Δαπάνη ενέργειας Περιορισμένο μήκος Επιδράσεις στον αγωγό από ανάντη και κατάντη Ποια εξίσωση, Ενέργειας η ορμής?
|
|
- Μήδεια Παπαστεφάνου
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Δρ Μ.Σπηλίώτη
2
3
4 Χρησιμοποιείται για καταστροφή ενέργειας Γενικά δεν επιθυμείτε στο σχεδιασμό ΠΑΝΤΑ συμβαίνει όταν: ροή από υπερκρίσιμη σε υποκρίσιμη υπερχειλιστής Από απότομη κλίση σε ήπια Δαπάνη ενέργειας Περιορισμένο μήκος Επιδράσεις στον αγωγό από ανάντη και κατάντη Ποια εξίσωση, Ενέργειας η ορμής?
5 Όγκος ελέγχου, εξίσωση ορμής
6 Διατήρηση της ορμής Όγκος ελέγχου Διατομές κάθετες στην ταχύτητα Δυνάμεις λόγω πίεσης πάντα θλιπτικές, κάθετες στην επιφάνεια Σχεδιάζω τις δυνάμεις και ελέγχω τη φορά τους με βάση το θεωρούμενο σύστημα αξόνων Η συνισταμένη των δυνάμεων εξισορροπεί τη (καθαρή) διαφορά ορμής εκροής- εισροής για μόνιμη ροή Οι ταχύτητες ελέγχονται ως προς τη φορά με το θεωρούμενο σύστημα αξόνων Σ Fx = ήρ Q V xεκρο ής xεισρο ς Vήεκρο ς V ή εισρο ς σ ύγκριση ϕοράς σ ύγκριση ϕοράς µε άξονες µε άξονες Μόνιμη μονοδιάστατη ροή χωρίς διακλαδώσεις
7 Παντοκράτορας, Μηχ Ρευστών
8 Διατήρηση ορμής μόνιμη μονοδιάστατη ροή Παντοκράτορας, Μηχανική Ρευστών
9
10 Υδροστατική κατανομή Θλιπτική πάντα Η πίεση αλλάζει με το βάθος κατακόρυφη επιφάνεια Λύση: Κατακόρυφη επιφάνεια, δύναμη από πιέσεις= πίεση στο κέντρο βάρους επί επιφάνεια (για υδροστατική κατανομή των πίεσεων) «άσχετο»: η δύναμη λόγω πίεσης ασκείται σε μεγαλύτερο βάθος στο κέντρο πίεσης
11 Επανάληψη 1) Συνισταμένη πίεσης σε οριζόντια επιφάνεια (π.χ. πυθμένας δεξαμενής). Σε αυτήν την περίπτωση η πίεση είναι παντού ίδια p = γh = σταθ. Η δύναμη πίεσης που εξασκείται στο πυθμένα είναι F = γha Το κέντρο πίεσης (σημείο εφαρμογής της συνισταμένης πίεσης) ταυτίζεται με το κέντρο βάρους της επιφανείας h Α p = γh Σχ. Κατανομή των πιέσεων στον πυθμένα δεξαμενής.
12 Συνισταμένη πίεσης σε οριζόντια επιφάνεια (συνέχεια) Υδροστατικό παράδοξο: Η πίεση που ασκείται στον πυθμένα ενός δοχείου είναι ανεξάρτητη από το σχήμα του δοχείου ενώ για μερικά δοχεία η δύναμη αυτή μπορεί να είναι πολλαπλάσια από το βάρος του υπερκείμενου ρευστού
13 2)Συνισταμένη πίεσης σε κεκλιμένη ή κατακόρυφη επιφάνεια που κείται σε επίπεδο.( Στην υδραυλική στα τοιχώματα συνήθως θ=90 0) Προσδιορίζω την κατακόρυφη απόσταση από το κέντρο βάρους h c (μοναδική κατακόρυφη απόσταση που χρησιμοποιώ επιφάνεια). Η δύναμη πίεσης θα είναι: Στην υδραυλική στα τοιχώματα συνήθως θ=90 0 yc=hc p = θ = 90 yc = hc F = pa ό = γ h c ( κατακ ό. απά σατση απ κ. β ρους ) ( ρ ) F gy A c
14 Από επιφάνεια Σε κατακόρυφες επιφάνειες α=90
15 Για ορθογωνική διατομή μόνο y F p = (ρgy/2) A = (ρgy/2) (by) = 1/2 ρgy 2 b Τέλος διαλλείματος
16
17 Διατήρηση της ορμής (όγκος ελέγχου) Δύναμη λόγω πίεσης= πίεση στο κέντρο βάρους της επίπεδης επιφάνειας επί την επιφάνεια
18 Υδραυλικό άλμα Μ1 =Μ2 (ειδική δύναμη, συζυγή βάθη) Επίλυση με δοκιμές
19
20 2 Εις το τετράγωνο τυπογραφικό λάθος
21
22 Εμπόδιο στην κίνηση του ρευστού : οριζόντια δύναμη αντίστασης στη ροή αρνητικές οι δυνάμεις που είναι σε άλλη φορά από τη ροή Χρυσάνθου, 2014
23
24 Εμπόδιο στην κίνηση του ρευστού : οριζόντια δύναμη αντίστασης στη ροή αρνητικές οι δυνάμεις που είναι σε άλλη φορά από
25 Γενικά: Ειδική δύναμη γενίκευση Χρυσάνθου, 2014
26 2 Εις το τετράγωνο τυπογραφικό λάθος
27 Για ορθογωνική διατομή
28 Όγκος ελέγχου, εξίσωση ορμής
29 Δ. ορμής, σε οριζόντιο άλμα, ορθ. Διατομή, αμελητέες τριβές
30
31 Ορθογωνική διατομή Στο κρίσιμο βάθος ελάχιστη ειδική δύναμη Συμπέρασμα που γενικεύεται για κάθε διατομή Χρυσάνθου, 2014
32
33 Δύο τρόποι επίλυσης για ορθογωνική διατομή Δύο τρόποι επίλυσης υδραυλικού άλματος για ορθογωνική διατομή: α) Από διατήρησης ορμής για οριζόντιο άλμα: Μ 1 =Μ 2 β) Από έτοιμες εξισώσεις που ισχύουν για οριζόντιο πυθμένα ορθογωνικής (μόνο) διατομής αγωγού y 1 * 1 1 8* ( ) 2 F1 2 y = 2 + +, g y 1 * 1 1 8* ( ) 2 F2 F = V * y 1 y = 2 + +, g* F = V 1 y 2
34 Μόνο για οριζόντια άλματα, ορθογωνική διατομή Απόδειξη: β εξίσωση με μεταβλητή y 2 /y 1 Στάμου, 2014
35 +οριζόντιος πυθμένας Μ1=Μ2 Χρυσάνθου, 2014
36 ΕΜΠΟΔΙΟ ΣΤΗΝ ΚΙΝΗΣΗ ΤΟΥ ΡΕΥΣΤΟΥ ΚΑΙ ΔΙΑΤΗΡΗΣΗ ΟΡΜΗΣ ΚΑΙ ΕΝΕΡΕΓΕΙΑΣ ΟΡΘΟΓΩΝΙΚΗ ΔΙΑΤΟΜΗ
37
38 Παγίδα, δίνει δύναμη ανά μονάδα πλάτους σε ορθ. διατομή
39 Σε αντίθεση με το υδραυλικό άλμα, για τον προσδιορισμός δύναμης από ακανόνιστο εμπόδιο, μπορούμε να υποθέσουμε διατήρηση της ενέργειας προσεγγιστικά
40 Άλλα στοιχεία θεωρίας υδραυλικού άλματος
41 Οριζόντιο υδραυλικό άλμα Πρίνος, 2013 Υδραυλικό άλμα (οριζόντιο): Κοινή ειδική δύναμη (καμπύλη Μ συζυγή βάθη) Μείωση ενέργειας και κατά συνέπεια και της ειδικής ενέργειας (οριζόντιος πυθμένας). Ωστόσο η μεταβολή γίνεται εκτός διαγράμματος ειδικής ενέργειας (κατά το άλμα δεν υπάρχει ενιαία ταχύτητα καθ υψος)
42 Μήκος άλματος περιορισμένο, L 6y 2 προσαρμογή 4.5 Fr 13 1
43 Περιπτώσεις Υδραυλικού άλματος
44 Υδραυλικό άμα μετά από θυρίδα, περίπτωση 2 Πρίνος, 2013
45 Μετατοπισμένο υδραυλικό άλμα προσαρμογή
46 Άλλες εφαρμογές αναβαθμός συγκράτησης φορτίου με συρση, προσοχή κατάλληλο σκάμμα Προς. Μηδ. απωλειών Υδραυλικό άλμα. Ορθ διατ. Προς. Μηδ. Απωλειών Η3=Η4
47 Άλλες εφαρμογές σκάμα ώστε 2, 3 συζυγή βάθη Προς. Μηδ. απωλειών Υδραυλικό άλμα. Ορθ διατ. Προς. Μηδ. Απωλειών Η3=Η4
48 Συνήθως, από τις κατάντη συνθήκες αμέσως μετά το υδραυλικό άλμα Από διατήρηση ορμής (άρα από την ειδική δύναμη) προκύπτει το συζυγές βάθος ροής αμέσως πριν το άλμα. Μπορεί να προϋπάρξει μία καμπύλη προσαρμογής που αυξάνει το μήκος της λεκάνης ηρεμίας
49 Υπερκρίσιμη ροή σε υψηλό εμπόδιο, περίπτωση (3), Δημητρίου
50 Είδη άλματος Πρίνος, 2013
51 Υδραυλικό άλμα εμφανίζεται σε αγωγό τραπεζοειδούς διατομής πλάτους πυθμένα b 0 =5 m, κλίση πρανών 2:1. Το συζυγές βάθος ανάντη του άλματος είναι y 1 =1 m και η παροχή Q=50 m 3 /s. Ποιο είναι το συζυγές βάθος y 2 κατάντη του άλματος; Ο πυθμένας να θεωρηθεί περίπου οριζόντιος.
52 Λύση: Α τρόπος Μ1=Μ2, για οριζόντιο υδραυλικό άλμα, προσοχή στην άσκηση μη ορθογωνική διατομή, επίλυση με δοκιμές
53 (Υδραυλικό άλμα σε μη ορθογωνική διατομή) Α τρόπος (με βάση την ισότητα στις ειδικές ενέργειες, δοκιμές): Σε τραπεζοειδή διατομή η ειδική δύναμη θα είναι Οριζόντιο άλμα Μ1=Μ2 Ειδική by zy Q δύναμη με i i M = + + i βάση την 2 3 gyi( b + zyi) εξίσωση της ορμής, και επειδή ο πυθμένας είναι οριζόντιος από τη διατήρηση της ορμής ισχύει για οριζόντιο διαφέρει υδραυλικό από άλμα: Μ 1 =Μ 2 διατομή σε διατομή
54 Μ1=Μ2, ΔΟΚΙΜΕΣ και επειδή ο πυθμένας είναι οριζόντιος από τη διατήρηση της ορμής ισχύει για οριζόντιο υδραυλικό άλμα: Μ 1 =Μ 2 Οπότε: *1 2*1 50 M = *1* 5 2*1 ( + ) και M i b* y 2* y Q i i = g* y * b 2* y i ( + ) i Επιλύοντας με δοκιμές τις παραπάνω σχέσεις προκύπτει y = m
55 Απώλειες ενέργειας σε υ.α: έμμεσα από ΑΔΕ Η απώλεια ενέργειας θα προσδιοριστούν από την εξίσωση της ενέργειας: H = H + h 1 2 h Lολ υδρ. αλµα h Lολ υδρ. αλµατος 2 2 u u 1 2 z/ y z y h = / g 2g z + E = z + E + h υδρ. αλµατος h E E = υδρ. αλµατος 1 2 υδρ. αλµατος 2 2 Q Q h =. 2 + y y υδρ αλµατος 2 2* g *(( b + zy1) y1) 2g (( b + zy2) y2) h = 0.77m τος Λόγω άλματος, δευτερεύουσες ροές δίνες κλπ καταστροφή ενέργειας πάντα, δεν ισχύει η εξίσωση DARCY- Weisbach, manning κλπ Οι απώλειες ενέργειας λόγω άλματος δεν πρέπει να συγχέονται με τις απώλειες λόγω τριβών πυθμένα. Τάξη μεγέθους μπορεί να προκύψει μόνο από πειραματικά δεδομένα (δεν υπάρχει μ αντίστοιχη σχέση σαν του Darcy-Weisbach).
56 2 Πρίνος, 2014
57 Λύση: β τρόπος Μ1=Μ2, για οριζόντιο υδραυλικό άλμα, γραφική επίλυση από διάγραμμα
58 Β τρόπος (με βάση την ισότητα στις ειδικές ενέργειες, διάγραμμα): Καταστρώνουμε την καμπύλη Μ(y) by zy Q 5y 2y 50 M( y) = + + = gy b + zy 2 3 gy 5+ 2y 3 ( ) m ( ) ( ) M y = (θα είναι "κάτω" στην υπερκρίσιμη περιοχή) 1 Μ 1 = Μ 2 φέρνουμε κατακόρυφη προκύπτει το y 2 που θα είναι "πάνω" στην υποκρίσιμη περιοχή Υδραυλικό άλμα: υπερκρίσιμη υποκρίσιμη ροή, πάντα υδραυλικό άλμα με απώλειες ενέργειας, το αντίστροφο ΔΕΝ ισχύει. Β τρόπος γραφική επίλυση
59 Λύση: γ τρόπος Απολύτως ισοδύναμος, εφαρμόζω την εξίσωση της ορμής, αναλύω την επιφάνεια και η δύναμη λόγω πίεσης σε κάθε υπόεπιφάνεια θα είναι ίση με τη πίεση στο κέντρο βάρους επί το εμβαδόν
60 Γ τρόπος απολύτως ισοδύναμος με αυτόν της ειδικής δύναμης για διδακτικούς λόγους
61 Δύναμη από πίεση: πίεση στο κ.β. επί επιφάνεια για κατακόρυφη επιφάνεια Κ.β από επιφάνεια νερού Εκροή εισροή
62 Ανάλυση σε σύνθετες διατομές απλά αθροίζω τις δυνάμεις λόγω πίεσης σε κάθε επιφάνεια
63
64
65 Μεταβολή στην πίεση εξισορροπεί τη δύναμη αδράνειας
66 Q Q F F = ρq b zy y b zy y ( + ) ( + ) p1 p1 σ ύγκριση µε άξονες πίεση θλιπτιή Vήεκρο ς V ή εισρο ς σ ύγκριση ϕοράς σ ύγκριση ϕοράς µε άξονες µε άξονες Οριζόντιο άλμα χωρίς εμπόδιο Μόνο δυνάμεις πίεσης Τραπεζοειδής διατομή
67 2
68 Q Q = ρ ( + 2) 2 ( + 1) 1 F F Q p1 p 2 b zy y b zy y * 2 1 *5 y * 2 y * ρg + ρg ρ = 5 2* 5 2*1 1 ( + y ) y ( + ) 2 2 y = γν 2
69 Άσκηση ΑΣΚΗΣΗ 2 Σε ορθογωνική διατομή, με πλάτος 3.00 m, παρεμβάλλεται εμπόδιο ύψους 90 cm. Η ροή αρχικά είναι υποκρίσιμη. Το βάθος ροής πάνω από το εμπόδιο είναι 0.61 m όπου και η ροή είναι κρίιμη. Να προσδιορισθεί: 1) η ειδική παροχή 2) το βάθος ροής στη θέση (1), ανάντη του εμποδίου, και το βάθος ροής κατάντη του εμποδίου (η άσκηση συνεχίζεται)(τερζίδης, 1997)
70 Κρίσιμη ροή 1) Όπως είναι γνωστό όταν παρουσιάζεται κρίσιμη ροή ο αριθμός Froude γίνεται ίσος με τη μονάδα. Για ορθογωνική διατομή ισχύει: Επομένως: V c q 1.49 = = = 2.44 m/ s y 0.61 c F r V q c = 1 = 1 = 1 3 gyc gyc q= g y = c q= m s m / /
71 Αρχή διατ. ενέργειας 1) Α Τρόπος: Εφαρμόζοντας την Αρχή Διατήρησης της Ενέργειας και θεωρώντας αμελητέες της απώλειες ενέργειας, έχουμε: V V V 1 c 3 + y z y z y z 1 1 c g + = + + = + + 2g 2g q 2.44 q + y = = + y y y y = = + y y y Αξιοσημείωτο αλλά απόλυτος ερμηνεύσιμο είναι το γεγονός ότι οι δύο εξισώσεις είναι απολύτως ισοδύναμες
72 Δύο λύσεις Επιλύοντας την εξίσωση έχουμε τις εξής λύσεις: Για y = 1.80 > y, 1 c η ροή είναι υποκρίσιμη. Για y = 0.27 < y, 3 c η ροή είναι υπερκρίσιμη. y = 1.80 για την ανάντη ροή 1 και y = για την κατάντη ροή V q 1.49 β τρόπος F = = = = < 1 : r 3 3 g y1 g y V q 1.49 β τρόπος F = = = = > 3 : r 3 3 g y3 g y
73
74 Κατασκευή καμπύλης
75
76 Εφαρμογή, συνέχεια άσκησης Τερζίδης: Υδραυλική
77 3-4, υδραυλικό άμα, οριζ. Αγωγός, ορθογωνική διατομή
78
79 Δε χρησιμοποιώ την ειδική δύναμη ανά μονάδα πλάτους
80 Ίση και αντίθετης φορά δύναμη θα ασκήσει το ρευστό στο φυσικό εμπόδιο (γ νόμος Νεύτωνα)
81 Υδραυλικό άμα μετά από θυρίδα, περίπτωση 2 Πρίνος, 2013
Περιορισμένο μήκος Επιδράσεις στον αγωγό από ανάντη και κατάντη Ποια εξίσωση, Ενέργειας η ορμής?
Δρ Μ.Σπηλίώτη Χρησιμοποιείται για καταστροφή ενέργειας Γενικά δεν επιθυμείτε στο σχεδιασμό ΠΑΝΤΑ συμβαίνει όταν: ροή από υπερκρίσιμη ρ σε υποκρίσιμη υπερχειλιστής Από απότομη κλίση σε ήπια Δαπάνη ενέργειας
Διαβάστε περισσότεραΧρησιμοποιείται για καταστροφή ενέργειας Γενικά δεν επιθυμείτε στο σχεδιασμό ΠΑΝΤΑ συμβαίνει όταν: ροή από υπερκρίσιμη ρ σε υποκρίσιμη
Δρ Μ.Σπηλίώτη Χρησιμοποιείται για καταστροφή ενέργειας Γενικά δεν επιθυμείτε στο σχεδιασμό ΠΑΝΤΑ συμβαίνει όταν: ροή από υπερκρίσιμη ρ σε υποκρίσιμη υπερχειλιστής Από απότομη κλίση σε ήπια Δαπάνη ενέργειας
Διαβάστε περισσότεραΥΔΡΑΥΛΙΚΗ ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ ΑΝΟΙΚΤΟΙ ΑΓΩΓΟΙ. 2 5 ο Εξάμηνο Δρ Μ. Σπηλιώτης
ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΞΑΝΘΗΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΩΝ ΕΡΓΩΝ ΥΔΡΑΥΛΙΚΗ ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ ΑΝΟΙΚΤΟΙ ΑΓΩΓΟΙ. 2 5 ο Εξάμηνο Δρ Μ. Σπηλιώτης Ξάνθη, 2015 Σειρά 1 Θεωρία
Διαβάστε περισσότεραΥδρoληψία (Βυθισμένο υδραυλικό άλμα στο
Υδρoληψία (Βυθισμένο υδραυλικό άλμα στο θέμα) Δρ Μ. Σπηλιώτη Λέκτορα Κείμενα από Μπέλλος,, 2008 και από τις σημειώσεις Χρυσάνθου (βλπ βασικές σημειώσεις από Διαφάνειες), 2014 Σκοπός μαθήματος Επανάληψη
Διαβάστε περισσότεραΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Α.Π.Θ. ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΤΕΧΝΙΚΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ
ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Α.Π.Θ. ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΤΕΧΝΙΚΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ /05/018 Υδραυλικό άλμα (hydraulic jump) είναι η απότομη μετάβαση από υπερκρίσιμη σε υποκρίσιμη ροή. Η μετάβαση αυτή, που συνεπάγεται
Διαβάστε περισσότεραΜ.Σπηλιώτη Σπηλ Λέκτορα
Μ.Σπηλιώτη Λέκτορα Χρυσάνθου, 014 Ειδική ενέργεια f(e, Q, y) = 0 Eιδική ενέργεια για δεδομένη παροχή συνάρτηση του βάθους ροής όπου και =f (y) 1-3 Διάγραμμα ειδικής ενέργειας Es μεταβάλλεται γραμμικά με
Διαβάστε περισσότεραΜ.Σπηλιώτη Σπηλ Λέκτορα
Μ.Σπηλιώτη Λέκτορα Σχεδιαστικά Έλεγχος ώστε η ροή να είναι υποκρίσιμη, γενικά και ειδικά στα τμήματα με ομοιόμορφη ροή (ποικιλία ί διατομών, συνήθως τραπεζοειδή διατομή) Απαραίτητη η θεωρία του κρισίμου
Διαβάστε περισσότεραΠιθανές ερωτήσεις (όχι όλες) με κάποιες λακωνικές απαντήσεις για την προφορική και γραπτή εξέταση Tι είναι ομοιόμορφη ροή (βάθος ροής σταθερό)?
Πιθανές ερωτήσεις (όχιι όλες) με κάποιες λακωνικές απαντήσεις για την προφορική και γραπτή εξέταση 1. Tι είναι ομοιόμορφη ροή (βάθος ροής χρησιμοποιείται στην ομοιόμορφη ροή? σταθερό)? Ποια εξίσωση (εξ.
Διαβάστε περισσότεραΕπισκόπηση ητου θέματος και σχόλια. Δρ Μ. Σπηλιώτη Λέκτορα Κείμενα από Μπέλλος, 2008 και από τις σημειώσεις Χρυσάνθου, 2014
Υδραυλική ανοικτών αγωγών Επισκόπηση ητου θέματος και σχόλια Δρ Μ. Σπηλιώτη Λέκτορα Κείμενα από Μπέλλος, 2008 και από τις σημειώσεις Χρυσάνθου, 2014 Σκαρίφημα Σκελετοποίηση Διάταξη έργων: 3 περιοχές+υδροληψεία
Διαβάστε περισσότεραΕξίσωση της ενέργειας Ομοιόμορφη ροή σε ανοικτούς αγωγούς
Εξίσωση της ενέργειας Ομοιόμορφη ροή σε ανοικτούς αγωγούς Βασικές έννοιες Εξίσωση της ενέργειας Ομοιόμορφη ροή Ταχύτητα και γραμμή ενέργειας σε ομοιόμορφη ροή, εξίσωση Manning Χρυσάνθου, 2014 Χρυσάνθου,
Διαβάστε περισσότεραθέμα, βασικές έννοιες, ομοιόμορφη Δρ Μ. Σπηλιώτη Λέκτορα Κείμενα από Μπέλλος, 2008 και από τις σημειώσεις Χρυσάνθου, 2014
Υδραυλική ανοικτών αγωγών θέμα, βασικές έννοιες, ομοιόμορφη ροή Δρ Μ. Σπηλιώτη Λέκτορα Κείμενα από Μπέλλος, 2008 και από τις σημειώσεις Χρυσάνθου, 2014 Σκαρίφημα Σκελετοποίηση Διάταξη έργων: 3 περιοχές
Διαβάστε περισσότεραβάθους, διάγραμμα ειδικής ενέργειας και προφίλ ελεύθερης Δρ Μ. Σπηλιώτη Λέκτορα Κείμενα από Μπέλλος, 2008 και από τις σημειώσεις Χρυσάνθου, 2014
Έλεγχος κρίσιμης ροής στο θέμα περισσότερα στη θεωρία κρίσιμου βάθους, διάγραμμα ειδικής ενέργειας και προφίλ ελεύθερης επιφανείας νερού Δρ Μ. Σπηλιώτη Λέκτορα Κείμενα από Μπέλλος, 2008 και από τις σημειώσεις
Διαβάστε περισσότεραdy/dx <1 (Δημητρίου, ί 1988) Υδροστατική διανομή πιέσεων, αμελητέες κατακόρυφες κινήσεις διατμητική τάση στερεού ορίου με βάση
dy/dx
Διαβάστε περισσότεραΈργα μηχανικού, ήπιες κλίσεις, t(βάθος ροής) και y περίπου ταυτίζονται
Ομοιόμορφη ροή σε ανοικτούς αγωγούς γ Βασικές έννοιες Ομοιόμορφη ροή Ταχύτητα και γραμμή ενέργειας σε ομοιόμορφη ροή, εξίσωση Manning (Παπαϊωάννου, 2010) Συνήθως οι ανοικτοί αγωγοί (ιδιαίτερα στα περισσότερα
Διαβάστε περισσότεραΈργα μηχανικού, ήπιες κλίσεις, t(βάθος ροής) και y περίπου ταυτίζονται
Ομοιόμορφη ροή σε ανοικτούς αγωγούς γ Ομοιόμορφη ροή Ταχύτητα και γραμμή ενέργειας σε ομοιόμορφη ροή, εξίσωση Manning Σύνθετες διατομές Μθδλ Μεθοδολογίες τα τρία βασικά προβλήματα της Υδραυλικής των ανοικτών
Διαβάστε περισσότεραΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Α.Π.Θ. ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΤΕΧΝΙΚΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ
ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Α.Π.Θ. ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΤΕΧΝΙΚΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Γενικές έννοιες Μία ροή χαρακτηρίζεται ανομοιόμορφη, όταν το βάθος μεταβάλλεται από διατομή σε διατομή. Η μεταβολή μπορεί να
Διαβάστε περισσότεραΕπισκόπηση ητου θέματος και σχόλια
Υδραυλική ανοικτών αγωγών Επισκόπηση ητου θέματος και σχόλια Δρ Μ. Σπηλιώτη Λέκτορα Κείμενα από Μπέλλος, 2008 και από τις σημειώσεις Χρυσάνθου (βλπ βασικές σημειώσεις από Διαφάνειες), 2014 Κρίσιμη ροή
Διαβάστε περισσότεραΉπιες κλίσεις, άνοδος πυθμένα μόνο σε τοπικές συναρμογές Η ροή μεταβάλλεται χωρικά με τη διαφορά αναγλύφου. Ευκολία προσαρμογής στο ανάγλυφο
Ανοικτοί αγωγοί Σχηματίζουν ελεύθερη επιφάνεια Ήπιες κλίσεις, άνοδος πυθμένα μόνο σε τοπικές συναρμογές Η ροή μεταβάλλεται χωρικά με τη διαφορά αναγλύφου Κλειστοί αγωγοί δε σχηματίζουν ελεύθερη επιφάνεια
Διαβάστε περισσότεραEξίσωση ενέργειας σε ανοικτούς αγωγούς Ομοιόμορφη ροή σε ανοικτούς αγωγούς
Eξίσωση ενέργειας σε ανοικτούς αγωγούς ------ Ομοιόμορφη ροή σε ανοικτούς αγωγούς Βασικές έννοιες Ομοιόμορφη ροή Ταχύτητα και γραμμή ενέργειας σε ομοιόμορφη ροή, εξίσωση Manning Χρυσάνθου, 2014 Χρυσάνθου,
Διαβάστε περισσότεραΜόνιμη ροή. Τοπικές ανομοιογένειες δεν επηρεάζουν τη ροή, τοπικές απώλειες Συνήθως κυκλικοί αγωγοί γ του εμπορίου
Παραδοχές Μόνιμη ροή Ομοιόμορφη ροή Τοπικές ανομοιογένειες δεν επηρεάζουν τη ροή, τοπικές απώλειες Συνήθως κυκλικοί αγωγοί γ του εμπορίου Ομοιόμορφη ροή Μη ομοιόμορφη ροή Ομοιόμορφη ροή: όταν η μεταβολή
Διαβάστε περισσότεραΕκχε Εκχ ιλισ λ τές λεπτής στέψεως στέψεως υπερχει ρχ λιστής ής φράγματ γμ ος Δρ Μ.Σπηλιώτης Σπηλ Λέκτορας
Εκχειλιστές λεπτής στέψεως υπερχειλιστής φράγματος Δρ Μ.Σπηλιώτης Λέκτορας Εκχειλιστείς πλατειάς στέψεως επανάληψη y c 2 q g 1 / 3 Κρίσιμες συνθήκες h P y c y c Εκχειλιστείς πλατειάς στέψεως E 3/2 2 3/2
Διαβάστε περισσότεραΔρ Μ.Σπηλιώτης. Σχήματα, κέιμενα όπου δεν αναφέρεται πηγή: από Τσακίρης, 2008 και Εγγειοβελτιωτικά έργα
Δρ Μ.Σπηλιώτης ρ η ης Σχήματα, κέιμενα όπου δεν αναφέρεται πηγή: από Τσακίρης, 2008 και 1986. Εγγειοβελτιωτικά έργα Προσέγγιση Στην πραγματικότητα: μη μόνιμη ροή Αβεβαιότητα στην πρόβλεψη των παροχών
Διαβάστε περισσότεραΟρμή και Δυνάμεις. Θεώρημα Ώθησης Ορμής
501 Ορμή και Δυνάμεις Θεώρημα Ώθησης Ορμής «Η μεταβολή της ορμής ενός σώματος είναι ίση με την ώθηση της δύναμης που ασκήθηκε στο σώμα» = ή Το θεώρημα αυτό εφαρμόζεται διανυσματικά. 502 Θεώρημα Ώθησης
Διαβάστε περισσότερα"σκοτεινά" σημεία, λα) για σεις και
Συνήθεις παραλείψεις στο θέμα και μερικά (όχι όλ "σκοτεινά" σημεία, παρατίθενται αποδείξεις πληρότητα, μη απομνημόνευση (κείμενα από σημειώσ Χρυσάνθου, 2014 το σύγγραμμα του Μπέλλου, 2008 Τσακίρης, 2008)
Διαβάστε περισσότεραΣχήματα από Τσακίρης, 2008.
Δρ Μ.Σπηλιώτης Σχήματα από Τσακίρης, 2008. Εγγειοβελτιωτικά έργα Επιφανειακές μέθοδοι άρδευσης Άρδευση στο αγροτεμάχιο ΕΠΙΦΑΝΕΙΑΚΕΣ ΜΕΘΟΔΟΙ Διήθηση ημε ροή ή παραμονή νερού,, οριζόντια ρζ άρδευση Λεκάνες
Διαβάστε περισσότεραΥΔΡΑΥΛΙΚΗ ΚΑΙ ΥΔΡΑΥΛΙΚΑ ΕΡΓΑ
ΥΔΡΑΥΛΙΚΗ ΚΑΙ ΥΔΡΑΥΛΙΚΑ ΕΡΓΑ Ροή με Ελεύθερη Επιφάνεια Μέρος 3 ο Α. Νάνου-Γιάνναρου Νοέμβριος 018 ΝΟΕMBΡΙΟΣ 018 Α. ΝΑΝΟΥ-ΓΙΑΝΝΑΡΟΥ 1 ΥΔΡΑΥΛΙΚΟ ΑΛΜΑ ΝΟΕMBΡΙΟΣ 018 Α. ΝΑΝΟΥ-ΓΙΑΝΝΑΡΟΥ 1 Υδραυλικό άλμα Η μετάβαση
Διαβάστε περισσότεραΓραμμή ενέργειας σε ένα αγωγό (χωρίς αντλία)
Γραμμή ενέργειας σε ένα αγωγό (χωρίς αντλία) Γραμμή ενεργείας: ο γεωμετρικός τόπος του ύψος θέσης, του ύψους πίεσης και του ύψους κινητικής ενέργειας Πάντοτε πτωτική από τη διατήρηση της ενέργειας Δεν
Διαβάστε περισσότεραdy/dx <1 (Δημητρίου, ί 1988) Υδροστατική διανομή πιέσεων, αμελητέες κατακόρυφες κινήσεις διατμητική τάση στερεού ορίου με βάση
dy/dx
Διαβάστε περισσότεραΝα υπολογίσετε τη μάζα 50 L βενζίνης. Δίνεται η σχετική πυκνότητά της, ως προς το νερό ρ σχ = 0,745.
1 Παράδειγμα 101 Να υπολογίσετε τη μάζα 10 m 3 πετρελαίου, στους : α) 20 ο C και β) 40 ο C. Δίνονται η πυκνότητά του στους 20 ο C ρ 20 = 845 kg/m 3 και ο συντελεστής κυβικής διαστολής του β = 9 * 10-4
Διαβάστε περισσότεραΜοριακή δομή υγρών: Μόρια υγρών με ασυνέχειες και χαλαρή δομής σε σχέση με τα στερεά αλλά περισσότερο συνεκτικής σε σχέση με τα αέρια.
2. Βασικές έννοιες από το μάθημα της Ρευστομηχανικής στο μάθημα της Υδραυλικής και εισαγωγικές έννοιες Δρ Μ.Σπηλιώτη Λέκτορα ΔΠΘ Ρευστό: Παραμορφώνεται υπό την αντίδραση διατμητικής δύναμης οσοδήποτε μικρής
Διαβάστε περισσότεραΕργαστήριο Μηχανικής Ρευστών. Εργασία 1 η : Πτώση πίεσης σε αγωγό κυκλικής διατομής
Εργαστήριο Μηχανικής Ρευστών Εργασία 1 η : Πτώση πίεσης σε αγωγό κυκλικής διατομής Ονοματεπώνυμο:Κυρκιμτζής Γιώργος Σ.Τ.Ε.Φ. Οχημάτων - Εξάμηνο Γ Ημερομηνία εκτέλεσης Πειράματος : 12/4/2000 Ημερομηνία
Διαβάστε περισσότερα4. ΑΝΟΜΟΙΟΜΟΡΦΗ ΡΟΗ ΒΑΘΜΙΑΙΑ ΜΕΤΑΒΑΛΛΟΜΕΝΗ ΡΟΗ
4. ΑΝΟΜΟΙΟΜΟΡΦΗ ΡΟΗ ΒΑΘΜΙΑΙΑ ΜΕΤΑΒΑΛΛΟΜΕΝΗ ΡΟΗ * Η μεταβολή των χαρακτηριστικών της ροής είναι ήπια * Η κατανομή της πίεσης στο βάθος ροής είναι υδροστατική * Οι κύριες απώλειες ενέργειας οφείλονται στις
Διαβάστε περισσότεραΛαμβάνονται υπόψη οι απώλειες. διατομή και θεώρηση
Δρ Μ.Σπηλιώτη λώ Λαμβάνονται υπόψη οι απώλειες ενέργειας Eνιαία ταχύτητα σε όλη τη διατομή και θεώρηση συντελεστή διόρθωσης κινητικής ενέργειας Αρχικά σε όγκο ελέγχου Σε διακλαδιζόμενους αγωγούς δεν συμπίπτουν
Διαβάστε περισσότεραΥΔΡΑΥΛΙΚΗ ΑΝΟΙΧΤΩΝ ΚΑΙ ΚΛΕΙΣΤΩΝ ΑΓΩΓΩΝ
ΥΔΡΑΥΛΙΚΗ ΑΝΟΙΧΤΩΝ ΚΑΙ ΚΛΕΙΣΤΩΝ ΑΓΩΓΩΝ Π. Σιδηρόπουλος Δρ. Πολιτικός Μηχανικός Εργαστήριο Υδρολογίας και Ανάλυσης Υδατικών Συστημάτων Τμήμα Πολιτικών Μηχανικών Π.Θ. E-mail: psidirop@teilar.gr ΕΓΓΕΙΟΒΕΛΤΙΩΤΙΚΑ
Διαβάστε περισσότεραΠροτεινόμενο διαγώνισμα Φυσικής Α Λυκείου
Προτεινόμενο διαγώνισμα Φυσικής Α Λυκείου Θέμα 1 ο Σε κάθε μια από τις παρακάτω προτάσεις 1-5 να επιλέξετε τη μια σωστή απάντηση: 1. Όταν ένα σώμα ισορροπεί τότε: i. Ο ρυθμός μεταβολής της ταχύτητάς του
Διαβάστε περισσότεραΣχήμα 1. Σκαρίφημα υδραγωγείου. Λύση 1. Εφαρμόζουμε τη μέθοδο που περιγράφεται στο Κεφάλαιο του βιβλίου, σελ. 95)
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΟΜΕΑΣ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΜΑΘΗΜΑ: ΥΔΡΑΥΛΙΚΗ ΚΑΙ ΥΔΡΑΥΛΙΚΑ ΕΡΓΑ ΚΑΝΟΝΙΚΗ ΕΞΕΤΑΣΗ ΙΑΝΟΥΑΡΙΟΥ 018 ΥΔΡΑΥΛΙΚΗ ΚΑΙ ΥΔΡΑΥΛΙΚΑ ΕΡΓΑ και τ. ΕΦΑΡΜΟΣΜΕΝΗ ΥΔΡΑΥΛΙΚΗ Άσκηση
Διαβάστε περισσότεραΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΡΕΥΣΤΟΜΗΧΑΝΙΚΗ
ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΞΑΝΘΗ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΡΕΥΣΤΟΜΗΧΑΝΙΚΗ ΔΙΑΣΠΟΡΑ ΡΥΠΩΝ ΣΕ ΠΟΤΑΜΟΥΣ με το HEC-RAS Αγγελίδης Π., Αναπλ. Καθηγητής HEC-RAS Το λογισμικό
Διαβάστε περισσότεραΥΔΡΑΥΛΙΚΗ ΑΝΟΙΚΤΩΝ ΑΓΩΓΩΝ
Τμήμα Δασολογίας & Διαχείρισης Περιβάλλοντος & Φυσικών Πόρων Εργαστήριο Διευθέτησης Ορεινών Υδάτων και Διαχείρισης Κινδύνου Προπτυχιακό Πρόγραμμα Σπουδών ΥΔΡΑΥΛΙΚΗ ΑΝΟΙΚΤΩΝ ΑΓΩΓΩΝ Κεφάλαιο 2 ο : Είδη ροής
Διαβάστε περισσότεραΚινηματική ρευστών. Ροή ρευστού = η κίνηση του ρευστού, μέσα στο περιβάλλον του
301 Κινηματική ρευστών Ροή ρευστού = η κίνηση του ρευστού, μέσα στο περιβάλλον του Είδη ροής α) Σταθερή ή μόνιμη = όταν σε κάθε σημείο του χώρου οι συνθήκες ροής, ταχύτητα, θερμοκρασία, πίεση και πυκνότητα,
Διαβάστε περισσότεραΣτο διπλανό σχήμα το έμβολο έχει βάρος Β, διατομή Α και ισορροπεί. Η δύναμη που ασκείται από το υγρό στο έμβολο είναι
Ερωτήσεις θεωρίας - Θέμα Β Εκφώνηση 1η Στο διπλανό σχήμα το έμβολο έχει βάρος Β, διατομή Α και ισορροπεί. Η δύναμη που ασκείται από το υγρό στο έμβολο είναι α) β) γ) Λύση Εκφώνηση 2η Στο διπλανό υδραυλικό
Διαβάστε περισσότεραΑ.Σ.ΠΑΙ.Τ.Ε. / ΤΜΗΜΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 2014 ΜΑΘΗΜΑ ΦΥΣΙΚΗ Ι Μαρούσι Καθηγητής Σιδερής Ε.
Α.Σ.ΠΑΙ.Τ.Ε. / ΤΜΗΜΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 2014 Μαρούσι 04-02-2014 Καθηγητής Σιδερής Ε. ΘΕΜΑ 1 ο (βαθμοί 4) (α) Θέλετε να κρεμάσετε μια ατσάλινη δοκό που έχει
Διαβάστε περισσότεραΑναλύσεις πλημμυρικών δεδομένων
Ημερίδα Ερευνητικού Προγράμματος ΔΕΥΚΑΛΙΩΝ «Εκτίμηση πλημμυρικών ροών στην Ελλάδα σε συνθήκες υδροκλιματικής μεταβλητότητας: Ανάπτυξη φυσικά εδραιωμένου εννοιολογικού-πιθανοτικού πλαισίου και υπολογιστικών
Διαβάστε περισσότερα2g z z f k k z z f k k z z V D 2g 2g 2g D 2g f L ka D
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΟΜΕΑΣ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ & ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΜΑΘΗΜΑ: ΥΔΡΑΥΛΙΚΗ ΚΑΙ ΥΔΡΑΥΛΙΚΑ ΕΡΓΑ ΕΞΕΤΑΣΗ ΠΡΟΟΔΟΥ ΝΟΕΜΒΡΙΟΥ 017 Άσκηση 1 1. Οι δεξαμενές Α και Β, του Σχήματος 1, συνδέονται με σωλήνα
Διαβάστε περισσότεραISBN 978-960-456-148-3
Kάθε γνήσιο αντίτυπο φέρει την υπογραφή του συγγραφέα ISBN 978-960-456-48-3 Copyright: Πρίνος Παναγιώτης, Eκδόσεις Zήτη, Μάρτιος 009 Tο παρόν έργο πνευματικής ιδιοκτησίας προστατεύεται κατά τις διατάξεις
Διαβάστε περισσότεραιόδευση των πληµµυρών
ιόδευση των πληµµυρών Με τον όρο διόδευση εννοούµε τον υπολογισµό του πληµµυρικού υδρογραφήµατος σε µια θέση Β στα κατάντη ενός υδατορρεύµατος, όταν αυτό είναι γνωστό σε µια θέση Α στα ανάντη ή αντίστοιχα
Διαβάστε περισσότεραΘυρόφραγµα υπό Γωνία
Ολοκληρωµένη ιαχείριση Υδατικών Πόρων 247 Θυρόφραγµα υπό Γωνία Κ.. ΧΑΤΖΗΑΘΑΝΑΣΙΟΥ Ε.. ΡΕΤΣΙΝΗΣ Ι.. ΗΜΗΤΡΙΟΥ Πολιτικός Μηχανικός Πολιτικός Μηχανικός Αναπλ. Καθηγητής Ε.Μ.Π. Περίληψη Στην πειραµατική αυτή
Διαβάστε περισσότεραΈνα υγρό σε δοχείο και το υδροστατικό παράδοξο.
Ένα υγρό σε δοχείο και το υδροστατικό παράδοξο. Ας μελετήσουμε τι συμβαίνει, όταν ένα υγρό περιέχεται σε ένα ακίνητο δοχείο. Τι δυνάμεις ασκεί στο δοχείο; Τι σχέση έχουν αυτές με το βάρος του υγρού; Εφαρμογή
Διαβάστε περισσότεραΕιδικά κεφάλαια δικτύων αποχέτευσης
Ειδικά κεφάλαια δικτύων αποχέτευσης (συναρμογές, προβλήματα μεγάλων και μικρών ταχυτήτων) Δημήτρης Κουτσογιάννης Τομέας Υδατικών Πόρων, Υδραυλικών & Θαλάσσιων Έργων Εθνικό Μετσόβιο Πολυτεχνείο Προβλήματα
Διαβάστε περισσότεραΕπιμέλεια: Δρ Μ. Σπηλιώτης Κείμενα σχήματα Τσακίρης 2008 Και κατά τις παραδόσεις του Κ.Κ.Μπέλλου
Συλλογικά δίκτυα κλειστών αγωγών υπό πίεση Βελτιστοποίηση Επιμέλεια: Δρ Μ. Σπηλιώτης Κείμενα σχήματα Τσακίρης 2008 Και κατά τις παραδόσεις του Κ.Κ.Μπέλλου Γενικές αρχές Συλλογικό: Μόνιμοι αγωγοί με σκάμμα
Διαβάστε περισσότεραΥΔΡΑΥΛΙΚΗ ΟΡΕΙΝΩΝ ΛΕΚΑΝΩΝ
ΥΔΡΑΥΛΙΚΗ ΟΡΕΙΝΩΝ ΛΕΚΑΝΩΝ Υδροστατικές δυνάμεις Φώτιος ΜΑΡΗΣ Αναπλ. Καθηγητής Παράδειγμα 4 Φράγμα ύψους h=4 m είναι κατασκευασμένο στην κεντρική κοίτη ενός χειμαρρικού ρεύματος.η στάθμη του νερού υπερβαίνει
Διαβάστε περισσότεραΡΕΥΣΤΟΜΗΧΑΝΙΚΗ ΥΔΡΑΥΛΙΚΩΝ ΕΡΓΩΝ
ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΡΟΓΡ. ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ «ΥΔΡΑΥΛΙΚΗ ΜΗΧΑΝΙΚΗ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝ» ΡΕΥΣΤΟΜΗΧΑΝΙΚΗ ΥΔΡΑΥΛΙΚΩΝ ΕΡΓΩΝ Αγγελίδης Π., Αναπλ. Καθηγητής ΚΕΦΑΛΑΙΟ 10 ΥΔΡΟΣΤΑΤΙΚΗ
Διαβάστε περισσότεραΑστικά υδραυλικά έργα
Εθνικό Μετσόβιο Πολυτεχνείο Τομέας Υδατικών Πόρων και Περιβάλλοντος Αστικά υδραυλικά έργα Ειδικά κεφάλαια δικτύων αποχέτευσης Δημήτρης Κουτσογιάννης, Καθηγητής ΕΜΠ Σχολή Πολιτικών Μηχανικών Άδεια Χρήσης
Διαβάστε περισσότεραΓραμμή ενέργειας σε ένα αγωγό (χωρίς αντλία)
Γραμμή ενέργειας σε ένα αγωγό (χωρίς αντλία) Γραμμή ενεργείας: ο γεωμετρικός τόπος του ύψος θέσης, του ύψους πίεσης και του ύψους κινητικής ενέργειας Πάντοτε πτωτική από τη διατήρηση της ενέργειας Δεν
Διαβάστε περισσότεραΜακροσκοπική ανάλυση ροής
Μακροσκοπική ανάλυση ροής Α. Παϊπέτης 6 ο Εξάμηνο Μηχανικών Επιστήμης Υλικών Εισαγωγή Μακροσκοπική ανάλυση Όγκος ελέγχου και νόμοι της ρευστομηχανικής Θεώρημα μεταφοράς Εξίσωση συνέχειας Εξίσωση ορμής
Διαβάστε περισσότεραΜΕΛΕΤΗ ΑΠΟΡΡΟΗΣ ΟΜΒΡΙΩΝ ΣΤΑ ΓΗΠΕ Α ΠΟ ΟΣΦΑΙΡΟΥ ΡΟΥΦ ΚΑΙ ΚΥΨΕΛΗΣ ΤΟΥ Ο.Ν.Α ΗΜΟΥ ΑΘΗΝΑΙΩΝ
ΜΕΛΕΤΗ ΑΠΟΡΡΟΗΣ ΟΜΒΡΙΩΝ ΣΤΑ ΓΗΠΕ Α ΠΟ ΟΣΦΑΙΡΟΥ ΡΟΥΦ ΚΑΙ ΚΥΨΕΛΗΣ ΤΟΥ Ο.Ν.Α ΗΜΟΥ ΑΘΗΝΑΙΩΝ ΕΡΓΟ: ΚΑΤΑΣΚΕΥΗ ΣΥΝΘΕΤΙΚΟΥ ΧΛΟΟΤΑΠΗΤΑ ΣΤΑ ΓΗΠΕ Α ΠΟ ΟΣΦΑΙΡΟΥ ΡΟΥΦ & ΚΥΨΕΛΗΣ ΑΝΑ ΟΧΟΣ: Ι.. ΜΠΟΥΛΟΥΓΑΡΗΣ ΤΕΧΝΙΚΗ ΕΠΙΧΕΙΡΗΣΗ
Διαβάστε περισσότεραΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Σελίδα 1 από 6
ΘΕΜΑ Α Στις παρακάτω ερωτήσεις να επιλέξετε τη σωστή απάντηση 1) Το δοχείο του σχήματος 1 είναι γεμάτο με υγρό και κλείνεται με έμβολο Ε στο οποίο ασκείται δύναμη F. Όλα τα μανόμετρα 1,, 3, 4 δείχνουν
Διαβάστε περισσότεραΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΞΕΤΑΖΟΜΕΝΗ ΥΛΗ: ΡΕΥΣΤΑ -ΣΤΕΡΕΟ 24/02/2019
ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΞΕΤΑΖΟΜΕΝΗ ΥΛΗ: ΡΕΥΣΤΑ -ΣΤΕΡΕΟ 24/02/2019 ΘΕΜΑ A Στις ερωτήσεις 1-4 να γράψετε στο φύλλο απαντήσεων τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη
Διαβάστε περισσότεραΥΔΡΑΥΛΙΚΗ ΑΝΟΙΚΤΩΝ ΑΓΩΓΩΝ
Τμήμα Δασολογίας & Διαχείρισης Περιβάλλοντος & Φυσικών Πόρων Εργαστήριο Διευθέτησης Ορεινών Υδάτων και Διαχείρισης Κινδύνου Προπτυχιακό Πρόγραμμα Σπουδών ΥΔΡΑΥΛΙΚΗ ΑΝΟΙΚΤΩΝ ΑΓΩΓΩΝ Κεφάλαιο 3 ο : Εξίσωση
Διαβάστε περισσότεραΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΤΕΧΝΙΚΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΜΑΘΗΜΑ: ΜΗΧΑΝΙΚΗ ΡΕΥΣΤΩΝ
ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΤΕΧΝΙΚΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΜΑΘΗΜΑ: ΜΗΧΑΝΙΚΗ ΡΕΥΣΤΩΝ 27 Φεβρουαρίου 2006 Διάρκεια εξέτασης : 2.5 ώρες Ονοματεπώνυμο: ΑΕΜ Εξάμηνο: (α) Επιτρέπονται: Τα βιβλία
Διαβάστε περισσότεραΤα τρία βασικά προβλήματα της Υδραυλικής
Τα τρία βασικά προβλήματα της Υδραυλικής Α βασικό πρόβλημα,, παροχή γνωστή απλός υπολογισμός απωλειών όχι δοκιμές (1): L1 = 300, d1 = 0.6 m, (): L = 300, d = 0.4 m Q = 0.5m 3 /s, H=?, k=0.6 mm Διατήρηση
Διαβάστε περισσότεραΤεχνολογικό Εκπαιδευτικό Ίδρυμα Πειραιά Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανολογίας
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Πειραιά Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανολογίας Μηχανική Ρευστών Κεφάλαιο Λυμένα Προβλήματα Πρόβλημα Για το κλειστό δοχείο του παρακάτω σχήματος, όλα τα ρευστά είναι
Διαβάστε περισσότεραΣτοιχεία Μηχανολογικού Εξοπλισμού
Στοιχεία Μηχανολογικού Εξοπλισμού Σκοπός Η γνωριμία και η εξοικείωση των φοιτητών με τον μηχανολογικό εξοπλισμό (σωληνώσεις, αντλίες, ανεμιστήρες, συμπιεστές, μετρητικά όργανα) που χρησιμοποιείται στη
Διαβάστε περισσότερα. Υπολογίστε το συντελεστή διαπερατότητας κατά Darcy, την ταχύτητα ροής και την ταχύτητα διηθήσεως.
Μάθημα: Εδαφομηχανική Ι, 7 ο εξάμηνο. Διδάσκων: Ιωάννης Ορέστης Σ. Γεωργόπουλος, Επιστημονικός Συνεργάτης Τμήματος Πολιτικών Έργων Υποδομής, Δρ Πολιτικός Μηχανικός Ε.Μ.Π. Θεματική περιοχή: Υδατική ροή
Διαβάστε περισσότεραΦΥΣΙΚΗ Β ΓΥΜΝΑΣΙΟΥ ΕΠΑΝΑΛΗΨΗ ΘΕΩΡΙΑΣ 2017
ΦΥΣΙΚΗ Β ΓΥΜΝΑΣΙΟΥ ΕΠΑΝΑΛΗΨΗ ΘΕΩΡΙΑΣ 2017 ΚΕΦΑΛΑΙΟ 1 ο ΕΙΣΑΓΩΓΗ 1.3 Τα φυσικά μεγέθη και οι μονάδες τους 1. Ποια μεγέθη ονομάζονται θεμελιώδη; Θεμελιώδη ονομάζονται τα μεγέθη τα οποία δεν ορίζονται με
Διαβάστε περισσότεραΑρδεύσεις (Εργαστήριο)
Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Αρδεύσεις (Εργαστήριο) Ενότητα 9 : Ανοικτοί Αγωγοί I Δρ. Μενέλαος Θεοχάρης Μόνιμη ομοιόμορφη ροή σε ανοικτούς αγωγούς 6.1. Γενικά Ανοικτός αγωγός
Διαβάστε περισσότεραΕπισκόπηση ητου θέματος και σχόλια
Υδραυλική ανοικτών αγωγών Επισκόπηση ητου θέματος και σχόλια Δρ Μ. Σπηλιώτη Λέκτορα Κείμενα από Μπέλλος,, 2008 και από τις σημειώσεις Χρυσάνθου (βλπ βασικές σημειώσεις από Διαφάνειες), 2014 Σκοπός μαθήματος
Διαβάστε περισσότεραΔιαγώνισμα Γ Λυκείου Θετικού προσανατολισμού. Διαγώνισμα Ρευστά. Τετάρτη 12 Απριλίου Θέμα 1ο
Διαγώνισμα Ρευστά Τετάρτη 12 Απριλίου 2017 Θέμα 1ο Στις παρακάτω προτάσεις 1.1 1.4 να επιλέξτε την σωστή απάντηση (4 5 = 20 μονάδες ) 1.1. Στον πυθμένα των δύο δοχείων 1 και 2 του διπλανού σχήματος, που
Διαβάστε περισσότεραΜΗΧΑΝΙΚΗ ΡΕΥΣΤΩΝ Ι. κ. ΣΟΦΙΑΛΙΔΗΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ
ΜΗΧΑΝΙΚΗ ΡΕΥΣΤΩΝ Ι κ. ΣΟΦΙΑΛΙΔΗΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται
Διαβάστε περισσότεραΥΔΡΑΥΛΙΚΗ ΑΝΟΙΚΤΩΝ ΑΓΩΓΩΝ
Τμήμα Δασολογίας & Διαχείρισης Περιβάλλοντος & Φυσικών Πόρων Εργαστήριο Διευθέτησης Ορεινών Υδάτων και Διαχείρισης Κινδύνου Προπτυχιακό Πρόγραμμα Σπουδών ΥΔΡΑΥΛΙΚΗ ΑΝΟΙΚΤΩΝ ΑΓΩΓΩΝ Κεφάλαιο 7 ο : Κρίσιμη
Διαβάστε περισσότεραΔιαγώνισμα Γ Λυκείου Θετικού προσανατολισμού. Διαγώνισμα Ρευστά - Μηχανική Στερεού Σώματος. Κυριακή 5 Μαρτίου Θέμα 1ο
Διαγώνισμα Ρευστά - Μηχανική Στερεού Σώματος Κυριακή 5 Μαρτίου 2017 Θέμα 1ο Στις παρακάτω προτάσεις 1.1 1.4 να επιλέξτε την σωστή απάντηση (4 5 = 20 μονάδες ) 1.1. Στον πυθμένα των δύο δοχείων 1 και 2
Διαβάστε περισσότεραΦυσική Β Γυμνασίου Συνοπτικές Σημειώσεις Επανάληψης
Φυσική Β Γυμνασίου Συνοπτικές Σημειώσεις Επανάληψης Επιμέλεια: Αγκανάκης Α. Παναγιώτης Κεφάλαιο 1 Φυσικά Μεγέθη: τα μεγέθη που μελετάει η Φυσική Επιστήμη Κατηγορίες: 1. Θεμελιώδη a. Μάζα (kg) b. Μήκος
Διαβάστε περισσότεραΔιαγώνισμα Φυσικής Γ Λυκείου Απλή αρμονική ταλάντωση Κρούσεις
Διαγώνισμα Φυσικής Γ Λυκείου Απλή αρμονική ταλάντωση Κρούσεις ~ Διάρκεια: 3 ώρες ~ Θέμα Α Α1. Η ορμή συστήματος δύο σωμάτων που συγκρούονται διατηρείται: α. Μόνο στην πλάγια κρούση. β. Μόνο στην έκκεντρη
Διαβάστε περισσότεραμία ποικιλία διατομών, σε αντίθεση με τους κλειστούς που έχουμε συνήθως κυκλικές διατομές).
Μερικές ερωτήσεις στους κλειστούς αγωγούς: D Παροχή: Q (στους ανοικτούς αγωγός συνήθως χρησιμοποιούμε 4 μία ποικιλία διατομών, σε αντίθεση με τους κλειστούς που έχουμε συνήθως κυκλικές διατομές). Έστω
Διαβάστε περισσότεραA3. Το δοχείο του σχήματος 1 είναι γεμάτο με υγρό και κλείνεται με έμβολο Ε στο οποίο ασκείται δύναμη F.
ΘΕΜΑ Α ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ-ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ- ΚΕΦΑΛΑΙΟ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ' ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 23 ΜΑΪΟΥ 2016 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ
Διαβάστε περισσότεραΑΣΚΗΣΗ 3. αγωγού, καθώς και σκαρίφημα της μηκοτομής αυτού. Δίδονται :
1 ΑΣΚΗΣΗ 3 Η χάραξη κεντρικού συλλεκτήρα ακαθάρτων περνά από τα σημεία Α, Β και Γ με υψόμετρα εδάφους, = = 43 m και = 39 m. Οι αποστάσεις μεταξύ των σημείων είναι = 75 m και = 150 m. Η παροχή σχεδιασμού
Διαβάστε περισσότεραΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ. ΘΕΜΑ 1 ο Στις ερωτήσεις 1-4 να γράψετε τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.
ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΕΞΕΤΑΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 07 ΑΠΡΙΛΙΟΥ 2017 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΠΤΑ (7) ΘΕΜΑ 1 ο Στις ερωτήσεις 1-4 να γράψετε
Διαβάστε περισσότεραΑνασκόπηση εννοιών ρευστομηχανικής
Υδραυλική &Υδραυλικά Έργα Ανασκόπηση εννοιών ρευστομηχανικής Δημήτρης Κουτσογιάννης Τομέας Υδατικών Πόρων Εθνικό Μετσόβιο Πολυτεχνείο Φωτογραφίες σχηματισμού σταγόνων νερού Φωτογραφίες schlieren θερμικά
Διαβάστε περισσότεραΜΗΧΑΝΙΚΗ ΡΕΥΣΤΩΝ. Πτώση πίεσης σε αγωγό σταθερής διατομής 2η εργαστηριακή άσκηση. Βλιώρα Ευαγγελία
ΜΗΧΑΝΙΚΗ ΡΕΥΣΤΩΝ Πτώση πίεσης σε αγωγό σταθερής διατομής 2η εργαστηριακή άσκηση Βλιώρα Ευαγγελία ΘΕΣΣΑΛΟΝΙΚΗ 2014 Σκοπός της εργαστηριακής άσκησης Σκοπός της εργαστηριακής άσκησης είναι ο υπολογισμός της
Διαβάστε περισσότεραΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΛΑΡΙΣΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΑΣ ΓΕΩΠΟΝΙΑΣ ΤΜΗΜΑ Γ Ε Ω Ρ Γ Ι Κ Η Υ Ρ Α Υ Λ Ι Κ Η ΣΥΛΛΟΓΗ ΠΡΟΤΕΙΝΟΜΕΝΩΝ ΠΡΟΣ ΛΥΣΗ ΑΣΚΗΣΕΩΝ ΝΤΙΟΥ ΗΣ ΠΑΣΧΑΛΗΣ κ α ι ΦΙΛΙΝΤΑΣ ΑΓΑΘΟΣ Επίκουρος Καθηγητής
Διαβάστε περισσότεραΥδραυλική των υπονόμων
Υδραυλική & Υδραυλικά Έργα 5 ο εξάμηνο Σχολής Πολιτικών Μηχανικών Υδραυλική των υπονόμων Δημήτρης Κουτσογιάννης & Ανδρέας Ευστρατιάδης Τομέας Υδατικών Πόρων & Περιβάλλοντος, Εθνικό Μετσόβιο Πολυτεχνείο
Διαβάστε περισσότεραΕιδικά κεφάλαια δικτύων αποχέτευσης
Ειδικά κεφάλαια δικτύων αποχέτευσης (συναρµογές, προβλήµατα µεγάλων και µικρών ταχυτήτων) ηµήτρης Κουτσογιάννης Τοµέας Υδατικών Πόρων, Υδραυλικών & Θαλάσσιων Έργων Εθνικό Μετσόβιο Πολυτεχνείο Προβλήµατα
Διαβάστε περισσότεραΣυγκεντρωμένα τα όργανα μέτρησης ταχύτητας και στάθμης. Επηρεάζει την αξιοπιστία των μετρήσεων
Ζαΐμης Γεώργιος Συγκεντρωμένα τα όργανα μέτρησης ταχύτητας και στάθμης Σημαντική η επιλογή της θέσης της Επηρεάζει την αξιοπιστία των μετρήσεων Οι γενικές αρχές είναι Οι γενικές αρχές είναι Κοίτη εγκλωβισμένη
Διαβάστε περισσότεραΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) 23 ΜΑΪOY 2016 ΕΚΦΩΝΗΣΕΙΣ
ΘΕΜΑ Α ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) 3 ΜΑΪOY 016 ΕΚΦΩΝΗΣΕΙΣ Στις ερωτήσεις Α1-Α4 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και, δίπλα, το γράµµα που αντιστοιχεί στη φράση η οποία συµπληρώνει
Διαβάστε περισσότεραΑΠΑΝΤΗΣΕΙΣ ΣΤΟ ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ Θέμα Α. 1. β 2. α 3. γ 4. β 5. Λ,Λ,Λ,Λ,Λ.
ΑΠΑΝΤΗΣΕΙΣ ΣΤΟ ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ- 07 Θέμα Α.. β. α 3. γ 4. β 5. Λ,Λ,Λ,Λ,Λ. Β Στην επιφάνεια ελαστικού μέσου υπάρχουν δύο πανομοιότυπες πηγές κυμάτων που ξεκινούν ταυτόχρονα την ταλάντωση τους. Σε
Διαβάστε περισσότεραΕΔΑΦΟΜΗΧΑΝΙΚΗ & ΣΤΟΙΧΕΙΑ ΘΕΜΕΛΙΩΣΕΩΝ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΛΛΕΙΩΝ ΜΕΤΑΛΛΟΥΡΓΩΝ ΤΟΜΕΑΣ ΓΕΩΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΗΡΩΩΝ ΠΟΛΥΤΕΧΝΕΙΟΥ 9 15780 ΖΩΓΡΑΦΟΥ ΑΘΗΝΑ ΕΔΑΦΟΜΗΧΑΝΙΚΗ & ΣΤΟΙΧΕΙΑ ΘΕΜΕΛΙΩΣΕΩΝ Διδάσκοντες: Βασίλειος Παπαδόπουλος,
Διαβάστε περισσότεραΥΔΡΑΥΛΙΚΗ ΑΝΟΙΚΤΩΝ ΑΓΩΓΩΝ
Τμήμα Δασολογίας & Διαχείρισης Περιβάλλοντος & Φυσικών Πόρων Εργαστήριο Διευθέτησης Ορεινών Υδάτων και Διαχείρισης Κινδύνου Προπτυχιακό Πρόγραμμα Σπουδών ΥΔΡΑΥΛΙΚΗ ΑΝΟΙΚΤΩΝ ΑΓΩΓΩΝ Κεφάλαιο 9 ο : Ειδική
Διαβάστε περισσότεραΔρ Μ.Σπηλιώτης. Σχήματα, κέιμενα όπου δεν αναφέρεται πηγή: από Τσακίρης, 2008 και Εγγειοβελτιωτικά έργα
Δρ Μ.Σπηλιώτης ρ η ης Σχήματα, κέιμενα όπου δεν αναφέρεται πηγή: από Τσακίρης, 2008 και 1986. Εγγειοβελτιωτικά έργα Επιφανειακές μέθοδοι άρδευσης Άρδευση στο αγροτεμάχιο ΕΠΙΦΑΝΕΙΑΚΕΣ ΜΕΘΟΔΟΙ Διήθηση ημε
Διαβάστε περισσότεραΕργαστηριακή άσκηση: Σωλήνας Venturi
Εργαστήριο Μηχανικών των Ρευστών Τμήμα Μηχανολόγων Μηχανικών, Πανεπιστήμιο Δυτικής Αττικής Σκοπός της άσκησης Εργαστηριακή άσκηση: Σωλήνας Veturi Σκοπός της άσκησης είναι η κατανόηση της χρήσης της συσκευής
Διαβάστε περισσότεραΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΞΑΝΘΗ ΡΕΥΣΤΟΜΗΧΑΝΙΚΗ. Αγγελίδης Π., Αναπλ. Καθηγητής
ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΞΑΝΘΗ ΡΕΥΣΤΟΜΗΧΑΝΙΚΗ Αγγελίδης Π., Αναπλ. Καθηγητής ΚΕΦΑΛΑΙΟ 10 ΥΔΡΟΣΤΑΤΙΚΗ ΠΙΕΣΗ ΚΑΙ ΔΥΝΑΜΗ ΣΕ ΕΠΙΠΕΔΗ ΕΠΙΦΑΝΕΙΑ ΥΔΡΟΣΤΑΤΙΚΗ
Διαβάστε περισσότεραΔιαγώνισμα Φυσικής Γ Λυκείου 5/3/2017
Διαγώνισμα Φυσικής Γ Λυκείου 5/3/2017 ΦΡΟΝΤΙΣΤΗΡΙΟ ΕΠΙΛΟΓΗ Θέμα Α 1) Το δοχείο του σχήματος 1 είναι γεμάτο με υγρό και κλείνεται με έμβολο Ε στο οποίο ασκείται δύναμη F. Όλα τα μανόμετρα 1,2,3,4 δείχνουν
Διαβάστε περισσότεραΟ Αρχιμήδης ανακάλυψε πως αν διαιρέσουμε το μήκος οποιουδή ποτε κύκλου με τη διάμετρο του, το πηλίκο είναι ένας μη ρητός
M. ΣΠΗΛΙΩΤΗ Ο Αρχιμήδης ανακάλυψε πως αν διαιρέσουμε το μήκος οποιουδή ποτε κύκλου με τη διάμετρο του, το πηλίκο είναι ένας μη ρητός αριθμός :π = 314 3.14 Μήκος κύκλου: πd= 2πr Mήκος τόξου κύκλου: φ*r=
Διαβάστε περισσότεραΕΠΙΔΡΑΣΗ ΤΗΣ ΡΟΗΣ ΝΕΡΟΥ ΣΕ ΕΦΑΡΜΟΓΕΣ ΤΗΣ ΕΔΑΦΟΜΗΧΑΝΙΚΗΣ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΛΛΕΙΩΝ ΜΕΤΑΛΛΟΥΡΓΩΝ ΤΟΜΕΑΣ ΓΕΩΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΗΡΩΩΝ ΠΟΛΥΤΕΧΝΕΙΟΥ 9 15780 ΖΩΓΡΑΦΟΥ ΑΘΗΝΑ ΕΔΑΦΟΜΗΧΑΝΙΚΗ & ΣΤΟΙΧΕΙΑ ΘΕΜΕΛΙΩΣΕΩΝ Διδάσκων: Κωνσταντίνος Λουπασάκης,
Διαβάστε περισσότεραh 1 M 1 h 2 M 2 P = h (2) 10m = 1at = 1kg/cm 2 = 10t/m 2
ΕΡΓΑΣΤΗΡΙΟ 4 Ο Ενότητα: Βασικές υδραυλικές έννοιες Πίεση απώλειες πιέσεως Ι. Υδροστατική πίεση Η υδροστατική πίεση, είναι η πίεση που ασκεί το νερό, σε κατάσταση ηρεμίας, στα τοιχώματα του δοχείου που
Διαβάστε περισσότεραΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ Β ΓΥΜΝΑΣΙΟΥ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 03/05/2015 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΠΑΝΤΗΣΕΙΣ
ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ Β ΓΥΜΝΑΣΙΟΥ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 03/05/2015 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: Τζαγκαράκης Γιάννης, Δημοπούλου Ηρώ, Αδάμη Μαρία, Αγγελίδης Άγγελος, Παπαθανασίου Θάνος, Παπασταμάτης Στέφανος
Διαβάστε περισσότεραΥδραυλικός Υπολογισμός Βροχωτών Δικτύων
Υδραυλικός Υπολογισμός Βροχωτών Δικτύων Π. Σιδηρόπουλος Εργαστήριο Υδρολογίας και Ανάλυσης Υδατικών Συστημάτων Τμήμα Πολιτικών Μηχανικών Π.Θ. E-mail: psidirop@uth.gr Συνολικό δίκτυο ύδρευσης Α. Ζαφειράκου,
Διαβάστε περισσότεραΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΜΟΝΟ ΝΕΟ ΣΥΣΤΗΜΑ ΕΣΠΕΡΙΝΩΝ
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΜΟΝΟ ΝΕΟ ΣΥΣΤΗΜΑ ΕΣΠΕΡΙΝΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 23 ΜΑΪΟΥ 2016 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΞΙ (6)
Διαβάστε περισσότεραΠΡΟΒΛΗΜΑ ΡΟΗΣ ΥΠΕΡΑΝΩ ΤΟΠΙΚΗΣ ΑΝΥΨΩΣΕΩΣ
ΠΡΟΒΛΗΜΑ ΡΟΗΣ ΥΠΕΡΑΝΩ ΤΟΠΙΚΗΣ ΑΝΥΨΩΣΕΩΣ Ενέργειας Η ανάλυη του προβλήµατος γίνεται µε την χρήη του διαγράµµατος Ειδικής (α) Υποκρίιµη ροή τα ανάντη επί Ήπιας Κλίεως Πυθµένα το Σχήµα 1 Έτω ότι οµοιόµορφη,
Διαβάστε περισσότεραΔιαγώνισμα Φυσικής Γ Λυκείου ~~ Ρευστά ~~
Διαγώνισμα Φυσικής Γ Λυκείου ~~ Ρευστά ~~ Διάρκεια: 3 ώρες Θέμα Α 1) Το δοχείο του σχήματος 1 είναι γεμάτο με υγρό και κλείνεται με έμβολο Ε στο οποίο ασκείται δύναμη F. Όλα τα μανόμετρα 1,2,3,4 δείχνουν
Διαβάστε περισσότεραΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ
ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ 4 ο ΔΙΑΓΩΝΙΣΜΑ ΡΕΥΣΤΑ - ΘΕΜΑΤΑ ΘΕΜΑ A Στις προτάσεις Α1α έως Α4β να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη
Διαβάστε περισσότερα