Παράδειγμα υπολογισμού μελέτης και ελέγχου ζεύγους ατέρμονα-κορώνας
|
|
- Πλειόνη Σπανού
- 6 χρόνια πριν
- Προβολές:
Transcript
1 Παράδειγμα υπολογισμού μελέτης και ελέγχου ζεύγους ατέρμονα-κορώνας Δεδομένα: Στρεπτική ροπή στον ατέρμονα: Τ1 = Μ t1 = 10 Νm Περιστροφική ταχύτητα του ατέρμονα: n1 = 600 Σ/min Σχέση μετάδοσης: i = 40 Αξονική απόσταση: a = 65mm Υλικά κατασκευής: χάλυβας St60-2 με λείανση, για τον ατέρμονα και κρατέρωμα (δηλ. μπρούντζος Cu Sn) για την κορώνα Λύση: α) Βασικά χαρακτηριστικά, και μεγέθη λειτουργίας: Από τον πίνακα Ε1 (σελ. 85 βιβλίου), με βάση τη σχέση μετάδοσης i = 40, διαλέγουμε τον αριθμό αρχών του ατέρμονα: z1 = 1 Από τον πίνακα Ε4 (σελ. 88 βιβλίου), με βάση τον αριθμό αρχών του ατέρμονα z1 = 1, βρίσκουμε ότι ο βαθμός απόδοσης θα είναι η = 0,7 Ο αριθμός δοντιών της κορώνας θα είναι: z2 = i z1 = 40 * 1 = 40
2 Η γωνιακή ταχύτητα του ατέρμονα θα είναι 1rad /s 1rad /s n1 = * 600 Σ/min = 62,83 rad/s ω1 = 9,55 Σ/min 9,55 Σ/min Η ισχύς που δίδεται στον ατέρμονα είναι Ν1 = Τ1 ω1 = 10 Νm * 62,83 rad/sec = 628,3 W Η ισχύς που λαμβάνεται από την κορώνα είναι Ν2 = η N1 = 0,7 * 628,3 W 440 W Η ροπή που λαμβάνεται από την κορώνα είναι Τ2 = Μ t2 = i η Τ1 = 40 * 0,7 * 10 Nm = 280Nm 28kpm
3 β) Μέγεθος εξαρτημάτων (ανεξάρτητες διαστάσεις): Διάμετρος ατέρμονα: dm1, προσωρινή = ψα a όπου ψα = από 0,3 έως 0,5 Δεχόμαστε ψα = 0,4, οπότε dm1, προσωρινή = 0,4 * 65mm = 26mm Διάμετρος κορώνας ώστε να προκύπτει η επιθυμητή αξονική απόσταση (a = 65mm): d02, προσωρινή = 2a dm1, προσωρινή = 2 * 65mm 26mm = 104mm Μέτρο οδοντώσεως (modul): ms, προσωρινό = d02 / z2 = 104mm / 40 = 2,6mm Από τον πίνακα Ε2 (σελ. 86 του βιβλίου του εργαστηρίου) εκλέγεται τυποποιημένο modul: ms = 2,5mm Ισχύει mα = ms = 2,5mm Διάμετρος κορώνας με βάση το τυποποιημένο modul: d02 = ms z2 = 2,5mm * 40 = 100mm Διάμετρος ατέρμονα με βάση το τυποποιημένο modul και την επιθυμητή αξονική απόσταση dm1 = 2a - d02 = 2 * 65mm 100mm => dm1 = 30mm.
4 Διάμετρος ατράκτου με βάση τη στρεπτική ροπή: Για υλικό ατέρμονα χάλυβα St60-2, η επιτρεπόμενη τάση για να αντέχει η άτρακτος τη στρεπτική ροπή είναι τεπ = 32 Ν/mm2 (βλ. βιβλίο Στοιχείων Μηχανών Ι, σελ. 139) Η διάμετρος που πρέπει να έχει η άτρακτος υπολογίζεται με τον τύπο (βλ. βιβλίο Στοιχείων Μηχανών Ι, τέλος σελίδας 136): d= 3 Τ1 = 0,2 τ επ Nmm = 11,6 mm 12mm 0,2 32 N/mm 2 Για ατέρμονα ολόσωμο με την άτρακτο πρέπει dm1 1,4 d + 2,5 mα Στην περίπτωσή μας ισχύει dm1 = 30mm και 1,4 d + 2,5 mα = 1,4 * 12mm + 2,5 * 2,5mm = 23,05mm, άρα η ανισότητα επαληθεύεται και οι διαστάσεις που βρέθηκαν είναι αποδεκτές.
5 γ) Υπόλοιπα γεωμετρικά στοιχεία και στοιχεία λειτουργίας: Γωνία κλίσης στον αρχικό κύκλο του ατέρμονα: mα z 1 2,5 mm * 1 o = = 0,0833 => γ m = 4,764 tanγm = d m1 30mm Στην παραγ. 2. Υπολογισμός ελέγχου το βιβλίο αναφέρει ότι για ατέρμονα από χάλυβα και κορώνα απο φωσφορούχο ορείχαλκο η γωνία τριβής είναι ρ=2 (Δεχόμαστε ότι αυτά ισχύουν και στην περίπτωση που εξετάζουμε). Βαθμός απόδοσης του ζεύγους ατέρμονα κορώνας: o tan γm tan 4,764 η = 0,98 = 0,98 = 0,689 o o tan(γ m + ρ) tan( 4, ) Παρατηρούμε ότι ο βαθμός απόδοσης που βρέθηκε από πίνακα σε προηγούμενο στάδιο των υπολογισμών (δηλ. η = 0,7) αποτελεί καλή προσέγγιση στον πραγματικό βαθμό απόδοσης (δηλ. η = 0,689)
6 Δυνάμεις στον ατέρμονα: Περιφερειακή: Pu1 = (2 T1) / dm1 = (2 * Nmm) / 30mm = 667 N Ακτινική: cos ρ tanαn cos2º tan20º Pr1 = Pu = 667N = N sin(γm+ρ) sin(4,764º + 2º) Αξονική: Pα1 = Pu1 / tan(γm+ρ) = 667 N / tan(4,764º + 2º) = N Περιφερειακή ταχύτητα του ατέρμονα: υ1 = π dm1 n1 = 3,14 * 0,030m * (600/60) Σ/s = 0,942 m/s Ταχύτητα ολίσθησης των δοντιών: υg = υ1 / cosγm = ( 0,942 m/s ) / cos 4,764º = 0,946 m/s
7 δ) Έλεγχος αντοχής δοντιών κορώνας σε επιφανειακή πίεση: Πρέπει να επαληθεύεται η ανισότητα: Φόρτιση Υλικό 2*10mm/cm M t2 2 d 02 b y z Μέγεθος, σχήμα kο yv yl S Άλλοι συντελεστές
8 Δεδομένα: Το ζεύγος ατέρμονα κοχλία κορώνας που εξετάζουμε έχει τα χαρακτηριστικά: - Στρεπτική ροπή στον ατέρμονα: Τ1 = Μ t1 = 10 Νm - Περιστροφική ταχύτητα του ατέρμονα: n1 = 600 Σ/min (Άρα: Ισχύς που δίδεται στον ατέρμονα: Ν1 = = 628,3 W) - Αριθμός αρχών ατέρμονα: z1 = 1 - Αριθμός δοντιών κορώνας: z2 = 40 (Άρα: Σχέση μετάδοσης: i = = 40 Βαθμός απόδοσης (κατά προσέγγιση): η = 0,7 Στρεπτική ροπή στην κορώνα: Τ2 = Μ t2 = i η Τ1 = = 280Nm) - Μέση διάμετρος ατέρμονα: dm1 = 30mm - Μέτρο οδοντώσεως (modul): ms = 2,5mm (Άρα: Αρχική διάμετρος κορώνας: d02 = ms z2 = = 100mm) - Ύψος κεφαλής δοντιού ατερμονα: hα1 = ms (όπως ισχύει συνήθως) - Υλικά κατασκευής: χάλυβας St60-2 με λείανση, για τον ατέρμονα και κρατέρωμα (δηλ. μπρούντζος Cu Sn) για την κορώνα - Επιθυμητή διάρκεια ζωής: Αντίστοιχη με αυτήν που ισχύει για μικρούς ηλεκτροκινητήρες - Τρόπος λειτουργίας: Λειτουργία ομαλή, χωρίς κρούσεις
9 Ενδιάμεσοι υπολογισμοί: Για να ελέγξουμε την αντοχή των δοντιών της κορώνας σε επιφανειακή πίεση, υπολογίζουμε πρώτα τα μεγέθη: - Στρεπτική ροπή στην κορώνα σε kp cm: Μ t2 = 280Nm 28 kpm = kp cm - Διάμετρος κύκλου κεφαλής ατέρμονα: d α1 = d m1 + 2 * m = 30mm + 2 * 2,5mm=35 mm - Ωφέλιμο πλάτος κορώνας: b= d 2a1 d 2m1= 35mm 2 30mm 2 18mm
10 - Γωνία κλίσης γm στον αρχικό κύκλο του ατέρμονα: mα z 1 2,5 mm * 1 o = = 0,0833 => γ m = 4,764 tanγm = d m1 30mm -Συντελεστής μορφής yz : Με γ m=4,764 o λαμβάνεται απο το παρακάτω σχήμα yz = 0,51 (Σχήμα Ε3, σελ. 92)
11 - Ταχύτητα ολίσθησης των δοντιών: υg = π d m1 n1 3,14 0,030 m 600 Σ/min = = 0,946 m/s 60s/min cosγ m 60s/min cos4,764º -Συντελεστής ταχύτητας yv: Με υg = 0,946 m/s λαμβάνεται απο το παρακάτω σχήμα yv = 0,68 (Σχήμα Ε4, σελ. 92)
12 -Επιθυμητή διάρκεια ζωής: Κατά αναλογία με αυτά που ισχύουν για μικρούς ηλεκτροκινητήρες, λαμβάνεται απο τον παρακάτω πίνακα (Πίν. Ε6, σελ. 92α): Διάρκεια ζωής = 8000 h
13 -Συντελεστής διάρκειας ζωής: Για διάρκεια ζωής = 8000 h λαμβάνεται από το παρακάτω σχήμα yl = 1,15 (Σχήμα Ε5, σελ. 92) -Συντελεστής ασφαλείας S: Για ομαλή λειτουργία λαμβάνεται S = 1,25
14 -Συντελεστής επιφανειακής πίεσης: Με βάση τα δεδομένα μας, λαμβάνεται από τον πίν. Ε5 (σελ. 89): ko = 0,8 kp/mm²
15 Έλεγχος: Για να αντέχουν τα δόντια της κορώνας σε επιφανειακή πίεση, πρέπει: 2*10mm/cm M t2 d 202 b y z kο y v yl 2 * 10mm/cm * kp cm 0,8 kp/mm 2 0,68 1,15 S 1, mm 2 18 mm * 0,51 Το πρώτο μέλος της ανισότητας ισούται με 0,61 kp/mm², ενώ το δεύτερο με 0,50 kp/mm² Επομένως η ανισότητα δεν ισχύει, άρα τα δόντια της κορώνας δεν αντέχουν σε επιφανειακή πίεση.
16 ε) Έλεγχος αντοχής του μειωτήρα σε υπερθέρμανση: Πρέπει να επαληθεύεται η ανισότητα: Συντελεστές ( 2 q q q q a mm N1 Ανάλογο προς την επιφάνεια που αποβάλλει θερμότητα ) Ανάλογο προς την παραγόμενη θερμότητα
17 Δεδομένα: Εκτός από τα χαρακτηριστικά του ζεύγους ατέρμονα κοχλία κορώνας που αναφέρθηκαν στον προηγούμενο έλεγχο, θα δεχθούμε ότι ισχύουν και τα εξής: - Κέλυφος μειωτήρα με πτερύγια - Λειτουργία επί 45 λεπτά την ώρα - Ο ατέρμονας βρίσκεται κάτω από την κορώνα, και η λίπανση επιτυγχάνεται με μεταφορά του λαδιού Ενδιάμεσοι υπολογισμοί: Για να ελέγξουμε την αντοχή του μειωτήρα σε υπερθέρμανση, υπολογίζουμε πρώτα τα μεγέθη: - Ισχύς που δίδεται στον ατέρμονα, σε PS: Επειδή 1 PS = 735,5 W, άρα Ν1 = 628,3 W = 628,3/735,5 PS = 0,85 PS - Αξονική απόσταση: a = (dm1 + d02) / 2 = (30mm + 100mm) / 2 = 65mm
18 - Συντελεστής περιστροφικής ταχύτητας (συντελεστής ξ): Για ατέρμονα με πτερύγια στο κέλυφος, ισχύει: ( n1 ξ =3, Σ / min (2/3) ) ( 600 =3, Σ /min (2/ 3) ) =2,205 - Διάρκεια συζεύξεως: Για λειτουργία επί 45 λεπτά την ώρα επιλέγεται ΔΣ = 0,75 - Συντελεστής θερμικής φόρτισης q1: q 1= 1 ξ 1 2,205 1 ξ = 1 2,205 =5,972 ξ 1 ΔΣ 3,205 0,75 - Συντελεστής σχέσης μετάδοσης: Για i=40 από τον παρακάτω πίνακα (Πίν. Ε7, σελ. 92β) λαμβάνεται: q2 = 0,41
19 - Συντελεστής υλικών: Με βάση τα δεδομένα επιλέγεται (βλ. πίν Ε8, σελ. 92γ): q3 = 1 (Σημείωση: Oρείχαλκος Cu-Sn (ή σωστότερα Μπρούντζος Cu-Sn) = κρατέρωμα)
20 - Συντελεστής λίπανσης: Με βάση τα δεδομένα επιλέγεται (βλ. πίν Ε9, σελ. 92β): q4 = 1 Έλεγχος: Για να αντέχει ο μειωτήρας σε υπερθέρμανση, πρέπει: ( 2 q q q q a mm N1 ) ( 2 ) 65 mm 5,972 *0,41 * 1 * 1 1 1, mm 0,85 PS Η ανισότητα ισχύει, άρα ο μειωτήρας αντέχει σε υπερθέρμανση.
Στοιχεία Μηχανών ΙΙ. Α. Ασκήσεις άλυτες. Άσκηση Α.1: Πλήρης υπολογισμός οδοντοτροχών με ευθεία οδόντωση
Στοιχεία Μηχανών ΙΙ Α. Ασκήσεις άλυτες Άσκηση Α.1: Πλήρης υπολογισμός οδοντοτροχών με ευθεία οδόντωση Περιγραφή της κατασκευής: Σε μία αποθήκη υλικών σιδήρου χρησιμοποιείται μία γερανογέφυρα ανυψωτικής
Διαβάστε περισσότεραΤΥΠΟΛΟΓΙΟ ΙΜΑΝΤΟΚΙΝΗΣΕΩΝ
ΤΥΠΟΛΟΓΙΟ ΙΜΑΝΤΟΚΙΝΗΣΕΩΝ β ελκόμενος κλάδος β n 2 n 1 α 1 d d 2 α 1 2 (α) κινητήρια τροχαλία έλκων κλάδος a β κινούμενη τροχαλία F 2 n 1 α 1 F 2 FA κινητήρια τροχαλία F 1 (β) F 1 Σχήμα 1 (α) Γεωμετρικά
Διαβάστε περισσότεραΤΥΠΟΛΟΓΙΟ ΟΔΟΝΤΟΤΡΟΧΩΝ
1. Σημασίες δεικτών και σύμβολα ΤΥΠΟΛΟΓΙΟ ΟΔΟΝΤΟΤΡΟΧΩΝ - Σημασίες δεικτών: 1 Μικρός οδοντοτροχός («πινιόν») ενός ζεύγους Μεγάλος οδοντοτροχός (ή σκέτα «τροχός») ούτε 1 ούτε : Εξετάζεται ο οδοντοτροχός
Διαβάστε περισσότεραΤΥΠΟΛΟΓΙΟ ΙΜΑΝΤΟΚΙΝΗΣΕΩΝ
ΤΥΠΟΛΟΓΙΟ ΙΜΑΝΤΟΚΙΝΗΣΕΩΝ β ελκόμενος κλάδος β n 2 n 1 α 1 d d 2 α 1 2 (α) κινητήρια τροχαλία έλκων κλάδος a β κινούμενη τροχαλία F 2 n 1 α 1 F 2 FA κινητήρια τροχαλία F 1 (β) F 1 Σχήμα 1 (α) Γεωμετρικά
Διαβάστε περισσότεραΟδοντωτοί τροχοί. Εισαγωγή. Είδη οδοντωτών τροχών. Σκοπός : Μετωπικοί τροχοί με ευθύγραμμους οδόντες
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ναυπηγών Μηχανολόγων Μηχανικών Διδάσκοντες : X. Παπαδόπουλος Λ. Καικτσής Οδοντωτοί τροχοί Εισαγωγή Σκοπός : Μετάδοση περιστροφικής κίνησης, ισχύος και ροπής από έναν άξονα
Διαβάστε περισσότεραΣΤΟΙΧΕΙA ΜΗΧΑΝΩΝ Ι - ΘΕΩΡΙΑ (για τις ασκήσεις βλ. σελ. 3)
ΣΤΟΙΧΕΙA ΜΗΧΑΝΩΝ Ι - ΘΕΩΡΙΑ (για τις ασκήσεις βλ. σελ. 3) Η εξεταστέα ύλη για τις περιγραφικές ερωτήσεις (στο πρώτο μέρος της γραπτής εξέτασης) θα είναι η παρακάτω: - Κεφ. 1: Ποια είναι τα δύο πλεονεκτήματα
Διαβάστε περισσότεραΤ.Ε.Ι. ΣΕΡΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΤΥΠΟΛΟΓΙΟ ΚΑΙ ΠΙΝΑΚΕΣ ΓΙΑ ΤΑ ΣΤΟΙΧΕΙΑ ΜΗΧΑΝΩΝ Ι
Τ.Ε.Ι. ΣΕΡΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΤΥΠΟΛΟΓΙΟ ΚΑΙ ΠΙΝΑΚΕΣ ΓΙΑ ΤΑ ΣΤΟΙΧΕΙΑ ΜΗΧΑΝΩΝ Ι Διδάσκων: Ν. Μοσχίδης ΣΕΡΡΕΣ, Φεβρουάριος 2007 ΠΕΡΙΕΧΟΜΕΝΑ Κεφάλαιο Σελίδα Πιν. 1 Ευρετήριο φυσικών μεγεθών 3 Πιν. 2 Ευρετήριο
Διαβάστε περισσότεραΤΥΠΟΛΟΓΙΟ ΟΔΟΝΤΟΤΡΟΧΩΝ
1. Σημασίες δεικτών και σύμβολα ΤΥΠΟΛΟΓΙΟ ΟΔΟΝΤΟΤΡΟΧΩΝ - Σημασίες δεικτών: 1 Κινητήριος οδοντοτροχός ενός ζεύγους 2 Κινούμενος οδοντοτροχός ούτε 1 ούτε 2: Εξετάζεται ο οδοντοτροχός μόνος του, και όχι σε
Διαβάστε περισσότεραΑΕΝ/ΑΣΠΡΟΠΥΡΓΟΥ ΣΤΟΙΧΕΙΑ ΜΗΧΑΝΩΝ Ε Εξαμ. ΒΟΗΘΗΤΙΚΕΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ Καθηγητής : Κώστας Τατζίδης ΣΗΜΕΙΩΣΕΙΣ
ΑΕΝ/ΑΣΠΡΟΠΥΡΓΟΥ ΣΤΟΙΧΕΙΑ ΜΗΧΑΝΩΝ Ε Εξαμ. ΒΟΗΘΗΤΙΚΕΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ Καθηγητής : Κώστας Τατζίδης ΣΗΜΕΙΩΣΕΙΣ \ ΜΕΘΟΔΟΛΟΓΙΑ ΜΕΛΕΤΗΣ ΚΩΝΙΚΩΝ ΟΔΟΝΤΩΤΩΝ ΤΡΟΧΩΝ Απαραίτητα δεδομένα : αριθμός στροφών κινητήριου
Διαβάστε περισσότεραΑΕΝ/ΑΣΠΡΟΠΥΡΓΟΥ ΣΤΟΙΧΕΙΑ ΜΗΧΑΝΩΝ Ε Εξαμ. ΒΟΗΘΗΤΙΚΕΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ Καθηγητής : Κώστας Τατζίδης ΣΗΜΕΙΩΣΕΙΣ
ΑΕΝ/ΑΣΠΡΟΠΥΡΓΟΥ ΣΤΟΙΧΕΙΑ ΜΗΧΑΝΩΝ Ε Εξαμ. ΒΟΗΘΗΤΙΚΕΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ Καθηγητής : Κώστας Τατζίδης ΣΗΜΕΙΩΣΕΙΣ ΜΕΘΟΔΟΛΟΓΙΑ ΜΕΛΕΤΗΣ ΟΔΟΝΤΩΤΩΝ ΤΡΟΧΩΝ ΜΕ ΠΛΑΓΙΟΥΣ ΟΔΟΝΤΕΣ Απαραίτητα δεδομένα : αριθμός στροφών
Διαβάστε περισσότεραΣχήμα: Κιβώτιο ταχυτήτων με ολισθαίνοντες οδοντωτούς τροχούς.
ΑΣΚΗΣΗ 1 Ένας οδοντωτός τροχός με ευθείς οδόντες, z = 80 και m = 4 mm πρόκειται να κατασκευασθεί με συντελεστή μετατόπισης x = + 0,5. Να προσδιοριστούν με ακρίβεια 0,01 mm: Τα μεγέθη της οδόντωσης h α,
Διαβάστε περισσότεραΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΝΕΟ ΚΑΙ ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΝΕΟ ΚΑΙ ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ ΚΑΙ HMEΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α A ΚΑΙ ΜΑΘΗΜΑΤΩΝ ΕΙ ΙΚΟΤΗΤΑΣ ΟΜΑ Α
Διαβάστε περισσότεραΥΛΗ ΓΙΑ ΤΟ 2ο ΤΕΣΤ ΕΡΓΑΣΤΗΡΙΟΥ ΣΤΟΙΧΕΙΩΝ ΜΗΧΑΝΩΝ Ι
ΥΛΗ ΓΙΑ ΤΟ 2ο ΤΕΣΤ ΕΡΓΑΣΤΗΡΙΟΥ ΣΤΟΙΧΕΙΩΝ ΜΗΧΑΝΩΝ Ι Το τεστ θα περιλαμβάνει ασκήσεις στα παρακάτω κεφάλαια: Υπολογισμός ελέγχου συγκόλλησης Υπολογισμός μελέτης δοκού που φορτίζεται σε κάμψη Υπολογισμός
Διαβάστε περισσότεραΗλοσυνδέσεις. = [cm] Μαυρογένειο ΕΠΑΛ Σάμου. Στοιχεία Μηχανών - Τυπολόγιο. Χατζής Δημήτρης
Ηλοσυνδέσεις Ελάχιστη επιτρεπόμενη διάμετρος ήλου που καταπονείται σε διάτμηση 4Q = [cm] zxπτ επ : διάμετρος ήλου σε [cm] Q : Μέγιστη διατμητική δύναμη σε [an] τ επ : επιτρεπόμενη διατμητική τάση σε [an/cm
Διαβάστε περισσότεραΣΧΕΔΙΑΣΜΟΣ ΚΑΤΑΣΚΕΥΩΝ
Τ.Ε.Ι. Θεσσαλίας Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανολογίας ΣΧΕΔΙΑΣΜΟΣ ΚΑΤΑΣΚΕΥΩΝ Κώστας Κιτσάκης Μηχανολόγος Μηχανικός ΤΕ MSc Διασφάλιση ποιότητας Επιστημονικός Συνεργάτης Άσκηση 1 Στο κιβώτιο ταχυτήτων
Διαβάστε περισσότεραΑΡΧΗ ΜΑ: ΘΕΜΑ Α1. Να. στ. σης. εγκοπή. Πείρος με
Γ ΤΑΞΗΣ ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ ΗΜΕΡΗΣΙΩΝ & ΤΑΞΗΣ ΕΣΠΕΡΙΝΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ HMEΡΗΣΙΩΝ & ΕΣΠΕΡΙΝΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ ΠΑΡΑΣΚΕΥΗ ΣΕΠΤΕΜΒΡΙΟΥ 08 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜ ΜΑ: ΣΤΟΙΧΕΙΑ ΜΗΧΑΝΩΝΝ ΣΥΝΟΛΟ
Διαβάστε περισσότεραΛυμένες ασκήσεις του κεφαλαίου 3: Είδη φορτίσεων
1 Λυμένες ασκήσεις του κεφαλαίου 3: Είδη φορτίσεων Πρόβλημα 3.1 Να ελεγχθεί αν αντέχουν σε εφελκυσμό οι ράβδοι στα παρακάτω σχήματα. (Έχουν όλες την ίδια εφελκυστική δύναμη Ν=5000Ν αλλά διαφορετικές διατομές.
Διαβάστε περισσότεραΤα πλεονεκτήματα των οδοντωτών τροχών με ελικοειδή δόντια είναι:
Οδοντώσεις 1. Ποιος είναι ο λειτουργικός σκοπός των οδοντώσεων (σελ. 227) Λειτουργικός σκοπός των οδοντώσεων είναι η μετάδοση κίνησης σε περιπτώσεις ατράκτων με γεωμετρικούς άξονες παράλληλους, τεμνόμενους
Διαβάστε περισσότεραΣχήμα 22: Αλυσίδες κυλίνδρων
Αλυσοκινήσεις Πλεονεκτήματα ακριβής σχέση μετάδοση λόγω μη ύπαρξης διολίσθησης, η συναρμολόγηση χωρίς αρχική πρόταση επειδή η μετάδοση δεν βασίζεται στην τριβή καθώς επίσης και ο υψηλός βαθμός απόδοσης
Διαβάστε περισσότεραΣΤΟΙΧΕΙΑ ΜΗΧΑΝΩΝ ΕΠΑΛ
ΣΤΟΙΧΕΙΑ ΜΗΧΑΝΩΝ ΕΠΑΛ Προτεινόμενα θέματα 2017-2018 ΕΚΠΑΙΔΕΥΤΙΚΟΣ: ΒΑΝΤΣΗΣ Β. ΓΕΩΡΓΙΟΣ ΜΗΧΑΝΟΛΟΓΟΣ ΜΗΧΑΝΙΚΟΣ ΠΕ17 1 ο Θ Ε Μ Α Α. Να γράψετε στο τετράδιό σας το γράμμα καθεμιάς από τις παρακάτω προτάσεις
Διαβάστε περισσότεραΟΔΟΝΤΩΣΕΙΣ. Κιβώτιο ταχυτήτων
Οδοντωσεις ΟΔΟΝΤΩΣΕΙΣ Κιβώτιο ταχυτήτων ΟΔΟΝΤΩΣΕΙΣ Μειωτήρας στροφών με ελικοειδείς οδοντωτούς τροχούς ΟΔΟΝΤΩΣΕΙΣ: Κωνικοί οδοντοτροχοί ΟΔΟΝΤΩΣΕΙΣ : Κορώνα - Ατέρμονας κοχλίας ΟΔΟΝΤΩΣΕΙΣ Ανταλλακτικοί
Διαβάστε περισσότεραα. Οι ήλοι κατασκευάζονται από ανθρακούχο χάλυβα, χαλκό ή αλουμίνιο. Σ
ΑΡΧΗ ΗΣ ΣΕΛΙΔΑΣ Γ ΤΑΞΗ ΕΠΑΛ (ΟΜΑΔΑ Α ) & ΜΑΘΗΜΑΤΩΝ ΕΙΔΙΚΟΤΗΤΑΣ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΣΑΒΒΑΤΟ 6/04/206 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΣΤΟΙΧΕΙΑ ΜΗΧΑΝΩΝ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΠΕΝΤΕ (5) ΘΕΜΑ ο ) Να χαρακτηρίσετε τις προτάσεις
Διαβάστε περισσότεραΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΤΜΗΜΑ Τμήμα Μηχανολόγων Μηχανικών ΤΕ ΣΤΟΙΧΕΙΑ ΜΗΧΑΝΩΝ Ι ΚΑΘΗΓΗΤΗΣ κ. ΜΟΣΧΙΔΗΣ ΣΕΡΡΕΣ, ΣΕΠΤΕΜΒΡΙΟΣ 2015 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Διαβάστε περισσότεραΕρωτήσεις, λυμένες ασκήσεις και τυπολόγια
Ερωτήσεις, λυμένες ασκήσεις και τυπολόγια Κ. ΝΤΑΒΟΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΣΤΑ ΣΤΟΙΧΕΙΑ ΜΗΧΑΝΩΝ Α. ΗΛΩΣΕΙΣ. Να αναφέρετε τα μέσα σύνδεσης.. Σε ποιες κατηγορίες διακρίνονται οι συνδέσεις;. Ποιες συνδέσεις ονομάζονται
Διαβάστε περισσότεραΑΠΑΝΤΗΣΕΙΣ ΣΤΟΙΧΕΙΑ ΜΗΧΑΝΩΝ 2007
ΑΠΑΝΤΗΣΕΙΣ ΣΤΟΙΧΕΙΑ ΜΗΧΑΝΩΝ 007 ΘΕΜΑ Ο α. Κατά την σύσφιξη ο κοχλίας καταπονείται σε εφελκυσµό και τα κοµµάτια σε θλίψη. Το περικόχλιο ίσης θλίβεται. Οι δυνάµεις που καταπονούν τον κοχλία είναι θλιπτικές
Διαβάστε περισσότεραΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Στοιχεία Μηχανών ΙΙ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Στοιχεία Μηχανών ΙΙ Ενότητα 1: Γενικά στοιχεία οδοντωτών τροχών - Γεωμετρία οδόντωσης Μετωπικοί τροχοί με ευθεία οδόντωση Δρ Α.
Διαβάστε περισσότεραΑΠΑΝΤΗΣΕΙΣ ΣΤΟΙΧΕΙΑ ΜΗΧΑΝΩΝ 2008
ΑΠΑΝΤΗΣΕΙΣ ΣΤΟΙΧΕΙΑ ΜΗΧΑΝΩΝ 008 ΘΕΜΑ Ο α. Οι ήλοι, ανάλογα µε την µορφή της κεφαλής τους διακρίνονται σε Ηµιστρόγγυλους. Φακοειδείς. Η κεφαλή είναι λιγότερο καµπυλωτή από αυτή των ηµιστρόγγυλων και µοιάζει
Διαβάστε περισσότεραΑΡΧΗ ΜΑ: ΘΕΜΑ Α1. Να
Γ ΤΑΞΗΣ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΗΜΕΡΗΣΙΩΝ & ΤΑΞΗΣ ΕΣΠΕΡΙΝΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ HMEΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ ΠΕΜΠΤΗ 21 ΣΕΠΤΕΜΒΡΙΟΥ 2017 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜ ΜΑ: ΣΤΟΙΧΕΙΑ ΜΗΧΑΝΩΝΝ
Διαβάστε περισσότερα2 β. ιάμετρος κεφαλών (ή κορυφών) 3 γ. Βήμα οδόντωσης 4 δ. ιάμετρος ποδιών 5 ε. Πάχος δοντιού Αρχική διάμετρος
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΕΣΠΕΡΙΝΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ ΤΡΙΤΗ 11 ΙΟΥΝΙΟΥ 019 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΣΤΟΙΧΕΙΑ ΜΗΧΑΝΩΝ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΠΕΝΤΕ (5) ΘΕΜΑ Α Α1. Να γράψετε στο τετράδιό
Διαβάστε περισσότερα( ) L v. δ Τύμπανο. κίνησης. Αντίβαρο τάνυσης. 600m. 6000Ν ανά cm πλάτους ιµάντα και ανά ενίσχυση 0.065
Ανυψωτικές & Μεταφορικές Μηχανές Ακαδημαϊκό έτος: 010-011 Άσκηση (Θέμα Επαναληπτικής Γραπτής Εξέτασης Σεπ010 / Βαρύτητα: 50%) Έστω η εγκατάσταση της ευθύγραµµης µεταφορικής ταινίας του Σχήµατος 1, η οποία
Διαβάστε περισσότεραΕΙΣΑΓΩΓΗ ΣΤΗ ΜΗΧΑΝΟΛΟΓΙΑ (7 Ο ΕΞΑΜΗΝΟ)
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΛΛΕΙΩΝ - ΜΕΤΑΛΛΟΥΡΓΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗ ΜΗΧΑΝΟΛΟΓΙΑ (7 Ο ΕΞΑΜΗΝΟ) Νίκος Μ. Κατσουλάκος Μηχανολόγος Μηχανικός Ε.Μ.Π., PhD, Msc ΜΑΘΗΜΑ 4-2 ΑΤΡΑΚΤΟΙ ΑΞΟΝΕΣ - ΣΤΡΟΦΕΙΣ
Διαβάστε περισσότεραΣχήμα 12-7: Σκαρίφημα άξονα με τις φορτίσεις του
1.6.1 ΑΣΚΗΣΗ Ζητείται να υπολογιστεί ένας άξονας μετάδοσης κίνησης και ισχύος με είσοδο από την τρίτη τροχαλία του σχήματος, όπου φαίνονται οι με βασικές προδιαγραφές του προβλήματος. Ο άξονας περιστρέφεται
Διαβάστε περισσότεραΈλεγχος Κίνησης ISL. Intelligent Systems Labοratory
Έλεγχος Κίνησης ISL Intelligent Systems Labοratory 1 Ηέννοιατηςκίνησης "µηχανική κίνηση είναι η µεταβολή της θέσης ενός υλικού σηµείου στο χώρο" µηχανική κίνηση = θέση στο χώρο υλικό σηµείο = µάζα κίνηση
Διαβάστε περισσότεραΜΕΤΩΠΙΚΟΙ ΟΔΟΝΤΩΤΟΙ ΤΡΟΧΟΙ
ΜΕΤΩΠΙΚΟΙ ΟΔΟΝΤΩΤΟΙ ΤΡΟΧΟΙ Πίνακας 1: Τυποποιημένες τιμές module, mm Σειρά 1 Σειρά 2 Σειρά 3 Σειρά 1 Σειρά 2 Σειρά 3 Σειρά 1 Σειρά 2 Σειρά 3 Σειρά 1 Σειρά 2 Σειρά 3 0.1 1.25 7 50 0.15 1.5 8 55 0.2 1.75
Διαβάστε περισσότεραΤ.Ε.Ι.Θ ΣΤΟΙΧΕΙΑ ΜΗΧΑΝΩΝ 1. Ονοματεπώνυμο : Αναγνωστάκης Γιάννης Τμήμα : Οχημάτων Ημερομηνία : 25/5/00 Άσκηση : Ν 4
Τ.Ε.Ι.Θ ΣΤΟΙΧΕΙΑ ΜΗΧΑΝΩΝ 1 Ονοματεπώνυμο : Αναγνωστάκης Γιάννης Τμήμα : Οχημάτων Ημερομηνία : 25/5/00 Άσκηση : Ν 4 1 Δεδομένα : 1 3000 2 2000 3 12000 4 15000 d 1 12 d 2 15 Ζητούμενα : Να γίνει ο έλεγχος
Διαβάστε περισσότεραΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΝΕΟ ΚΑΙ ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΝΕΟ ΚΑΙ ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ ΚΑΙ HMEΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α A ΚΑΙ ΜΑΘΗΜΑΤΩΝ ΕΙ ΙΚΟΤΗΤΑΣ ΟΜΑ Α Β ) ΣΑΒΒΑΤΟ 4
Διαβάστε περισσότεραΕΙΣΑΓΩΓΗ ΣΤΗ ΜΗΧΑΝΟΛΟΓΙΑ (7 Ο ΕΞΑΜΗΝΟ)
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΛΛΕΙΩΝ - ΜΕΤΑΛΛΟΥΡΓΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗ ΜΗΧΑΝΟΛΟΓΙΑ (7 Ο ΕΞΑΜΗΝΟ) Νίκος Μ. Κατσουλάκος Μηχανολόγος Μηχανικός Ε.Μ.Π., PhD, Msc ΜΕΤΑΔΟΣΗ ΚΙΝΗΣΗΣ - ΟΔΟΝΤΩΤΟΙ ΤΡΟΧΟΙ
Διαβάστε περισσότεραΆσκηση 1: Να υπολογιστεί η μέση τραχύτητα R a της κατανομής του σχήματος..
ΑΣΚΗΣΕΙΣ στο μάθημα Κατεργασίες Αποβολής Υλικού & Ε/Μ CNC (Ε εξαμ.) Άσκηση 1: Να υπολογιστεί η μέση τραχύτητα R a της κατανομής του σχήματος.. Λ Υ Σ Η y α Λόγω ομοιότητας των τριγώνων ισχύει ότι : εφφ
Διαβάστε περισσότεραΓ ΤΑΞΗ ΕΠΑΛ (ΟΜΑΔΑ Α ) & ΜΑΘΗΜΑΤΩΝ ΕΙΔΙΚΟΤΗΤΑΣ ΕΠΑΛ
ΑΡΧΗ ΗΣ ΣΕΛΙΔΑΣ Γ ΤΑΞΗ ΕΠΑΛ (ΟΜΑΔΑ Α ) & ΜΑΘΗΜΑΤΩΝ ΕΙΔΙΚΟΤΗΤΑΣ ΕΠΑΛ ΤΕΤΑΡΤΗ 9/04/07 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΣΤΟΙΧΕΙΑ ΜΗΧΑΝΩΝ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΠΕΝΤΕ (5) ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ ο ) Να χαρακτηρίσετε τις προτάσεις που
Διαβάστε περισσότεραΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΣΕΡΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΕΙΣΗΓΗΤΗΣ : ΜΑΡΚΟΥ ΑΘΑΝΑΣΙΟΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΣΕΡΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΕΙΣΗΓΗΤΗΣ : ΜΑΡΚΟΥ ΑΘΑΝΑΣΙΟΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΜΕΛΕΤΗ ΥΠΟΛΟΓΙΣΜΟΣ ΣΧΕΔΙΑΣΗ ΚΑΙ ΚΑΤΑΣΚΕΥΗ TREYLOR ΜΕΓΙΣΤΗΣ ΙΚΑΝΟΤΗΤΑΣ ΜΕΤΑΦΟΡΑΣ ΦΟΡΤΙΟΥ 500Kp ΣΠΟΥΔΑΣΤΕΣ
Διαβάστε περισσότεραΣΧΕΔΙΑΣΜΟΣ ΚΑΙ ΚΑΤΑΣΚΕΥΗ ΗΛΕΚΤΡΟΜΗΧΑΝΟΛΟΓΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Ι
ΣΧΕΔΙΑΣΜΟΣ ΚΑΙ ΚΑΤΑΣΚΕΥΗ ΗΛΕΚΤΡΟΜΗΧΑΝΟΛΟΓΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Ι. ΕΡΓΑΛΕΙΟΜΗΧΑΝΕΣ: ΕΙΣΑΓΩΓΗ ΣΤΑ ΚΙΒΩΤΙΑ ΤΑΧΥΤΗΤΩΝ - ΟΔΟΝΤΟΚΙΝΗΣΗ ΓΚΛΩΤΣΟΣ ΔΗΜΗΤΡΗΣ dimglo@teiath.gr Εργαστήριο Επεξεργασίας Ιατρικού Σήματος και
Διαβάστε περισσότεραΘΕΜΑ 1 ο Α. Ποια είναι τα μορφολογικά χαρακτηριστικά και ποια τα υλικά κατασκευής των δισκοειδών συνδέσμων; Μονάδες 12
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α Α ) ΚΑΙ ΜΑΘΗΜΑΤΩΝ ΕΙ ΙΚΟΤΗΤΑΣ ΗΜΕΡΗΣΙΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α Β ) ΣΑΒΒΑΤΟ 30 ΜΑΪΟΥ 2009 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΣΤΟΙΧΕΙΑ
Διαβάστε περισσότεραWT Συνδέτης διπλού σπειρώματος Ανθρακόχάλυβας με ενίσχυση durocoat
WT Συνδέτης διπλού σπειρώματος Ανθρακόχάλυβας με ενίσχυση durocoat ET 12/0063 ΤΕΧΝΙΚΗ ΥΠΟΣΤΗΡΙΞΗ Πλήρη έγγραφα και δωρεάν λογισμικό on-line ΠΙΣΤΟΠΟΙΗΣΗ PUS Ελάχιστες αποστάσεις και επιτρεπόμενη χρήση και
Διαβάστε περισσότεραΑΡΧΗ ΣΕΙΣ ΣΑΒΒΑΤΟ ΜΑ: ΘΕΜΑ Α1. Να ΣΤΗΛΗ. α. β. γ. δ. ε. στ. Κεφαλής. Γρύλος
Γ ΤΑΞΗΣ HMEΡΗΣΙΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΗΜΕΡΗΣΙΩΝ & ΤΑΞΗΣ ΕΣΠΕΡΙΝΩΝ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣ ΣΕΙΣ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ ΣΑΒΒΑΤΟ 10 ΙΟΥΝΙΟΥ 2017 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜ ΜΑ: ΣΤΟΙΧΕΙΑ ΜΗΧΑΝΩΝΝ ΣΥΝΟΛΟ ΣΕΛΙ
Διαβάστε περισσότεραΑΡΧΗ ΣΕΙΣ ΣΑΒΒΑΤΟ ΜΑ: ΘΕΜΑ Α1. Να. Foititikanea.gr ΣΤΗΛΗ. α. β. γ. δ. ε. στ. Κεφαλής. Γρύλος
Γ ΤΑΞΗΣ HMEΡΗΣΙΩΝ ΘΕΜΑ Α Α1. Να γράψετε στο τετράδιό σας τους αριθμούς 1, 2, 3, 4, 5 από τη στήλη Α και δίπλα ένα από τα γράμματα α, β, γ, δ, ε, στ της στήλης Β που δίνει τη σωστή αντιστοίχιση. Σημειώνεται
Διαβάστε περισσότεραΠΑΝΕΛΛΗΝΙΕΣ 2017 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΣΤΟΙΧΕΙΑ ΜΗΧΑΝΩΝ ΘΕΜΑΤΑ
ΠΑΝΕΛΛΗΝΙΕΣ 2017 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΣΤΟΙΧΕΙΑ ΜΗΧΑΝΩΝ ΘΕΜΑ Α ΘΕΜΑΤΑ Α1. Να γράψετε στο τετράδιό σας τους αριθμούς 1, 2, 3, 4, 5 από τη στήλη Α και δίπλα ένα από τα γράμματα α, β, γ, δ, ε, στ της στήλης
Διαβάστε περισσότεραΣχήμα 1: Ιμάντες διαφόρων ειδών
ΕΠΙΠΕΔΟΙ ΙΜΑΝΤΕΣ Σχήμα : Ιμάντες διαφόρων ειδών Σχήμα : Δυνάμεις και αντιδράσεις σε ιμαντοκίνηση Σχήμα 3: Ερπυσμός και ενεργές γωνίες Δυνάμεις Οι δυνάμεις σε ένα στοιχείο του ιμάντα φαίνονται στο σχήμα
Διαβάστε περισσότεραΜΗΧΑΝΟΥΡΓΙΚΗ ΤΕΧΝΟΛΟΓΙΑ 1
ΜΗΧΑΝΟΥΡΓΙΚΗ ΤΕΧΝΟΛΟΓΙΑ Ειδική αντίσταση κοπής Assistnt Pro. John Kehgis Mehnil Engineer, Ph.D. Περίγραμμα Στο κεφάλαιο αυτό γίνεται εκτενής αναφορά στο μηχανισμό της ορθογωνικής κοπής. Εισαγωγή - Κατεργασίες
Διαβάστε περισσότεραΑΛΕΞΑΝΔΡΕΙΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΟΧΗΜΑΤΩΝ
2. ΣΤΑΤΙΚΗ Να χαραχθούν τα διαγράμματα [Ν], [Q], [M] στη δοκό του σχήματος: Να χαραχθούν τα διαγράμματα [Ν], [Q], [M] στον φορέα του σχήματος: Ασκήσεις υπολογισμού τάσεων Άσκηση 1 η (Αξονικός εφελκυσμός
Διαβάστε περισσότεραΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΣΤΟΙΧΕΙΩΝ ΜΗΧΑΝΩΝ ΙI ΕΔΡΑΝΑ ΟΛΙΣΘΗΣΗΣ
ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΣΤΟΙΧΕΙΩΝ ΜΗΧΑΝΩΝ ΙI ΕΔΡΑΝΑ ΟΛΙΣΘΗΣΗΣ Πάτρα 005 Έδρανα ολίσθησης Σελίδα - - 1.1 ΑΣΚΗΣΕΙΣ ΕΔΡΑΝΩΝ ΟΛΙΣΘΗΣΗΣ 1.1.1 ΑΣΚΗΣΗ Ένα πλήρες έδρανο ολίσθησης έχει διάμετρο 0 /d 1. Το φορτίο του
Διαβάστε περισσότεραΦρεζάρισμα. Με το φρεζάρισμα μπορούμε να κατεργαστούμε επίπεδες ή καμπύλες επιφάνειες, εσοχές, αυλάκια ακόμα και οδοντωτούς τροχούς.
ΦΡΕΖΕΣ ΦΡΕΖΕΣ Είναι εργαλειομηχανές αφαίρεσης υλικού από διάφορες εργασίες με μηχανική κοπή. Η κατεργασία διαμόρφωσης των μεταλλικών υλικών στη φρέζα, ονομάζεται φρεζάρισμα. Φρεζάρισμα Με το φρεζάρισμα
Διαβάστε περισσότεραΔΙΑΙΡΕΤΗΣ. Το ΤΕ είναι συνήθως κυλινδρικό, μπορεί όμως να είναι και κωνικό ή πρισματικό.
ΔΙΑΙΡΕΤΗΣ ΓΕΝΙΚΑ O διαιρέτης είναι μηχανουργική συσκευή, με την οποία μπορούμε να εκτελέσουμε στην επιφάνεια τεμαχίου (TE) κατεργασίες υπό ίσες ακριβώς γωνίες ή σε ίσες αποστάσεις. Το ΤΕ είναι συνήθως
Διαβάστε περισσότεραΣΧΕΔΙΟΜΕΛΕΤΗ ΤΡΙΒΑΘΜΙΟΥ ΜΕΙΩΤΗΡΑ ΣΤΡΟΦΩΝ ΜΕ ΜΕΤΩΠΙΚΟΥΣ ΟΔΟΝΤΩΤΟΥΣ ΤΡΟΧΟΥΣ
T.E.I. ANATOΛΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ & ΘΡΑΚΗΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ: ΜΗΧΑΝΙΚΩΝ ΤΕΧΝΟΛΟΓΙΑΣ ΠΕΤΡΕΛΑΙΟΥ ΚΑΙ ΦYΣΙΚΟΥ ΑΕΡΙΟΥ Τ.Ε. ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΚΑΤΕΥΘΥΝΣΗ: ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΠΤΥΧΙΑΚΗ
Διαβάστε περισσότεραΕπαναληπτική άσκηση: Περιστροφή Κρούση - Κύλιση με ολίσθηση
Επαναληπτική άσκηση: Περιστροφή Κρούση - Κύλιση με ολίσθηση α) Το μέτρο της δύναμης που δέχεται η ράβδος από την άρθρωση λίγο πριν και αμέσως μετά το κόψιμο του νήματος, Η ομογενής και ισοπαχής ράβδος
Διαβάστε περισσότεραΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ «ΣΤΟΙΧΕΙΑ ΜΗΧΑΝΩΝ» ΕΠΑ.Λ.
ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ «ΣΤΟΙΧΕΙΑ ΜΗΧΑΝΩΝ» ΕΠΑ.Λ. ΖΗΤΗΜΑ 1 ο ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΞΕΤΑΣΕΙΣ ΑΠΟΦΟΙΤΩΝ ΤΜΗΜΑΤΩΝ ΕΙ ΙΚΟΤΗΤΑΣ Τ.Ε.Λ. ΠΕΜΠΤΗ 1 ΙΟΥΝΙΟΥ 001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΕΙ ΙΚΟΤΗΤΑΣ ΜΟΝΟ ΓΙΑ ΤΟΥΣ ΑΠΟΦΟΙΤΟΥΣ
Διαβάστε περισσότεραΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3//7/2013 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ
ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3//7/013 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ ΩΡΕΣ ΑΣΚΗΣΗ 1 Σώμα μάζας m=0.1 Kg κινείται σε οριζόντιο δάπεδο ευθύγραμμα με την
Διαβάστε περισσότεραΑσκήσεις κοπής σε τόρνο
Ασκήσεις κοπής σε τόρνο. Σε τόρνο γίνεται κατεργασία άξονα από χάλυβα St 60. µε δύο παράλληλα εργαλειοφορεία ταυτόχρονα, όπως φαίνεται στο Σχ.. ίνονται: ιάµετροι κατεργασίας: d = 300 mm, d = 00 mm. Κοινή
Διαβάστε περισσότεραΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ 2013
ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ 03 ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α. c Α. d Α3. c Α4. c Α5. Σ, Λ, Σ, Σ, Λ ΘΕΜΑ Β Β. Σωστή απάντηση είναι η (γ). Γνωρίζουμε (σχολικό βιβλίο, σελ. 3) ότι ένα
Διαβάστε περισσότεραΕΝΟΤΗΤΑ 8: ΜΕΤΑΔΟΣΗ ΚΙΝΗΣΗΣ
ΕΝΟΤΗΤΑ 8: ΜΕΤΑΔΟΣΗ ΚΙΝΗΣΗΣ 86 ΣΤΟΧΟΙ: Με τη συμπλήρωση της ύλης της ενότητας αυτής ο μαθητής θα πρέπει να μπορεί να: 1. Εξηγεί τι είναι τα συστήματα μετάδοσης κίνησης και ποιο σκοπό εξυπηρετούν. 2. Ταξινομεί
Διαβάστε περισσότεραΚεφ. 7. ΑΞΟΝΕΣ ΑΤΡΑΚΤΟΙ
Κεφ. 7. ΑΞΟΝΕΣ ΑΤΡΑΚΤΟΙ 7.3 Υπολογισμοί μελέτης - Όταν η φόρτιση είναι μόνο κάμψη: ³ M d -------0, σbεπ (7-) - Όταν η φόρτιση είναι μόνο στρέψη, ή όταν η καμπτική ροπή δεν είναι γνωστή: ³ Τ d ---------0,2
Διαβάστε περισσότεραΛύσεις 1ης σειράς ασκήσεων
Λύσεις 1ης σειράς ασκήσεων 1-13 Άσκηση 1 η : Μετατρέπουμε τα δεδομένα από το αγγλοσαξονικό σύστημα στο SI: Διάμετρος άξονα: Dax 3 ice 3i.5 c i 7.6 c.76 Πλάτος περιβλήματος: Wi 6 ice 6i.5 c i 15. c.15 Διάκενο
Διαβάστε περισσότεραΠρέσσες εκκέντρου. Κινηματική Δυνάμεις Έργο Εφαρμογές. Πρέσσες εκκέντρου. Γ.Βοσνιάκος-ΕΡΓΑΛΕΙΟΜΗΧΑΝΕΣ
Πρέσσες εκκέντρου Κινηματική Δυνάμεις Έργο Εφαρμογές Γ.Βοσνιάκος-ΕΡΓΑΛΕΙΟΜΗΧΑΝΕΣ Πρέσσες εκκέντρου Άδεια Χρήσης Το παρόν υλικό υπόκειται σε άδειες χρήσης Creative Commons και δημιουργήθηκε στο πλαίσιο
Διαβάστε περισσότεραA) Να βρεθεί η γωνιακή επιτάχυνση του τροχού, καθώς και ο αριθµός των στροφών
Άσκηση ολίσθηση-κύλιση µε ολίσθηση-κύλιση χωρίς ολίσθηση Ο τροχός του σχήµατος έχει ακτίνα R0,m και αφήνεται τη χρονική στιγµή t0 µε αρχική γωνιακή ταχύτητα ω ο 300 rad/sec σε επαφή µε τα δύο κάθετα τοιχώµατα,
Διαβάστε περισσότεραα. Άτρακτος ονομάζεται κάθε ράβδος που περιστρέφεται μεταφέροντας ροπή. Σ
ΑΡΧΗ ΗΣ ΣΕΛΙΔΑΣ Γ ΤΑΞΗ ΕΠΑΛ (ΟΜΑΔΑ Α ) & ΜΑΘΗΜΑΤΩΝ ΕΙΔΙΚΟΤΗΤΑΣ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΤΕΤΑΡΤΗ 08/04/05 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΣΤΟΙΧΕΙΑ ΜΗΧΑΝΩΝ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΠΕΝΤΕ (5) ΘΕΜΑ ο ) Να χαρακτηρίσετε τις προτάσεις
Διαβάστε περισσότερα1501 - Έλεγχος Κίνησης
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα 1501 - Έλεγχος Κίνησης Ενότητα: Οδοντωτοί Τροχοί (Γρανάζια) - Μέρος Β Μιχαήλ Παπουτσιδάκης Τμήμα Αυτοματισμού Άδειες Χρήσης Το
Διαβάστε περισσότεραΤΕΙ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. Διοίκηση Εργοταξίου
ΤΕΙ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. Διοίκηση Εργοταξίου Διδάσκων: Γιάννης Χουλιάρας Στοιχεία μετάδοσης κίνησης (ιμάντες, αλυσίδες, οδοντωτοί τροχοί). Κινητήρες εσωτερικής καύσης. Μηχανές ηλεκτρικές,
Διαβάστε περισσότεραΕΠΙΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ. Για την καλύτερη κατανόηση των γραναζιών αρχικά αγνοούμε τις εγκοπές τους, έτσι παρατηρούμε ότι:
1 ΕΠΙΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ Ο ΟΝΤΩΣΕΩΝ 2 Για την καλύτερη κατανόηση των γραναζιών αρχικά αγνοούμε τις εγκοπές τους, έτσι παρατηρούμε ότι: Ηπεριστροφήτωνδύοαξόνωνθαείναι αντίθετης φοράς Η διάμετρος των δίσκων
Διαβάστε περισσότεραΕ.3 Λυμένες ασκήσεις με υπολογισμό τάσεων
Ε.3 Λυμένες ασκήσεις με υπολογισμό τάσεων Πρόβλημα Ε.1 Να ελεγχθεί αν αντέχουν σε εφελκυσμό οι ράβδοι στα παρακάτω σχήματα. (Έχουν όλες την ίδια εφελκυστική δύναμη Ν=5000Ν αλλά διαφορετικές διατομές. Η
Διαβάστε περισσότεραΗ εργασία αυτή αφιερώνεται στον χορηγό μου Ζάγορα Φωτεινό, για την υποστήριξη και την υπομονή του κατά τη διάρκεια των σπουδών μου!
2 Η εργασία αυτή αφιερώνεται στον χορηγό μου Ζάγορα Φωτεινό, για την υποστήριξη και την υπομονή του κατά τη διάρκεια των σπουδών μου! 3 4 Με το πέρας της εργασίας θα ήθελα να ευχαριστήσω τον Αναπληρωτή
Διαβάστε περισσότερα10 ο Μάθημα Δυναμική Περιστροφικής κίνησης. Δυναμική περιστροφής γύρω από ακλόνητο άξονα Περιστροφή γύρω από κινούμενο άξονα
10 ο Μάθημα Δυναμική Περιστροφικής κίνησης Δυναμική περιστροφής γύρω από ακλόνητο άξονα Περιστροφή γύρω από κινούμενο άξονα 1 ος τρόπος: Δυναμική περιστροφικής κίνησης τ = Iα γ Αβαρές μη εκτατό σκοινί
Διαβάστε περισσότεραΘ.Μ.Κ.Ε. ΚΑΙ ΣΥΝΘΕΤΗ ΚΙΝΗΣΗ
Ερώτημα 1 ο : ΘΜΚΕ ΚΑΙ ΣΥΝΘΕΤΗ ΚΙΝΗΣΗ Όταν μιλάμε για έργο, τι διαφορά έχει το έργο μιας δύναμης και το έργο μιας ροπής;στην πραγματικότητα έργο παράγει μια δύναμη, όταν μετατοπίζει το σημείο εφαρμογής
Διαβάστε περισσότεραΜεταφορικές Ταινίες Τύμπανο Κίνησης Διάμετρος : D = 360F u p π a Β Όπου Fu: εφαπτομενική δύναμη (kp) p συντελεστής υλικού ενισχύσεων (kp/m 2 ) p= 2000 για βαμβάκι p= 3000 για
Διαβάστε περισσότεραΣΧΕΔΙΑΣΜΟΣ ΚΑΤΑΣΚΕΥΩΝ
Τ.Ε.Ι. Θεσσαλίας Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανολογίας ΣΧΕΔΙΑΣΜΟΣ ΚΑΤΑΣΚΕΥΩΝ Κώστας Κιτσάκης Μηχανολόγος Μηχανικός ΤΕ MSc Διασφάλιση ποιότητας Επιστημονικός Συνεργάτης Άσκηση Να βρεθεί η περιστροφική
Διαβάστε περισσότεραProceedings of Machine Design Training
NTUA MECHANICAL ENGINEERING Laboratory of Machine Elements Proceedings of Machine Design Training TR-11/2003 Hydraulic Elevator Th. Costopoulos, K. Masouri DESIGNING A LOAD HYDRAULIC ELEVATOR 1. DATA ΕΙΔΟΣ
Διαβάστε περισσότερα7. Στρέψη. Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών. 7. Στρέψη/ Μηχανική Υλικών
7. Στρέψη Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών 7. Στρέψη/ Μηχανική Υλικών 2015 1 Εισαγωγή Σε προηγούμενα κεφάλαια μελετήσαμε πώς να υπολογίζουμε τις ροπές και τις τάσεις σε δομικά μέλη τα
Διαβάστε περισσότεραΚεφάλαιο 9. Περιστροφική κίνηση. Ροπή Αδράνειας-Ροπή-Στροφορμή
Κεφάλαιο 9 Περιστροφική κίνηση Ροπή Αδράνειας-Ροπή-Στροφορμή 1rad = 360o 2π Γωνιακή ταχύτητα (μέτρο). ω μεση = θ 1 θ 2 = θ t 2 t 1 t θ ω = lim t 0 t = dθ dt Μονάδες: περιστροφές/λεπτό (rev/min)=(rpm)=
Διαβάστε περισσότεραΠ Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α
Α Ρ Χ Α Ι Α Ι Σ Τ Ο Ρ Ι Α Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Σ η µ ε ί ω σ η : σ υ ν ά δ ε λ φ ο ι, ν α µ ο υ σ υ γ χ ω ρ ή σ ε τ ε τ ο γ ρ ή γ ο ρ ο κ α ι α τ η µ έ λ η τ ο ύ
Διαβάστε περισσότερα9. ΦΟΡΤΙΑ ΔΙΑΤΟΜΗΣ ΔΟΚΩΝ
9. ΦΟΡΤΙ ΔΙΤΟΜΗΣ ΔΟΚΩ 9.1 ενικά Ο όρος φορτία σημαίνει είτε δυνάμεις είτε ροπές. Συνοψίζοντας αυτά που αναφέρθηκαν σε προηγούμενα κεφάλαια, μπορούμε να πούμε ότι δοκός είναι ένα σώμα με μεγάλο μήκος και
Διαβάστε περισσότεραΠανελλήνιες Εξετάσεις - 10 Ιούνη Φυσική Θετικής & Τεχνολογικής Κατεύθυνσης Πρόχειρες Λύσεις. Θέµα Β
Σχολική Χρονιά 03-04 Πανελλήνιες Εξετάσεις - 0 Ιούνη 04 Α. (γ) Α. (ϐ) Α.3 (γ) Α.4 (ϐ) Α.5 Σ,Σ, Λ, Λ, Σ Φυσική Θετικής & Τεχνολογικής Κατεύθυνσης Πρόχειρες Λύσεις Θέµα Α Θέµα Β Β.. (iii) Το σώµα ϑα έχει
Διαβάστε περισσότεραΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 23/9/2015 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ
ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 23/9/2015 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ 2 ΩΡΕΣ ΑΣΚΗΣΗ 1 Σώμα μάζας m = 1Kg κινείται σε ευθύγραμμη οριζόντια και λεία τροχιά
Διαβάστε περισσότεραΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2010
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 010 ΤΕΧΝΟΛΟΓΙΑ (Ι) ΠΡΑΚΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Μάθημα: Βασικά Στοιχεία Εφαρμοσμένης Μηχανικής
Διαβάστε περισσότεραΣ Α Β Β Α Ϊ Η Μ Α Ν Ω Λ Α Ρ Α Κ Η
43 Χρόνια ΦΡΟΝΤΙΣΤΗΡΙΑ ΜΕΣΗΣ ΕΚΠΑΙ ΕΥΣΗΣ Σ Α Β Β Α Ϊ Η Μ Α Ν Ω Λ Α Ρ Α Κ Η ΠΑΓΚΡΑΤΙ : Χρ. Σµύρνης 3, Πλ. Νέου Παγκρατίου h:0/76.0.470 0/76.00.79 ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ (ΚΑΤΕΥΘΥΝΣΗΣ) Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Α) Για ένα ηλεκτρικό
Διαβάστε περισσότεραΥΠΟΛΟΓΙΣΜΟΣ ΚΑΙ ΚΑΤΑΣΚΕΥΗ ΜΟΝΟΒΑΘΜΙΟΥ ΜΕΙΩΤΗΡΑ
ΥΠΟΛΟΓΙΣΜΟΣ ΚΑΙ ΚΑΤΑΣΚΕΥΗ ΜΟΝΟΒΑΘΜΙΟΥ ΜΕΙΩΤΗΡΑ Ιχύς P 10 KW Στροφές ειόδου n 1450 τρ./λεπτό Σχέη μετάδοης i 4 Α. ΥΠΟΛΟΓΙΣΜΟΙ ΟΔΟΝΤΩΤΩΝ ΤΡΟΧΩΝ 1. Προωρινή εκλογή υλικού δοντιού: Για την επιλογή του υλικού
Διαβάστε περισσότεραΓΕΩΡΓΙΚΟΙ ΕΛΚΥΣΤΗΡΕΣ OΧΗΜΑΤΑ ΑΝΩΜΑΛΟΥ ΕΔΑΦΟΥΣ. Ασκήσεις
ΑΛΕΞΑΝΔΡΕΙΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΟΧΗΜΑΤΩΝ ΓΕΩΡΓΙΚΟΙ ΕΛΚΥΣΤΗΡΕΣ OΧΗΜΑΤΑ ΑΝΩΜΑΛΟΥ ΕΔΑΦΟΥΣ Ασκήσεις Δρ Γ. Παραδεισιάδης Αναπληρωτής Καθηγητής ΘΕΣΣΑΛΟΝΙΚΗ
Διαβάστε περισσότερα(5-1) - Ελέγχουμε αν ισχύει σν < σεπ
Κεφ. 5. ΣΥΓΚΟΛΛΗΣΕΙΣ 5.8 Πάχος ραφής Τυποποιημένα πάχη ραφών:,0,5,0,5 5,0 5,5 6,0 6,5 7,0 8,0 9,0,0 mm. 5.11 Υπολογισμός αντοχής συγκολλήσεων Α' Στατικό μέρος της φόρτισης. Υπολογίζουμε τις πραγματικές
Διαβάστε περισσότεραΠαραδείγματα Λυμένες ασκήσεις Κεφαλαίου 5
Παραδείγματα Λυμένες ασκήσεις Κεφαλαίου 5 Παράδειγμα : Υπενθυμίζεται η γενική μορφή της σχέσεως διασποράς για την περίπτωση αλληλεπίδρασης κύματος-ρεύματος, παρουσία και των επιδράσεων της επιφανειακής
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 14 ΜΕΤΑΔΟΣΗ ΙΣΧΥΟΣ ΜΕ ΕΛΑΣΤΙΚΑ ΜΕΣΑ
ΚΕΦΑΛΑΙΟ 14 ΜΕΤΑΔΟΣΗ ΙΣΧΥΟΣ ΜΕ ΕΛΑΣΤΙΚΑ ΜΕΣΑ 1 14.1 Επίπεδοι & Τραπεζοειδείς & Αλυσίδες Σχήμα 14-1: διάφορων ειδών 2 14.2 Γενικά περί ιμαντών Σχήμα 14-2: Δυνάμεις και αντιδράσεις σε ιμαντοκίνηση 3 14.2
Διαβάστε περισσότεραΔρ. Μηχ. Μηχ. Α. Τσουκνίδας. Σχήμα 1
Σχήμα 1 Εξαιτίας της συνιστώσας F X αναπτύσσεται εντός του υλικού η ορθή τάση σ: N σ = A N 2 [ / ] Εξαιτίας της συνιστώσας F Υ αναπτύσσεται εντός του υλικού η διατμητική τάση τ: τ = mm Q 2 [ N / mm ] A
Διαβάστε περισσότεραΑγώνες αυτοκινήτου σε πίστα
Αγώνες αυτοκινήτου σε πίστα Αυτοκίνητο τρέχει στην πίστα που φαίνεται και έχει κυκλικά τόξα ένα ακτίνας 80m και ένα 40m. Αν οδηγός τρέχει ένα πλήρη κύκλο με σταθερή ταχύτητα 50m/s (80km/h) συγκρίνετε την
Διαβάστε περισσότεραΣΧΕΔΙΑΣΗ ΑΤΡΑΚΤΩΝ. Λειτουργικές Παράμετροι
Άτρακτος: περιστρεφόμενο στοιχείο κυκλικής (συνήθως) διατομής (πλήρους ή σωληνωτής) που χρησιμοποιείται για να μεταφέρει ισχύ ή κίνηση Άξονας: μη περιστρεφόμενο στοιχείο που δεν μεταφέρει ροπή και χρησιμοποιείται
Διαβάστε περισσότεραΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΟΣ ΣΧΕΔΙΑΣΜΟΣ ΚΑΙ ΚΑΤΑΣΚΕΥΗ ΗΛΕΚΤΡΟΜΗΧΑΝΟΛΟΓΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΙΙ: ΣΤΟΙΧΕΙΑ ΚΑΤΑΣΚΕΥΩΝ ΙΙ (ΣΚΗΣ II) Γκλώτσος Δημήτριος
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ (Τ.Ε.Ι) ΑΘΗΝΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ (Σ.Τ.ΕΦ.) ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΒΙΟΪΑΤΡΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ (πρώην Τ.Ι.Ο.) ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΟΣ ΣΧΕΔΙΑΣΜΟΣ ΚΑΙ ΚΑΤΑΣΚΕΥΗ
Διαβάστε περισσότεραΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ (ΤΕΙ) ΣΕΡΡΩΝ
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ (ΤΕΙ) ΣΕΡΡΩΝ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ Των σπουδαστών: α. Χαράλαμπος Στρούμπος β. Χρήστος Χατζηνικολάου Θέμα: Μελέτη & κατασκευή μειωτήρα
Διαβάστε περισσότεραΆσκηση µελέτης τόρνευσης
Άσκηση µελέτης τόρνευσης Σχήµα : Άξονας για κατεργασία σε τόρνο revolver Χαρακτηριστικά τόρνευσης Στροφές τόρνου: 60 200 250 35 400 500 630 800. Προώσεις: 0.06 0.08 0.0 0.25 0.6 0.20 0.25 0.35 0.40 0.50
Διαβάστε περισσότεραΚεφάλαιο 10 Περιστροφική Κίνηση. Copyright 2009 Pearson Education, Inc.
Κεφάλαιο 10 Περιστροφική Κίνηση Περιεχόμενα Κεφαλαίου 10 Γωνιακές Ποσότητες Διανυσματικός Χαρακτήρας των Γωνιακών Ποσοτήτων Σταθερή γωνιακή Επιτάχυνση Ροπή Δυναμική της Περιστροφικής Κίνησης, Ροπή και
Διαβάστε περισσότερα12 η Εβδομάδα Ισορροπία Στερεών Σωμάτων. Ισορροπία στερεών σωμάτων
1 η Εβδομάδα Ισορροπία Στερεών Σωμάτων Ισορροπία στερεών σωμάτων Διατήρηση στροφορμής Στροβιλιζόμενος δίσκος μάζας m r 100kg και ακτίνας R r m περιστρέφεται χωρίς τριβές. Παιδί μάζας m c 30kg πηδά στο
Διαβάστε περισσότεραΠΕΡΙΣΤΡΟΦΗ ΚΥΚΛΙΚΟΥ ΔΙΣΚΟΥ ΕΠΙΒΡΑΔΥΝΟΜΕΝΟΣ ΑΠΟ ΔΥΟ ΑΒΑΡΗΣ ΡΑΒΔΟΥΣ
ΠΕΡΙΣΤΡΟΦΗ ΚΥΚΛΙΚΟΥ ΔΙΣΚΟΥ ΕΠΙΒΡΑΔΥΝΟΜΕΝΟΣ ΑΠΟ ΔΥΟ ΑΒΑΡΗΣ ΡΑΒΔΟΥΣ Κυκλικός δίσκος ακτίνας R και μάζας m, περιστρέφεται με σταθερή γωνιακή ταχύτητα ω 0 (η τριβή στον άξονα περιστροφής θεωρείται αμελητέα).
Διαβάστε περισσότεραΣΗΜΕΙΩΣΕΙΣ ΣΤΟΙΧΕΙΑ ΜΗΧΑΝΩΝ
1 ΕΠΑΛ ΔΡΑΠΕΤΣΩΝΑΣ ΣΗΜΕΙΩΣΕΙΣ ΣΤΟΙΧΕΙΑ ΜΗΧΑΝΩΝ ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΜΟΥΡΑΤΙΔΗΣ Μ. ΜΑΡΙΟΣ 2014/15 Περιέχονται όλα τα θέματα των πανελλαδικών εξετάσεων στο μάθημα, από το 1997 έως σήμερα ταξινομημένα σε κεφάλαια.
Διαβάστε περισσότεραΤίτλος Διδακτικού Σεναρίου: «Στοιχεία μετάδοσης κίνησης - ΟΔΟΝΤΩΣΕΙΣ» Φάση «1» Τίτλος Φάσης: «Περιγραφή - λειτουργικός σκοπός»
Τίτλος Διδακτικού Σεναρίου: «Στοιχεία μετάδοσης κίνησης - ΟΔΟΝΤΩΣΕΙΣ» Φάση «1» Τίτλος Φάσης: «Περιγραφή - λειτουργικός σκοπός» Χρόνος Υλοποίησης: 15 Λεπτά Δραστηριότητα 1. Θεωρία - Εμπλουτισμός γνώσεων
Διαβάστε περισσότερα7 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ
7 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΑΚΤΙΝΙΚΟ Ε ΡΑΝΟ ΟΛΙΣΘΗΣΗΣ 7.1 Εδρανα Τα έδρανα αποτελούν φορείς στήριξης και οδήγσης κινούµενων µηχανολογικών µερών, όπως είναι οι άξονες, -οι οποίοι καταπονούνται µόνο σε κάµψη
Διαβάστε περισσότερα