Μεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες» Ψηφιακή Επεξεργασία Εικόνας. Εισηγητής Αναστάσιος Κεσίδης
|
|
- Νάρκισσα Λούλης
- 5 χρόνια πριν
- Προβολές:
Transcript
1 Μεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες» Ψηφιακή Επεξεργασία Εικόνας Εισηγητής Αναστάσιος Κεσίδης
2 Τμηματοποίηση εικόνας
3 Τμηματοποίηση εικόνας Γενικά Διαμερισμός μιας εικόνας σε διακριτές περιοχές ή αντικείμενα με βάση κάποιο χαρακτηριστικό (χρώμα/σχήμα/υφή κα). Βασικές κατηγορίες μεθόδων: Μέθοδοι που βασίζονται στην ασυνέχεια Μέθοδοι που βασίζονται στην ομοιότητα
4 Τμηματοποίηση εικόνας Παράδειγμα Τμηματοποίηση με βάση τις ακμές της εικόνας Τμηματοποίηση με βάση τις περιοχές της εικόνας
5 Τμηματοποίηση εικόνας Παράδειγμα Εικόνα που περιέχει περιοχή σταθερής φωτεινότητας Τμηματοποίηση με χρήση ακμών Τμηματοποίηση με βάση ιδιότητες των περιοχών Εικόνα που περιέχει περιοχή με υφή Τμηματοποίηση με χρήση ακμών
6 Κατωφλίωση Γενικά Σε μια grayscale εικόνα τα pixel με τιμές μεγαλύτερες από κάποιο κατώφλι T ανήκουν σε μια κλάση και τα υπόλοιπα στην άλλη. Η επιλογή του κατωφλίου T γίνεται είτε διαδραστικά από τον χρήστη είτε με κάποια μέθοδο κατωφλίωσης (π.χ. Otsu). Προβλήματα Δεν είναι εξασφαλισμένη η χωρική συσχέτιση των τμημάτων που προκύπτουν. Είναι ευαίσθητη στην μεταβολή της φωτεινότητας της εικόνας
7 Ακμές και περιγράμματα Γενικά Ακμή ή περίγραμμα (edge) σε μια εικόνα ορίζεται το σύνολο των σημείων της εικόνας, όπου παρατηρείται μία σημαντική αλλαγή της έντασης ή του χρώματος της εικόνας. Φίλτρα 1ης και 2ης παραγώγου Ανίχνευση ακμών με την 1 η παράγωγο Ανίχνευση ακμών με την 2 η παράγωγο (Marr-Hildreth)
8 Ανάπτυξη περιοχών Γενικά Περιοχή εικόνας θεωρείται ένα σύνολο συνδεδεμένων pixel τα οποία έχουν παρόμοιες ιδιότητες. Ο εντοπισμός περιοχών είναι σημαντικός καθώς αυτές αντιστοιχούν συχνά σε αντικείμενα (ή τμήματα αντικειμένων) της εικόνας Region growing Οι περιοχές ορίζονται ξεκινώντας από κάποια αρχικά σημεία (seeds) στα οποία προστίθενται γειτονικά pixel με παρόμοιες ιδιότητες (χρώμα, φωτεινότητα, υφή, σχήμα). Η επιλογή του κριτηρίου ομοιότητας εξαρτάται από το περιεχόμενο της εικόνας Σε εικόνες με θόρυβο η ανάπτυξη περιοχών πλεονεκτεί σε σχέση με τις τεχνικές βασισμένες στις ακμές.
9 Ανάπτυξη περιοχών Αλγόριθμος Καθορισμός των αρχικών σημείων (π.χ με εντοπισμό των connected components της εικόνας και διαδοχικό erosion τους μέχρι να μείνει ένα pixel για κάθε component) Έλεγχος για κάθε seed εάν υπάρχουν μη ταξινομημένα pixel στην 8- γειτονία του, ή εάν συνορεύει με κάποια άλλη περιοχή Δύο περιοχές συνενώνονται εάν ικανοποιείται κάποιο κριτήριο. Π.χ. μ 1 μ 2 < k min(σ 1, σ 2 ) Όπου μ i και σ i η μέση τιμή και η τυπική απόκλιση για κάθε κλάση και k μια σταθερά που δίνεται από τον χρήστη.
10 Διαχωρισμός και συνένωση περιοχών Γενικά Top-down διαδικασία, αντίθετη του region growing. Διαχωρισμός Επαναληπτική διαίρεση της εικόνας σε μη επικαλυπτόμενες υποπεριοχές όσο αυτές δεν ικανοποιούν κάποιο κριτήριο ομοιογένειας Αναπαράσταση μέσω Quadtree Πρόβλημα: Δημιουργία γειτονικών που μπορεί να είναι ομογενείς αλλά δεν είναι ενοποιημένες
11 Διαχωρισμός και συνένωση περιοχών Συγχώνευση Όταν ολοκληρωθεί η υποδιαίρεση της εικόνας σε ομοιογενείς περιοχές τότε συνενώνονται οι παρακείμενες περιοχές για τις οποίες το κριτήριο ομοιογένειας ισχύει. Διαχωρισμός Διαχωρισμός και συνένωση
12 Αλγόριθμος Watershed Τοπογραφική περιγραφή της εικόνας Η εικόνα θεωρείται ως μια τρισδιάστατη τοπογραφική επιφάνεια με «κοιλάδες» και «όρη» όπου κάθε pixel κωδικοποιείται ως ένα σημείο επιφάνειας (x, y, h) όπου (x, y) οι συντεταγμένες του σημείου και h η τιμή φωτεινότητας. Τύποι σημείων α) Σημεία που ανήκουν στο ελάχιστο μιας περιοχής β) Σημεία της «λεκάνης» όπου μια σταγόνα νερού κυλάει προς κάποιο ελάχιστο γ) Σημεία όπου εάν τοποθετήσουμε μια σταγόνα τότε αυτή έχει ίση πιθανότητα να κυλήσει σε περισσότερα από ένα ελάχιστα.
13 Αλγόριθμος Watershed Μέθοδος Η περιοχή εικόνα γεμίζεται με νερό ξεκινώντας από τα τοπικά ελάχιστα. Καθώς το νερό ανεβαίνει οι διάφορες λεκάνες τείνουν να συνενωθούν. Στα σημεία αυτά προστίθεται κάποιο «φράγμα» προκειμένου να αποτραπεί η συνένωση. Όταν πλημυρίσει όλη η περιοχή τότε το σύνολο των φραγμάτων όπως φαίνονται από πάνω αντιστοιχούν στα περιγράμματα των περιοχών της εικόνας.
14 Αλγόριθμος Watershed Εφαρμογή Συχνά η μέθοδος εφαρμόζεται στην κλίση της εικόνας. Αρχική εικόνα Κλίση της εικόνας Αποτέλεσμα watershed Αποτέλεσμα στην αρχική εικόνα
15 Αλγόριθμος Watershed Πρόβλημα υπερ-τμηματοποίησης Η ύπαρξη θορύβου και άλλων τοπικών ανωμαλιών στην αρχική εικόνα οδηγεί σε υπερ-τμηματοποίηση σε πολλές, μικρές περιοχές.
16 Αλγόριθμος Watershed Χρήση σημείων σήμανσης (markers) Στόχος είναι η απόρριψη μικρών, μη σημαντικών τμημάτων και η (αυτόματη) επιλογή μόνο των σημαντικών τμημάτων που ικανοποιούν κάποιο κριτήριο. Η σήμανση μπορεί να γίνει από τον χρήστη ή αυτόματα. Μέθοδος προσδιορισμού σημείων σήμανσης Εφαρμογή φίλτρου εξομάλυνσης Κριτήρια για την χαρακτηρισμό περιοχής ως marker 1) H περιοχή να περικλείεται από σημεία υψηλότερου «υψομέτρου» 2) Τα σημεία της περιοχής ανήκουν σε ένα connected component 3) Όλα τα σημεία του connected component έχουν την ίδια τιμή φωτεινότητας.
17 Αλγόριθμος Watershed Χρήση σημείων σήμανσης (markers) Παράδειγμα
18 K-means Γενικά Μέθοδος ομαδοποίησης των pixel της εικόνας σε κάποιον χώρο δεδομένων (π.χ. χρώμα) με σκοπό την ελαχιστοποίηση του συνολικού σφάλματος ομαδοποίησης.
19 K-means Μέθοδος 1) Επιλογή του πλήθους K των επιθυμητών κλάσεων. 2) Επιλογή K αρχικών κέντρων κλάσεων (συνήθως K τυχαία επιλεγμένα δείγματα) 3) Υπολογισμός της απόστασης όλων των δειγμάτων από τα K κέντρα των κλάσεων 4) Αντιστοίχιση κάθε δείγματος στην πλησιέστερη κλάση 5) Υπολογισμός των νέων κέντρων των κλάσεων με βάση τα δείγματα που ανήκουν σε αυτές 6) Επανάληψη των βημάτων 4) και 5) μέχρι να συγκλίνει ο αλγόριθμος, δηλαδή, να μην υπάρχει μεταβολή στα κέντρα των κλάσεων
20 K-means Μέθοδος 1) Επιλογή του πλήθους K των επιθυμητών κλάσεων. 2) Επιλογή K αρχικών κέντρων κλάσεων (συνήθως K τυχαία επιλεγμένα δείγματα) 3) Υπολογισμός της απόστασης όλων των δειγμάτων από τα K κέντρα των κλάσεων 4) Αντιστοίχιση κάθε δείγματος στην πλησιέστερη κλάση 5) Υπολογισμός των νέων κέντρων των κλάσεων με βάση τα δείγματα που ανήκουν σε αυτές 6) Επανάληψη των βημάτων 4) και 5) μέχρι να συγκλίνει ο αλγόριθμος, δηλαδή, να μην υπάρχει μεταβολή στα κέντρα των κλάσεων
21 Παράδειγμα K-means
22 K-means Παράδειγμα RGB χρωματικός χώρος Πιθανά προβλήματα: Αρχικοποίηση κέντρων κλάσεων Κλάσεις με ένα μέλος Κενές κλάσεις Προτεινόμενες λύσεις: Απαλοιφή ακραίων σημείων από το σύνολο των δειγμάτων Πολλαπλή εφαρμογή του αλγορίθμου με διαφορετικά αρχικά κέντρα και επιλογή εκείνων που ελαχιστοποιούν την συνάρτηση κόστους
23 Mean Shift Γενικά Ο αλγόριθμος αναζητά μέγιστα στην κατανομή στον χώρο των τιμών της εικόνας (π.χ. τιμές χρώματος, φωτεινότητας) Τοπικό μέγιστο Εκτιμώμενη συνάρτηση πυκνότητας πιθανότητας, pdf Πραγματικά δεδομένα
24 Mean Shift Αλγόριθμος Επιλογή της μάσκας και του πλάτους της Epanechnicov Uniform Gaussian Για κάθε σημείο: Τοποθέτηση του κέντρου της μάσκας στο σημείο Υπολογισμός της μέσης τιμής για τα σημεία που βρίσκονται μέσα στην μάσκα Μετατόπιση του κέντρου της μάσκας στην μέση τιμή Επανάληψη μέχρι να υπάρξει σύγκλιση Στο τέλος, ενοποίηση σημείων που βρίσκονται σε γειτονικά μέγιστα
25 Mean Shift Χαρακτηριστικά Η ταχύτητα σύγκλισης καθορίζεται από την κλίση των δεδομένων Κοντά στα μέγιστα τα βήματα σύγκλισης είναι μικρά Η Uniform μάσκα επιτυγχάνει σύγκλιση σε έναν πεπερασμένο αριθμό βημάτων Η Gaussian μάσκα είναι πιο ομαλή στην μετακίηση αλλά και πολύ πιο αργή στην σύγκλιση Ο αλγόριθμος μπορεί να εφαρμοσθεί σε χώρους δεδομένων διαφόρων τάξεων Η αποτελεσματικότητα του αλγόριθμου εξαρτάται άμεσα από την κατάλληλη επιλογή του πλάτους της μάσκας
26 Παράδειγμα εφαρμογής Mean Shift
27 Mean Shift Διατήρηση της χωρικής συνέχειας Αρχική εικόνα Mean Shift μόνο στο πεδίο της φωτεινότητας Mean Shift στο πεδίο της φωτεινότητας και στον χώρο
28 Παραδείγματα Mean Shift
ΙΑΤΡΙΚΗ ΑΠΕΙΚΟΝΙΣΗ & ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΙΑΤΡΙΚΗΣ ΕΙΚΟΝΑΣ
ΙΑΤΡΙΚΗ ΑΠΕΙΚΟΝΙΣΗ & ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΙΑΤΡΙΚΗΣ ΕΙΚΟΝΑΣ ΔΡ. Γ. ΜΑΤΣΟΠΟΥΛΟΣ ΕΠ. ΚΑΘΗΓΗΤΗΣ ΣΧΟΛΗ ΗΛΕΚΤΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Επεξεργασία Ιατρικών Εικόνων
Μεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες» Ψηφιακή Επεξεργασία Εικόνας. Εισηγητής Αναστάσιος Κεσίδης
Μεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες» Ψηφιακή Επεξεργασία Εικόνας Εισηγητής Αναστάσιος Κεσίδης Σημειακή επεξεργασία και μετασχηματισμοί Κατηγορίες μετασχηματισμού εικόνων Σημειακοί μετασχηματισμοί
DIP_05 Τμηματοποίηση εικόνας. ΤΕΙ Κρήτης
DIP_05 Τμηματοποίηση εικόνας ΤΕΙ Κρήτης ΤΜΗΜΑΤΟΠΟΙΗΣΗ ΕΙΚΟΝΑΣ Τμηματοποίηση εικόνας είναι η διαδικασία με την οποία διαχωρίζεται μία εικόνα σε κατάλληλες περιοχές ή αντικείμενα. Για την τμηματοποίηση
Μεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες» Ψηφιακή Επεξεργασία Εικόνας. Εισηγητής Αναστάσιος Κεσίδης
Μεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες» Ψηφιακή Επεξεργασία Εικόνας Εισηγητής Αναστάσιος Κεσίδης Ακμές και περιγράμματα Ακμές και περιγράμματα Γενικά Μεγάλο τμήμα της πληροφορίας που γίνεται αντιληπτή
Μεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες» Ψηφιακή Επεξεργασία Εικόνας. Εισηγητής Αναστάσιος Κεσίδης
Μεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες» Ψηφιακή Επεξεργασία Εικόνας Εισηγητής Αναστάσιος Κεσίδης Χωρικά φίλτρα Χωρικά φίλτρα Γενικά Σε αντίθεση με τις σημειακές πράξεις και μετασχηματισμούς, στα
Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 8 η : Κατάτμηση Εικόνας
Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 8 η : Κατάτμηση Εικόνας Καθ. Κωνσταντίνος Μπερμπερίδης Πολυτεχνική Σχολή Μηχανικών Η/Υ & Πληροφορικής Σκοποί ενότητας Εισαγωγή στην κατάτμηση εικόνας Τεχνικές
Μάθημα 9 ο. Κατάτμηση Εικόνας ΤΜΗΥΠ / ΕΕΣΤ 1
Μάθημα 9 ο Κατάτμηση Εικόνας ΤΜΗΥΠ / ΕΕΣΤ Εισαγωγή () Η κατάτμηση έχει ως στόχο να υποδιαιρέσει την εικόνα σε συνιστώσες περιοχές και αντικείμενα. Μία περιοχή αναμένεται να έχει ομοιογενή χαρακτηριστικά
Μάθημα 9 ο. Κατάτμηση Εικόνας ΤΜΗΥΠ / ΕΕΣΤ 1
Μάθημα 9 ο Κατάτμηση Εικόνας ΤΜΗΥΠ / ΕΕΣΤ Εισαγωγή () Η κατάτμηση έχει ως στόχο να υποδιαιρέσει την εικόνα σε συνιστώσες περιοχές και αντικείμενα. Μία περιοχή αναμένεται να έχει ομοιογενή χαρακτηριστικά
Μεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες» Ψηφιακή Επεξεργασία Εικόνας. Εισηγητής Αναστάσιος Κεσίδης
Μεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες» Ψηφιακή Επεξεργασία Εικόνας Εισηγητής Αναστάσιος Κεσίδης Μαθηματική μορφολογία Μαθηματική μορφολογία Γενικά Παρέχει εργαλεία για την επεξεργασία εικόνας
Κατάτµηση εικόνας σε οµοιόµορφες περιοχές
KEΣ 03 Αναγνώριση Προτύπων και Ανάλυση Εικόνας Κατάτµηση εικόνας σε οµοιόµορφες περιοχές ΤµήµαΕπιστήµης και Τεχνολογίας Τηλεπικοινωνιών Πανεπιστήµιο Πελοποννήσου Εισαγωγή Κατάτµηση µε πολυκατωφλίωση Ανάπτυξη
Κατάτµηση Εικόνων: Ανίχνευση Ακµών και Κατάτµηση µε Κατωφλίωση
ΤΨΣ 50 Ψηφιακή Επεξεργασία Εικόνας Κατάτµηση Εικόνων: Ανίχνευση Ακµών και Κατάτµηση µε Κατωφλίωση Τµήµα ιδακτικής της Τεχνολογίας και Ψηφιακών Συστηµάτων Πανεπιστήµιο Πειραιώς Περιεχόµενα Βιβλιογραφία
Μάθημα 8 ο. Ανίχνευση Ακμών ΤΜΗΥΠ / ΕΕΣΤ 1
Μάθημα 8 ο Ανίχνευση Ακμών ΤΜΗΥΠ / ΕΕΣΤ 1 Εισαγωγή (1) Οι ακμές είναι βασικά χαρακτηριστικά της εικόνας. Ένας αποδεκτός ορισμός της ακμής είναι ο ακόλουθος: «Το σύνορο μεταξύ δύο ομοιογενών περιοχών με
Μάθημα 8 ο. Ανίχνευση Ακμών ΤΜΗΥΠ / ΕΕΣΤ 1
Μάθημα 8 ο Ανίχνευση Ακμών ΤΜΗΥΠ / ΕΕΣΤ 1 Εισαγωγή (1) Οι ακμές είναι βασικά χαρακτηριστικά της εικόνας Προς το παρόν δεν υπάρχει ακόμα ένας ευρέως αποδεκτός ορισμός της ακμής. Εδώ θα θεωρούμε ως ακμή:
6-Aνίχνευση. Ακμών - Περιγράμματος
6-Aνίχνευση Ακμών - Περιγράμματος Ανίχνευση ακμών Μετατροπή 2 εικόνας σε σύνολο ακμών Εξαγωγή βασικών χαρακτηριστικών της εικόνας Πιο «συμπαγής» αναπαράσταση Ανίχνευση ακμών Στόχος: ανίχνευση ασυνεχειών
Μετάδοση Πολυμεσικών Υπηρεσιών Ψηφιακή Τηλεόραση
Χειμερινό Εξάμηνο 2013-2014 Μετάδοση Πολυμεσικών Υπηρεσιών Ψηφιακή Τηλεόραση 5 η Παρουσίαση : Ψηφιακή Επεξεργασία Εικόνας Διδάσκων: Γιάννης Ντόκας Σύνθεση Χρωμάτων Αφαιρετική Παραγωγή Χρώματος Χρωματικά
ΚΕΣ 03: Αναγνώριση Προτύπων και Ανάλυση Εικόνας. KEΣ 03 Αναγνώριση Προτύπων και Ανάλυση Εικόνας. Κατάτµηση Εικόνων:
KEΣ 3 Αναγνώριση Προτύπων και Ανάλυση Εικόνας Κατάτµηση Εικόνων: Ανίχνευση Ακµών Τµήµα Επιστήµης και Τεχνολογίας Τηλεπικοινωνιών Πανεπιστήµιο Πελοποννήσου Περιεχόµενα Βιβλιογραφία Περιεχόµενα Ενότητας
MPEG-7 : Περιγραφή πολυμεσικού περιεχομένου
MPEG-7 : Περιγραφή πολυμεσικού περιεχομένου Εξαγωγή μεταδεδομένων / περιγραφών Χαμηλού επιπέδου περιγραφείς Συντακτικός και σημασιολογικός ορισμός Ανάκτηση πολυμεσικών τεκμηρίων XML / OWL Δημοσίευση 2002
ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 1: ΕΙΣΑΓΩΓΗ
ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 1: ΕΙΣΑΓΩΓΗ 1.1 ΕΙΣΑΓΩΓΗ 1.1 1.2 ΤΙ ΕΙΝΑΙ ΜΙΑ ΨΗΦΙΑΚΗ ΕΙΚΟΝΑ 1.2 1.3 ΠΛΗΘΟΣ BITS ΜΙΑΣ ΕΙΚΟΝΑΣ 1.4 1.4 ΕΥΚΡΙΝΕΙΑ ΕΙΚΟΝΑΣ 1.5 1.5 ΕΠΙΠΕ Α BITS ΜΙΑΣ ΕΙΚΟΝΑΣ 1.8 1.6 Η ΦΥΣΗ ΤΟΥ ΧΡΩΜΑΤΟΣ
DIP_05 Τµηµατοποίηση εικόνας. ΤΕΙ Κρήτης
DIP_05 Τµηµατοποίηση εικόνας ΤΕΙ Κρήτης ΤΜΗΜΑΤΟΠΟΙΗΣΗ ΕΙΚΟΝΑΣ Τµηµατοποίηση εικόνας είναι η διαδικασία µε την οποία διαχωρίζεται µία εικόνα σε κατάλληλες περιοχές ή αντικείµενα. Για την τµηµατοποίηση εικόνας
Μάθημα 10 ο. Περιγραφή Σχήματος ΤΜΗΥΠ / ΕΕΣΤ 1
Μάθημα 10 ο Περιγραφή Σχήματος ΤΜΗΥΠ / ΕΕΣΤ 1 Εισαγωγή (1) Η περιγραφή μίας περιοχής μπορεί να γίνει: Με βάση τα εξωτερικά χαρακτηριστικά (ακμές, όρια). Αυτή η περιγραφή προτιμάται όταν μας ενδιαφέρουν
ΟΜΑΔΕΣ. Δημιουργία Ομάδων
Δημιουργία Ομάδων Μεθοδολογίες ομαδοποίησης δεδομένων: Μέθοδοι για την εύρεση των κατηγοριών και των υποκατηγοριών που σχηματίζουν τα δεδομένα του εκάστοτε προβλήματος. Ομαδοποίηση (clustering): εργαλείο
Ψηφιακή Επεξεργασία Εικόνας. Σ. Φωτόπουλος ΨΕΕ
Ψηφιακή Επεξεργασία Εικόνας ΒΕΛΤΙΩΣΗ ΕΙΚΟΝΑΣ ΜΕ ΙΣΤΟΓΡΑΜΜΑ ΔΠΜΣ ΗΕΠ 1/46 Περιλαμβάνει: Βελτίωση (Enhancement) Ανακατασκευή (Restoration) Κωδικοποίηση (Coding) Ανάλυση, Κατανόηση Τμηματοποίηση (Segmentation)
Ακαδημαϊκό Έτος , Χειμερινό Εξάμηνο Διδάσκων Καθ.: Νίκος Τσαπατσούλης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ, ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΚΕΣ 3: ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ ΚΑΙ ΑΝΑΛΥΣΗ ΕΙΚΟΝΑΣ Ακαδημαϊκό Έτος 7 8, Χειμερινό Εξάμηνο Καθ.: Νίκος Τσαπατσούλης ΕΡΩΤΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ Το παρόν
ΑΝΤΩΝΙΟΣ ΛΥΡΩΝΗΣ ΧΑΝΙΑ 2011. Σκοπός Εργασίας Εντοπισμός πλίνθων σε σειρά ορθοφωτογραφιών και εξαγωγή δισδιάστατης αποτύπωσης των τειχών.
1 ΑΝΤΩΝΙΟΣ ΛΥΡΩΝΗΣ ΧΑΝΙΑ 2011 2 Σκοπός Εργασίας Εντοπισμός πλίνθων σε σειρά ορθοφωτογραφιών και εξαγωγή δισδιάστατης αποτύπωσης των τειχών. Ενδεδειγμένες και αξιόπιστες μέθοδοι αποτύπωσης Εμπειρικές Τοπογραφικές
Ε.Α.Υ. Υπολογιστική Όραση. Κατάτμηση Εικόνας
Ε.Α.Υ. Υπολογιστική Όραση Κατάτμηση Εικόνας Γεώργιος Παπαϊωάννου 2015 ΚΑΤΩΦΛΙΩΣΗ Κατωφλίωση - Γενικά Είναι η πιο απλή μέθοδος segmentation εικόνας Χωρίζουμε την εικόνα σε 2 (binary) ή περισσότερες στάθμες
Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων Ενότητα 7: Ομαδοποίηση Μέρος Α Αναστάσιος Γούναρης, Επίκουρος Καθηγητής Άδειες Χρήσης Το παρόν
Μεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες» Ψηφιακή Επεξεργασία Εικόνας. Εισηγητής Αναστάσιος Κεσίδης
Μεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες» Ψηφιακή Επεξεργασία Εικόνας Εισηγητής Αναστάσιος Κεσίδης Εισαγωγή Τι είναι η εικόνα; Μια οπτική αναπαράσταση με την μορφή μιας συνάρτησης f(x, y) όπου η
Τεχνικές Μείωσης Διαστάσεων. Ειδικά θέματα ψηφιακής επεξεργασίας σήματος και εικόνας Σ. Φωτόπουλος- Α. Μακεδόνας
Τεχνικές Μείωσης Διαστάσεων Ειδικά θέματα ψηφιακής επεξεργασίας σήματος και εικόνας Σ. Φωτόπουλος- Α. Μακεδόνας 1 Εισαγωγή Το μεγαλύτερο μέρος των δεδομένων που καλούμαστε να επεξεργαστούμε είναι πολυδιάστατα.
Ψηφιακή Επεξεργασία Εικόνων
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Επεξεργασία Εικόνων Ενότητα # 15: Τμηματοποίηση σε τοπολογικά συνεκτικές περιοχές Καθηγητής Γιώργος Τζιρίτας Τμήμα Επιστήμης Υπολογιστών Διαμέριση σε συνεκτικές
ΕΠΕΞΕΡΓΑΣΙΑ ΙΑΤΡΙΚΗΣ ΕΙΚΟΝΑΣ
ΕΠΕΞΕΡΓΑΣΙΑ ΙΑΤΡΙΚΗΣ ΕΙΚΟΝΑΣ Π. ΑΣΒΕΣΤΑΣ Επ. Καθηγητής Τμήμα Μηχανικών Βιοϊατρικής Τεχνολογίας ΤΕΙ Αθήνας Email: pasv@teiath.gr ΠΕΡΙΕΧΟΜΕΝΑ Αναπαράσταση εικόνας Ιστόγραμμα Εξισορρόπηση ιστογράμματος Κατωφλίωση
Ομαδοποίηση ΙΙ (Clustering)
Ομαδοποίηση ΙΙ (Clustering) Πασχάλης Θρήσκος PhD Λάρισα 2016-2017 pthriskos@mnec.gr Αλγόριθμοι ομαδοποίησης Επίπεδοι αλγόριθμοι Αρχίζουμε με μια τυχαία ομαδοποίηση Βελτιώνουμε επαναληπτικά KMeans Ομαδοποίηση
Digital Image Processing
Digital Image Processing Χωρικό φιλτράρισμα Πέτρος Καρβέλης pkarvelis@gmail.com Images taken from: R. Gonzalez and R. Woods. Digital Image Processing, Prentice Hall, 008. Χωρικού Φιλτράρισμα Η μηχανική
Ψηφιοποίηση και Ψηφιακή Επεξεργασία Εικόνας
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Ψηφιοποίηση και Ψηφιακή Επεξεργασία Εικόνας Ενότητα 11: Επεξεργασία εικόνας Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και
Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων:
Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων: Oμαδοποίηση: Μέρος Α http://delab.csd.auth.gr/~gounaris/courses/dwdm/ gounaris/courses/dwdm/ Ευχαριστίες Οι διαφάνειες του μαθήματος σε γενικές γραμμές ακολουθούν
Ενότητα 2: Οι Θεµελιώδεις Αρχές των Ψηφιακών Εικόνων
Ενότητα 2: Οι Θεµελιώδεις Αρχές των Ψηφιακών Εικόνων Δειγµατοληψία και Κβαντισµός: Μια εικόνα (µπορεί να) είναι συνεχής τόσο ως προς τις συντεταγµένες x, y όσο και ως προς το πλάτος. Για να τη µετατρέψουµε
Group (JPEG) το 1992.
Μέθοδοι Συμπίεσης Εικόνας Πρωτόκολλο JPEG Συμπίεση Εικόνας: Μείωση αποθηκευτικού χώρου Ευκολία στη μεταφορά αρχείων Δημιουργήθηκε από την ομάδα Joint Photographic Experts Group (JPEG) το 1992. Ονομάστηκε
Το μοντέλο Perceptron
Το μοντέλο Perceptron Αποτελείται από έναν μόνο νευρώνα McCulloch-Pitts w j x x 1, x2,..., w x T 1 1 x 2 w 2 Σ u x n f(u) Άνυσμα Εισόδου s i x j x n w n -θ w w 1, w2,..., w n T Άνυσμα Βαρών 1 Το μοντέλο
27-Ιαν-2009 ΗΜΥ 429. 2. (ι) Βασική στατιστική (ιι) Μετατροπές: αναλογικό-σεψηφιακό και ψηφιακό-σε-αναλογικό
ΗΜΥ 429 2. (ι) Βασική στατιστική (ιι) Μετατροπές: αναλογικό-σεψηφιακό και ψηφιακό-σε-αναλογικό 1 (i) Βασική στατιστική 2 Στατιστική Vs Πιθανότητες Στατιστική: επιτρέπει μέτρηση και αναγνώριση θορύβου και
ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ
ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ Βασίλης Δ. Ανδριτσάνος Δρ. Αγρονόμος - Τοπογράφος Μηχανικός ΑΠΘ Επίκουρος Καθηγητής ΤΕΙ Αθήνας 3ο εξάμηνο http://eclass.teiath.gr Παρουσιάσεις,
Ψηφιακή Επεξεργασία Εικόνας
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ψηφιακή Επεξεργασία Εικόνας Ενότητα 3 : Αποκατάσταση εικόνας (Image Restoration) Ιωάννης Έλληνας Τμήμα Η/ΥΣ Άδειες Χρήσης Το παρόν
Εικόνα. Τεχνολογία Πολυμέσων και Πολυμεσικές Επικοινωνίες 05-1
Εικόνα Εισαγωγή Ψηφιακή αναπαράσταση Κωδικοποίηση των χρωμάτων Συσκευές εισόδου και εξόδου Βάθος χρώματος και ανάλυση Συμβολική αναπαράσταση Μετάδοση εικόνας Σύνθεση εικόνας Ανάλυση εικόνας Τεχνολογία
ΔΙΑΧΩΡΙΣΤΙΚΗ ΟΜΑΔΟΠΟΙΗΣΗ
ΔΙΑΧΩΡΙΣΤΙΚΗ ΟΜΑΔΟΠΟΙΗΣΗ Εισαγωγή Τεχνικές διαχωριστικής ομαδοποίησης: Ν πρότυπα k ομάδες Ν>>k Συνήθως k καθορίζεται από χρήστη Διαχωριστικές τεχνικές: επιτρέπουν πρότυπα να μετακινούνται από ομάδα σε
Ειδικά Θέµατα Υπολογιστικής Όρασης & Γραφικής. Εµµανουήλ Ζ. Ψαράκης & Αθανάσιος Τσακαλίδης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής
Ειδικά Θέµατα Υπολογιστικής Όρασης & Γραφικής Εµµανουήλ Ζ. Ψαράκης & Αθανάσιος Τσακαλίδης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής Σύνθεση Πανοράµατος Εµµανουήλ Ζ. Ψαράκης Πολυτεχνική Σχολή
Παρουσίαση Νο. 5 Βελτίωση εικόνας
Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Παρουσίαση Νο. 5 Βελτίωση εικόνας Εισαγωγή Η βελτίωση γίνεται σε υποκειμενική βάση Η απόδοση εξαρτάται από την εφαρμογή Οι τεχνικές είναι συνήθως ad hoc Τονίζει
ΔΙΑΡΘΡΩΣΗ ΠΕΡΙΕΧΟΜΕΝΟΥ
ΑΡΧΙΜΗΔΗΣ ΕΝΙΣΧΥΣΗ ΕΡΕΥΝΗΤΙΚΩΝ ΟΜΑΔΩΝ ΣΤΑ ΤΕΙ 2.2.2.3ζ ΔΙΑΡΘΡΩΣΗ ΠΕΡΙΕΧΟΜΕΝΟΥ ΕΓΧΡΩΜΩΝ ΕΓΓΡΑΦΩΝ Εγχειρίδιο χρήσης λογισμικού ΕΠΙΣΤΗΜΟΝΙΚΟΣ ΥΠΕΥΘΥΝΟΣ: ΣΤΡΟΥΘΟΠΟΥΛΟΣ ΧΑΡΑΛΑΜΠΟΣ ΣΕΡΡΕΣ, ΜΑΙΟΣ 2007 ΠΕΡΙΕΧΟΜΕΝΑ
Πανεπιστήµιο Πειραιώς Τµήµα Πληροφορικής. Εξόρυξη Γνώσης από εδοµένα (Data Mining) Συσταδοποίηση. Γιάννης Θεοδωρίδης
Πανεπιστήµιο Πειραιώς Τµήµα Πληροφορικής Εξόρυξη Γνώσης από εδοµένα (Data Mining) Συσταδοποίηση Γιάννης Θεοδωρίδης Οµάδα ιαχείρισης εδοµένων Εργαστήριο Πληροφοριακών Συστηµάτων http://isl.cs.unipi.gr/db
Αναγνώριση Προτύπων Ι
Αναγνώριση Προτύπων Ι Ενότητα 3: Στοχαστικά Συστήματα Αν. Καθηγητής Δερματάς Ευάγγελος Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Αναγνώριση Προτύπων Ι
Αναγνώριση Προτύπων Ι Ενότητα 1: Μέθοδοι Αναγνώρισης Προτύπων Αν. Καθηγητής Δερματάς Ευάγγελος Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Κεφάλαιο 6: Προσομοίωση ενός συστήματος αναμονής
Κεφάλαιο 6: Προσομοίωση ενός συστήματος αναμονής Τεχνικές Εκτίμησης Υπολογιστικών Συστημάτων Γιάννης Γαροφαλάκης Αν. Καθηγητής ιατύπωση του προβλήματος (1) Τα συστήματα αναμονής (queueing systems), βρίσκονται
ΚΕΦΑΛΑΙΟ 3. Περιγραφή της Μεθόδου ΠΕΡΙΓΡΑΦΗ ΤΗΣ ΜΕΘΟΔΟΥ
ΚΕΦΑΛΑΙΟ 3 Περιγραφή της Μεθόδου Το αντικείμενο αυτής της εργασίας είναι η χρήση μιας μεθόδου προσέγγισης συναρτήσεων που έχει προταθεί από τον hen-ha huang και ονομάζεται Ασαφώς Σταθμισμένη Παλινδρόμηση
Απεικόνιση Υφής. Μέρος Α Υφή σε Πολύγωνα
Απεικόνιση Γραφικά ΥφήςΥπολογιστών Απεικόνιση Υφής Μέρος Α Υφή σε Πολύγωνα Γ. Γ. Παπαϊωάννου, - 2008 Τι Είναι η Υφή; Η υφή είναι η χωρική διαμόρφωση των ποιοτικών χαρακτηριστικών της επιφάνειας ενός αντικειμένου,
Digital Image Processing
Digital Image Processing Intensity Transformations Πέτρος Καρβέλης pkarvelis@gmail.com Images taken from: R. Gonzalez and R. Woods. Digital Image Processing, Prentice Hall, 2008. Image Enhancement: είναι
Τμηματοποίηση με χρήση τυχαίων πεδίων Markov. Κοινή ιδιότητα σημείων τμήματος Εισαγωγή χωρικής πληροφορίας Εξομάλυνση πεδίου κατατάξεων
Τμηματοποίηση με χρήση τυχαίων πεδίων Markov Κοινή ιδιότητα σημείων τμήματος Εισαγωγή χωρικής πληροφορίας Εξομάλυνση πεδίου κατατάξεων Κόστος τμηματοποίησης Δυαδικοποίηση Κόστος σφαλμάτων σημειακής κατάταξης
Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων:
Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων: Oμαδοποίηση: Μέρος B http://delab.csd.auth.gr/~gounaris/courses/dwdm/ gounaris/courses/dwdm/ Ευχαριστίες Οι διαφάνειες του μαθήματος σε γενικές γραμμές ακολουθούν
Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 4 η : Βελτίωση Εικόνας. Καθ. Κωνσταντίνος Μπερμπερίδης Πολυτεχνική Σχολή Μηχανικών Η/Υ & Πληροφορικής
Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 4 η : Βελτίωση Εικόνας Καθ. Κωνσταντίνος Μπερμπερίδης Πολυτεχνική Σχολή Μηχανικών Η/Υ & Πληροφορικής Σκοποί ενότητας Εισαγωγή στις τεχνικές βελτίωσης εικόνας
Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων Ενότητα 9: Ομαδοποίηση Μέρος Γ Αναστάσιος Γούναρης, Επίκουρος Καθηγητής Άδειες Χρήσης Το παρόν
Δ10. Συμπίεση Δεδομένων
Συμπίεση Δεδομένων 203-204 Κωδικοποίηση εικονοροής (Video) Δρ. Ν. Π. Σγούρος 2 Ανάλυση Οθονών Δρ. Ν. Π. Σγούρος 3 Πρωτόκολλα μετάδοσης εικονοροών Πρωτόκολλο Ρυθμός (Hz) Φίλμ 23.976 ATSC 24 PAL,DVB-SD,DVB-HD
Ανάλυση και επεξεργασία εικόνων DICOM με τη χρήση Matlab
ΑΣΚΗΣΗ 8 Ανάλυση και επεξεργασία εικόνων DICOM με τη χρήση Matlab 1. Περιγραφή του προτύπου DICOM Η ψηφιακή επεξεργασία ιατρικής εικόνας ξεκίνησε παράλληλα με την ανάπτυξη ενός προτύπου για τη μεταφορά
ΠΕΙΡΑΜΑΤΙΚΕΣ ΠΡΟΣΟΜΟΙΩΣΕΙΣ ΚΕΦΑΛΑΙΟ 4. είναι η πραγματική απόκριση του j δεδομένου (εκπαίδευσης ή ελέγχου) και y ˆ j
Πειραματικές Προσομοιώσεις ΚΕΦΑΛΑΙΟ 4 Όλες οι προσομοιώσεις έγιναν σε περιβάλλον Matlab. Για την υλοποίηση της μεθόδου ε-svm χρησιμοποιήθηκε το λογισμικό SVM-KM που αναπτύχθηκε στο Ecole d Ingenieur(e)s
Κεφάλαιο 14: Διαστασιολόγηση αγωγών και έλεγχος πιέσεων δικτύων διανομής
Κεφάλαιο 14: Διαστασιολόγηση αγωγών και έλεγχος πιέσεων δικτύων διανομής Έλεγχος λειτουργίας δικτύων διανομής με χρήση μοντέλων υδραυλικής ανάλυσης Βασικό ζητούμενο της υδραυλικής ανάλυσης είναι ο έλεγχος
Οι Εξελικτικοί Αλγόριθμοι (ΕΑ) είναι καθολικοί στοχαστικοί αλγόριθμοι βελτιστοποίησης, εμπνευσμένοι από τις βασικές αρχές της φυσικής εξέλιξης.
Οι Εξελικτικοί Αλγόριθμοι (ΕΑ) είναι καθολικοί στοχαστικοί αλγόριθμοι βελτιστοποίησης, εμπνευσμένοι από τις βασικές αρχές της φυσικής εξέλιξης. Ένα από τα γνωστότερα παραδείγματα των ΕΑ είναι ο Γενετικός
Ψηφιακή Επεξεργασία Εικόνας
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ψηφιακή Επεξεργασία Εικόνας Ενότητα 4 : Δειγματοληψία και κβάντιση (Sampling and Quantization) Ιωάννης Έλληνας Τμήμα Η/ΥΣ Άδειες
ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ
ΥΠΕΥΘΥΝΟΣ ΚΑΘΗΓΗΤΗΣ Α. Ντούνης ΔΙΔΑΣΚΩΝ ΑΚΑΔ. ΥΠΟΤΡΟΦΟΣ Χ. Τσιρώνης ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ - Επίλυση ασκήσεων - Αλγόριθμοι αναζήτησης - Επαναληπτική κάθοδος ΕΠΙΛΥΣΗ ΑΣΚΗΣΕΩΝ ΠΡΑΞΗΣ Θα επιλυθούν
Περιεχόµενα. xii. Κεφάλαιο 1: Εισαγωγή. Κεφάλαιο 2: Επεξεργασία δυαδικών εικόνων
xii Ðåñéå üìåíá Περιεχόµενα Κεφάλαιο 1: Εισαγωγή 1.1 ΕΙΣΑΓΩΓH... 1 1.2 ΤΙ ΕIΝΑΙ ΜΙΑ ΨΗΦΙΑΚH ΕΙΚOΝΑ.... 2 1.3 ΠΛHΘΟΣ BITS ΠΟΥ ΑΠΑΙΤΟΥΝΤΑΙ ΓΙΑ ΤΗΝ ΑΠΟΘHΚΕΥΣΗ ΜΙΑΣ ΕΙΚOΝΑΣ... 4 1.4 ΕΥΚΡIΝΕΙΑ ΕΙΚOΝΑΣ... 5
Συμπίεση Πολυμεσικών Δεδομένων
Συμπίεση Πολυμεσικών Δεδομένων Εισαγωγή στο πρόβλημα και επιλεγμένες εφαρμογές Παράδειγμα 2: Συμπίεση Εικόνας ΔΠΜΣ ΜΥΑ, Ιούνιος 2011 Εισαγωγή (1) Οι τεχνικές συμπίεσης βασίζονται στην απόρριψη της πλεονάζουσας
Τηλεπισκόπηση - Φωτοερμηνεία Ενότητα 11: Είδη Ταξινομήσεων Επιβλεπόμενες Ταξινομήσεις Ακρίβειες.
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ Τηλεπισκόπηση - Φωτοερμηνεία Ενότητα 11: Είδη Ταξινομήσεων Επιβλεπόμενες Ταξινομήσεις Ακρίβειες. Κωνσταντίνος Περάκης Ιωάννης Φαρασλής Τμήμα Μηχανικών Χωροταξίας, Πολεοδομίας και
Μάθημα: Μηχανική Όραση
Μάθημα: Μηχανική Όραση Εργασία 2: Advances in Digital Imaging and Computer Vision Ομάδα χρηστών 2 : Τσαγκαράκης Νίκος, Καραμήτρος Κώστας Εισαγωγή Σκοπός της άσκησης, είναι να εξοικειωθούμε με κάποιες βασικές
Ακαδηµαϊκό Έτος , Χειµερινό Εξάµηνο ιδάσκων Καθ.: Νίκος Τσαπατσούλης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ, ΤΜΗΜΑ Ι ΑΚΤΙΚΗΣ ΤΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΤΨΣ 50: ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ Ακαδηµαϊκό Έτος 005 006, Χειµερινό Εξάµηνο Καθ.: Νίκος Τσαπατσούλης ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ Η εξέταση
Εκπαίδευση ΤΝΔ με ελαχιστοποίηση του τετραγωνικού σφάλματος εκπαίδευσης. "Τεχνητά Νευρωνικά Δίκτυα" (Διαφάνειες), Α. Λύκας, Παν.
Εκπαίδευση ΤΝΔ με ελαχιστοποίηση του τετραγωνικού σφάλματος εκπαίδευσης Ελαχιστοποίηση συνάρτησης σφάλματος Εκπαίδευση ΤΝΔ: μπορεί να διατυπωθεί ως πρόβλημα ελαχιστοποίησης μιας συνάρτησης σφάλματος E(w)
DIP_01 Εισαγωγή στην ψηφιακή εικόνα. ΤΕΙ Κρήτης
DIP_01 Εισαγωγή στην ψηφιακή εικόνα ΤΕΙ Κρήτης Πληροφορίες Μαθήματος ιαλέξεις Πέμπτη 12:15 15:00 Αιθουσα Γ7 ιδάσκων:. Κοσμόπουλος Γραφείο: Κ23-0-15 (ισόγειο( κλειστού γυμναστηρίου) Ωρες γραφείου Τε 16:00
ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ
ΥΠΕΥΘΥΝΟΣ ΚΑΘΗΓΗΤΗΣ Α. Ντούνης ΔΙΔΑΣΚΩΝ Χ. Τσιρώνης ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ - Αλγόριθμοι κλίσης - Gradient tools in MATLAB - Επίλυση ΝCM και CM ΑΛΓΟΡΙΘΜΟΙ ΚΛΙΣΗΣ Κατευθυντική αναζήτηση επί
Σχεδιασμός και κατασκευή εφαρμογής ταξινόμησης αντικειμένων σε γραμμή μεταφοράς προϊόντων με χρήση όρασης μηχανής
Πανεπιστήμιο Δυτικής Μακεδονίας Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Σχεδιασμός και κατασκευή εφαρμογής ταξινόμησης αντικειμένων σε γραμμή μεταφοράς προϊόντων με χρήση όρασης μηχανής Λοΐζου
Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2
Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας Verson 2 B MH ΠΑΡΑΜΕΤΡΙΚΟΙ ΤΑΞΙΝΟΜΗΤΕΣ ΒΑΣΙΣΜΕΝΟΙ ΣΕ ΣΥΝΑΡΤΗΣΕΙΣ ΔΙΑΚΡΙΣΗΣ Η Bayesan περίπτωση - Διαθέσιμα δεδομένα: XX X 2 X M. Κάθε X αντιστοιχεί στην κλάση
Τηλεπισκόπηση. Ψηφιακή Ανάλυση Εικόνας Η ΒΕΛΤΙΩΣΗ εικόνας 1. ΔΙΑΧΕΙΡΙΣΗ ΑΝΤΙΘΕΣΗΣ 2. ΔΙΑΧΕΙΡΙΣΗ ΧΩΡΙΚΩΝ ΣΤΟΙΧΕΙΩΝ 3. ΔΙΑΧΕΙΡΙΣΗ ΠΟΛΛΑΠΛΩΝ ΕΙΚΟΝΩΝ
Ψηφιακή Ανάλυση Εικόνας Η ΒΕΛΤΙΩΣΗ εικόνας 1. ΔΙΑΧΕΙΡΙΣΗ ΑΝΤΙΘΕΣΗΣ 2. ΔΙΑΧΕΙΡΙΣΗ ΧΩΡΙΚΩΝ ΣΤΟΙΧΕΙΩΝ 3. ΔΙΑΧΕΙΡΙΣΗ ΠΟΛΛΑΠΛΩΝ ΕΙΚΟΝΩΝ Βελτίωση Εικόνας 2. ΔΙΑΧΕΙΡΙΣΗ ΧΩΡΙΚΩΝ ΣΤΟΙΧΕΙΩΝ (Spatial feature manipulation)
Ψηφιακή Επεξεργασία Εικόνας
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ψηφιακή Επεξεργασία Εικόνας Ενότητα 2 : Βελτιστοποίηση εικόνας (Image enhancement) Ιωάννης Έλληνας Τμήμα Η/ΥΣ Άδειες Χρήσης Το
Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων Ενότητα 10: Ομαδοποίηση Μέρος Δ Αναστάσιος Γούναρης, Επίκουρος Καθηγητής Άδειες Χρήσης Το παρόν
Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων:
Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων: Oμαδοποίηση: Μέρος Δ http://delab.csd.auth.gr/~gounaris/courses/dwdm/ gounaris/courses/dwdm/ Ευχαριστίες Οι διαφάνειες του μαθήματος σε γενικές γραμμές ακολουθούν
Ενδεικτική πολυ-εργασία 1 - εφαρμογή στην υπολογιστική όραση
Ενδεικτική πολυ-εργασία 1 - εφαρμογή στην υπολογιστική όραση Εντοπισμός ενός σήματος STOP σε μια εικόνα. Περιγράψτε τη διαδικασία με την οποία μπορώ να εντοπίσω απλά σε μια εικόνα την ύπαρξη του παρακάτω
Ανάκτηση πολυμεσικού περιεχομένου
Ανάκτηση πολυμεσικού περιεχομένου Ανίχνευση / αναγνώριση προσώπων Ανίχνευση / ανάγνωση κειμένου Ανίχνευση αντικειμένων Οπτικές λέξεις Δεικτοδότηση Σχέσεις ομοιότητας Κατηγοριοποίηση ειδών μουσικής Διάκριση
Πανεπιστήμιο Θεσσαλίας. Πολυτεχνική Σχολή. Τμήμα Μηχανικών Χωροταξίας Πολεοδομίας και Περιφερειακής Ανάπτυξης
Πανεπιστήμιο Θεσσαλίας Πολυτεχνική Σχολή Τμήμα Μηχανικών Χωροταξίας Πολεοδομίας και Περιφερειακής Ανάπτυξης ΘΕΜΑΤΙΚΗ : ΦΑΣΜΑΤΙΚΕΣ ΥΠΟΓΡΑΦΕΣ - ΤΑΞΙΝΟΜΗΣΕΙΣ Ιωάννης Φαρασλής Τηλ : 24210-74466, Πεδίον Άρεως,
Εργασίες στο µάθηµα Ψηφιακής Επεξεργασίας και Αναγνώρισης Εγγράφων
Εργασίες στο µάθηµα Ψηφιακής Επεξεργασίας και Αναγνώρισης Εγγράφων Μάθηµα 2: υαδική Μετατροπή 1. Βελτιωµένη µέθοδος προσαρµοσµένης κατωφλίωσης βάσει του πλάτους των γραµµών των χαρακτήρων (Απαλλακτική
Αστικά υδραυλικά έργα
Εθνικό Μετσόβιο Πολυτεχνείο Τομέας Υδατικών Πόρων και Περιβάλλοντος Αστικά υδραυλικά έργα Διαστασιολόγηση αγωγών και έλεγχος πιέσεων δικτύων διανομής Δημήτρης Κουτσογιάννης, Καθηγητής ΕΜΠ Σχολή Πολιτικών
Μεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες» Ψηφιακή Επεξεργασία Εικόνας. Εισηγητής Αναστάσιος Κεσίδης
Μεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες» Ψηφιακή Επεξεργασία Εικόνας Εισηγητής Αναστάσιος Κεσίδης Επεξεργασία στο πεδίο της συχνότητας Φασματικές τεχνικές Γενικά Τεχνικές αναπαράστασης και ανάλυσης
Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 2 η : Δισδιάστατα Σήματα & Συστήματα Μέρος 2
Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 2 η : Δισδιάστατα Σήματα & Συστήματα Μέρος 2 Καθ. Κωνσταντίνος Μπερμπερίδης Πολυτεχνική Σχολή Μηχανικών Η/Υ & Πληροφορικής Σκοποί ενότητας Παρουσιάση πλάτους
Εργασία επεξεργασίας εικόνων, που αναπαριστούν τομή εγκεφάλου και τομή αδένα προστάτη
Επεξεργασία Εικόνας Εργασία επεξεργασίας εικόνων, που αναπαριστούν τομή εγκεφάλου και τομή αδένα προστάτη Μπαρμπούτης Παναγιώτης Α) ΦΙΛΤΡΑ ΟΞΥΝΣΗΣ Αρχικά θα μελετήσουμε την εικόνα από το MRI αρχείο της
Ασκήσεις Επεξεργασίας Εικόνας
Ασκήσεις Επεξεργασίας Εικόνας. Εύρεση στοιχείων μιας περιοχής με ιδιότητα συγκεκριμένης γειτονιάς Άσκηση. Έστω δύο υποσύνολα πίνακα εικόνας S και S2 η οποία φαίνεται στο σχήμα παρακάτω. Για σύνολο τιμών
Εισαγωγή Αλγόριθµοι Αποτελέσµατα Επίλογος Ορισµός του Προβλήµατος Ευθυγράµµιση : Εύρεση ενός γεωµετρικού µετασχηµατισµού που ϕέρνει κοντά δύο τρισδιάσ
Εισαγωγή Αλγόριθµοι Αποτελέσµατα Επίλογος Αλγόριθµοι Ευθυγράµµισης Τρισδιάστατων Αντικειµένων Τµήµα Πληροφορικής και Τηλεπικοινωνιών Εθνικό & Καποδιστριακό Πανεπιστήµιο Αθηνών 20 Οκτωβρίου 2005 Εισαγωγή
2.1 Αριθμητική επίλυση εξισώσεων
. Αριθμητική επίλυση εξισώσεων Στο κεφάλαιο αυτό διαπραγματεύεται μεθόδους εύρεσης των ριζών εξισώσεων γραμμικών ή μη-γραμμικών για τις οποίες δεν υπάρχουν αναλυτικές 5 4 3 εκφράσεις. Παραδείγματα εξισώσεων
Τεχνολογία Πολυμέσων. Ενότητα # 5: Εικόνα Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής
Τεχνολογία Πολυμέσων Ενότητα # 5: Εικόνα Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα. Το
Ψηφιακή Επεξεργασία Εικόνων
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Επεξεργασία Εικόνων Ενότητα # 14: Τμηματοποίηση με χρήση τυχαίων πεδίων Markov Καθηγητής Γιώργος Τζιρίτας Τμήμα Επιστήμης Υπολογιστών Τμηματοποίηση εικόνων
Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων Ενότητα 8: Ομαδοποίηση Μέρος B Αναστάσιος Γούναρης, Επίκουρος Καθηγητής Άδειες Χρήσης Το παρόν
Γραφικά με υπολογιστές
Γραφικά με Υπολογιστές Ενότητα # 3: Εισαγωγή Φοίβος Μυλωνάς Τμήμα Πληροφορικής Φοίβος Μυλωνάς Γραφικά με υπολογιστές 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Αβεβαιότητα που εισάγεται στη μέτρηση ραδιενέργειας εδάφους από τα σφάλματα ορισμού δειγματοληψίας
Αβεβαιότητα που εισάγεται στη μέτρηση ραδιενέργειας εδάφους από τα σφάλματα ορισμού δειγματοληψίας Γ.Ν. Παπαδάκος, Δ.Ι. Καράγγελος, Ν.Π. Πετρόπουλος, Μ.Ι. Αναγνωστάκης, Ε.Π. Χίνης, Σ.Ε. Σιμόπουλος Τομέας
Περιεχόμενα. Εισαγωγή του επιμελητή, Γιάννης Σταματίου 15 Πρόλογος 17 Εισαγωγή 23. Μέρος I. ΕΠΑΝΑΛΗΠΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ ΚΑΙ ΑΝΑΛΛΟΙΩΤΕΣ ΣΥΝΘΗΚΕΣ
Περιεχόμενα Εισαγωγή του επιμελητή, Γιάννης Σταματίου 15 Πρόλογος 17 Εισαγωγή 23 Μέρος I. ΕΠΑΝΑΛΗΠΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ ΚΑΙ ΑΝΑΛΛΟΙΩΤΕΣ ΣΥΝΘΗΚΕΣ 1. Επαναληπτικοί αλγόριθμοι: Μέτρα προόδου και αναλλοίωτες συνθήκες.....................................................29
ΑΝΑΓΝΩΡΙΣΗ ΚΟΙΝΟΤΗΤΩΝ ΚΑΙ ΣΥΣΤΑΣΗ ΠΛΗΡΟΦΟΡΙΑΣ ΜΕ ΤΗΝ ΧΡΗΣΗ ΣΥΝΘΕΤΙΚΩΝ ΣΥΝΤΕΤΑΓΜΕΝΩΝ
ΑΝΑΓΝΩΡΙΣΗ ΚΟΙΝΟΤΗΤΩΝ ΚΑΙ ΣΥΣΤΑΣΗ ΠΛΗΡΟΦΟΡΙΑΣ ΜΕ ΤΗΝ ΧΡΗΣΗ ΣΥΝΘΕΤΙΚΩΝ ΣΥΝΤΕΤΑΓΜΕΝΩΝ Παπαδάκης Χαράλαμπος 1, Παναγιωτάκης Κώστας 2, Παρασκευή Φραγκοπούλου 1 1 Τμήμα Μηχ/κών Πληροφορικής, ΤΕΙ Κρήτης 2 Τμήμα
Ευφυής Προγραμματισμός
Ευφυής Προγραμματισμός Ενότητα 10: Δημιουργία Βάσεων Κανόνων Από Δεδομένα-Προετοιμασία συνόλου δεδομένων Ιωάννης Χατζηλυγερούδης Πολυτεχνική Σχολή Τμήμα Μηχανικών Η/Υ & Πληροφορικής Δημιουργία Βάσεων Κανόνων
ιαµέριση - Partitioning
ιαµέριση - Partitioning ιαµέριση ιαµέριση είναι η διαµοίραση αντικειµένων σε οµάδες µε στόχο την βελτιστοποίηση κάποιας συνάρτησης. Στην σύνθεση η διαµέριση χρησιµοποιείται ως εξής: Οµαδοποίηση µεταβλητών
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΜΕ ΘΕΜΑ: ΣΗΜΑΣΙΟΛΟΓΙΚΗ ΑΝΑΛΥΣΗ ΠΟΛΥΜΕΣΩΝ ΜΕ ΧΡΗΣΗ ΓΝΩΣΗΣ ΠΑΠΑΔΟΠΟΥΛΟΣ
ΜΟΝΟΠΑΡΑΜΕΤΡΙΚΗ ΚΑΙ ΠΟΛΥΠΑΡΑΜΕΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ. Αριάδνη Αργυράκη
ΜΟΝΟΠΑΡΑΜΕΤΡΙΚΗ ΚΑΙ ΠΟΛΥΠΑΡΑΜΕΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ Αριάδνη Αργυράκη ΣΤΑΔΙΑ ΕΚΤΕΛΕΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΙΚΩΝ ΓΕΩΧΗΜΙΚΩΝ ΕΡΕΥΝΩΝ 1.ΣΧΕΔΙΑΣΜΟΣ: - Καθορισμός στόχων έρευνας - Ιστορικό περιοχής 2 4.
ΕΛΕΓΧΟΣ ΠΑΡΑΓΩΓΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΛΕΓΧΟΣ ΠΑΡΑΓΩΓΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ Ενότητα: Αναγνώριση Διεργασίας - Προσαρμοστικός Έλεγχος (Process Identification) Αλαφοδήμος Κωνσταντίνος