΠΕΡΣΕΦΟΝΗ ΠΟΛΥΧΡΟΝΙΔΟΥ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΤΕ
ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΠΕΡΣΕΦΟΝΗ ΠΟΛΥΧΡΟΝΙΔΟΥ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται
Σύζευξη σπιν-σπιν J = 0 J 0
Σύζευξη σπιν-σπιν Ας υποθέσουµε ότι έχουµε δύο πυρήνες Α και Χ, οι οποίοι είτε συνδέονται απ ευθείας µε έναν δεσµό είτε η σύνδεσή γίνεται µε περισσότερους δεσµούς. A X J = 0 J 0 Α Χ Α Χ Το σπάσιµο των
ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΚΑΙ ΑΕΡΟΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΤΩΝ ΡΕΥΣΤΩΝ ΚΑΙ ΕΦΑΡΜΟΓΩΝ ΑΥΤΗΣ
ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΚΑΙ ΑΕΡΟΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΤΩΝ ΡΕΥΣΤΩΝ ΚΑΙ ΕΦΑΡΜΟΓΩΝ ΑΥΤΗΣ Διευθυντής: Διονύσιος-Ελευθ. Π. Μάργαρης, Αναπλ. Καθηγητής ΕΡΓΑΣΤΗΡΙΑΚΗ
Χρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ. Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ»
Χρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ» 2 ΔΥΝΑΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Προβλήματα ελάχιστης συνεκτικότητας δικτύου Το πρόβλημα της ελάχιστης
Εργαστηριακή άσκηση Ιδιότητες οργανικών από προσομοίωση Μοριακής Δυναμικής
Κλασσική ατομιστική προσομοίωση Εργαστηριακή άσκηση Ιδιότητες οργανικών από προσομοίωση Μοριακής Δυναμικής Λογισμικό NAMD http://www.ks.uiuc.edu/research/namd/ VMD: Visua Moecuar Dynamics http://www.ks.uiuc.edu/research/vmd/
ΠΕΙΡΑΜΑΤΙΚΟ ΜΕΡΟΣ. Η πειραματική διάταξη που χρησιμοποιείται στην άσκηση φαίνεται στην φωτογραφία του σχήματος 1:
ΠΕΙΡΑΜΑΤΙΚΟ ΜΕΡΟΣ 1. Πειραματική Διάταξη Η πειραματική διάταξη που χρησιμοποιείται στην άσκηση φαίνεται στην φωτογραφία του σχήματος 1: Σχήμα 1 : Η πειραματική συσκευή για τη μελέτη της απόδοσης φωτοβολταϊκού
Εισαγωγή στις Τηλεπικοινωνίες / Εργαστήριο
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Εισαγωγή στις Τηλεπικοινωνίες / Εργαστήριο Εργαστηριακή Άσκηση 4: Πειραματική μελέτη συστημάτων διαμόρφωσης συχνότητας (FΜ) Δρ.
ΦΑΡΜΑΚΩΝ WORKSHOP ΣΧΕ ΙΑΣΜΟΥ
ΕΡΓΑΣΤΗΡΙΟΣΧΕ ΙΑΣΜΟΥ ΣΧΕ ΙΑΣΜΟΥ ΦΑΡΜΑΚΩΝ ΕΘΝΙΚΟ Ι ΡΥΜΑ ΕΡΕΥΝΩΝ ΙΝΣΤΙΤΟΥΤΟ ΟΡΓΑΝΙΚΗΣ & ΦΑΡΜΑΚΕΥΤΙΚΗΣ ΧΗΜΕΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΜΟΡΙΑΚΗΣ ΑΝΑΛΥΣΗΣ WORKSHOP ΣΧΕ ΙΑΣΜΟΥ ΦΑΡΜΑΚΩΝ Βασικές στρατηγικές Στο σχεδιασµό νέων
1. * Η γραφική παράσταση µιας συνάρτησης f έχει εφαπτοµένη στο x 0 την ευθεία y = αx + β, µε α 0, όταν. είναι + είναι -
Ερωτήσεις πολλαπλής επιλογής. * Η γραφική παράσταση µιας συνάρτησης f έχει εφαπτοµένη στο την ευθεία = α + β, µε α, όταν Α. ( Β. η f είναι συνεχής στο = α R Γ. η f δεν είναι συνεχής στο. το όριο Ε. το
ΜΟΡΙΑΚΗ ΦΑΣΜΑΤΟΣΚΟΠΙΑ
ΜΟΡΙΑΚΗ ΦΑΣΜΑΤΟΣΚΟΠΙΑ Ενότητα 3 Φασματοσκοπία Μικροκυμάτων Δημήτρης Κονταρίδης Αναπληρωτής Καθηγητής Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Ενδεικτική βιβλιογραφία 1. ATKINS, ΦΥΣΙΚΟΧΗΜΕΙΑ P.W. Atkins,
Υπολογιστικές Μέθοδοι Ανάλυσης και Σχεδιασμού
EΘNIKO ΜEΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΙΙ: Ανάλυσης, Σχεδιασμού & Ανάπτυξης Διεργασιών & Συστημάτων Υπολογιστικές Μέθοδοι Ανάλυσης και Σχεδιασμού Εργαστηριακές Ασκήσεις Διδάσκων: Α.
Άσκηση 7. Προσομοίωση 3D Δομών Βιομορίων μέσω. Ομολογίας & Threading
Άσκηση 7 Προσομοίωση 3D Δομών Βιομορίων μέσω Ομολογίας & Threading Προσομοίωση 2ταγούς δομής πρωτεϊνών Δευτεροταγής Δομή: Η 2ταγής δομή των πρωτεϊνών είναι σταθερή τοπική διαμόρφωση της πολυπεπτιδικής
ΔΥΝΑΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
ΔΥΝΑΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Μαθηματική τεχνική για αντιμετώπιση προβλημάτων λήψης πολυσταδιακών αποφάσεων Συστηματική διαδικασία εύρεσης εκείνου του συνδυασμού αποφάσεων που βελτιστοποιεί τη συνολική απόδοση
Μαθηματικά Γενικής Παιδείας. iv) f(x)= v) f(x)= ln(x 2-4) vi) f(x) =, v) f(x) = 6 x 5. vi) vii) f(x) = ln(x 2-2) viii) f(x) = lnx 2.
Ερωτήσεις ανάπτυξης Β. Να βρεθούν τα πεδία ορισμού των συναρτήσεων: 5 4 i) f() = ii) f()= iii) f()= iv) f()= ln( ) e v) f()= ln( -4) 4 4 vi) f() =, 5. Να βρείτε το πεδίο ορισμού των συναρτήσεων f με τύπο:
Και ο άνθρακας και το οξυγόνο έχουν σημαντικές τιμές ηλεκτροσυγγένειας. Να εξηγήσετε γιατί το άζωτο έχει σχεδόν μηδενική ηλεκτροσυγγένεια.
ΑΡΧΕΣ ΧΗΜΕΙΑΣ Και ο άνθρακας και το οξυγόνο έχουν σημαντικές τιμές ηλεκτροσυγγένειας. Να εξηγήσετε γιατί το άζωτο έχει σχεδόν μηδενική ηλεκτροσυγγένεια. Και ο άνθρακας και το οξυγόνο έχουν σημαντικές τιμές
ΜΕΛΕΤΗ ΟΡΓΑΝΟΥ ΚΙΝΗΤΟΥ ΠΗΝΙΟΥ
ΜΕΛΕΤΗ ΟΡΓΑΝΟΥ ΚΙΝΗΤΟΥ ΠΗΝΙΟΥ ΕΠΩΝΥΜΟ ΟΝΟΜΑ Α.Μ. ΤΜΗΜΑ ΗΜΕΡΟΜΗΝΙΑ ΔΙΕΞΑΓΩΓΗΣ:.... /..../ 20.. ΗΜΕΡΟΜΗΝΙΑ ΠΑΡΑΔΟΣΗΣ:.... /..../ 20.. ΤΕΙ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΑΝΤΙΚΕΙΜΕΝΟ της
ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΙΑΝΟΥΑΡΙΟΣ 2016 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 7
ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΘΕΜΑ 1 Ο : ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΙΑΝΟΥΑΡΙΟΣ 2016 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 7 Στις παρακάτω ερωτήσεις 1 έως 4 να γράψετε στο τετράδιό σας
ΑΤΟΜΙΚΑ ΤΟΜΙΚΑ ΠΡΟΤΥΠΑ
ΑΤΟΜΙΚΑ ΠΡΟΤΥΠΑ Thomson (σταφιδόψωμο) Rutherford (πλανητικό μοντέλο) Bohr (επιτρεπόμενες τροχιές ενεργειακές στάθμες) Κβαντομηχανική β ή (τροχιακό) ρχ 24/9/2008 1 ΑΤΟΜΙΚΟ ΠΡΟΤΥΠΟ Bohr 1η Συνθήκη (Μηχανική
Εργαστηριακή Άσκηση 4 Προσδιορισμός του μέτρου στρέψης υλικού με τη μέθοδο του στροφικού εκκρεμούς.
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Όνομα : Κάραλης Νικόλας Α/Μ: 09104042 Εργαστηριακή Άσκηση 4 Προσδιορισμός του μέτρου στρέψης υλικού με τη μέθοδο του στροφικού
Ανάλυση ευαισθησίας Ανάλυση ρίσκου. Μαυρωτά Γιώργου Αναπλ. Καθηγητή ΕΜΠ
Ανάλυση ευαισθησίας Ανάλυση ρίσκου Μαυρωτά Γιώργου Αναπλ. Καθηγητή ΕΜΠ Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται
ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ(ΘΕΡΙΝΑ)
ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ(ΘΕΡΙΝΑ) 5/01/2019 ΟΙΚΟΝΟΜΟΥ ΓΙΩΡΓΟΣ ΚΑΡΑΒΟΚΥΡΟΣ ΧΡΗΣΤΟΣ- ΤΖΑΓΚΑΡΑΚΗΣ ΓΙΑΝΝΗΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις
Εισαγωγή στις Τηλεπικοινωνίες / Εργαστήριο
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Εισαγωγή στις Τηλεπικοινωνίες / Εργαστήριο Εργαστηριακή Άσκηση 3: Εισαγωγή στη διαμόρφωση συχνότητας (FΜ) Προσομοίωση σε Η/Υ Δρ.
ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΝΟΕΜΒΡΙΟΣ 2016 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 8
ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΘΕΜΑ 1 Ο : ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΝΟΕΜΒΡΙΟΣ 2016 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 8 Στις παρακάτω ερωτήσεις 1 έως 4 να γράψετε στο τετράδιό σας
Βιοπληροφορική. Ενότητα 20: Υπολογιστικός Προσδιορισμός Δομής (2/3), 1 ΔΩ. Τμήμα: Βιοτεχνολογίας Όνομα καθηγητή: Τ. Θηραίου
Βιοπληροφορική Ενότητα 20: Υπολογιστικός Προσδιορισμός Δομής (2/3), 1 ΔΩ Τμήμα: Βιοτεχνολογίας Όνομα καθηγητή: Τ. Θηραίου Μαθησιακοί Στόχοι κατανόηση της μεθόδου προτυποποίησης πρωτεϊνών με ομολογία. παρουσίαση
Εκτίμηση Αποθεμάτων, Σχεδιασμός & Προγραμματισμός Λατομείου Ασβεστολίθου
Εκτίμηση Αποθεμάτων, Σχεδιασμός & Προγραμματισμός Λατομείου Ασβεστολίθου Γ. Εξαδάκτυλος, Πολ. Κρήτης Μ. Σταυροπούλου, Πανεπιστήμιο Αθηνών Γ. Σαράτσης Πολ. Κρήτης Slide 1 of 41 Κίνητρα & στόχοι της μελέτης
ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ηµεροµηνία: Κυριακή 22 Απριλίου 2012 ΕΚΦΩΝΗΣΕΙΣ
ΤΑΞΗ: ΜΑΘΗΜΑ: ΘΕΜΑ 1 ο Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ Ηµεροµηνία: Κυριακή 22 Απριλίου 2012 ΕΚΦΩΝΗΣΕΙΣ Να γράψετε στο τετράδιό σας τον αριθµό 1 έως 3 καθεµιάς από τις παρακάτω ερωτήσεις και δίπλα το γράµµα που
Μοριακή Γεωμετρία Πολικότητα των Μορίων. Εισαγωγική Χημεία
Μοριακή Γεωμετρία Πολικότητα των Μορίων Εισαγωγική Χημεία 2013-14 1 Τα σχήματα των μορίων Οι δομές Lewis δίνουν πληροφορίες για την σύνδεση μεταξύ των ατόμων : Μας πληροφορούν για το ποια άτομα συνδέονται
4.3. Γραµµικοί ταξινοµητές
Γραµµικοί ταξινοµητές Γραµµικός ταξινοµητής είναι ένα σύστηµα ταξινόµησης που χρησιµοποιεί γραµµικές διακριτικές συναρτήσεις Οι ταξινοµητές αυτοί αναπαρίστανται συχνά µε οµάδες κόµβων εντός των οποίων
Σύγχρονα συστήµατα προβλέψεων και µοντελοποίησης. Τµήµα Στατιστικής και Αναλογιστικών Χρηµατοοικονοµικών Μαθηµατικών
Σύγχρονα συστήµατα προβλέψεων και µοντελοποίησης Τµήµα Στατιστικής και Αναλογιστικών Χρηµατοοικονοµικών Μαθηµατικών 2 Εργαλεία διαχείρισης Για κάθε µελλοντική εξέλιξη και απόφαση, η πρόβλεψη αποτελεί το
Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D.
Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D. Μη γραμμικός προγραμματισμός: βελτιστοποίηση χωρίς περιορισμούς Πανεπιστήμιο Θεσσαλίας Σχολή Θετικών Επιστημών ΤμήμαΠληροφορικής Διάλεξη 7-8 η /2017 Τι παρουσιάστηκε
Παράδειγμα 6 Προσομοίωση και επίλυση Επίπεδων Πλακών
Παράδειγμα 6 Προσομοίωση και επίλυση Επίπεδων Πλακών 2 Σημείωση Η ACE-HELLAS στο πλαίσιο της ανάπτυξης και βελτιστοποίησης των προϊόντων της, και συγκεκριμένα της εφαρμογής SCADA Pro, δημιούργησε τη νέα
ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ ΠΡΟΣΠΑΘΕΙΑ ΣΑΣ ΚΙ 2014
ΤΟ ΥΛΙΚΟ ΕΧΕΙ ΑΝΤΛΗΘΕΙ ΑΠΟ ΤΑ ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ http://www.study4exams.gr/ ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ
Ο ΗΓΙΕΣ ΕΠΕΞΕΡΓΑΣΙΑΣ Ε ΟΜΕΝΩΝ ΚΑΙ ΣΥΓΓΡΑΦΗΣ ΤΗΣ ΤΕΛΙΚΗΣ ΕΡΓΑΣΙΑΣ ΤΟΥ ΕΡΓΑΣΤΗΡΙΟΥ ΦΥΣΙΚΗΣ ΙΙ
ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΩΝ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ Τ. Ε. Ι. Σ Ε Ρ Ρ Ω Ν Ο ΗΓΙΕΣ ΕΠΕΞΕΡΓΑΣΙΑΣ Ε ΟΜΕΝΩΝ ΚΑΙ ΣΥΓΓΡΑΦΗΣ ΤΗΣ ΤΕΛΙΚΗΣ ΕΡΓΑΣΙΑΣ ΤΟΥ ΕΡΓΑΣΤΗΡΙΟΥ ΦΥΣΙΚΗΣ ΙΙ Προετοιµασία ιαβάστε καλά
Ανασκόπηση θεωρίας ελαχίστων τετραγώνων και βέλτιστης εκτίμησης παραμέτρων
Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 2016-2017 Ανασκόπηση θεωρίας ελαχίστων τετραγώνων και βέλτιστης εκτίμησης παραμέτρων Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων Τοπογράφων Μηχανικών
ΚΑΣΣΙΑΝΟΣ ΜΕΛΑΝΙΤΗΣ. Αποκωδικοποιητής ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ. Αναφορά 8 ης εργαστηριακής άσκησης: Α.Μ.: 202420110008
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΣΧΟΛΗ ΟΙΚΟΝΟΜΙΑΣ, ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ Αναφορά 8 ης εργαστηριακής άσκησης: Αποκωδικοποιητής ΚΑΣΣΙΑΝΟΣ
Διατομικά μόρια- Περιστροφική ενέργεια δονητικά - περιστροφικά φάσματα
Διατομικά μόρια- Περιστροφική ενέργεια δονητικά - περιστροφικά φάσματα Πολυατομικά μόρια περιστροφική ενέργεια περιστροφικά φάσματα Σκέδαση φασματοσκοπία n συνεισφορά του πυρηνικού σπιν Δονητικά περιστροφικά
Ανασκόπηση θεωρίας ελαχίστων τετραγώνων και βέλτιστης εκτίμησης παραμέτρων
Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 2017-2018 Ανασκόπηση θεωρίας ελαχίστων τετραγώνων και βέλτιστης εκτίμησης παραμέτρων Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων και Τοπογράφων
Μάθημα 21 ο. Το σχήμα των μορίων. Θεωρία VSEPR. Θεωρία Δεσμού Σθένους- Υβριδισμός
Μάθημα 21 ο Το σχήμα των μορίων Θεωρία VSEPR Θεωρία Δεσμού Σθένους- Υβριδισμός Συμβολισμός A = Κεντρικό άτομο X = Συναρμοτής E = Μονήρες ζεύγος SN: Στερεοχημικός αριθμός Γενική και Ανόργανη Χημεία 2016-17
Χρηματοοικονομική Διοίκηση
Χρηματοοικονομική Διοίκηση Ενότητα 5: Τεχνικές επενδύσεων ΙΙΙ Γιανναράκης Γρηγόρης Τμήμα Διοίκηση Επιχειρήσεων (Γρεβενά) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Πολυμερισμός Πολυμερισμός μονομερή πολυμερές μακρομόρια σχετική μοριακή μάζα (M ) Φυσικά πολυμερή Συνθετικά πολυμερή
Πολυμερισμός Πολυμερισμός ονομάζεται η συνένωση μικρών μορίων που ονομάζονται μονομερή, προς σχηματισμό ενός μεγαλύτερου μορίου, που ονομάζεται πολυμερές. Τα πολυμερή περιέχουν εκατοντάδες χιλιάδες άτομα
ΦΥΣΙΚΗ ΧΗΜΕΙΑ ΙΙΙ ΤΜΗΜΑ ΧΗΜΕΙΑΣ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ: ΕΠΙΔΡΑΣΗ ΘΕΡΜΟΚΡΑΣΙΑΣ ΣΤΗ ΣΤΑΘΕΡΑ ΤΑΧΥΤΗΤΑΣ ΑΝΤΙΔΡΑΣΗΣ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΧΗΜΕΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΟΧΗΜΕΙΑΣ Γραφείο 211 Επίκουρος Καθηγητής: Δ. Τσιπλακίδης Τηλ.: 2310 997766 e mail: dtsiplak@chem.auth.gr url:
ΤΣΑΛΤΑ ΜΑΡΙΑ Α.Μ: 1946 ΠΑΥΛΕΛΛΗ ΛΟΥΙΖΑ Α.Μ: 2342 ΤΣΑΪΛΑΚΗ ΦΑΝΗ Α.Μ: Οικονομετρικά. Εργαστήριο 15/05/11
ΤΣΑΛΤΑ ΜΑΡΙΑ Α.Μ: 1946 ΠΑΥΛΕΛΛΗ ΛΟΥΙΖΑ Α.Μ: 34 ΤΣΑΪΛΑΚΗ ΦΑΝΗ Α.Μ: 17 Οικονομετρικά Εργαστήριο 15/5/11 ΟΙΚΟΝΟΜΕΤΡΙΚΑ ΠΡΟΤΥΠΑ ΜΑΘΗΜΑ 7 ΕΡΓΑΣΤΗΡΙΟ ΜΗ ΓΡΑΜΜΙΚΑ ΜΟΝΤΕΛΑ Σκοπός του παρόντος µαθήµατος είναι η
Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος
Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Χιωτίδης Γεώργιος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
ΓΕΝΙΚΗ ΚΑΙ ΑΝΟΡΓΑΝΗ ΧΗΜΕΙΑ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΓΕΝΙΚΗ ΚΑΙ ΑΝΟΡΓΑΝΗ ΧΗΜΕΙΑ Ενότητα # (5): Δεσμοί και Τροχιακά Ακρίβος Περικλής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε
7 ο Κεφάλαιο Οργανική Χημεία. Δ. Παπαδόπουλος, χημικός
7 ο Κεφάλαιο Οργανική Χημεία Δ. Παπαδόπουλος, χημικός Βύρωνας, 2015 Θεωρίες ερμηνείας του ομοιοπολικού δεσμού με βάση την κβαντική θεωρία. Θεωρία δεσμού σθένους. Θεωρία των μοριακών τροχιακών. Κάθε θεωρία
Αφιερώνεται. στη μνήμη των γονέων μου. Νικολάου και Ζαχαρώς
Αφιερώνεται στη μνήμη των γονέων μου Νικολάου και Ζαχαρώς ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ ΠΡΩΤΟ ΒΑΣΙΚΕΣ ΠΡΑΞΕΙΣ ΤΗΣ ΑΡΙΘΜΗΤΙΚΗΣ ΑΝΑΛΥΣΗΣ Σελίδα 1 1.1 ΕΥΡΕΣΗ ΤΩΝ ΡΙΖΩΝ ΕΝΟΣ ΠΟΛΥΩΝΥΜΟΥ 2 1.1.1 Εύρεση περιοχών στις
Χημικές Διεργασίες: Χημική Ισορροπία Χημική Κινητική. Μέρος ΙI
: Χημική Ισορροπία Χημική Κινητική Μέρος ΙI Τα μυστήρια των μηχανισμών!... - Τι είναι μηχανισμός; Σενάριο με διαδοχικά επεισόδια, τα βήματα του μηχανισμού. - Τι συμβαίνει σε κάθε βήμα; Μία ή περισσότερες
ΤΕΧΝΟΛΟΓΙΑ & ΕΠΙΣΤΗΜΗ ΤΩΝ ΥΛΙΚΩΝ
Τμήμα Τεχνολόγων Περιβάλλοντος Κατεύθυνσης Συντήρησης Πολιτισμικής Κληρονομιάς ΤΕΧΝΟΛΟΓΙΑ & ΕΠΙΣΤΗΜΗ ΤΩΝ ΥΛΙΚΩΝ 3 η Ενότητα ΔΕΣΜΟΙ Δημήτριος Λαμπάκης ΜΟΡΙΑΚΗ ΔΟΜΗ Μεμονωμένα άτομα: Μόνο τα ευγενή αέρια
Ποσοτική Ανάλυση Κινδύνων
27 Ποσοτική Ανάλυση Κινδύνων Αναμενόμενη τιμή Δένδρα σφαλμάτων Δένδρα γεγονότων Προσομοίωση Monte Carlo Ανάλυση Ευαισθησίας Τεχνική PERT 28 Αναμενόμενη Τιμή 29 Παράδειγμα υπολογισμού Αναμενόμενης Τιμής
ΤΟΠΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ EUSO
ΤΟΠΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ EUSO 0 ΦΥΣΙΚΗ 0 - Δεκεμβρίου - 0 η ραστηριότητα Μέτρηση της πυκνότητας στερεού σώµατος Σκοπός της άσκησης Ο σκοπός στη άσκηση αυτή είναι η πειραµατική εύρεση της πυκνότητας ενός µεταλλικού
Άσκηση 5 ΦΩΤΟΒΟΛΤΑΪΚΟ ΦΑΙΝΟΜΕΝΟ
Άσκηση 5 ΦΩΤΟΒΟΛΤΑΪΚΟ ΦΑΙΝΟΜΕΝΟ 1. ΓΕΝΙΚΑ Τα ηλιακά στοιχεία χρησιμοποιούνται για τη μετατροπή του φωτός (που αποτελεί μία μορφή ηλεκτρομαγνητικής ενέργειας) σε ηλεκτρική ενέργεια. Κατασκευάζονται από
Εισαγωγή στην Στατιστική (ΔΕ200Α-210Α)
Τμήμα Διοίκησης Επιχειρήσεων (Αγ. Νικόλαος), Τ.Ε.Ι. Κρήτης Σελίδα 1 από 15 3η Εργαστηριακή Άσκηση Σκοπός: Η παρούσα εργαστηριακή άσκηση, χρησιμοποιώντας ως δεδομένα τα στοιχεία που προέκυψαν από την 1η
ΔΙΟΙΚΗΣΗ ΒΙΟΜΗΧΑΝΙΚΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ III ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΕΛΕΓΧΟΣ ΠΟΙΟΤΗΤΑΣ
ΔΙΟΙΚΗΣΗ ΒΙΟΜΗΧΑΝΙΚΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ III ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΕΛΕΓΧΟΣ ΠΟΙΟΤΗΤΑΣ Λέκτορας Ι. Γιαννατσής Καθηγητής Π. Φωτήλας Η ΣΗΜΑΣΙΑ ΤΗΣ ΠΟΙΟΤΗΤΑΣ Η ποιότητα των παρεχόμενων προϊόντων/υπηρεσιών αποτελεί τον
Μάθημα Επιλογής 8 ου εξαμήνου
EΘNIKO ΜEΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΙΙ: Ανάλυσης, Σχεδιασμού & Ανάπτυξης Διεργασιών & Συστημάτων Υπολογιστικές Μέθοδοι Ανάλυσης και Σχεδιασμού Μάθημα Επιλογής 8 ου εξαμήνου Διδάσκων: