Μάθημα 9 ο. Κατάτμηση Εικόνας ΤΜΗΥΠ / ΕΕΣΤ 1
|
|
- Νύξ Ζερβός
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Μάθημα 9 ο Κατάτμηση Εικόνας ΤΜΗΥΠ / ΕΕΣΤ
2 Εισαγωγή () Η κατάτμηση έχει ως στόχο να υποδιαιρέσει την εικόνα σε συνιστώσες περιοχές και αντικείμενα. Μία περιοχή αναμένεται να έχει ομοιογενή χαρακτηριστικά όπως ένταση, υφή κ.α. ΤΜΗΥΠ / ΕΕΣΤ 2
3 Εισαγωγή (2) Έστω R η εικόνα. Η κατάτμηση χωρίζει την R σε N διακριτές περιοχές R, R2, R N με βάση τον κανόνα κατάτμησης P(R) έτσι ώστε να ισχύουν τα παρακάτω: ΤΜΗΥΠ / ΕΕΣΤ 3
4 Εισαγωγή (3) a) Οι περιοχές πρέπει να καλύπτουν όλη την εικόνα: b) Κάθε R i είναι συνδεμένη περιοχή με βάση έναν προκαθορισμένο κανόνα. c) Οι περιοχές είναι μη επικαλυπτόμενες: R i R i, j, i d) Όλα τα pixels μίας περιοχής πρέπει να έχουν τις ίδιες ιδιότητες: P για e) Οι περιοχές είναι διακριτές: P j TRUE R i R i R FALSE j R N R i i i j,2,, για γειτονικές περιοχές ΤΜΗΥΠ / ΕΕΣΤ 4
5 Εισαγωγή (4) Μία περιοχή R είναι συνεκτική όταν για κάθε x, y και x, y A A B B υπάρχει μία διαδρομή x A, ya,, xi, yi xi, yi xi, yi,, xb, της οποίας τα στίγματα x i, y i ανήκουν στην R και κάθε x i, y i είναι στην άμεση γειτονιά του προηγούμενου x i, yi και του επόμενου x i, yi στίγματος της διαδρομής. y Τετραπλή και Οκταπλή γειτονιά ενός στίγματος (x,y) B ΤΜΗΥΠ / ΕΕΣΤ 5
6 Κατάτμηση με κατωφλίωση () Η απλούστερη μέθοδος κατάτμησης είναι αυτή της κατωφλίωσης. g x, y 0 αν f x, αλλιώς y T Μπορούμε να ορίσουμε ένα ή περισσότερα κατώφλια, ολικά ή τοπικά. ΤΜΗΥΠ / ΕΕΣΤ 6
7 Κατάτμηση με κατωφλίωση (2) Στην παρακάτω εικόνα η κατάτμηση με ένα ολικό κατώφλι είναι προφανής. ΤΜΗΥΠ / ΕΕΣΤ 7
8 Κατάτμηση με κατωφλίωση (3) Εάν το ιστόγραμμα έχει Ν περιοχές συγκέντρωσης, χρησιμοποιούμε Ν- κατώφλια που αντιστοιχούν στα τοπικά ελάχιστα μεταξύ των λοβών. ΤΜΗΥΠ / ΕΕΣΤ 8
9 Κατάτμηση με κατωφλίωση (4) Αρχική εικόνα Αρχική εικόνα Κατωφλιωμένη εικόνα με ολικό κατώφλι Κατωφλιωμένη εικόνα με τοπικά κατώφλια ΤΜΗΥΠ / ΕΕΣΤ 9
10 Κατάτμηση με κατωφλίωση (5) Σε κάποιες εφαρμογές είναι επιθυμητό να βρεθεί το περίγραμμα μιας περιοχής παρά η ίδια η περιοχή Για την ανίχνευση του περιγράμματος μίας περιοχής/αντικειμένου, εξετάζουμε την κατωφλιωμένη εικόνα και παρακολουθούμε τις μεταβάσεις μεταξύ των περιοχών. ΤΜΗΥΠ / ΕΕΣΤ 0
11 Κατάτμηση με κατωφλίωση (6) Εάν το ιστόγραμμα δεν έχει ξεκάθαρα τοπικά ελάχιστα, μπορούμε να χρησιμοποιήσουμε: Εξομάλυνση ιστογράμματος Αποκλεισμό των στοιχείων των ακμών από τον υπολογισμό του ιστογράμματος («τροποποιημένο ιστόγραμμα») Κατωφλίωση που μεταβάλλεται στον χώρο ΤΜΗΥΠ / ΕΕΣΤ
12 Κατωφλίωση με τη μέθοδο Otsu () - Για εικόνα δύο περιοχών (ένα κατώφλι): - Εύρεση του κατωφλίου που ελαχιστοποιεί τη λεγόμενη intra-class variance (ή within class variance). - Ισοδύναμα, το κατώφλι αυτό μεγιστοποιεί το inter-class variance. - Επέκταση για πολλαπλά κατώφλια ΤΜΗΥΠ / ΕΕΣΤ 2
13 Κατωφλίωση με τη μέθοδο Otsu (2) Weighted within-class variance: 2 w ( t ) q ( t ) 2 ( t ) q 2 ( t ) 2 2 ( t ) Class probabilities (για συγκεκριμένο threshold t) : t q ( t) P( i) 2 i Class mean values : ( t ) t ip() i 2 ( t ) q ( t) i I q ( t) P( i) it I it 2 ip() i q ( t) ΤΜΗΥΠ / ΕΕΣΤ 3
14 Κατωφλίωση με τη μέθοδο Otsu (3) Individual class variance: t 2 2 ( t) [ i ( t)] i q P () i ( t) I ( t) [ i 2( t)] it q2 P () i ( t) Υλοποίηση της τεχνικής: Οι παραπάνω ποσότητες υπολογίζονται για όλα τα δυνατά κατώφλια t(με t από έως Ν) και τελικά επιλέγεται αυτό που ελαχιστοποιεί την 2 ( t w ) ΤΜΗΥΠ / ΕΕΣΤ 4
15 Κατωφλίωση με τη μέθοδο Otsu (4) Inter-class (or between-class) variance: ( t) q ( t)( ( t) ) q ( t)( ( t) ) T 2 2 T T I i ip() i Total mean T ( t) W ( t) ( t) constant Η ελαχιστοποίηση της Within-class variance ισοδυναμεί με μεγιστοποίηση της Inter-class variance. Η δεύτερη όμως ποσότητα μπορεί να υπολογιστεί αναδρομικά ως προς το κατώφλι. ΤΜΗΥΠ / ΕΕΣΤ 5
16 Τεχνικές συνένωσης / αύξησης περιοχών () Ξεκινάμε από «σπόρους» που είναι αντιπροσωπευτικοί των διαφορετικών περιοχών και αυξάνουμε συνενώνοντας τα γειτονικά στοιχεία που έχουν ίδια χαρακτηριστικά μέχρι να καλυφθεί όλη η εικόνα. Οι «σπόροι» επιλέγονται συνήθως από τον χρήστη (ένας τουλάχιστον για κάθε περιοχή της εικόνας). ΤΜΗΥΠ / ΕΕΣΤ 6
17 Τεχνικές συνένωσης / αύξησης περιοχών (2) Για κάθε περιοχή R, i,2,, N, σε κάθε i βήμα ελέγχουμε την οκταπλή γειτονιά του κάθε στίγματος του συνόρου της περιοχής για στίγματα που δεν έχουν ταξινομηθεί. Όταν βρεθεί ένα τέτοιο, ελέγχουμε την συνθήκη ομοιογενείας της περιοχής, P x TRUE R i Η αρχική επιλογή των «σπόρων» είναι σημαντική για την απόδοση του αλγορίθμου. ΤΜΗΥΠ / ΕΕΣΤ 7
18 Τεχνικές συνένωσης / αύξησης περιοχών (3) Οι αρχικοί «σπόροι» μπορούν να είναι: Εικονοστοιχεία που επιλέγονται με εποπτικό τρόπο από τον χρήστη Εικονοστοιχεία που αντιστοιχούν σε κορυφές του ιστογράμματος Όταν τελειώσει η διαδικασία μπορούμε να συνενώσουμε τις περιοχές που παρουσιάζουν παρόμοιες ιδιότητες. ΤΜΗΥΠ / ΕΕΣΤ 8
19 Τεχνικές συνένωσης / αύξησης περιοχών (4) Παραδείγματα συνθηκών ομοιογένειας περιοχών: -- Απόσταση των αριθμητικών μέσων σε σχέση με την τυπική απόκλιση: m m2 k i, i,2 m i n ( k, l) R i f ( k, l) f ( k, l) i m i n ( k, l) R i 2 ΤΜΗΥΠ / ΕΕΣΤ 9
20 ΤΜΗΥΠ / ΕΕΣΤ 20 Αν επιτρεπόταν η συνένωση στίγματος f(k,l) σε μια περιοχή R οι ανανεωμένες μέση τιμή και τυπική απόκλιση θα δινόταν από τις σχέσεις : i nm i l k f n m ), ( 2 2 ), ( i m i l k f n n n n Τεχνικές συνένωσης / αύξησης περιοχών (5)
21 Τεχνικές συνένωσης / αύξησης περιοχών (6) Η συνένωση είναι επιτρεπτή αν η ένταση f (k, l) του στίγματος είναι κοντά στη μέση τιμή m i της περιοχής R i : f ( k, l) m T ( k, l) i i Το κατώφλι T i μπορεί να ποικίλει ανάλογα με την περιοχή R i και την ένταση του στίγματος f (k, l). T i ( k, l) i m i T ΤΜΗΥΠ / ΕΕΣΤ 2
22 Τεχνικές διαίρεσης & συνένωσης () Διαίρεση: Ξεκινάμε με ολόκληρη την εικόνα και εκτελούμε τα παρακάτω Εξετάζουμε εάν είναι ομοιογενής η περιοχή. Εάν αυτό δεν ισχύει, την διαιρούμε σε 4 υποπεριοχές. Επαναλαμβάνουμε για τις υποπεριοχές. ΤΜΗΥΠ / ΕΕΣΤ 22
23 Τεχνικές διαίρεσης & συνένωσης (2) (α) Αρχική εικόνα. (β) Αναπαράσταση τετραδικού δέντρου. ΤΜΗΥΠ / ΕΕΣΤ 23
24 Τεχνικές διαίρεσης & συνένωσης (3) Πλεονέκτημα: η μέθοδος μπορεί να αναπαρασταθεί από ένα τετραδικό δέντρο. Μειονέκτημα: γειτονικές περιοχές που έχουν παρόμοιες ιδιότητες, μπορεί να μην συνενώνονται. ΤΜΗΥΠ / ΕΕΣΤ 24
25 Τεχνικές διαίρεσης & συνένωσης (4) Διαίρεση & συνένωση: Ξεκινάμε με ολόκληρη την εικόνα και εκτελούμε τα παρακάτω Εξετάζουμε εάν είναι ομοιογενής η περιοχή. Εάν αυτό δεν ισχύει, τη διαιρούμε σε 4 υποπεριοχές. Εάν δύο γειτονικές περιοχές είναι ομοιογενείς, συνενώνονται. Επαναλαμβάνουμε για τις υποπεριοχές. ΤΜΗΥΠ / ΕΕΣΤ 25
26 Τεχνικές διαίρεσης & συνένωσης (5) Πλεονέκτημα: οι περιοχές που ανιχνεύονται είναι πιο συμπαγείς. Μειονέκτημα: η διαδικασία δεν μπορεί πλέον να περιγραφεί από τετραδικό δέντρο. ΤΜΗΥΠ / ΕΕΣΤ 26
27 Παραδείγματα Αρχική εικόνα Αύξηση περιοχών Διαίρεση Διαίρεση & συνένωση ΤΜΗΥΠ / ΕΕΣΤ 27
28 Χαλάρωση περιοχών () Ορίζουμε ως διάνυσμα εμπιστοσύνης το p k k, p 2, p N p, όπου i η πιθανότητα το k-στο στίγμα να ανήκει στην περιοχή p k Ri, i,2,, N Αρχική τιμή για τις πιθανότητες που ονομάζονται επίσης βάρη εμπιστοσύνης. p (0) k k () i / N f( n, l) mi i f( n, l) mi k T p k ΤΜΗΥΠ / ΕΕΣΤ 28
29 Χαλάρωση περιοχών (2) Είναι σκόπιμο να χωρίσουμε τις περιοχές σε «συμβατές» και «ασύμβατες». Η συνάρτηση συμβατότητας είναι η εξής: -,0, Ri, Rj είναι ασύμβατες ri, j 0, Ri, Rj είναι ανεξάρτητες 0,, Ri, Rj είναι συμβατές Τα βάρη εμπιστοσύνης μπορούν να επαναπροσδιοριστούν με βάση την r i, j ΤΜΗΥΠ / ΕΕΣΤ 29
30 Χαλάρωση περιοχών (3) Ο αλγόριθμος χαλάρωσης περιοχών περιγράφεται από τις εξισώσεις: Δp N kl kl l n n i d r i,j p j k l j p n k i N p i n i k p n i k p p n i k n i Κάθε στίγμα λαμβάνει συνεισφορές εμπιστοσύνης από τα στίγματα που βρίσκονται στη γειτονιά του k ΤΜΗΥΠ / ΕΕΣΤ 30
31 Χαλάρωση περιοχών (4) Οι παράμετροι d kl καθορίζουν τις συνεισφορές στο στίγμα x k που προέρχονται από τα γειτονικά στίγματα x l. Πρέπει να ισχύει: dkl l Μπορεί επίσης να γίνει μια καλύτερη εκτίμηση των συναρτήσεων συμβατότητας από τις αρχικές πιθανότητες: N N pk i pl i k kl i, j ln 2 2 N N 0 0 pk i pl i k l r 2 ΤΜΗΥΠ / ΕΕΣΤ 3
32 Εύρεση συνδεμένων μερών () Η εύρεση συνδεμένων μερών είναι η διαδικασία με την οποία ανιχνεύουμε τις διακριτές υποπεριοχές που έχουν κοινά χαρακτηριστικά και αποτελούν μία ενιαία περιοχή. ΤΜΗΥΠ / ΕΕΣΤ 32
33 Εύρεση συνδεμένων μερών (2) Οι αλγόριθμοι αυτοί χωρίζονται σε Τοπικής γειτονιάς η ιδέα της «φωτιάς στο γρασίδι» χαρακτηρισμός των στιγμάτων από την συνένωση των συντεταγμένων χρωματισμός μερών συρρίκνωση Διαίρει και βασίλευε διαίρεση και συνένωση ΤΜΗΥΠ / ΕΕΣΤ 33
34 Εύρεση συνδεμένων μερών (3) Αλγόριθμος «φωτιάς» (χρησιμοποιεί την ιδέα της φωτιάς στο γρασίδι): Η εικόνα σαρώνεται κατά γραμμές εως ότου βρεθεί το πρώτο στίγμα αντικειμένου. Στο στίγμα τίθεται φωτιά που διαδίδεται και στην οκταπλή γειτονιά του. Η διαδικασία επαναλαμβάνεται μέχρις ότου «καούν» όλα τα στίγματα του αντικειμένου. Η διαδικασία επαναλαμβάνεται έως ότου βρεθούν όλα τα αντικείμενα. ΤΜΗΥΠ / ΕΕΣΤ 34
35 Περιγραφή υφής () Η υφή μιας εικόνας είναι σημαντικό χαρακτηριστικό και είναι ένα μέτρο της τραχύτητας της ομαλότητας και της κανονικότητας. Οι τεχνικές χωρίζονται σε Στατιστικές τεχνικές βασίζονται στα ιστογράμματα, τις επεκτάσεις των περιοχών και τις ροπές Φασματικές τεχνικές βασίζονται στην ανίχνευση περιοδικότητας μέσω της αυτοσυσχέτισης ή της κατανομής ισχύος στο πεδίο συχνοτήτων Δομικές τεχνικές χρησιμοποιούν πρότυπα και κανόνες τοποθέτησης ΤΜΗΥΠ / ΕΕΣΤ 35
36 Κεντρικές ροπές Περιγραφή υφής (2) Μέση τιμή Μεταβλητότητα Κλίση (μέτρο της συμμετρίας) Κύρτωση (μεγάλη κύρτωση μεγάλη ουρά) 2 N k N f k p f f 2 fk p f fk k 3 3 N k 3 fk p f fk k N fk pf fk3 k Εντροπία H N k p f f ln p f k f k ΤΜΗΥΠ / ΕΕΣΤ 36
37 Περιγραφή υφής (3) Πλεονέκτημα των ροπών: υπολογιστική απλότητα Μειονέκτημα: δεν μπορούν να εκφράσουν τα χωρικά χαρακτηριστικά της υφής (το πώς δηλαδή μεταβάλλεται στο χώρο κάποιο χαρακτηριστικό) ΤΜΗΥΠ / ΕΕΣΤ 37
38 Περιγραφή υφής (4) Τα χωρικά χαρακτηριστικά μπορούν να εκφραστούν με περιγραφείς που κάνουν χρήση των ιστογραμμάτων των διαφορών επιπέδου του γκρι για συγκεκριμένες αποστάσεις από το εκάστοτε κεντρικό στίγμα d = [d, d 2 ] g(d) = f(k,l)-f(k+ d, l+ d 2 ) p g (g,d): υπάρχει ένα διακεκριμένο ιστόγραμμα για κάθε απόσταση d ΤΜΗΥΠ / ΕΕΣΤ 38
39 Περιγραφή υφής (5) Χρησιμοποιούνται διάφορα μέτρα υφής που εξάγονται από το p g (g,d), όπως: μέση τιμή, μεταβλητότητα, αντίθεση, εντροπία κ.λπ. Η χωρική οργάνωση της υφής σχετίζεται επίσης με τις στατιστικές μήκους διαδρομών (το μήκος διαδρομής l των στιγμάτων με ένταση f σε μια διεύθυνση θ ) - Έμφαση κοντών/μακρών διαδρομών - Κατανομή επιπέδων του γκρί - Κατανομή μήκους διαδρομών - Ποσοστά διαδρομών ΤΜΗΥΠ / ΕΕΣΤ 39
40 Περιγραφή υφής (6) Μέτρα υφής που εξάγονται από το ιστόγραμμα των διαφορών επιπέδων του γκρι: Μέση τιμή d N k g k p g ( g, d) k Μεταβλητότητα N 2 2 d gk d pg gk d k ( ) (, ) Εντροπία H N p ( g, d) ln p ( g, d) d g k g k k ΤΜΗΥΠ / ΕΕΣΤ 40
41 Περιγραφή υφής (7) Χαρακτηριστικά υφής που υπολογίζονται από τα μήκη διαδρομών των επιπέδων του γκρι: Έμφαση κοντών διαδρομών A N N R N( l, fk, ) 2 TR k l k Έμφαση μακρών διαδρομών A N N R 2 2 k N( l, fk, ) TR k l Κατανομή επιπέδων του γκρι A N N R 3 N( l, fk, ) TR k l ΤΜΗΥΠ / ΕΕΣΤ 4 2
42 Περιγραφή υφής (8) Χαρακτηριστικά υφής που υπολογίζονται από τα μήκη διαδρομών των επιπέδων του γκρι: Κατανομή μήκους διαδρομών A N R N 4 N( l, fk, ) TR l k 2 Ποσοστά διαδρομών A N N R 5 N( l, fk, ) NN2 k l ΤΜΗΥΠ / ΕΕΣΤ 42
43 Περιγραφή υφής (9) Η τραχύτητα της υφής μπορεί να περιγραφεί από: τους πίνακες σύμπτωσης (co-occurrence matrices) την συνάρτηση αυτοσυσχέτισης 2 το περιοδόγραμμα C : c p( f, f, d) d kl k l N N2 R ff f(, i j) f( ik, jl) (2N )(2N ) in jn 2 Pff ( u, v) F( u, v) NN 2 ΤΜΗΥΠ / ΕΕΣΤ 43 2
44 και πολλές άλλες τεχνικές. Level set method K-means mutli-threshold Geometric modeling of the objects Probabilistic modeling Watershed transformation etc ΤΜΗΥΠ / ΕΕΣΤ 44
Μάθημα 9 ο. Κατάτμηση Εικόνας ΤΜΗΥΠ / ΕΕΣΤ 1
Μάθημα 9 ο Κατάτμηση Εικόνας ΤΜΗΥΠ / ΕΕΣΤ Εισαγωγή () Η κατάτμηση έχει ως στόχο να υποδιαιρέσει την εικόνα σε συνιστώσες περιοχές και αντικείμενα. Μία περιοχή αναμένεται να έχει ομοιογενή χαρακτηριστικά
Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 8 η : Κατάτμηση Εικόνας
Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 8 η : Κατάτμηση Εικόνας Καθ. Κωνσταντίνος Μπερμπερίδης Πολυτεχνική Σχολή Μηχανικών Η/Υ & Πληροφορικής Σκοποί ενότητας Εισαγωγή στην κατάτμηση εικόνας Τεχνικές
Μεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες» Ψηφιακή Επεξεργασία Εικόνας. Εισηγητής Αναστάσιος Κεσίδης
Μεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες» Ψηφιακή Επεξεργασία Εικόνας Εισηγητής Αναστάσιος Κεσίδης Τμηματοποίηση εικόνας Τμηματοποίηση εικόνας Γενικά Διαμερισμός μιας εικόνας σε διακριτές περιοχές
Μάθημα 10 ο. Περιγραφή Σχήματος ΤΜΗΥΠ / ΕΕΣΤ 1
Μάθημα 10 ο Περιγραφή Σχήματος ΤΜΗΥΠ / ΕΕΣΤ 1 Εισαγωγή (1) Η περιγραφή μίας περιοχής μπορεί να γίνει: Με βάση τα εξωτερικά χαρακτηριστικά (ακμές, όρια). Αυτή η περιγραφή προτιμάται όταν μας ενδιαφέρουν
DIP_05 Τμηματοποίηση εικόνας. ΤΕΙ Κρήτης
DIP_05 Τμηματοποίηση εικόνας ΤΕΙ Κρήτης ΤΜΗΜΑΤΟΠΟΙΗΣΗ ΕΙΚΟΝΑΣ Τμηματοποίηση εικόνας είναι η διαδικασία με την οποία διαχωρίζεται μία εικόνα σε κατάλληλες περιοχές ή αντικείμενα. Για την τμηματοποίηση
Μάθημα 8 ο. Ανίχνευση Ακμών ΤΜΗΥΠ / ΕΕΣΤ 1
Μάθημα 8 ο Ανίχνευση Ακμών ΤΜΗΥΠ / ΕΕΣΤ 1 Εισαγωγή (1) Οι ακμές είναι βασικά χαρακτηριστικά της εικόνας. Ένας αποδεκτός ορισμός της ακμής είναι ο ακόλουθος: «Το σύνορο μεταξύ δύο ομοιογενών περιοχών με
Μάθημα 8 ο. Ανίχνευση Ακμών ΤΜΗΥΠ / ΕΕΣΤ 1
Μάθημα 8 ο Ανίχνευση Ακμών ΤΜΗΥΠ / ΕΕΣΤ 1 Εισαγωγή (1) Οι ακμές είναι βασικά χαρακτηριστικά της εικόνας Προς το παρόν δεν υπάρχει ακόμα ένας ευρέως αποδεκτός ορισμός της ακμής. Εδώ θα θεωρούμε ως ακμή:
Ψηφιακή Επεξεργασία Εικόνας. Σ. Φωτόπουλος ΨΕΕ
Ψηφιακή Επεξεργασία Εικόνας ΒΕΛΤΙΩΣΗ ΕΙΚΟΝΑΣ ΜΕ ΙΣΤΟΓΡΑΜΜΑ ΔΠΜΣ ΗΕΠ 1/46 Περιλαμβάνει: Βελτίωση (Enhancement) Ανακατασκευή (Restoration) Κωδικοποίηση (Coding) Ανάλυση, Κατανόηση Τμηματοποίηση (Segmentation)
DIP_05 Τµηµατοποίηση εικόνας. ΤΕΙ Κρήτης
DIP_05 Τµηµατοποίηση εικόνας ΤΕΙ Κρήτης ΤΜΗΜΑΤΟΠΟΙΗΣΗ ΕΙΚΟΝΑΣ Τµηµατοποίηση εικόνας είναι η διαδικασία µε την οποία διαχωρίζεται µία εικόνα σε κατάλληλες περιοχές ή αντικείµενα. Για την τµηµατοποίηση εικόνας
Ε.Α.Υ. Υπολογιστική Όραση. Κατάτμηση Εικόνας
Ε.Α.Υ. Υπολογιστική Όραση Κατάτμηση Εικόνας Γεώργιος Παπαϊωάννου 2015 ΚΑΤΩΦΛΙΩΣΗ Κατωφλίωση - Γενικά Είναι η πιο απλή μέθοδος segmentation εικόνας Χωρίζουμε την εικόνα σε 2 (binary) ή περισσότερες στάθμες
Παρουσίαση Νο. 5 Βελτίωση εικόνας
Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Παρουσίαση Νο. 5 Βελτίωση εικόνας Εισαγωγή Η βελτίωση γίνεται σε υποκειμενική βάση Η απόδοση εξαρτάται από την εφαρμογή Οι τεχνικές είναι συνήθως ad hoc Τονίζει
Μάθημα 7 ο. Συμπίεση Εικόνας ΤΜΗΥΠ / ΕΕΣΤ 1
Μάθημα 7 ο Συμπίεση Εικόνας ΤΜΗΥΠ / ΕΕΣΤ 1 Εισαγωγή (1) Οι τεχνικές συμπίεσης βασίζονται στην απόρριψη της πλεονάζουσας πληροφορίας Ανάγκες που καλύπτονται Εξοικονόμηση μνήμης Ελάττωση χρόνου και εύρους
Κατάτµηση εικόνας σε οµοιόµορφες περιοχές
KEΣ 03 Αναγνώριση Προτύπων και Ανάλυση Εικόνας Κατάτµηση εικόνας σε οµοιόµορφες περιοχές ΤµήµαΕπιστήµης και Τεχνολογίας Τηλεπικοινωνιών Πανεπιστήµιο Πελοποννήσου Εισαγωγή Κατάτµηση µε πολυκατωφλίωση Ανάπτυξη
ΙΑΤΡΙΚΗ ΑΠΕΙΚΟΝΙΣΗ & ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΙΑΤΡΙΚΗΣ ΕΙΚΟΝΑΣ
ΙΑΤΡΙΚΗ ΑΠΕΙΚΟΝΙΣΗ & ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΙΑΤΡΙΚΗΣ ΕΙΚΟΝΑΣ ΔΡ. Γ. ΜΑΤΣΟΠΟΥΛΟΣ ΕΠ. ΚΑΘΗΓΗΤΗΣ ΣΧΟΛΗ ΗΛΕΚΤΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Επεξεργασία Ιατρικών Εικόνων
Μεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες» Ψηφιακή Επεξεργασία Εικόνας. Εισηγητής Αναστάσιος Κεσίδης
Μεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες» Ψηφιακή Επεξεργασία Εικόνας Εισηγητής Αναστάσιος Κεσίδης Σημειακή επεξεργασία και μετασχηματισμοί Κατηγορίες μετασχηματισμού εικόνων Σημειακοί μετασχηματισμοί
ΑΝΤΩΝΙΟΣ ΛΥΡΩΝΗΣ ΧΑΝΙΑ 2011. Σκοπός Εργασίας Εντοπισμός πλίνθων σε σειρά ορθοφωτογραφιών και εξαγωγή δισδιάστατης αποτύπωσης των τειχών.
1 ΑΝΤΩΝΙΟΣ ΛΥΡΩΝΗΣ ΧΑΝΙΑ 2011 2 Σκοπός Εργασίας Εντοπισμός πλίνθων σε σειρά ορθοφωτογραφιών και εξαγωγή δισδιάστατης αποτύπωσης των τειχών. Ενδεδειγμένες και αξιόπιστες μέθοδοι αποτύπωσης Εμπειρικές Τοπογραφικές
ΕΠΕΞΕΡΓΑΣΙΑ ΙΑΤΡΙΚΗΣ ΕΙΚΟΝΑΣ
ΕΠΕΞΕΡΓΑΣΙΑ ΙΑΤΡΙΚΗΣ ΕΙΚΟΝΑΣ Π. ΑΣΒΕΣΤΑΣ Επ. Καθηγητής Τμήμα Μηχανικών Βιοϊατρικής Τεχνολογίας ΤΕΙ Αθήνας Email: pasv@teiath.gr ΠΕΡΙΕΧΟΜΕΝΑ Αναπαράσταση εικόνας Ιστόγραμμα Εξισορρόπηση ιστογράμματος Κατωφλίωση
Κατάτµηση Εικόνων: Ανίχνευση Ακµών και Κατάτµηση µε Κατωφλίωση
ΤΨΣ 50 Ψηφιακή Επεξεργασία Εικόνας Κατάτµηση Εικόνων: Ανίχνευση Ακµών και Κατάτµηση µε Κατωφλίωση Τµήµα ιδακτικής της Τεχνολογίας και Ψηφιακών Συστηµάτων Πανεπιστήµιο Πειραιώς Περιεχόµενα Βιβλιογραφία
Μετάδοση Πολυμεσικών Υπηρεσιών Ψηφιακή Τηλεόραση
Χειμερινό Εξάμηνο 2013-2014 Μετάδοση Πολυμεσικών Υπηρεσιών Ψηφιακή Τηλεόραση 5 η Παρουσίαση : Ψηφιακή Επεξεργασία Εικόνας Διδάσκων: Γιάννης Ντόκας Σύνθεση Χρωμάτων Αφαιρετική Παραγωγή Χρώματος Χρωματικά
Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας. Παρουσίαση Νο. 3. Δισδιάστατα σήματα και συστήματα #2
Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ακαδημαϊκό Έτος 2015-16 Παρουσίαση Νο. 3 Δισδιάστατα σήματα και συστήματα #2 Πληροφορία πλάτους-φάσης (1/4) Ο μετασχηματισμός Fourier διακριτού χρόνου είναι μιγαδική
Αναγνώριση Προτύπων Ι
Αναγνώριση Προτύπων Ι Ενότητα 1: Μέθοδοι Αναγνώρισης Προτύπων Αν. Καθηγητής Δερματάς Ευάγγελος Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Ενότητα 2: Οι Θεµελιώδεις Αρχές των Ψηφιακών Εικόνων
Ενότητα 2: Οι Θεµελιώδεις Αρχές των Ψηφιακών Εικόνων Δειγµατοληψία και Κβαντισµός: Μια εικόνα (µπορεί να) είναι συνεχής τόσο ως προς τις συντεταγµένες x, y όσο και ως προς το πλάτος. Για να τη µετατρέψουµε
ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ
ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ 3.1 Τυχαίοι αριθμοί Στην προσομοίωση διακριτών γεγονότων γίνεται χρήση ακολουθίας τυχαίων αριθμών στις περιπτώσεις που απαιτείται η δημιουργία στοχαστικών
Συμπίεση Πολυμεσικών Δεδομένων
Συμπίεση Πολυμεσικών Δεδομένων Εισαγωγή στο πρόβλημα και επιλεγμένες εφαρμογές Παράδειγμα 2: Συμπίεση Εικόνας ΔΠΜΣ ΜΥΑ, Ιούνιος 2011 Εισαγωγή (1) Οι τεχνικές συμπίεσης βασίζονται στην απόρριψη της πλεονάζουσας
Digital Image Processing
Digital Image Processing Χωρικό φιλτράρισμα Πέτρος Καρβέλης pkarvelis@gmail.com Images taken from: R. Gonzalez and R. Woods. Digital Image Processing, Prentice Hall, 008. Χωρικού Φιλτράρισμα Η μηχανική
!n k. Ιστογράμματα. n k. x = N = x k
Ιστογράμματα Τα ιστογράμματα αποτελούν ένα εύχρηστο οπτικό τρόπο για να εξάγουμε την κατανομή που ακολουθούν μια σειρά μετρήσεων ενός μεγέθους αλλά και παράλληλα δίνουν τη δυνατότητα για εύκολη στατιστική
Ενδεικτική πολυ-εργασία 1 - εφαρμογή στην υπολογιστική όραση
Ενδεικτική πολυ-εργασία 1 - εφαρμογή στην υπολογιστική όραση Εντοπισμός ενός σήματος STOP σε μια εικόνα. Περιγράψτε τη διαδικασία με την οποία μπορώ να εντοπίσω απλά σε μια εικόνα την ύπαρξη του παρακάτω
Αναγνώριση Προτύπων Ι
Αναγνώριση Προτύπων Ι Ενότητα 3: Στοχαστικά Συστήματα Αν. Καθηγητής Δερματάς Ευάγγελος Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Πίνακας 4.4 Διαστήματα Εμπιστοσύνης. Τιμές που Επίπεδο εμπιστοσύνης. Διάστημα εμπιστοσύνης
Σφάλματα Μετρήσεων 4.45 Πίνακας 4.4 Διαστήματα Εμπιστοσύνης. Τιμές που Επίπεδο εμπιστοσύνης Διάστημα εμπιστοσύνης βρίσκονται εκτός του Διαστήματος Εμπιστοσύνης 0.500 X 0.674σ 1 στις 0.800 X 1.8σ 1 στις
ΟΜΑΔΕΣ. Δημιουργία Ομάδων
Δημιουργία Ομάδων Μεθοδολογίες ομαδοποίησης δεδομένων: Μέθοδοι για την εύρεση των κατηγοριών και των υποκατηγοριών που σχηματίζουν τα δεδομένα του εκάστοτε προβλήματος. Ομαδοποίηση (clustering): εργαλείο
Ακαδημαϊκό Έτος , Χειμερινό Εξάμηνο Διδάσκων Καθ.: Νίκος Τσαπατσούλης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ, ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΚΕΣ 3: ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ ΚΑΙ ΑΝΑΛΥΣΗ ΕΙΚΟΝΑΣ Ακαδημαϊκό Έτος 7 8, Χειμερινό Εξάμηνο Καθ.: Νίκος Τσαπατσούλης ΕΡΩΤΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ Το παρόν
ΜΟΝΟΠΑΡΑΜΕΤΡΙΚΗ ΚΑΙ ΠΟΛΥΠΑΡΑΜΕΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ
ΜΟΝΟΠΑΡΑΜΕΤΡΙΚΗ ΚΑΙ ΠΟΛΥΠΑΡΑΜΕΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ ΣΤΑΤΙΣΤΙΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΓΙΑ ΤΟΝ ΕΝΤΟΠΙΣΜΟ ΓΕΩΧΗΜΙΚΗΣ ΑΝΩΜΑΛΙΑΣ Στατιστική ανάλυση του γεωχημικού δείγματος μας δίνει πληροφορίες για τον
Ψηφιακή Επεξεργασία Εικόνας. Σ. Φωτόπουλος ΨΕΕ ΒΕΛΤΙΩΣΗ ΕΙΚΟΝΑΣ ΜΕ ΙΣΤΟΓΡΑΜΜΑ ΔΠΜΣ ΗΕΠ 1/46
Ψηφιακή Επεξεργασία Εικόνας Σ. Φωτόπουλος ΨΕΕ ΒΕΛΤΙΩΣΗ ΕΙΚΟΝΑΣ ΜΕ ΙΣΤΟΓΡΑΜΜΑ ΔΠΜΣ ΗΕΠ 1/46 Περιλαμβάνει: Βελτίωση (Enhancement) Ανακατασκευή (Restoration) Κωδικοποίηση (Coding) Ανάλυση, Κατανόηση Τμηματοποίηση
Προβλήματα Μεταφορών (Transportation)
Προβλήματα Μεταφορών (Transportation) Παραδείγματα Διατύπωση Γραμμικού Προγραμματισμού Δικτυακή Διατύπωση Λύση Γενική Μέθοδος Simplex Μέθοδος Simplex για Προβλήματα Μεταφοράς Παράδειγμα: P&T Co ΗεταιρείαP&T
ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 1: ΕΙΣΑΓΩΓΗ
ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 1: ΕΙΣΑΓΩΓΗ 1.1 ΕΙΣΑΓΩΓΗ 1.1 1.2 ΤΙ ΕΙΝΑΙ ΜΙΑ ΨΗΦΙΑΚΗ ΕΙΚΟΝΑ 1.2 1.3 ΠΛΗΘΟΣ BITS ΜΙΑΣ ΕΙΚΟΝΑΣ 1.4 1.4 ΕΥΚΡΙΝΕΙΑ ΕΙΚΟΝΑΣ 1.5 1.5 ΕΠΙΠΕ Α BITS ΜΙΑΣ ΕΙΚΟΝΑΣ 1.8 1.6 Η ΦΥΣΗ ΤΟΥ ΧΡΩΜΑΤΟΣ
ΟΙΚΟΝΟΜΕΤΡΙΑ. Παπάνα Αγγελική
ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 2: Ανασκόπηση βασικών εννοιών Στατιστικής και Πιθανοτήτων Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr Webpage: http://users.auth.gr/agpapana
Μεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες» Ψηφιακή Επεξεργασία Εικόνας. Εισηγητής Αναστάσιος Κεσίδης
Μεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες» Ψηφιακή Επεξεργασία Εικόνας Εισηγητής Αναστάσιος Κεσίδης Χωρικά φίλτρα Χωρικά φίλτρα Γενικά Σε αντίθεση με τις σημειακές πράξεις και μετασχηματισμούς, στα
Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά
Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων
Digital Image Processing
Digital Image Processing Intensity Transformations Πέτρος Καρβέλης pkarvelis@gmail.com Images taken from: R. Gonzalez and R. Woods. Digital Image Processing, Prentice Hall, 2008. Image Enhancement: είναι
ΚΕΣ 03: Αναγνώριση Προτύπων και Ανάλυση Εικόνας. KEΣ 03 Αναγνώριση Προτύπων και Ανάλυση Εικόνας. Κατάτµηση Εικόνων:
KEΣ 3 Αναγνώριση Προτύπων και Ανάλυση Εικόνας Κατάτµηση Εικόνων: Ανίχνευση Ακµών Τµήµα Επιστήµης και Τεχνολογίας Τηλεπικοινωνιών Πανεπιστήµιο Πελοποννήσου Περιεχόµενα Βιβλιογραφία Περιεχόµενα Ενότητας
6-Aνίχνευση. Ακμών - Περιγράμματος
6-Aνίχνευση Ακμών - Περιγράμματος Ανίχνευση ακμών Μετατροπή 2 εικόνας σε σύνολο ακμών Εξαγωγή βασικών χαρακτηριστικών της εικόνας Πιο «συμπαγής» αναπαράσταση Ανίχνευση ακμών Στόχος: ανίχνευση ασυνεχειών
Στατιστική: Δειγματοληψία X συλλογή δεδομένων. Περιγραφική στατιστική V πίνακες, γραφήματα, συνοπτικά μέτρα
ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΜΕΡΟΣ Α Δημήτρης Κουγιουμτζής e-mail: dkugiu@auth.gr Ιστοσελίδα αυτού του τμήματος του μαθήματος: http://users.auth.gr/~dkugiu/teach/civiltrasport/ide.html Στατιστική: Δειγματοληψία
ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι
Χειμερινό εξάμηνο 2010-2011 ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι Κ.Μ. 436 Περιγραφική Στατιστική Ι users.sch.gr/abouras abouras@sch.gr sch.gr abouras@uth.gr Μέτρα θέσης Η θέση αντιπροσωπεύει τη θέση της κατανομής
Ανασκόπηση θεωρίας ελαχίστων τετραγώνων και βέλτιστης εκτίμησης παραμέτρων
Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 2016-2017 Ανασκόπηση θεωρίας ελαχίστων τετραγώνων και βέλτιστης εκτίμησης παραμέτρων Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων Τοπογράφων Μηχανικών
Ανασκόπηση θεωρίας ελαχίστων τετραγώνων και βέλτιστης εκτίμησης παραμέτρων
Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 2017-2018 Ανασκόπηση θεωρίας ελαχίστων τετραγώνων και βέλτιστης εκτίμησης παραμέτρων Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων και Τοπογράφων
Ελλιπή δεδομένα. Εδώ έχουμε 1275. Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 1275 ατόμων
Ελλιπή δεδομένα Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 75 ατόμων Εδώ έχουμε δ 75,0 75 5 Ηλικία Συχνότητες f 5-4 70 5-34 50 35-44 30 45-54 465 55-64 335 Δεν δήλωσαν 5 Σύνολο 75 Μπορεί
MPEG-7 : Περιγραφή πολυμεσικού περιεχομένου
MPEG-7 : Περιγραφή πολυμεσικού περιεχομένου Εξαγωγή μεταδεδομένων / περιγραφών Χαμηλού επιπέδου περιγραφείς Συντακτικός και σημασιολογικός ορισμός Ανάκτηση πολυμεσικών τεκμηρίων XML / OWL Δημοσίευση 2002
ΜΟΝΟΠΑΡΑΜΕΤΡΙΚΗ ΚΑΙ ΠΟΛΥΠΑΡΑΜΕΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ. Αριάδνη Αργυράκη
ΜΟΝΟΠΑΡΑΜΕΤΡΙΚΗ ΚΑΙ ΠΟΛΥΠΑΡΑΜΕΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ Αριάδνη Αργυράκη ΣΤΑΔΙΑ ΕΚΤΕΛΕΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΙΚΩΝ ΓΕΩΧΗΜΙΚΩΝ ΕΡΕΥΝΩΝ 1.ΣΧΕΔΙΑΣΜΟΣ: - Καθορισμός στόχων έρευνας - Ιστορικό περιοχής 2 4.
Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 4 η : Βελτίωση Εικόνας. Καθ. Κωνσταντίνος Μπερμπερίδης Πολυτεχνική Σχολή Μηχανικών Η/Υ & Πληροφορικής
Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 4 η : Βελτίωση Εικόνας Καθ. Κωνσταντίνος Μπερμπερίδης Πολυτεχνική Σχολή Μηχανικών Η/Υ & Πληροφορικής Σκοποί ενότητας Εισαγωγή στις τεχνικές βελτίωσης εικόνας
Βασική Εφικτή Λύση. Βασική Εφικτή Λύση
Αλγεβρική Μορφή Γενική Μορφή Γραµµικού Προγραµµατισµού n µεταβλητών και m περιορισµών Εστω πραγµατικοί αριθµοί a ij, b j, c i R µε 1 i m, 1 j n Αλγεβρική Μορφή Γενική Μορφή Γραµµικού Προγραµµατισµού n
Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500
Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Πληθυσμός Δείγμα Δείγμα Δείγμα Ο ρόλος της Οικονομετρίας Οικονομική Θεωρία Διατύπωση της
Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 6 η : Συμπίεση Εικόνας. Καθ. Κωνσταντίνος Μπερμπερίδης Πολυτεχνική Σχολή Μηχανικών Η/Υ & Πληροφορικής
Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 6 η : Συμπίεση Εικόνας Καθ. Κωνσταντίνος Μπερμπερίδης Πολυτεχνική Σχολή Μηχανικών Η/Υ & Πληροφορικής Σκοποί ενότητας Εισαγωγή στη συμπίεση εικόνας Μη απωλεστικες
Γ. Κορίλη Αλγόριθµοι ροµολόγησης
- Γ. Κορίλη Αλγόριθµοι ροµολόγησης http://www.seas.upenn.edu/~tcom50/lectures/lecture.pdf ροµολόγηση σε ίκτυα εδοµένων Αναπαράσταση ικτύου µε Γράφο Μη Κατευθυνόµενοι Γράφοι Εκτεταµένα έντρα Κατευθυνόµενοι
Μεταπτυχιακό Πρόγραμμα Φυσικού Τμήματος «Υπολογιστική Φυσική» Θέμα εργασίας στο A Μέρος του μαθήματος «Προσομοίωση Χαοτικών Συστημάτων»
Μεταπτυχιακό Πρόγραμμα Φυσικού Τμήματος «Υπολογιστική Φυσική» Θέμα εργασίας στο A Μέρος του μαθήματος «Προσομοίωση Χαοτικών Συστημάτων» Οδηγίες: Σχετικά με την παράδοση της εργασίας θα πρέπει: Το κείμενο
ΟΜΑΔΟΠΟΙΗΣΗ ΑΡΙΘΜΗΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΤΟΠΟΓΡΑΦΙΑΣ ΟΜΑΔΟΠΟΙΗΣΗ ΑΡΙΘΜΗΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ ΒΥΡΩΝΑΣ ΝΑΚΟΣ ΑΘΗΝΑ 2006 ΠΕΡΙΕΧΟΜΕΝΑ Περιεχόμενα 1. Εισαγωγή 1 2. Μέθοδοι σταθερών
ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ
ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ Βασίλης Δ. Ανδριτσάνος Δρ. Αγρονόμος - Τοπογράφος Μηχανικός ΑΠΘ Επίκουρος Καθηγητής ΤΕΙ Αθήνας 3ο εξάμηνο http://eclass.teiath.gr Παρουσιάσεις,
Ασκήσεις Επεξεργασίας Εικόνας
Ασκήσεις Επεξεργασίας Εικόνας. Εύρεση στοιχείων μιας περιοχής με ιδιότητα συγκεκριμένης γειτονιάς Άσκηση. Έστω δύο υποσύνολα πίνακα εικόνας S και S2 η οποία φαίνεται στο σχήμα παρακάτω. Για σύνολο τιμών
ΚΑΤΑΤΜΗΣΗ ΕΙΚΟΝΑΣ ΜΕ ΜΕΘΟΔΟΥΣ ΟΜΑΔΟΠΟΙΗΣΗΣ ΥΠΕΡ-ΕΙΚΟΝΟΣΤΟΙΧΕΙΩΝ Η ΜΕΤΑΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΕΞΕΙΔΙΚΕΥΣΗΣ. Υποβάλλεται στην
ΚΑΤΑΤΜΗΣΗ ΕΙΚΟΝΑΣ ΜΕ ΜΕΘΟΔΟΥΣ ΟΜΑΔΟΠΟΙΗΣΗΣ ΥΠΕΡ-ΕΙΚΟΝΟΣΤΟΙΧΕΙΩΝ Η ΜΕΤΑΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΕΞΕΙΔΙΚΕΥΣΗΣ Υποβάλλεται στην ορισθείσα από την Γενική Συνέλευση Ειδικής Σύνθεσης του Τμήματος Πληροφορικής Εξεταστική
ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι Κ.Μ. 436
ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι Κ.Μ. 436 Χειμερινό εξάμηνο 2009-2010 Περιγραφική Στατιστική Ι users.att.sch.gr/abouras abouras@sch.gr sch.gr abouras@uth.gr ΑΝΤΩΝΙΟΣ ΧΡ. ΜΠΟΥΡΑΣ Χειμερινό Εξάμηνο 2009-2010 Μέτρα
ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι Κ. Μ. 436
ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι Κ. Μ. 436 A εξάμηνο 2009-2010 Περιγραφική Στατιστική Ι users.att.sch.gr/abouras abouras@sch.gr sch.gr abouras@uth.gr Μέτρα θέσης Η θέση αντιπροσωπεύει τη θέση της κατανομής κατά
Απεικόνιση Υφής. Μέρος Α Υφή σε Πολύγωνα
Απεικόνιση Γραφικά ΥφήςΥπολογιστών Απεικόνιση Υφής Μέρος Α Υφή σε Πολύγωνα Γ. Γ. Παπαϊωάννου, - 2008 Τι Είναι η Υφή; Η υφή είναι η χωρική διαμόρφωση των ποιοτικών χαρακτηριστικών της επιφάνειας ενός αντικειμένου,
n ίδια n διαφορετικά n n 0 n n n 1 n n n n 0 4
Διακριτά Μαθηματικά Ι Επαναληπτικό Μάθημα 1 Συνδυαστική 2 Μεταξύ 2n αντικειμένων, τα n είναι ίδια. Βρείτε τον αριθμό των επιλογών n αντικειμένων από αυτά τα 2n αντικείμενα. Μεταξύ 3n + 1 αντικειμένων τα
Πληροφοριακά Συστήματα Διοίκησης. Εισαγωγή στον Γραμμικό Προγραμματισμό
Πληροφοριακά Συστήματα Διοίκησης Εισαγωγή στον Γραμμικό Προγραμματισμό Τι είναι ο Γραμμικός Προγραμματισμός; Είναι το σημαντικότερο μοντέλο στη Λήψη Αποφάσεων Αντικείμενό του η «άριστη» κατανομή περιορισμένων
Βέλτιστη παρεμβολή και πρόγνωση άγνωστης συνάρτησης με τη μέθοδο της σημειακής προσαρμογής
Ειδικά Θέματα Συνορθώσεων & Εφαρμογές 8 ο εξάμηνο, Ακαδημαϊκό έτος 2016-2017 Βέλτιστη παρεμβολή και πρόγνωση άγνωστης συνάρτησης με τη μέθοδο της σημειακής προσαρμογής (Least squares collocation) Χριστόφορος
ΜΕΤΡΗΣΕΙΣ ΚΑΙ ΕΦΑΡΜΟΓΕΣ ΥΨΗΛΩΝ ΤΑΣΕΩΝ
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Τομέας Ηλεκτρικής Ισχύος Εργαστήριο Υψηλών Τάσεων ΜΕΤΡΗΣΕΙΣ ΚΑΙ ΕΦΑΡΜΟΓΕΣ ΥΨΗΛΩΝ ΤΑΣΕΩΝ (Αριθμητικές μέθοδοι υπολογισμού
Πα.Δα. Τμήμα Μηχανικών Πληροφορικής και Υπολογιστών ΣΦΑΛΜΑΤΑ ΜΕΤΡΗΣΕΩΝ
Πα.Δα. Τμήμα Μηχανικών Πληροφορικής και Υπολογιστών Εισαγωγή στην Εργαστηριακή Φυσική ΣΦΑΛΜΑΤΑ ΜΕΤΡΗΣΕΩΝ Δημήτριος Ν.Νικολόπουλος Καθηγητής Περιβαλλοντική και Ιατρική Φυσική Μέτρηση Η σύγκριση ενός μεγέθους
ΑΝΤΑΓΩΝΙΣΤΙΚΗ ΜΑΘΗΣΗ ΔΙΚΤΥA LVQ και SOM. "Τεχνητά Νευρωνικά Δίκτυα" (Διαφάνειες), Α. Λύκας, Παν. Ιωαννίνων
ΑΝΤΑΓΩΝΙΣΤΙΚΗ ΜΑΘΗΣΗ ΔΙΚΤΥA LVQ και SOM Μάθηση χωρίς επίβλεψη (unsupervised learning) Σύνολο εκπαίδευσης D={(x n )}, n=1,,n. x n =(x n1,, x nd ) T, δεν υπάρχουν τιμές-στόχοι t n. Προβλήματα μάθησης χωρίς
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 07-08 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Επικ. Καθηγητής v.koutras@fme.aegea.gr Τηλ: 7035468 Θα μελετήσουμε
ΠΕΡΙΕΧΟΜΕΝΑ. ΠΡΟΛΟΓΟΣ... vii ΠΕΡΙΕΧΟΜΕΝΑ... ix ΓΕΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ... xv. Κεφάλαιο 1 ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ ΑΠΟ ΤΗ ΣΤΑΤΙΣΤΙΚΗ
ΠΡΟΛΟΓΟΣ... vii ΠΕΡΙΕΧΟΜΕΝΑ... ix ΓΕΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ... xv Κεφάλαιο 1 ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ ΑΠΟ ΤΗ ΣΤΑΤΙΣΤΙΚΗ 1.1 Πίνακες, κατανομές, ιστογράμματα... 1 1.2 Πυκνότητα πιθανότητας, καμπύλη συχνοτήτων... 5 1.3
Ειδικά Θέµατα Υπολογιστικής Όρασης & Γραφικής. Εµµανουήλ Ζ. Ψαράκης & Αθανάσιος Τσακαλίδης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής
Ειδικά Θέµατα Υπολογιστικής Όρασης & Γραφικής Εµµανουήλ Ζ. Ψαράκης & Αθανάσιος Τσακαλίδης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής Σύνθεση Πανοράµατος Εµµανουήλ Ζ. Ψαράκης Πολυτεχνική Σχολή
Μοντέλο φωτισμού Phong
ΚΕΦΑΛΑΙΟ 9. Στο προηγούμενο κεφάλαιο παρουσιάσθηκαν οι αλγόριθμοι απαλοιφής των πίσω επιφανειών και ακμών. Απαλοίφοντας λοιπόν τις πίσω επιφάνειες και ακμές ενός τρισδιάστατου αντικειμένου, μπορούμε να
ΓΡΑΜΜΙΚΗ ΠΑΛΙΝ ΡΟΜΗΣΗ
ΓΡΑΜΜΙΚΗ ΠΑΛΙΝ ΡΟΜΗΣΗ ιαφάνειες για το µάθηµα Information Management ΑθανάσιοςΝ. Σταµούλης 1 ΠΗΓΗ Κονδύλης Ε. (1999) Στατιστικές τεχνικές διοίκησης επιχειρήσεων, Interbooks 2 1 Γραµµική παλινδρόµηση Είναι
ΔΙΚΤΥO RBF. "Τεχνητά Νευρωνικά Δίκτυα" (Διαφάνειες), Α. Λύκας, Παν. Ιωαννίνων
ΔΙΚΤΥO RBF Αρχιτεκτονική δικτύου RBF Δίκτυα RBF: δίκτυα συναρτήσεων πυρήνα (radial basis function networks). Πρόσθιας τροφοδότησης (feedforward) για προβλήματα μάθησης με επίβλεψη. Εναλλακτικό του MLP.
Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας. Παρουσίαση 12 η. Θεωρία Χρώματος και Επεξεργασία Έγχρωμων Εικόνων
Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Παρουσίαση 12 η Θεωρία Χρώματος και Επεξεργασία Έγχρωμων Εικόνων Εισαγωγή (1) Το χρώμα είναι ένας πολύ σημαντικός παράγοντας περιγραφής, που συχνά απλουστεύει κατά
Γραφικά με υπολογιστές. Διδάσκων: Φοίβος Μυλωνάς. Διάλεξη #07
Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Χειμερινό εξάμηνο Γραφικά με υπολογιστές Διδάσκων: Φοίβος Μυλωνάς fmylonas@ionio.gr Διάλεξη #07 Γραμμές και Πολύγωνα: Εισαγωγή Αναπαράσταση 2D και 3D Χρωματισμός πολυγώνων
Κινητά Δίκτυα Επικοινωνιών. Συμπληρωματικό υλικό. Προσαρμοστική Ισοστάθμιση Καναλιού
Κινητά Δίκτυα Επικοινωνιών Συμπληρωματικό υλικό Προσαρμοστική Ισοστάθμιση Καναλιού Προσαρμοστικοί Ισοσταθμιστές Για να υπολογίσουμε τους συντελεστές του ισοσταθμιστή MMSE, απαιτείται να λύσουμε ένα γραμμικό
Μεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες» Ψηφιακή Επεξεργασία Εικόνας. Εισηγητής Αναστάσιος Κεσίδης
Μεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες» Ψηφιακή Επεξεργασία Εικόνας Εισηγητής Αναστάσιος Κεσίδης Ακμές και περιγράμματα Ακμές και περιγράμματα Γενικά Μεγάλο τμήμα της πληροφορίας που γίνεται αντιληπτή
Πειραματική Ρευστοδυναμική. Σφάλματα και Αβεβαιότητα Μετρήσεων
Εργαστήριο Τεχνικής Θερμοδυναμικής Τμήμα Μηχανολόγων & Αεροναυπηγών Μηχανικών Πανεπιστήμιο Πατρών Πειραματική Ρευστοδυναμική Σφάλματα και Αβεβαιότητα Μετρήσεων Αλέξανδρος Γ. Ρωμαίος Χειμερινό Εξάμηνο 2018
ΑΞΙΟΠΙΣΤΙΑ ΚΑΙ ΣΥΝΤΗΡΗΣΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής. Pr T T0
ΑΞΙΟΠΙΣΤΙΑ ΚΑΙ ΣΥΝΤΗΡΗΣΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής Δεσμευμένη αξιοπιστία Η δεσμευμένη αξιοπιστία R t είναι η πιθανότητα το σύστημα να λειτουργήσει για χρονικό
Παρεμβολή & πρόγνωση άγνωστης συνάρτησης μέσω σημειακής προσαρμογής
Ειδικά Θέματα Συνορθώσεων & Εφαρμογές 8 ο εξάμηνο, Ακαδημαϊκό έτος 2018-2019 Παρεμβολή & πρόγνωση άγνωστης συνάρτησης μέσω σημειακής προσαρμογής (Least squares collocation) Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων
Παράλληλοι Αλγόριθμοι: Ανάλυση Εικόνας και Υπολογιστική Γεωμετρία. Πέτρος Ποτίκας CoReLab 4/5/2006
Παράλληλοι Αλγόριθμοι: Ανάλυση Εικόνας και Υπολογιστική Γεωμετρία Πέτρος Ποτίκας CoReLab 4/5/2006 Επισκόπηση Ετικέτες σε συνιστώσες (Component labelling) Hough μετασχηματισμοί (transforms) Πλησιέστερος
Γραμμικός Προγραμματισμός και θεωρία Παιγνίων
Σε αυτό το κεφάλαιο θα χρησιμοποιήσουμε πίνακες οι οποίοι δεν θα είναι γραμμικές εξισώσεις. Θα πρέπει λοιπόν να δούμε την γεωμετρική ερμηνεία των ανισώσεων. Μια ανίσωση διαιρεί τον n-διάστατο χώρο σε δύο
Αριθμητική Ανάλυση και Εφαρμογές
Αριθμητική Ανάλυση και Εφαρμογές Διδάσκων: Δημήτριος Ι. Φωτιάδης Τμήμα Μηχανικών Επιστήμης Υλικών Ιωάννινα 07-08 Αριθμητική Παραγώγιση Εισαγωγή Ορισμός 7. Αν y f x είναι μια συνάρτηση ορισμένη σε ένα διάστημα
ΑΣΥΜΜΕΤΡΙΑ Ας υποθέσουμε, ότι κατά την μελέτη της κατανομής δύο μεταβλητών, καταλήγουμε στα παρακάτω ιστογράμματα.
ΑΣΥΜΜΕΤΡΙΑ Ας υποθέσουμε, ότι κατά την μελέτη της κατανομής δύο μεταβλητών, καταλήγουμε στα παρακάτω ιστογράμματα. Στα παραπάνω ιστογράμματα, παρατηρούμε, ότι αν και υπάρχει διαφορά στη διασπορά των τιμών
Εργασίες στο µάθηµα Ψηφιακής Επεξεργασίας και Αναγνώρισης Εγγράφων
Εργασίες στο µάθηµα Ψηφιακής Επεξεργασίας και Αναγνώρισης Εγγράφων Μάθηµα 2: υαδική Μετατροπή 1. Βελτιωµένη µέθοδος προσαρµοσµένης κατωφλίωσης βάσει του πλάτους των γραµµών των χαρακτήρων (Απαλλακτική
03 _ Παράμετροι θέσης και διασποράς. Γούργουλης Βασίλειος Καθηγητής Τ.Ε.Φ.Α.Α. Σ.Ε.Φ.Α.Α. Δ.Π.Θ.
6_Στατιστική στη Φυσική Αγωγή 03 _ Παράμετροι θέσης και διασποράς Γούργουλης Βασίλειος Καθηγητής Τ.Ε.Φ.Α.Α. Σ.Ε.Φ.Α.Α. Δ.Π.Θ. Παράμετροι θέσης όταν θέλουμε να εκφράσουμε μια μεταβλητή με έναν αριθμό π.χ.
5ο Μάθημα Αλγόριθμοι Σχεδίασης Βασικών Σχημάτων
5ο Μάθημα Αλγόριθμοι Σχεδίασης Βασικών Σχημάτων Γραφικα Τμήμα Πληροφορικής Πανεπιστήμιο Θεσσαλίας Ακ Έτος 2016-17 Εισαγωγή Ευθεία Κύκλος Έλλειψη Σύνοψη του σημερινού μαθήματος 1 Εισαγωγή 2 Ευθεία 3 Κύκλος
Τεχνικές Μείωσης Διαστάσεων. Ειδικά θέματα ψηφιακής επεξεργασίας σήματος και εικόνας Σ. Φωτόπουλος- Α. Μακεδόνας
Τεχνικές Μείωσης Διαστάσεων Ειδικά θέματα ψηφιακής επεξεργασίας σήματος και εικόνας Σ. Φωτόπουλος- Α. Μακεδόνας 1 Εισαγωγή Το μεγαλύτερο μέρος των δεδομένων που καλούμαστε να επεξεργαστούμε είναι πολυδιάστατα.
Στοχαστικές Μέθοδοι στους Υδατικούς Πόρους Φασματική ανάλυση χρονοσειρών
Στοχαστικές Μέθοδοι στους Υδατικούς Πόρους Φασματική ανάλυση χρονοσειρών Δημήτρης Κουτσογιάννης Τομέας Υδατικών Πόρων και Περιβάλλοντος, Σχολή Πολιτικών Μηχανικών, Εθνικό Μετσόβιο Πολυτεχνείο Αθήνα Επανέκδοση
ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΤΟΜΕΑΣ ΑΣΤΡΟΝΟΜΙΑΣ ΑΣΤΡΟΦΥΣΙΚΗΣ ΚΑΙ ΜΗΧΑΝΙΚΗΣ ΣΠΟΥΔ ΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΑΣΚΗΣΕΙΣ ΑΝΑΛΥΤΙΚΗΣ ΔΥΝΑΜΙΚΗΣ Μεθοδολογία Κλεομένης Γ. Τσιγάνης Λέκτορας ΑΠΘ Πρόχειρες
Γραμμικός Προγραμματισμός Μέθοδος Simplex
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Επιχειρησιακή Έρευνα Γραμμικός Προγραμματισμός Μέθοδος Simplex Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου Περιεχόμενα Παρουσίασης 1. Πρότυπη Μορφή ΓΠ 2. Πινακοποίηση
LOGO. Εξόρυξη Δεδομένων. Δειγματοληψία. Πίνακες συνάφειας. Καμπύλες ROC και AUC. Σύγκριση Μεθόδων Εξόρυξης
Εξόρυξη Δεδομένων Δειγματοληψία Πίνακες συνάφειας Καμπύλες ROC και AUC Σύγκριση Μεθόδων Εξόρυξης Πασχάλης Θρήσκος PhD Λάρισα 2016-2017 pthriskos@mnec.gr LOGO Συμπερισματολογία - Τι σημαίνει ; Πληθυσμός
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 06-07 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Επικ. Καθηγητής v.koutra@fme.aegea.gr Τηλ: 7035468 Θα μελετήσουμε
ΘΕΜΑΤΑ Α : ΕΚΦΩΝΗΣΕΙΣ - ΛΥΣΕΙΣ
ΔΙ.ΠΑ.Ε. ΤΜΗΜΑ : ΛΟΓΙΣΤΙΚΗΣ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ 4 ΙΟΥΝΙΟΥ 9 Μάθημα: ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ Α ΕΞΕΤΑΣΤΙΚΗ ΕΑΡΙΝΟΥ ΕΞΑΜΗΝΟΥ 8-9 ΘΕΜΑΤΑ Α : ΕΚΦΩΝΗΣΕΙΣ - ΛΥΣΕΙΣ Θέμα Ο αριθμός αδικαιολόγητων απουσιών
HMY 795: Αναγνώριση Προτύπων
HMY 795: Αναγνώριση Προτύπων Διάλεξη 2 Επισκόπηση θεωρίας πιθανοτήτων Τυχαίες μεταβλητές: Βασικές έννοιες Τυχαία μεταβλητή: Μεταβλητή της οποίας δε γνωρίζουμε με βεβαιότητα την τιμή (σε αντίθεση με τις
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΙΑΤΡΙΚΗΣ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. Χατζηλιάδη Παναγιώτα Ευανθία
ΜΠΣ «ΜΕΘΟΔΟΛΟΓΙΑ ΒΪΟΙΑΤΡΙΚΗΣ ΕΡΕΥΝΑΣ, ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΚΑΙ ΚΛΙΝΙΚΗ ΒΙΟΠΛΗΡΟΦΟΡΙΚΗ» ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΙΑΤΡΙΚΗΣ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ «Ανάπτυξη λογισμικού σε γλώσσα προγραματισμού python για ομαδοποίηση
2.1 Αριθμητική επίλυση εξισώσεων
. Αριθμητική επίλυση εξισώσεων Στο κεφάλαιο αυτό διαπραγματεύεται μεθόδους εύρεσης των ριζών εξισώσεων γραμμικών ή μη-γραμμικών για τις οποίες δεν υπάρχουν αναλυτικές 5 4 3 εκφράσεις. Παραδείγματα εξισώσεων
Εισαγωγή στη Στατιστική- Κοινωνικές Στατιστικές. Διάλεξη
Εισαγωγή στη Στατιστική- Κοινωνικές Στατιστικές Διάλεξη 13-3-2015 Υπολογισμός Σταθμικού Μέσου Αριθμητικού X weighted n 1 n 1 w i w X i i Παράδειγμα Υποψήφιος της Δ' Δέσμης πήρε στις εξετάσεις τους εξής
Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D.
Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D. Μη γραμμικός προγραμματισμός: μέθοδοι μονοδιάστατης ελαχιστοποίησης Πανεπιστήμιο Θεσσαλίας Σχολή Θετικών Επιστημών ΤμήμαΠληροφορικής Διάλεξη 6 η /2017 Τι παρουσιάστηκε
4.3. Γραµµικοί ταξινοµητές
Γραµµικοί ταξινοµητές Γραµµικός ταξινοµητής είναι ένα σύστηµα ταξινόµησης που χρησιµοποιεί γραµµικές διακριτικές συναρτήσεις Οι ταξινοµητές αυτοί αναπαρίστανται συχνά µε οµάδες κόµβων εντός των οποίων