Ψηφιοποίηση Μονοδιάστατα σήματα Πολυκαναλικά σήματα Δισδιάστατα 2D σήματα Τρισδιάστατα 3D σήματα Υλικό Hardware για ψηφιοποίηση Μετρήσεις σε εικόνες
|
|
- Μορφευς Αποστόλου
- 8 χρόνια πριν
- Προβολές:
Transcript
1
2 Ψηφιοποίηση Μονοδιάστατα σήματα Πολυκαναλικά σήματα Δισδιάστατα 2D σήματα Τρισδιάστατα 3D σήματα Υλικό Hardware για ψηφιοποίηση Μετρήσεις σε εικόνες Γεωμετρικά χαρακτηριστικά Μέγεθος αντικειμένων (πυρήνων) Μορφή αντικειμένων (πυρήνων) Πυκνομετρικά χαρακτηριστικά Συμπίεση εικόνων
3
4 Πλεονεκτήματα ψηφιακών σημάτων Ταχύτατη και εύκολη επεξεργασία Κρυπτογράφηση προστασία δεδομένων Εύκολη αναβάθμιση χρόνος ζωής συστημάτων Μικρός όγκος πληροφορίας χαμηλό κόστος Εύκολη μετάδοση και αποθήκευση
5 Ψηφιοποίηση πληροφορίας Ανάλογα με τον τύπο της πληροφορίας Μονοδιάστατη - 1D (πχ ECG): αφού γίνει η λήψη μέσω των αισθητήρων ακολουθεί η ψηφιοποίηση με τη χρήση A/D (Analog/Digital) μετατροπέων Πολυκαναλικά σήματα = πολλά 1D σήματα (πχ EEG) η ψηφιοποίηση πραγματοοπιείται με τη χρήση πολλών A/D μετατροπέων ή με τη χρήση ενός που περιοδικά ψηφιοποιεί κάθε κανάλι Διδιάστατα σήματα 2D (πχ εικόνες μικροσκοπίου, ακτινογραφίες) με τη χρήση scanner ή ψηφιακής κάμερας ή αισθητήρα Τρισδιάστατα σήματα 3D (πχ Αξονική τομογραφία, 3D Ultra Sound) παρέχεται από την συσκευή Xρήση κινούμενης πηγής και αισθητήρα και ση συνέχεια μεθόδων όπως ο Γρήγορος Μετασχηματισμός Φουριέ (Fast Fourier Transform FFT)
6
7 Μονοδιάστατα σήματα Αισθητήρας Δειγματοληψία & κβάντιση Αναλογικό σήμα Ψηφιακό σήμα Αισθητήρας: Μετατρέπει ένα φυσικό σήμα σε αναλογικό ηλεκτρικό Δειγματοληψία: επιλέγει ανά τακτά χρονικά διαστήματα την τιμή του αναλογικού σήματος Κβάντιση: μετατρέπει την επιλεγμένη τιμή του αναλογικού σήματος σε αριθμητική τιμή εντός ενός πεπερασμένου συνόλου τιμών Δειγματοληψία + κβάντιση = ψηφιοποίηση (Analog/Digital converters) Ένα ψηφιακό σήμα είναι δυνατόν να αναπαρασταθεί σαν μια σειρά αριθμών, κάθε αριθμός αντιστοιχεί σε μια προσέγγιση της τιμής του αναλογικού σήματος σε μια δεδομένη χρον στιγμή
8 Μονοδιάστατα πολυκαναλικά σήματα Σε αντιστοιχία με τα μονοδιάστατα αλλά ταυτόχρονη ψηφιοποίηση πολλών μονοδιάστατων σημάτων
9 Μονοδιάστατα και πολυκαναλικά σήματα, παραδείγματα Πίεση ρευστών (mmhg) - Πίεση αίματος - Πίεση ούρων στην ουροδόχο κύστη - Πίεση αερίων στο γαστρεντερικό - Πίεση αερίων στο αίμα και στον αέρα των πνευμόνων (O2, CO2,) Διαφορά δυναμικού (Volts) από ηλεκτρικές πηγές σώματος - της καρδιάς (ECG) - του εγκεφάλου (EEG) - των περιφερειακών νεύρων (ENG) - των μυών (EMG)
10
11 Μια ψηφιοποιημένη εικόνα (2D) είναι δυνατόν να θεωρηθεί ως πίνακας αριθμών Ο πίνακας (εικόνα) αριστερά έχει διαστάσεις 1 1 Κάθε στοιχείο του πίνακα (pixel), έχει μια αριθμητική τιμή Αυτή η τιμή χρησιμοποιείται για την απεικόνιση και επεξεργασία της εικόνας
12 Pixels και βάθος εικόνας Διαβαθμίσεις αριθμό bits 8 bits = 2 8 =256 διαβαθμίσεις του γκρι από λευκό μαύρο Αλλά σε πολλές εφαρμογές χρειάζεται μεγαλύτερο βάθος (12 bits = 2 12 =496 διαβαθμίσεις του γκρι ) Ενημερωτικά το μάτι μας δεν μπορεί να ξεχωρίσει τόνους σε παραπάνω από 1 διαβαθμίσεις) αλλά το βάθος αυτό εξυπηρετεί επεξεργασία των εικόνων από Η/Υ
13
14
15 Έγχρωμη εικόνα 2D πολυκαναλικό Σε κάθε pixel, υπάρχουν τρεις τιμές (Red, Green, Blue - RGB)
16 Παράδειγμα
17
18
19 Υλικό για λήψη και ψηφιοποίηση εικόνων Κάμερα + Frame grabber (ψηφιοποιητής) Η/Υ Λογισμικό (ιδιαίτερα σημαντικό να συνεργάζεται (συμβατότητα) με το υλικό (hardware) που έχουμε διαθέσιμο Αλλά και USB/FireWire κάμερες υψηλών επιδόσεων
20
21
22
23 Χαρακτηριστικά ψηφιακής εικόνας pixel (εικονοστοιχείο) Είναι κάθε ενα από τα τετραγωνίδια που αποτελούν την εικόνα Ανάλυση μήκος και πλάτος της εικόνας σε pixels) Βαθος το πλήθος των διαδικών στοιχείων (bits) που έχει το κάθε pixel) Για κάθε pixel βάθους έχουμε 2 (#pixels) πιθανά χρώματα ή διαγορετικούς τόνους του ίδιου χρώματος (στο γκρί)
24 Ανάλυση και βάθος εικόνας στην πράξη Με τη χρήση κάμερας (λήψη από το μικροσκόπιο) αναλύσεις 124x768 είναι πλέον βιομηχανικό standard εδώ και πολλά χρόνια Αναλύσεις > 5x5 είναι δυνατές αλλά με πολύ μεγαλύτερο κόστος αλλά και με σημαντικές επιπτώσεις στο χρόνο απόκρισης και την απαιτούμενη επεξεργαστική ισχύ Σύνηθες βάθος είναι τα 8bits για τη μονόχρωμη εικόνα (256 τόνοι) Για την περίπτωση της έγχρωμης εικόνας τα 24 bits (8 bits για κάθε χρωματική συνιστώσα -κόκκινο, πράσινο, μπλέ )
25
26 Η 3D πληροφορία είναι δυνατόν να θεωρηθεί ως μια σειρά από εικόνες στο χώρο Κάθε στοιχείο λέγεται voxel (volume element) Προσθήκη χρόνου 4D σήματα
27
28
29 Ελεύθερο λογισμικό (ανοιχτού κώδικα) ImageJ CellProfiler CellProfiler Analyst ICY NIH Image (για MAC) OpenCV (βιβλιοθήκη) Κατάλογοι με διαθέσιμο ελεύθερο λογισμικό files/listoffreesoftwarepdf
30 Χαρακτηριστικά λογισμικού Υποστήριξη frame grabber που υπάρχει διαθέσιμος Δυνατότητες format εικόνων Δυνατότητες ανάλυσης Τι λειτουργικότητα διαθέτει και τι μετρήσεις μπορεί να εξάγει Scripting (δυνατότητα προγραμματισμού)
31
32 # Points:
33
34 Χωρική βαθμονόμηση spatial calibration Πλακίδιο βαθμονόμησης αντιστοιχούμε κάθε υποδιαίρεση (μm) σε εικονοστοιχεία (Pixels) Βαθμονόμηση έντασης intensity calibration Ρυθμίζουμε την τιμή των τριών χρωματικών συνιστωσών όταν έχουμε λευκό χρώμα Γίνεται με τη χρήση λευκού πεδίου και ρύθμιση του φωτισμού του μικροσκοπίου και του συστήματος camera frame grabber ώστε να έχουμε ίδια ένταση στις τρεις χρωματικές συνιστώσες κοντά στο μέγιστο (255)
35
36 Ομαδοποίηση μετρίσιμων χαρακτηριστικών (features) Γεωμετρικά χαρακτηριστικά: βασίζονται στο περίγραμμα των περιοχών ενδιαφέροντος (πυρήνες και κυτταρόπλασμα) Πυκνομετρικά: βασίζονται στις τιμές των εικονοστοιχείων (pixels) που είναι εντός της περιοχής ενδιαφέροντος Χαρακτηριστικά της ευρύτερης «γειτονιάς» (contextual features) όπως για παράδειγμα ο προσανατολισμός των πυρήνων σε μια περιοχή ή οι μεταξύ τους αποστάσεις
37 2 M AP 2 AP M j M n Curl RF D n j 1 CR CI FormAR FormPE = P A= 4 πm π AP j M 2 = A = 42 πaπ M n = Γεωμετρικά χαρακτηριστικά j Εμβαδόν Περίμετρος Μέγιστος άξονας Ελάχιστος άξονας Διάμετρος Κυκλικότητα (Circularity) Παράγων κυκλικότητας (Roundness factor) Λόγος περιμέτρου (Contour ratio) Δείκτης περιμέτρου (Contour index) Παράγων εμβαδού (Form area -FormAR) A P M M n j 2 D = A π Curl RF CR = = CI = = M M j M P 2 πa P 2 4πA P A 1 FormAR = 4 πm j M j n n Θεμελιώδη Παράγωγα 2 Παράγων περιμέτρου (Form perimeter -FormPE) FormPE = 4πAP βασίζονται στο περίγραμμα των περιοχών ενδιαφέροντος (πυρήνες και κυτταρόπλασμα)
38 MAX OD i k ( k)) =1 VAR M K K CContr STD I i j = 1 C i, j)) j 1 ( h = k ( k( k)) =1 Entr µ d = ( h d M 3 M i= i 1 j= j 1 i = 1 j = 1 K N M N 2 2 N 2 ( kh N 2 ( ( k K x( i, ( jh) ( ) µ ) ) ( K/ ), j N N R diff i, j) ( k ) k) h 2 ji ) L k = 1 1 d )) = K N k = l C k l l = C1 ( ) h ( k )) k = d k d ( k, l)ln( ( C, d ( kkn 1)) = l 1 N N K ( ( R ( R ( ( i i, i, j, j )) j)) N )( k, l) Πυκνομετρικά χαρακτηριστικά ή χαρακτηριστικά υφής Οπτική πυκνότητα = μέση τιμή του ιστογράμματος OD i = µ N kh( k ) = k =1 N x( i, j) (, j ) L N, Τυπική απόκλιση του ιστογράμματος STD ( h( k)) Διακύμανση του ιστογράμματος Μικρό τρέξιμο (Short run) του πίνακα run length Μεγάλο τρέξιμο (Long run) του πίνακα run length Στάθμη γκρι (Grey level) του πίνακα run length Κατανομή (Distribution) του πίνακα run length VAR( h( k)) M K i= 1 j= 1 M K ( R( i, j)) i= 1 j= 1 M K i= j= M N 2 ( h( k ) µ ) h( k ) k= 1 = N 2 ( R( i, j) / K ) 2 ( R( i, j) K ) 1 1 K ( R( i, j)) i= 1 j= 1 K 2 R( i, j) = j= 1 K ( R( i, j)) i= 1 j= 1 M i 1 M M 2 R( i, j) = = 1 K j 1 i M K ( R( i, j)) i= 1 j= 1 Μέγιστο του πίνακα co-occurrence MAX ( C( i, j)) Αδράνεια (Inertia) του πίνακα co-occurrence Εντροπία του πίνακα co-occurrence I d C d = = N N = = k k 1 l 1 N N k = 1 l = 1 l 2 C( k, l) C( k, l)ln( C( k, Αντίθεση(Contrast) του ιστογράμματος διαφορών Contr( hd ( k)) Μέση τιμή του ιστογράμματος διαφορών µ d N diff ( k ) k = k =1 N Τυπική απόκλιση του ιστογράμματος διαφορών STD( h d ( k)) Εντροπία του ιστογράμματος διαφορών Entr( h d ( k)) N h 1 ( ) ln( h ( k )) k = d k d = 3 N Πυκνομετρικά: βασίζονται στις τιμές των εικονοστοιχείων (pixels) που είναι εντός της περιοχής ενδιαφέροντος
39 Εμβαδόν A B T1 T2 C H T6 T3 D T5 T4 E G F
40 Μέγιστος και ελάχιστος άξονας Μέγιστος άξονας Πυρήνας Ελάχιστος άξονας
41 Διάμετρος Η διάμετρος προσεγγίζεται σαν τη διάμετρο ενός κύκλου που έχει το ίδιο εμβαδόν με τον πυρήνα, συνεπώς έχουμε μια εκτίμηση της μέσης διαμέτρου του πυρήνα
42 Χαρακτηριστικά σχετιζόμενα με το σχήμα των πυρήνων δίνουν ποσοτικοποιημένα πληροφορίες για τη μορφή του περιγράμματος του πυρήνα Παράγων εμβαδού (Form area -FormAR) FormAR= 1 4π(major axis)( minor axis) Παράγων περιμέτρου (Form perimeter -FormPE) FormPE = ( area) 4π (perimeter) 2 Δείκτης περιμέτρου (Contour index - CI) NCI = perimeter area Λόγος περιμέτρου (Contour ratio) Contour Ratio = (perimeter) 4π (area) 2 Παράγων κυκλικότητας (Roundness factor) Roundness Factor = perimeter 2 π (area) Κυκλικότητα (Circularity) Curl = M M j M j n
43 x( i, j) x( i, j) OD = ( i, j) L N x( i, j) Οπτική πυκνότητα (Optical Density - OD) Η οπτική πυκνότητα είναι η ποσοτικοποιημένη έκφραση της φωτεινότητας το πυρήνα, αναπαριστά με μετρήσιμο τρόπο την μέσο όρο φωτεινότητας του πυρήνα Υπολογίζεται σαν το άθροισμα των τιμών των εικονοστοιχείων του πυρήνα δια του πλήθους τους Χαρακτηρίζει τη μέση φωτεινότητα του πυρήνα, όχι όμως την κατανομή της
44 x( i, j) x( i, j) OD = ( i, j) L N x( i, j) Υφή Με την εκτίμηση της υφής γίνεται μια προσπάθεια για την εξαγωγή πληροφοριών δομής των πυρήνων Έχουν προταθεί πολλές τεχνικές για την εξαγωγή χαρακτηριστικών υφής στη βιβλιογραφία κατά τις περασμένες δεκαετίες Δεν υπάρχει μια γενικότερη αποδεκτή μεθοδολογία υπολογισμού της υφής Ο κύριος λόγος που μετρήσεις της υφής είναι σημαντικές είναι πως σχετίζεται με τη δομή του γενετικού υλικού του πυρήνα Η δομή της χρωματίνης είναι σημαντικός παράγων που δείχνει την εντροπία του πυρήνα ενώ η κατανομή της χρωματίνης σχετίζεται με την κατανομή του DNA μέσα στο πυρηνικό όριο
45 Κατανομή της χρωματίνης Δομή της χρωματίνης
46 Μέτρηση υφής Χαρακτηριστικά του ιστογράμματος Χαρακτηριστικά του ιστογράμματος διαφορών Χαρακτηριστικά του πίνακα Co-occurrence Χαρακτηριστικά του πίνακα Run Length
47
48 #Total Count: 5 Obj# Area, Aspect,Axis (major),axis (minor),perimeter,roundness, IOD
49
50 Όγκος πληροφορίας Modality Edge size Bits/pixel MB/image MB/patient radiograph >= >=16 CT/slice Ultrasound MRI/slice Momography >= >=15 Fluoroscopy προφανώς: υπάρχει ανάγκη για μεγάλες ταχύθτητες μετάδοσης και συμπίεση των δεδομένων
51 Συμπίεση Εξαρτάται από το περιεχόμενο της εικόνας Δύο μεγάλες κατηγορίες: με απώλειες και χωρίς απώλειες Χωρίς απώλειες: πετυχαίνουμε συμπιέσεις της τάξεως του 1 Συνήθης τεχνική: run length encoding Συνήθη formats: TIFF, GIF Με απώλειες: πετυχαίνουμε συμπιέσεις της τάξεως του 1, αλλά δεν είναι δυνατή η επαναφορά της εικόνας όπως πριν τη συμπίεση Τεχνικές: Διακριτός μετασχηματισμός συνιμιτόνου, Fractals, Wavelets Συνήθη Format JPEG, FIF
52 Διαγνωστικά προβλήματα από τη χρήση συμπίεσης με απώλειες Θόλωμα και blocking των εικόνων από την JPEG συμπίεση Εισαγωγή τεχνητής υφής από fractal συμπίεση Η Αλλοίωση δεν είναι ορατή όταν έχουμε μικρές συμπιέσεις αλλά είναι δυνατόν να είναι πρόβλημα σε μετρητικές διαδικασίες Εφόσον δεν υπάρχει μέτρο της επίδρασης της συμπίεσης στη διαγνωστική ακρίβεια, η συμπίεση με απώλειες δεν συνίσταται
53 Παραδείγματα αλλοίωσης λόγω JPEG συμπίεσης Αρχική 768KB 5% 43KB 9% 16KB 97% 8KB
54
55
Α.Τ.Ε.Ι. Ηρακλείου Ψηφιακή Επεξεργασία Εικόνας ιδάσκων: Βασίλειος Γαργανουράκης. Ανθρώπινη Όραση - Χρωµατικά Μοντέλα
Ανθρώπινη Όραση - Χρωµατικά Μοντέλα 1 Τι απαιτείται για την όραση Φωτισµός: κάποια πηγή φωτός Αντικείµενα: που θα ανακλούν (ή διαθλούν) το φως Μάτι: σύλληψη του φωτός σαν εικόνα Τρόποι µετάδοσης φωτός
Επεξεργασία Χαρτογραφικής Εικόνας
Επεξεργασία Χαρτογραφικής Εικόνας ιδάσκων: Αναγνωστόπουλος Χρήστος Βασικά στοιχεία εικονοστοιχείου (pixel) Φυσική λειτουργία όρασης Χηµική και ψηφιακή σύλληψη (Κλασσικές και ψηφιακές φωτογραφικές µηχανές)
Εικόνα. Τεχνολογία Πολυμέσων και Πολυμεσικές Επικοινωνίες 05-1
Εικόνα Εισαγωγή Ψηφιακή αναπαράσταση Κωδικοποίηση των χρωμάτων Συσκευές εισόδου και εξόδου Βάθος χρώματος και ανάλυση Συμβολική αναπαράσταση Μετάδοση εικόνας Σύνθεση εικόνας Ανάλυση εικόνας Τεχνολογία
Βασικές έννοιες. Αναλογικό Βίντεο. Ψηφιακό Βίντεο. Κινούμενα γραφικά (animation)( Πλαίσιο (frame, καρέ) Ρυθμός πλαισίων (frame rate)
8. Video & ΠΟΛΥΜΕΣΑ Βασικές έννοιες Πλαίσιο (frame, καρέ) Ρυθμός πλαισίων (frame rate) Αναλογικό Βίντεο Τύποι αναλογικού σήματος Κωδικοποίηση αναλογικού βίντεο Ψηφιακό Βίντεο Σύλληψη, ψηφιοποίηση, δειγματοληψία
ΑΣΚΗΣΗ 2 ΒΑΣΙΚΑ ΚΑΙ ΣΥΝΘΕΤΑ ΣΗΜΑΤΑ ΔΥΟ ΔΙΑΣΤΑΣΕΩΝ - ΕΙΚΟΝΑΣ
ΑΣΚΗΣΗ 2 ΒΑΣΙΚΑ ΚΑΙ ΣΥΝΘΕΤΑ ΣΗΜΑΤΑ ΔΥΟ ΔΙΑΣΤΑΣΕΩΝ - ΕΙΚΟΝΑΣ Αντικείμενο: Κατανόηση και αναπαράσταση των βασικών σημάτων δύο διαστάσεων και απεικόνισης αυτών σε εικόνα. Δημιουργία και επεξεργασία των διαφόρων
Τμήμα Επιστήμης Υπολογιστών ΗΥ-474. Ψηφιακή Εικόνα. Χωρική ανάλυση Αρχεία εικόνων
Ψηφιακή Εικόνα Χωρική ανάλυση Αρχεία εικόνων Ψηφιοποίηση εικόνων Δειγματοληψία περιοδική, ορθογώνια (pixel = picture element) πυκνότητα ανάλογα με τη λεπτομέρεια (ppi) Κβαντισμός τιμών διακριτές τιμές,
Εφαρμογές Πληροφορικής
Εφαρμογές Πληροφορικής Κεφάλαιο 11 Πολυμέσα ΜΕΡΟΣ Α 1. Υπερκείμενο Ποιός είναι ο κόμβος, ποιός ο σύνδεσμος και ποιά η θερμή λέξη; 1 2. Υπερμέσα Χαρακτηριστικά Κόμβος (Node) Αποτελεί τη βάση πληροφοριών
Ιατρική Πληροφορική. Δρ. Π. ΑΣΒΕΣΤΑΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΒΙΟΪΑΤΡΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ Τ.Ε.
Ιατρική Πληροφορική Δρ. Π. ΑΣΒΕΣΤΑΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΒΙΟΪΑΤΡΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ Τ.Ε. Οι διάφορες τεχνικές απεικόνισης (imaging modalities) της ανθρώπινης ανατομίας περιγράφονται κατά DICOM ως συντομογραφία
DIP_01 Εισαγωγή στην ψηφιακή εικόνα. ΤΕΙ Κρήτης
DIP_01 Εισαγωγή στην ψηφιακή εικόνα ΤΕΙ Κρήτης Πληροφορίες Μαθήματος ιαλέξεις Πέμπτη 12:15 15:00 Αιθουσα Γ7 ιδάσκων:. Κοσμόπουλος Γραφείο: Κ23-0-15 (ισόγειο( κλειστού γυμναστηρίου) Ωρες γραφείου Τε 16:00
Group (JPEG) το 1992.
Μέθοδοι Συμπίεσης Εικόνας Πρωτόκολλο JPEG Συμπίεση Εικόνας: Μείωση αποθηκευτικού χώρου Ευκολία στη μεταφορά αρχείων Δημιουργήθηκε από την ομάδα Joint Photographic Experts Group (JPEG) το 1992. Ονομάστηκε
Μεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες» Ψηφιακή Επεξεργασία Εικόνας. Εισηγητής Αναστάσιος Κεσίδης
Μεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες» Ψηφιακή Επεξεργασία Εικόνας Εισηγητής Αναστάσιος Κεσίδης Εισαγωγή Τι είναι η εικόνα; Μια οπτική αναπαράσταση με την μορφή μιας συνάρτησης f(x, y) όπου η
DIP_06 Συμπίεση εικόνας - JPEG. ΤΕΙ Κρήτης
DIP_06 Συμπίεση εικόνας - JPEG ΤΕΙ Κρήτης Συμπίεση εικόνας Το μέγεθος μιας εικόνας είναι πολύ μεγάλο π.χ. Εικόνα μεγέθους Α4 δημιουργημένη από ένα σαρωτή με 300 pixels ανά ίντσα και με χρήση του RGB μοντέλου
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ,
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ, ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 422: ΣΥΣΤΗΜΑΤΑ ΠΟΛΥΜΕΣΩΝ Ακαδηµαϊκό Έτος 2004 2005, Χειµερινό Εξάµηνο Καθ.: Νίκος Τσαπατσούλης ΕΡΩΤΗΣΕΙΣ ΓΙΑ ΕΠΑΝΑΛΗΨΗ Το τρέχον έγγραφο αποτελεί υπόδειγµα τελικής
Συστήματα Πολυμέσων. Ενότητα 7: Συμπίεση Εικόνας κατά JPEG. Θρασύβουλος Γ. Τσιάτσος Τμήμα Πληροφορικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 7: Συμπίεση Εικόνας κατά JPEG Θρασύβουλος Γ. Τσιάτσος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 1
ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 1 ΒΑΣΙΚΟΙ ΧΕΙΡΙΣΜΟΙ ΕΙΚΟΝΑΣ Αντικείμενο: Εισαγωγή στις βασικές αρχές της ψηφιακής επεξεργασίας εικόνας χρησιμοποιώντας το MATLAB και το πακέτο Επεξεργασίας Εικόνας. Περιγραφή και αναπαράσταση
ΠΛΗΡΟΦΟΡΙΚΗ I. 7 η ΔΙΑΛΕΞΗ Γραφικά με Υπολογιστή
ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ - ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΣΑΓΩΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΤΟΥΡΙΣΤΙΚΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ ΚΑΙ ΕΠΙΧΕΙΡΗΣΕΩΝ ΦΙΛΟΞΕΝΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗ I 7 η ΔΙΑΛΕΞΗ Γραφικά με Υπολογιστή ΧΑΣΑΝΗΣ ΒΑΣΙΛΕΙΟΣ
5. Η ΕΙΚΟΝΑ ΣΤΑ ΠΟΛΥΜΕΣΑ
5. Η ΕΙΚΟΝΑ ΣΤΑ ΠΟΛΥΜΕΣΑ Η Εικόνα στα Πολυμέσα Μια εικόνα χίλιες λέξεις Εικόνα: Χωρική αναπαράσταση ενός αντικειμένου σε σκηνή δύο ή τριών διαστάσεων Μοντέλο του πραγματικού κόσμου Χρήση εικόνων Τέχνη
Σημαντικές χρονολογίες στην εξέλιξη της Υπολογιστικής Τομογραφίας
Σημαντικές χρονολογίες στην εξέλιξη της Υπολογιστικής Τομογραφίας 1924 - μαθηματική θεωρία τομογραφικής ανακατασκευής δεδομένων (Johann Radon) 1930 - κλασσική τομογραφία (A. Vallebona) 1963 - θεωρητική
2. ΨΗΦΙΟΠΟΙΗΣΗ ΠΛΗΡΟΦΟΡΙΑΣ
2. ΨΗΦΙΟΠΟΙΗΣΗ ΠΛΗΡΟΦΟΡΙΑΣ Περιγραφή πληροφορίας. Η πληροφορία περιγράφεται σαν μία ή περισσότερες χρονικές ή χωρικές μεταβλητές. Μετατρέπει την φυσική ποσότητα σε ηλεκτρικό σήμα To σήμα αναπαριστά το
Εφαρμογές που συνδυάζουν ταυτόχρονα πολλαπλά μέσα : Κί Κείμενο, Εικόνα, Ήχος, Video, Animation. Στα υπερμέσα η πρόσπέλαση της πληροφορίας γίνεται
Τι είναι Πολυμέσα και τι Υπερμέσα Εφαρμογές που συνδυάζουν ταυτόχρονα πολλαπλά μέσα : Κί Κείμενο, Εικόνα, Ήχος, Video, Animation Στα πολυμέσα η προσπέλαση της πληροφορίας γίνεται με γραμμικό τρόπο (προκαθορισμένη
Έγχρωµο και Ασπρόµαυρο Φως
Έγχρωµο και Ασπρόµαυρο Φως Χρώµα: κλάδος φυσικής, φυσιολογίας, ψυχολογίας, τέχνης. Αφορά άµεσα τον προγραµµατιστή των γραφικών. Αν αφαιρέσουµε χρωµατικά χαρακτηριστικά, λαµβάνουµε ασπρόµαυρο φως. Μόνο
Βίντεο και κινούµενα σχέδια
Βίντεο και κινούµενα σχέδια Περιγραφή του βίντεο Ανάλυση του βίντεο Κωδικοποίηση των χρωµάτων Μετάδοση τηλεοπτικού σήµατος Συµβατικά τηλεοπτικά συστήµατα Τεχνολογία Πολυµέσων 06-1 Περιγραφή του βίντεο
Παρουσίαση Νο. 4 Ψηφιακή Καταγραφή Εικόνας
Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Παρουσίαση Νο. 4 Ψηφιακή Καταγραφή Εικόνας Εισαγωγή (1/2) Για την καταγραφή εικόνας απαιτούνται «Φωτεινή» πηγή Αντικείμενο Σύστημα καταγραφής «Φωτεινή» πηγή Πηγή
Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας. Παρουσίαση Νο. 1. Εισαγωγή
Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ακαδημαϊκό Έτος 2015-16 Παρουσίαση Νο. 1 Εισαγωγή Τι είναι η εικόνα; Οτιδήποτε μπορούμε να δούμε ή να απεικονίσουμε Π.χ. Μια εικόνα τοπίου αλλά και η απεικόνιση
Συµπίεση Εικόνας: Το πρότυπο JPEG
ΒΕΣ : Συµπίεση και Μετάδοση Πολυµέσων ΒΕΣ Συµπίεση και Μετάδοση Πολυµέσων Συµπίεση Εικόνας: Το πρότυπο JPEG ΒΕΣ : Συµπίεση και Μετάδοση Πολυµέσων Εισαγωγή Σχεδιάστηκε από την οµάδα Joint Photographic Experts
Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας. Παρουσίαση 12 η. Θεωρία Χρώματος και Επεξεργασία Έγχρωμων Εικόνων
Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Παρουσίαση 12 η Θεωρία Χρώματος και Επεξεργασία Έγχρωμων Εικόνων Εισαγωγή (1) Το χρώμα είναι ένας πολύ σημαντικός παράγοντας περιγραφής, που συχνά απλουστεύει κατά
Εικόνες και γραφικά. Τεχνολογία Πολυµέσων 05-1
Εικόνες και γραφικά Περιγραφή στατικών εικόνων Αναπαράσταση γραφικών Υλικό γραφικών Dithering και anti-aliasing Σύνθεση εικόνας Ανάλυση εικόνας Μετάδοση εικόνας Τεχνολογία Πολυµέσων 05-1 Περιγραφή στατικών
ΒΕΣ 04: Συµπίεση και Μετάδοση Πολυµέσων. Περιεχόµενα. Βιβλιογραφία. Εικόνες και Πολυµεσικές Εφαρµογές. Ψηφιακή Επεξεργασία Εικόνας.
ΒΕΣ 04: Συµπίεση και Μετάδοση Πολυµέσων Εικόνα και Πολυµεσικές Εφαρµογές Περιεχόµενα Ψηφιακή Επεξεργασία Εικόνας Σηµειακές µέθοδοι Φίλτρα γειτνίασης Γεωµετρικές µέθοδοι Εικόνες και Πολυµεσικές Εφαρµογές
Επεξεργασία Χαρτογραφικής Εικόνας
Επεξεργασία Χαρτογραφικής Εικόνας Διδάσκων: Αναγνωστόπουλος Χρήστος Κώδικες μετρήσεων αντικειμένων σε εικόνα Χρωματικά μοντέλα: Munsell, HSB/HSV, CIE-LAB Κώδικες μετρήσεων αντικειμένων σε εικόνες Η βασική
Analog vs Digital. Δούρβας Ιωάννης ΙΩΑΝΝΗΣ ΔΟΥΡΒΑΣ
Analog vs Digital Δούρβας Ιωάννης Ηλεκτρονικός Υπολογιστής ψηφιακή μηχανή Ο υπολογιστής αποτελείται από ένα σύνολο (εκατομμύρια) ηλεκτρικά κυκλώματα. Για τα ηλεκτρικά κυκλώματα υπάρχουν μόνο 2 καταστάσεις.
Συστήματα Πολυμέσων. Ενότητα 5: Χαρακτηριστικά Ψηφιακής Εικόνας. Θρασύβουλος Γ. Τσιάτσος Τμήμα Πληροφορικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 5: Χαρακτηριστικά Ψηφιακής Εικόνας Θρασύβουλος Γ. Τσιάτσος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Τεχνολογία Πολυμέσων. Ενότητα # 5: Εικόνα Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής
Τεχνολογία Πολυμέσων Ενότητα # 5: Εικόνα Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα. Το
Αρχές κωδικοποίησης. Τεχνολογία Πολυμέσων και Πολυμεσικές Επικοινωνίες 08-1
Αρχές κωδικοποίησης Απαιτήσεις κωδικοποίησης Είδη κωδικοποίησης Κωδικοποίηση εντροπίας Διαφορική κωδικοποίηση Κωδικοποίηση μετασχηματισμών Στρωματοποιημένη κωδικοποίηση Κβαντοποίηση διανυσμάτων Τεχνολογία
Σχεδίαση με Ηλεκτρονικούς Υπολογιστές
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Σχεδίαση με Ηλεκτρονικούς Υπολογιστές Ενότητα # 10: Χρωματικά μοντέλα στον ΗΥ Καθηγητής Ιωάννης Γ. Παρασχάκης Τμήμα Αγρονόμων & Τοπογράφων
DIP_01 Εισαγωγήστην ψηφιακήεικόνα. ΤΕΙ Κρήτης
DIP_01 Εισαγωγήστην ψηφιακήεικόνα ΤΕΙ Κρήτης Ψηφιακήεικόνα Ψηφιακή εικόνα = αναλογική εικόνα µετά από δειγµατοληψία στο χώρο (x και y διευθύνσεις) Αναπαριστάνεται από έναν ή περισσότερους 2 πίνακες Μπορεί
Ψηφιακή Επεξεργασία Εικόνας
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ψηφιακή Επεξεργασία Εικόνας Ενότητα 6 : Κωδικοποίηση & Συμπίεση εικόνας Ιωάννης Έλληνας Τμήμα Η/ΥΣ Άδειες Χρήσης Το παρόν εκπαιδευτικό
Αντοχή (ruggedness) στο θόρυβο μετάδοσης Αποτελεσματική αναγέννηση (regeneration) Δυνατότητα ομοιόμορφου σχήματος (uniform format) μετάδοσης Όμως:
ΨΗΦΙΑΚΗ ΑΝΑΠΑΡΑΣΤΑΣΗ Πλεονεκτήματα: Αντοχή (ruggedness) στο θόρυβο μετάδοσης Αποτελεσματική αναγέννηση (regeneration) Δυνατότητα ομοιόμορφου σχήματος (uniform format) μετάδοσης Όμως: Αύξηση απαίτησης εύρους
Συμπίεση Πολυμεσικών Δεδομένων
Συμπίεση Πολυμεσικών Δεδομένων Εισαγωγή στο πρόβλημα και επιλεγμένες εφαρμογές Παράδειγμα 2: Συμπίεση Εικόνας ΔΠΜΣ ΜΥΑ, Ιούνιος 2011 Εισαγωγή (1) Οι τεχνικές συμπίεσης βασίζονται στην απόρριψη της πλεονάζουσας
ΒΕΣ 04: Συµπίεση και Μετάδοση Πολυµέσων. Περιεχόµενα. Βιβλιογραφία. Συµπίεση εικόνων: Το πρότυπο JPEG. Εισαγωγή. Ευθύς µετασχηµατισµός DCT
ΒΕΣ : Συµπίεση και Μετάδοση Πολυµέσων Συµπίεση εικόνων: Το πρότυπο JPEG Περιεχόµενα Εισαγωγή Ο µετασχηµατισµός DCT Το πρότυπο JPEG Προετοιµασία εικόνας / µπλοκ Ευθύς µετασχηµατισµός DCT Κβαντισµός Κωδικοποίηση
Περιεχόµενα. ΕΠΛ 422: Συστήµατα Πολυµέσων. Βιβλιογραφία. Εισαγωγή. Συµπίεση εικόνων: Το πρότυπο JPEG. Εισαγωγή. Ευθύς µετασχηµατισµός DCT
Περιεχόµενα ΕΠΛ : Συστήµατα Πολυµέσων Συµπίεση εικόνων: Το πρότυπο JPEG Εισαγωγή Ο µετασχηµατισµός DCT Το πρότυπο JPEG Προετοιµασία εικόνας / µπλοκ Ευθύς µετασχηµατισµός DCT Κβαντισµός Κωδικοποίηση ηµιουργία
Θέματα Συστημάτων Πολυμέσων. Ενότητα #3: Ιδιότητες μέσων Διδάσκων: Γεώργιος K. Πολύζος Τμήμα: Μεταπτυχιακό Πρόγραμμα Σπουδών Επιστήμη των Υπολογιστών
Θέματα Συστημάτων Πολυμέσων Ενότητα #3: Ιδιότητες μέσων Διδάσκων: Γεώργιος K. Πολύζος Τμήμα: Μεταπτυχιακό Πρόγραμμα Σπουδών Επιστήμη των Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Μέθοδοι Αναπαράστασης Περιοχών
KEΣ 3 Αναγνώριση Προτύπων και Ανάλυση Εικόνας Μέθοδοι Αναπαράστασης Περιοχών ΤµήµαΕπιστήµης και Τεχνολογίας Τηλεπικοινωνιών Πανεπιστήµιο Πελοποννήσου Εισαγωγή Χαρακτηριστικά χώρου Χαρακτηριστικά από µετασχηµατισµό
Συστήματα Πολυμέσων. Ενότητα 6: Συμπίεση Ψηφιακής Εικόνας. Θρασύβουλος Γ. Τσιάτσος Τμήμα Πληροφορικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 6: Συμπίεση Ψηφιακής Εικόνας Θρασύβουλος Γ. Τσιάτσος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Σχεδιασμός και κατασκευή εφαρμογής ταξινόμησης αντικειμένων σε γραμμή μεταφοράς προϊόντων με χρήση όρασης μηχανής
Πανεπιστήμιο Δυτικής Μακεδονίας Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Σχεδιασμός και κατασκευή εφαρμογής ταξινόμησης αντικειμένων σε γραμμή μεταφοράς προϊόντων με χρήση όρασης μηχανής Λοΐζου
Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 1 η : Εισαγωγή. Καθ. Κωνσταντίνος Μπερμπερίδης Πολυτεχνική Σχολή Μηχανικών Η/Υ & Πληροφορικής
Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 1 η : Εισαγωγή Καθ. Κωνσταντίνος Μπερμπερίδης Πολυτεχνική Σχολή Μηχανικών Η/Υ & Πληροφορικής Σκοποί ενότητας Βασικά στοιχεία της ψηφιακής επεξεργασίας και
Ψηφιακή Επεξεργασία Εικόνων
Ψηφιακή Επεξεργασία Εικόνων Εικόνα : αναπαράσταση των πραγμάτων Επεξεργασία : βελτίωση, ανάλυση, αντίληψη Βασικές έννοιες και μεθοδολογίες ψηφιακής επεξεργασίας εικόνων Θεμελιώδη θέματα για την περιοχή
Ενότητα 2: Οι Θεµελιώδεις Αρχές των Ψηφιακών Εικόνων
Ενότητα 2: Οι Θεµελιώδεις Αρχές των Ψηφιακών Εικόνων Δειγµατοληψία και Κβαντισµός: Μια εικόνα (µπορεί να) είναι συνεχής τόσο ως προς τις συντεταγµένες x, y όσο και ως προς το πλάτος. Για να τη µετατρέψουµε
Αναπαράσταση Μη Αριθμητικών Δεδομένων
Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 2014-15 Αναπαράσταση Μη Αριθμητικών Δεδομένων (κείμενο, ήχος και εικόνα στον υπολογιστή) http://di.ionio.gr/~mistral/tp/csintro/
! Δεδομένα: ανεξάρτητα από τύπο και προέλευση, στον υπολογιστή υπάρχουν σε μία μορφή: 0 και 1
Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 5-6 Αναπαράσταση Μη Αριθμητικών Δεδομένων (κείμενο, ήχος και εικόνα στον υπολογιστή) http://di.ionio.gr/~mistral/tp/csintro/
3. ΤΕΧΝΙΚΕΣ ΣΥΜΠΙΕΣΗΣ ΠΟΛΥΜΕΣΩΝ
3. ΤΕΧΝΙΚΕΣ ΣΥΜΠΙΕΣΗΣ ΠΟΛΥΜΕΣΩΝ ΑΝΑΓΚΗ ΣΥΜΠΙΕΣΗΣ ΔΕΔΟΜΕΝΩΝ Local Multimedia Π.χ. Μία ταινία 90 min απαιτεί 120 GB, και τα σημερινά μέσα αποθήκευσης < 25 GB. Άρα σήμερα είναι αδύνατη η αποθήκευση και η
Τεράστιες ανάγκες σε αποθηκευτικό χώρο
ΣΥΜΠΙΕΣΗ Τεράστιες ανάγκες σε αποθηκευτικό χώρο Παράδειγμα: CD-ROM έχει χωρητικότητα 650MB, χωρά 75 λεπτά ασυμπίεστου στερεοφωνικού ήχου, αλλά 30 sec ασυμπίεστου βίντεο. Μαγνητικοί δίσκοι χωρητικότητας
Μετάδοση Πολυμεσικών Υπηρεσιών Ψηφιακή Τηλεόραση
Χειμερινό Εξάμηνο 2013-2014 Μετάδοση Πολυμεσικών Υπηρεσιών Ψηφιακή Τηλεόραση 4 η Παρουσίαση : Επεξεργασία Εικόνας Διδάσκων: Γιάννης Ντόκας Εισαγωγή στις Έννοιες των Εικόνων Στο χώρο των πολυμέσων χρησιμοποιείται
Ανάλυση και επεξεργασία εικόνων DICOM με τη χρήση Matlab
ΑΣΚΗΣΗ 8 Ανάλυση και επεξεργασία εικόνων DICOM με τη χρήση Matlab 1. Περιγραφή του προτύπου DICOM Η ψηφιακή επεξεργασία ιατρικής εικόνας ξεκίνησε παράλληλα με την ανάπτυξη ενός προτύπου για τη μεταφορά
Digital Image Processing
Digital Image Processing Intensity Transformations Πέτρος Καρβέλης pkarvelis@gmail.com Images taken from: R. Gonzalez and R. Woods. Digital Image Processing, Prentice Hall, 2008. Image Enhancement: είναι
Ψηφιοποίηση και Ψηφιακή Επεξεργασία Εικόνας
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Ψηφιοποίηση και Ψηφιακή Επεξεργασία Εικόνας Ενότητα 10: Εισαγωγή στην επεξεργασία εικόνας Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons
Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 3 η : Ψηφιακή Καταγραφή Εικόνας
Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 3 η : Ψηφιακή Καταγραφή Εικόνας Καθ. Κωνσταντίνος Μπερμπερίδης Πολυτεχνική Σχολή Μηχανικών Η/Υ & Πληροφορικής Σκοποί ενότητας Εισαγωγή στην ψηφιακή καταγραφή
Συστήµατα Πολυµέσων Ενδιάµεση Εξέταση: Οκτώβριος 2004
Ενδιάµεση Εξέταση: Οκτώβριος 4 ΜΕΡΟΣ Β: ΑΣΚΗΣΕΙΣ Άσκηση (25 µονάδες): Μια εικόνα αποχρώσεων του γκρι και διαστάσεων 25 x pixel έχει κωδικοποιηθεί κατά PCM µε βάθος χρώµατος 3 bits /pixel. Οι τιµές φωτεινότητας
ΙΑΤΡΙΚΗ ΑΠΕΙΚΟΝΙΣΗ & ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΙΑΤΡΙΚΗΣ ΕΙΚΟΝΑΣ
ΙΑΤΡΙΚΗ ΑΠΕΙΚΟΝΙΣΗ & ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΙΑΤΡΙΚΗΣ ΕΙΚΟΝΑΣ ΔΡ. Γ. ΜΑΤΣΟΠΟΥΛΟΣ ΕΠ. ΚΑΘΗΓΗΤΗΣ ΣΧΟΛΗ ΗΛΕΚΤΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Εισαγωγή Σχηματισμός Εικόνας
Ψηφιακή Επεξεργασία Εικόνας
Ψηφιακή Επεξεργασία Εικόνας Τι είναι η ψηφιακή εικόνα 1/67 Το μοντέλο της εικόνας ΜίαεικόναπαριστάνεταιαπόέναπίνακαU που κάθε στοιχείο του u(i,j) ονομάζεται εικονοστοιχείο pixel (picture element). Η ανάλυση
Τμήμα Χρηματοοικονομικής & Ελεγκτικής ΤΕΙ Ηπείρου Παράρτημα Πρέβεζας. Πληροφορική Ι ΨΗΦΙΑΚΗ ΑΝΑΠΑΡΑΣΤΑΣΗ ΔΕΔΟΜΕΝΩΝ. Δρ.
Τμήμα Χρηματοοικονομικής & Ελεγκτικής ΤΕΙ Ηπείρου Παράρτημα Πρέβεζας Πληροφορική Ι ΨΗΦΙΑΚΗ ΑΝΑΠΑΡΑΣΤΑΣΗ ΔΕΔΟΜΕΝΩΝ Δρ. Γκόγκος Χρήστος Τύποι δεδομένων ιάφοροι τύποι δεδοµένων εδοµένα Κείµενο Αριθµοί Εικόνες
Εισαγωγή σε οπτική και μικροσκοπία
Εισαγωγή σε οπτική και μικροσκοπία Eukaryotic cells Microscope Cancer Μικροσκόπια Microscopes Ποια είδη υπάρχουν (και γιατί) Πώς λειτουργούν (βασικές αρχές) Πώς και ποια μικροσκόπια μπορούμε να χρησιμοποιήσουμε
Μια «ανώδυνη» εισαγωγή στο μάθημα (και στο MATLAB )
Μια «ανώδυνη» εισαγωγή στο μάθημα (και στο MATLAB ) Μια πρώτη ιδέα για το μάθημα χωρίς καθόλου εξισώσεις!!! Περίγραμμα του μαθήματος χωρίς καθόλου εξισώσεις!!! Παραδείγματα από πραγματικές εφαρμογές ==
7ο ΓΥΜΝΑΣΙΟ ΠΕΡΙΣΤΕΡΙΟΥ ΤΑΞΗ Β3 ΜΑΘΗΜΑ : ΠΛΗΡΟΦΟΡΙΚΗ ΘΕΜΑ ΕΡΓΑΣΙΑΣ : ΠΟΛΥΜΕΣΑ ΚΑΘΗΓΗΤΗΣ : ΧΑΤΖΗΣ ΜΑΘΗΤΡΙΑ : ΣΙΟΥΛΑ ΔΗΜΗΤΡΑ
7ο ΓΥΜΝΑΣΙΟ ΠΕΡΙΣΤΕΡΙΟΥ ΤΑΞΗ Β3 ΜΑΘΗΜΑ : ΠΛΗΡΟΦΟΡΙΚΗ ΘΕΜΑ ΕΡΓΑΣΙΑΣ : ΠΟΛΥΜΕΣΑ ΚΑΘΗΓΗΤΗΣ : ΧΑΤΖΗΣ ΜΑΘΗΤΡΙΑ : ΣΙΟΥΛΑ ΔΗΜΗΤΡΑ ΠΟΛΥΜΕΣΑ ΕΙΣΑΓΩΓΗ ΣΤΑ ΠΟΛΥΜΕΣΑ ΕΙΚΟΝΑ & ΗΧΟΣ ΕΙΣΑΓΩΓΗ ΣΤΑ ΠΟΛΥΜΕΣΑ Ετυμολογία
Τεχνολογία Πολυμέσων. Ενότητα # 8: Αρχές κωδικοποίησης Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής
Τεχνολογία Πολυμέσων Ενότητα # 8: Αρχές κωδικοποίησης Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του
Εισαγωγή Ασπρόμαυρο Halftoning γάμμα Φως/Χρώμα Χρωματικά Μοντέλα Άλλα. 6ο Μάθημα Χρώμα. Γραφικα. Ευάγγελος Σπύρου
Εισαγωγή Ασπρόμαυρο Halftoning γάμμα Φως/Χρώμα Χρωματικά Μοντέλα Άλλα Γραφικα Τμήμα Πληροφορικής Πανεπιστήμιο Θεσσαλίας Ακ Έτος 2016-17 Σύνοψη του σημερινού μαθήματος 1 Εισαγωγή 2 Ασπρόμαυρο Φως 3 Halftoning
Μετάδοση Πολυμεσικών Υπηρεσιών Ψηφιακή Τηλεόραση
Χειμερινό Εξάμηνο 2013-2014 Μετάδοση Πολυμεσικών Υπηρεσιών Ψηφιακή Τηλεόραση 5 η Παρουσίαση : Ψηφιακή Επεξεργασία Εικόνας Διδάσκων: Γιάννης Ντόκας Σύνθεση Χρωμάτων Αφαιρετική Παραγωγή Χρώματος Χρωματικά
ΕΡΩΤΗΣΕΙΣ ΣΤΗ ΘΕΩΡΙΑ ΧΡΩΜΑΤΩΝ
ΕΡΩΤΗΣΕΙΣ ΣΤΗ ΘΕΩΡΙΑ ΧΡΩΜΑΤΩΝ Συμπλήρωση κενών 1. Η Λαμπρότητα (Brightness) είναι Υποκειμενικός παράγοντας. 2. Το χρώμα ενός αντικειμένου εξαρτάται από το ίδιο και την φωτεινή πηγή. 3. Το Μάτι είναι πολύ
Πανεπιστήμιο Θεσσαλίας. Πολυτεχνική Σχολή ΘΕΜΑΤΙΚΗ : ΤΗΛΕΠΙΣΚΟΠΗΣΗ
Πανεπιστήμιο Θεσσαλίας Πολυτεχνική Σχολή Τμήμα Μηχανικών Χωροταξίας Πολεοδομίας και Περιφερειακής Ανάπτυξης ΘΕΜΑΤΙΚΗ : ΤΗΛΕΠΙΣΚΟΠΗΣΗ Ιωάννης Φαρασλής Τηλ : 24210-74466, Πεδίον Άρεως, Βόλος http://www.prd.uth.gr/el/staff/i_faraslis
Εισαγωγή στην τεχνική της ψηφιοποίησης των διαφανειών και των μικροταινιών των χειρογράφων της συλλογής του Π.Ι.Π.Μ
Εισαγωγή στην τεχνική της ψηφιοποίησης των διαφανειών και των μικροταινιών των χειρογράφων της συλλογής του Π.Ι.Π.Μ Επιμέλεια Άννα Γ. Λυσικάτου «Το αληθινό ταξίδι της ανακάλυψης δε βρίσκεται στην εξερεύνηση
Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 11 η : θεωρία Χρώματος & Επεξεργασία Έγχρωμων Εικόνων
Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 11 η : θεωρία Χρώματος & Επεξεργασία Έγχρωμων Εικόνων Καθ. Κωνσταντίνος Μπερμπερίδης Πολυτεχνική Σχολή Μηχανικών Η/Υ & Πληροφορικής Σκοποί ενότητας Εισαγωγή
Τμήμα Λογιστικής. Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές. Μαθήματα 6 και 7 Αναπαράσταση της Πληροφορίας στον Υπολογιστή. 1 Στέργιος Παλαμάς
ΤΕΙ Ηπείρου Παράρτημα Πρέβεζας Τμήμα Λογιστικής Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές Μαθήματα 6 και 7 Αναπαράσταση της Πληροφορίας στον Υπολογιστή 1 1. Αριθμοί: Το Δυαδικό Σύστημα Οι ηλεκτρονικοί υπολογιστές
Σχεδίαση με Ηλεκτρονικούς Υπολογιστές
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Σχεδίαση με Ηλεκτρονικούς Υπολογιστές Ενότητα # 7: Αυτόματος σχεδιαστής ψεκασμού Καθηγητής Ιωάννης Γ. Παρασχάκης Τμήμα Αγρονόμων & Τοπογράφων
Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 6 η : Συμπίεση Εικόνας. Καθ. Κωνσταντίνος Μπερμπερίδης Πολυτεχνική Σχολή Μηχανικών Η/Υ & Πληροφορικής
Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 6 η : Συμπίεση Εικόνας Καθ. Κωνσταντίνος Μπερμπερίδης Πολυτεχνική Σχολή Μηχανικών Η/Υ & Πληροφορικής Σκοποί ενότητας Εισαγωγή στη συμπίεση εικόνας Μη απωλεστικες
ΤΕΙ ΚΡΗΤΗΣ ΤΜ. ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡ/ΚΗΣ & ΠΟΛΥΜΕΣΩΝ ΔΙΔΑΣΚΩΝ: Δρ. Γ. ΓΑΡΔΙΚΗΣ. Εισαγωγή
ΤΕΙ ΚΡΗΤΗΣ ΤΜ. ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡ/ΚΗΣ & ΠΟΛΥΜΕΣΩΝ ΔΙΔΑΣΚΩΝ: Δρ. Γ. ΓΑΡΔΙΚΗΣ 1 Εισαγωγή Το μάθημα «Αρχές Ψηφιακής Τηλεόρασης» εξετάζει τις τεχνολογίες και τους μηχανισμούς που παρεμβάλλονται για να διανεμηθεί
Ανάλυση Διατάξεων Εκπομπής σε Συστήματα Ψηφιακής Τηλεόρασης Υψηλής Ευκρίνειας
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΑΥΤΟΜΑΤΙΣΜΟΥ Ανάλυση Διατάξεων Εκπομπής σε Συστήματα Ψηφιακής Τηλεόρασης Υψηλής Ευκρίνειας Φλώρος Άγγελος ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ
2.0 ΒΑΣΙΚΕΣ ΓΝΩΣΕΙΣ-ΟΡΟΛΟΓΙΕΣ
2.0 ΒΑΣΙΚΕΣ ΓΝΩΣΕΙΣ-ΟΡΟΛΟΓΙΕΣ Η σάρωση ενός εγγράφου εισάγει στον υπολογιστή μια εικόνα, ενώ η εκτύπωση μεταφέρει στο χαρτί μια εικόνα από αυτόν. Για να αντιληφθούμε επομένως τα χαρακτηριστικά των σαρωτών
Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 2 η : Δισδιάστατα Σήματα & Συστήματα Μέρος 2
Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 2 η : Δισδιάστατα Σήματα & Συστήματα Μέρος 2 Καθ. Κωνσταντίνος Μπερμπερίδης Πολυτεχνική Σχολή Μηχανικών Η/Υ & Πληροφορικής Σκοποί ενότητας Παρουσιάση πλάτους
ΡΟΜΠΟΤΙΚΗ ΟΡΑΣΗ. Όταν ένα ρομπότ κινείται σε άγνωστο χώρο ή σε χώρο που μπορεί να αλλάξει η διάταξή του τότε εμφανίζεται η ανάγκη της όρασης μηχανής.
ΡΟΜΠΟΤΙΚΗ ΟΡΑΣΗ Όταν ένα ρομπότ κινείται σε άγνωστο χώρο ή σε χώρο που μπορεί να αλλάξει η διάταξή του τότε εμφανίζεται η ανάγκη της όρασης μηχανής. Αισθητήρες που χρησιμοποιούνται για να αντιλαμβάνεται
Ασκήσεις Επεξεργασίας Εικόνας
Ασκήσεις Επεξεργασίας Εικόνας. Εύρεση στοιχείων μιας περιοχής με ιδιότητα συγκεκριμένης γειτονιάς Άσκηση. Έστω δύο υποσύνολα πίνακα εικόνας S και S2 η οποία φαίνεται στο σχήμα παρακάτω. Για σύνολο τιμών
ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ
ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ Α.Τ.Ε.Ι. Ηρακλείου ιδάσκων: Βασίλειος Γαργανουράκης 1 Περιγραφή Μαθήµατος ΘΕΩΡΙΑ Fast Fourier Transform Συνελίξεις Μη Γραµµικοί Μετασχηµατισµοί Ψηφιακή Επεξεργασία Εικόνας ΕΜΕΙΣ
Ραδιομετρική Ενίσχυση - Χωρική Επεξεργασία Δορυφορικών Εικόνων
Πανεπιστήμιο Θεσσαλίας Πολυτεχνική Σχολή Τμήμα Μηχανικών Χωροταξίας Πολεοδομίας και Περιφερειακής Ανάπτυξης Ραδιομετρική Ενίσχυση - Χωρική Επεξεργασία Δορυφορικών Εικόνων Ιωάννης Φαρασλής Τηλ : 24210-74466,
Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 8 η : Κατάτμηση Εικόνας
Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 8 η : Κατάτμηση Εικόνας Καθ. Κωνσταντίνος Μπερμπερίδης Πολυτεχνική Σχολή Μηχανικών Η/Υ & Πληροφορικής Σκοποί ενότητας Εισαγωγή στην κατάτμηση εικόνας Τεχνικές
Μάθημα 7 ο. Συμπίεση Εικόνας ΤΜΗΥΠ / ΕΕΣΤ 1
Μάθημα 7 ο Συμπίεση Εικόνας ΤΜΗΥΠ / ΕΕΣΤ 1 Εισαγωγή (1) Οι τεχνικές συμπίεσης βασίζονται στην απόρριψη της πλεονάζουσας πληροφορίας Ανάγκες που καλύπτονται Εξοικονόμηση μνήμης Ελάττωση χρόνου και εύρους
Μεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες» Ψηφιακή Επεξεργασία Εικόνας. Εισηγητής Αναστάσιος Κεσίδης
Μεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες» Ψηφιακή Επεξεργασία Εικόνας Εισηγητής Αναστάσιος Κεσίδης Τμηματοποίηση εικόνας Τμηματοποίηση εικόνας Γενικά Διαμερισμός μιας εικόνας σε διακριτές περιοχές
Ψηφιοποίηση και Ψηφιακή Επεξεργασία Εικόνας
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Ψηφιοποίηση και Ψηφιακή Επεξεργασία Εικόνας Ενότητα 11: Επεξεργασία εικόνας Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και
Εισαγωγή στην επιστήμη των υπολογιστών. Υπολογιστές και Δεδομένα Κεφάλαιο 2ο Αναπαράσταση Δεδομένων
Εισαγωγή στην επιστήμη των υπολογιστών Υπολογιστές και Δεδομένα Κεφάλαιο 2ο Αναπαράσταση Δεδομένων 1 2.1 Τύποι Δεδομένων Τα δεδομένα σήμερα συναντώνται σε διάφορες μορφές, στις οποίες περιλαμβάνονται αριθμοί,
ΠΛΗ21 Κεφάλαιο 1. ΠΛΗ21 Ψηφιακά Συστήματα: Τόμος Α Κεφάλαιο: 1 Εισαγωγή
Ψηφιακά Συστήματα: Τόμος Α Κεφάλαιο: 1 Εισαγωγή Στόχοι του κεφαλαίου είναι να γνωρίσουμε: Τι είναι τα Αναλογικά κ τι τα Ψηφιακά Μεγέθη Τι είναι Σήμα, Αναλογικό Σήμα, Ψηφιακό Σήμα Τι είναι Δυαδικό Σήμα
Πληροφορική Εφαρμογές Πολυμέσων
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Πληροφορική Εφαρμογές Πολυμέσων Ενότητα 4: Ψηφιακές Εικόνες Ζαχαρούλα Ανδρεοπούλου Τμήμα Δασολογίας & Φυσικού Περιβάλλοντος Άδειες Χρήσης
Τηλεπισκόπηση - Φωτοερμηνεία
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ Τηλεπισκόπηση - Φωτοερμηνεία Ενότητα 6: Βασικές έννοιες Δορυφορικής Τηλεπισκόπησης. Ηλεκτρομαγνητική Ακτινοβολία. Κωνσταντίνος Περάκης Ιωάννης Φαρασλής Τμήμα Μηχανικών Χωροταξίας,
Μάθημα 9 ο. Κατάτμηση Εικόνας ΤΜΗΥΠ / ΕΕΣΤ 1
Μάθημα 9 ο Κατάτμηση Εικόνας ΤΜΗΥΠ / ΕΕΣΤ Εισαγωγή () Η κατάτμηση έχει ως στόχο να υποδιαιρέσει την εικόνα σε συνιστώσες περιοχές και αντικείμενα. Μία περιοχή αναμένεται να έχει ομοιογενή χαρακτηριστικά
ΠΛΗΡΟΦΟΡΙΚH ΓΙΑ ΤΗΝ ΤEΧΝΗ Η ΕΞAΜΗΝΟ
ΠΛΗΡΟΦΟΡΙΚH ΓΙΑ ΤΗΝ ΤEΧΝΗ Η ΕΞAΜΗΝΟ ΑΜΑΛIΑ ΦΩΚA ΕΠIΚΟΥΡΗ ΚΑΘΗΓHΤΡΙΑ Περιεχόμενο Μαθήματος 2 Αλληλεπίδραση Ζωντανές Εικόνες Living Images 3 Μια εικόνα αλλάζει ανάλογα με τις ενέργειες του θεατή. Αναπαριστά
Τεχνολογία Πολυμέσων. Ενότητα # 4: Ήχος Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής
Τεχνολογία Πολυμέσων Ενότητα # 4: Ήχος Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα. Το
ΑΡΧΕΣ ΤΗΛΕΠΙΣΚΟΠΗΣΗΣ (Y2204) Βασιλάκης Εμμανουήλ Επίκ. Καθηγητής Τηλεανίχνευσης
ΑΡΧΕΣ ΤΗΛΕΠΙΣΚΟΠΗΣΗΣ (Y2204) Βασιλάκης Εμμανουήλ Επίκ. Καθηγητής Τηλεανίχνευσης ΘΕΜΑΤΑ Τι είναι τηλεπισκόπηση Ιστορική εξέλιξη Συστήματα παρατήρησης της Γης Στοιχεία Ηλεκτρο-Μαγνητικής Ακτινοβολίας Διακριτική
Τεχνολογικό Eκπαιδευτικό Ίδρυμα Kρήτης TMHMA MHXANOΛOΓIAΣ. Δρ. Φασουλάς Γιάννης
Τεχνολογικό Eκπαιδευτικό Ίδρυμα Kρήτης TMHMA MHXANOΛOΓIAΣ Δρ. Φασουλάς Γιάννης jfasoulas@staff.teicrete.gr Θα μάθετε: Έννοιες που σχετίζονται με την μετατροπή μεταξύ αναλογικών και ψηφιακών σημάτων Πώς
ΑΣΚΗΣΗ 3 ΒΕΛΤΙΩΣΗ ΕΙΚΟΝΑΣ ΜΕΛΕΤΗ ΙΣΤΟΓΡΑΜΜΑΤΟΣ. ( ) 1, αν Ι(i,j)=k hk ( ), διαφορετικά
ΑΣΚΗΣΗ 3 ΒΕΛΤΙΩΣΗ ΕΙΚΟΝΑΣ ΜΕΛΕΤΗ ΙΣΤΟΓΡΑΜΜΑΤΟΣ Αντικείμενο: Εξαγωγή ιστογράμματος εικόνας, απλοί μετασχηματισμοί με αυτό, ισοστάθμιση ιστογράμματος. Εφαρμογή βασικών παραθύρων με την βοήθεια του ΜΑΤLAB
Ένα αναλογικό σήμα περιέχει άπειρες πιθανές τιμές. Για παράδειγμα ένας απλός ήχος αν τον βλέπαμε σε ένα παλμογράφο θα έμοιαζε με το παρακάτω:
Σημειώσεις Δικτύων Αναλογικά και ψηφιακά σήματα Ένα αναλογικό σήμα περιέχει άπειρες πιθανές τιμές. Για παράδειγμα ένας απλός ήχος αν τον βλέπαμε σε ένα παλμογράφο θα έμοιαζε με το παρακάτω: Χαρακτηριστικά
Βασικές έννοιες Δορυφορικής Τηλεπισκόπησης. Ηλεκτρομαγνητική Ακτινοβολία
Πανεπιστήμιο Θεσσαλίας Πολυτεχνική Σχολή Τμήμα Μηχανικών Χωροταξίας Πολεοδομίας και Περιφερειακής Ανάπτυξης Βασικές έννοιες Δορυφορικής Τηλεπισκόπησης Ηλεκτρομαγνητική Ακτινοβολία Ιωάννης Φαρασλής Τηλ
Τμήμα Επιστήμης Υπολογιστών ΗΥ-474. Ψηφιακή Εικόνα. Αντίληψη χρωμάτων Συστήματα χρωμάτων Κβαντισμός χρωμάτων
Ψηφιακή Εικόνα Αντίληψη χρωμάτων Συστήματα χρωμάτων Κβαντισμός χρωμάτων Σχηματισμός εικόνων Το φως είναι ηλεκτρομαγνητικό κύμα Το χρώμα προσδιορίζεται από το μήκος κύματος L(x, y ; t )= Φ(x, y ; t ; λ)
Προηγµένη ιασύνδεση µε τοπεριβάλλον
Προηγµένη ιασύνδεση µε τοπεριβάλλον! Επεξεργασία φυσικής γλώσσας # Κατανόηση φυσικής γλώσσας # Παραγωγή φυσικής γλώσσας! Τεχνητή όραση! Ροµποτική Κατανόηση Φυσικής Γλώσσας! Αναγνώριση οµιλίας (Speech recognition)!
27-Ιαν-2009 ΗΜΥ 429. 2. (ι) Βασική στατιστική (ιι) Μετατροπές: αναλογικό-σεψηφιακό και ψηφιακό-σε-αναλογικό
ΗΜΥ 429 2. (ι) Βασική στατιστική (ιι) Μετατροπές: αναλογικό-σεψηφιακό και ψηφιακό-σε-αναλογικό 1 (i) Βασική στατιστική 2 Στατιστική Vs Πιθανότητες Στατιστική: επιτρέπει μέτρηση και αναγνώριση θορύβου και