Chapter 9: NP-Complete Problems
|
|
- Ερατώ Αποστολίδης
- 9 χρόνια πριν
- Προβολές:
Transcript
1 Θεωρητική Πληροφορική Ι: Αλγόριθμοι και Πολυπλοκότητα Chapter 9: NP-Complete Problems 9.3 Graph-Theoretic Problems (Συνέχεια) 9.4 Sets and Numbers Γιώργος Αλεξανδρίδης Κεφάλαιο 9: 2ο μέρος 1
2 Επισκόπηση Παρουσίασης 9.3 Θεωρητικά Προβλήματα Γράφων(Συνέχεια) HAMILTON PATH είναι NP-πλήρες Απόρροια: TSP (D) είναι NP-πλήρες 3-COLORING είναι NP-πλήρες 9.4 Σύνολα και Αριθμοί TRIPARTITE MATCHING είναι NP-πλήρες EXACT COVER BY 3-SETS, SET COVERING και SET PACKING είναι NPπλήρη INTEGER PROGRAMMING και LINEAR PROGRAMMING KNAPSACK είναι NP-πλήρες Ψευδοπολυωνυμικοί Αλγόριθμοι Ισχυρή NP-πληρότητα BIN PACKING είναι NP-πλήρες Κεφάλαιο 9: 2ο μέρος 2
3 HAMILTON PATH είναι NP-πλήρες: Επισκόπηση Απόδειξης Αναγωγή του 3SAT σε HAMILTON PATH Δοσμένης έκφρασης φσε CNFμε μεταβλητές x 1,,x n και προτάσεις (clauses) C 1,,C m η κάθε μια από τις οποίες αποτελείται από 3 κατηγορήματα (literals), θα κατασκευαστεί γράφος R(φ), ο οποίος θα διαθέτει μονοπάτι Hamilton αν και μόνο αν η έκφρασηείναι ικανοποιήσιμη Για την μετάβασηαπό το πεδίο(domain) του 3SΑTστο πεδίο του HAMILTON PATH πρέπει να εξασφαλίζονται: Η επιλογή(choice) των τιμών των μεταβλητών (τιμές true και false) Χρήση του choice gadget Η συνέπεια(consistency)στην εμφάνιση των μεταβλητών (όλες οι εμφανίσεις του xπρέπει να έχουν την ίδια τιμή και όλες οι εμφανίσεις του x πρέπει να έχουν την αντίθετη τιμή) Χρήση του consistency gadget Οι περιορισμοί(constraints) που επιβάλλονται από τις προτάσεις Χρήση του constraint gadget (triangle) Κεφάλαιο 9: 2ο μέρος 3
4 HAMILTON PATH είναι NP-πλήρες: Choice Gadget(τιμές μεταβλητών) Αυτός ο υπό-γράφος (subgraph) συνδέεταιμε τον υπόλοιπο γράφο μόνομέσω των endpoints(γεμισμένες τελείες) Το μονοπάτι Hamilton προσεγγίζει τον γράφο από πάνω και επιλέγει μια από τις δύο παράλληλες ακμές (και άρα μια τιμή αληθείας) Κεφάλαιο 9: 2ο μέρος 4
5 HAMILTON PATH είναι NP-πλήρες: Consistency Gadget (Συνέπεια μεταβλητών) Ο a αποτελεί υπό-γράφο του Gκαι συνδέεται με αυτόν μόνο στα endpoints Αν ο G έχει μονοπάτι Hamilton (και το μονοπάτι αυτό δεν αρχίζει από κάποιον εσωτερικό κόμβο του a), τότε ο aμπορεί να διασχιστεί με έναν από τους δύο τρόπους που φαίνονται στην περίπτωση b και c Σε κάθε μονοπάτι, η πλευρά μπορεί να διασχιστεί μόνο μια φορά Λειτουργία ως πύλη XOR (σχήμα d) Κεφάλαιο 9: 2ο μέρος 5
6 HAMILTON PATH είναι NP-πλήρες: Constraint Gadget(περιορισμοί προτάσεων) Μια πλευρά του τριγώνου για κάθε κατηγόρημα (literal) στην πρόταση (clause) Λειτουργία Αν υποθέσουμε ότι οι πλευρές του τριγώνου διασχίζονται αν το αντίστοιχο κατηγόρημα έχει την τιμή false, τότε θα πρέπει τουλάχιστον ένα κατηγόρημα να έχει την τιμή true Διαφορετικά και οι τρεις πλευρές του τριγώνου θα διασχιστούν και συνεπώς δεν θα υπάρχει μονοπάτι Hamilton Κεφάλαιο 9: 2ο μέρος 6
7 HAMILTON PATH είναι NP-πλήρες: Κατασκευή γράφου R(φ) Ο γράφος G έχει nαντίγραφα του choice gadget, ένα για κάθε μεταβλητή mαντίγραφα του constraint gadget (τρίγωνα), ένα για κάθε πρόταση Οι 3mκόμβοι των τριγώνων, ο τελευταίος κόμβος του choice gadget και ένας νέος κόμβος (3) διασυνδέονται μεταξύ τους με όλους τους δυνατούς τρόπους σχηματίζοντας ένα μεγάλο clique Περιπτώσεις Υπάρχει μονοπάτι Hamilton στον γράφο R(φ) Τότε, ορίζεται truth assignment (αποτίμηση) T που ικανοποιεί το φ Τικανοποιεί το φ Τότε, μπορεί να βρεθεί μονοπάτι Hamilton στον γράφο R(φ) Κεφάλαιο 9: 2ο μέρος 7
8 HAMILTON PATH είναι NP-πλήρες: TSP (D) είναι NP-πλήρες Αναγωγήτου HAMILTON PATH σε TSP (D) Δοσμένου γράφου Gμε nκόμβους, σχεδιάζεται πίνακας αποστάσεων d ij και προϋπολογισμός (budget) Βτέτοιος ώστε να υπάρχει διαδρομή μήκους B(ή και μικρότερη) αν και μόνο αν ο γράφος G έχει μονοπάτι Hamilton nπόλεις(μια για κάθε κόμβο του γράφου) Η απόστασημεταξύ των πόλεωνiκαιjείναι 1αν υπάρχει ακμή [i, j] στον Gκαι 2 διαφορετικά Το Bτίθεται ίσο με n + 1 Κεφάλαιο 9: 2ο μέρος 8
9 3-COLORING είναι NP-πλήρες: Επισκόπηση Απόδειξης k-coloring Χρωματίζουμε τους κόμβους ενός γράφου με διαφορετικά χρώματα, έτσι ώστε γειτονικοί κόμβοι να μην έχουν το ίδιο χρώμα Αναγωγή του NAESAT σε 3-COLORING NAESAT: Δοσμένου συνόλου προτάσεων C 1,,C m, η κάθε μια από τις οποίες περιέχει 3 κατηγορήματα και μεταβλητών x 1,,x n, υπάρχει αποτίμηση τέτοιαστις μεταβλητές, ώστε καμία από τις προτάσεις να μην έχει όλα τα κατηγορήματα της true ή όλα false; Κατασκευή γράφου G, ο οποίος μπορεί να χρωματιστεί με χρώματα {0,1,2} αν και μόνο αν τακατηγορήματα σε όλες τις προτάσεις του μπορούν να πάρουν διαφορετικές τιμές Κεφάλαιο 9: 2ο μέρος 9
10 3-COLORING είναι NP-πλήρες: Απόδειξη με χρήση τριγώνων Χρησιμοποιούμε και τα 3 χρώματα στις ακμές τους Για κάθε μεταβλητήx i κατασκευάζεται τρίγωνο [α,x i,-x i ] Όλα τα τρίγωνα μοιράζονται μεταξύ τους τον κόμβο α Κάθε πρόταση C i αναπαρίσταται από τρίγωνο [C i1,c i2, C i3 ](κάτω μέρος της εικόνας) Οι ακμές μεταξύ των δύο ομάδων τριγώνων υποδηλώνουν την ύπαρξη των κατηγορημάτων στις προτάσεις Ο G μπορεί να τρι-χρωματιστεί αν και μόνο αν η συγκεκριμένη περίπτωση (instance) του NAESAT ικανοποιείται Απόδειξη Κεφάλαιο 9: 2ο μέρος 10
11 TRIPARITE MATCING είναι NP-πλήρες: Επισκόπηση Απόδειξης TRIPARTITE MATCHING επέκταση του BIPARTITE MATCHING(ενότητα 1.2) Δίνονται 3 σύνολα B,Gκαι H(boys, girlsκαι homes) n στοιχείων το κάθε ένακαι τριαδική(ternary) σχέσηπου τα συνδέει T B x G x H Ζητείται το, δηλαδή κάθε αγόρι αντιστοιχίζεται με διαφορετικό κορίτσι και κάθε ζευγάρι έχει το δικό του σπίτι Αναγωγή του 3SAT στο TRIPARTITE MATCHING 3SAT: Έκφραση φσε CNF με μεταβλητές x 1,,x n και προτάσεις C 1,,C m, με την κάθε πρόταση να έχει ακριβώς 3 κατηγορήματα Χρήση gadget που συνδυάζει την επιλογή και την συνέπεια Για κάθε μεταβλητή xστην έκφραση Κεφάλαιο 9: 2ο μέρος 11
12 TRIPARITE MATCING είναι NP-πλήρες: Κατασκευή Απόδειξης Επιλογή και συνέπεια kboys, kgirls αλλά 2khomes k εμφανίσεις μεταβλητής x Οι μονοί δείκτες του hυποδηλώνουν τις εμφανίσεις της μεταβλητής x (οι ζυγοί τις εμφανίσεις του x) Αν υπάρχει αντιστοίχηση, τότε: b i αντιστοιχίζεται με g i και h 2i Θεωρούμε τότε ότι T(x)= true b i αντιστοιχίζεται με g i-1 και h 2i-1 Θεωρούμε τότε ότι T(x) = false Περιορισμοί Για κάθε πρόταση cυπάρχουν 3 τριπλέτες(b, g, h), όπου το hαντιστοιχεί στις 3 εμφανίσεις των κατηγορημάτων της κάθε πρότασης c Αν κάποιο από τα hμείνει χωρίς αντιστοίχηση, τότε αυτό αντιστοιχεί σε true literal Τότε η c ικανοποιείται Αν και τα 3 κατηγορήματα της πρότασης είναι false τότε τα b, g δεν μπορούν να αντιστοιχηθούν με h Κεφάλαιο 9: 2ο μέρος 12
13 TRIPARITE MATCΗING είναι NPπλήρες: Απόρροια EXACT COVER BY 3-SETS, SET COVERING και SET PACKING είναι NP-πλήρη SET COVERING Δίνεται οικογένεια υποσυνόλων F={S 1,,S n }ενός πεπερασμένου συνόλου U και ένα budget Β. Υπάρχει σύνολο Βαπό υποσύνολα του F, των οποίων η ένωση να δίνει U; SET PACKING Παραλλαγή του SET COVERING Δίνεται οικογένειαυποσύνολων Fτου Uκαι ένας στόχος(goal) Κ. Υπάρχουν Kζεύγη, τα μέλη των οποίων είναι μη-επικαλυπτόμενα(disjoint), στην οικογένεια F; EXACT COVER BY 3-SETS Παραλλαγή του SET COVERING Το πλήθοςτων στοιχείων του Uείναι 3m(όπου mακέραιος), Το πλήθοςτων στοιχείων κάθε υποσυνόλου S i είναι 3 Η τιμή του budgetείναι mμε την επιπλέον προϋπόθεση τα υποσύνολα S i πλήθους m να είναι μη-επικαλυπτόμενα Κεφάλαιο 9: 2ο μέρος 13
14 INTEGER PROGRAMMING vs. LINEAR PROGRAMMING INTEGER PROGRAMMING Ένα σύστημα γραμμικών ανισώσεων nμεταβλητών με ακεραίους όρους έχει ακέραιες λύσεις; LINEAR PROGRAMMING Ίδιο πρόβλημα με τη μόνη διαφορά ότι επιτρέπονται και μη- ακέραιες λύσεις INTEGER PROGRAMMING είναι NP-πλήρες SET COVERING μπορεί να αναχθεί σε INTEGER PROGRAMMING Ax 1; i=1n x i B; 0 x i 1 X i δυαδική μεταβλητή που παίρνει την τιμή 1 ανντο S i είναι στο cover Απίνακας του οποίου οι γραμμέςαποτελούν τα δυαδικά ανύσματα των υποσυνόλων Βτο budget LINEAR PROGRAMMING είναι στο P Κεφάλαιο 9: 2ο μέρος 14
15 KNAPSACK είναι NP-πλήρες: Επισκόπηση Knapsacks Ειδική περίπτωση του INTEGER PROGRAMMING Δίνεται σύνολο αντικειμένων n, κάθε ένα από τα οποία έχει αξία (value) v i και βάρος (weight) w i και μπορεί να επιλεγεί μόνο μια φορά. Δίνεται επίσης όριο βάρους W Ποια επιλογή αντικειμένων μεγιστοποιεί την συνολική τους αξία, χωρίς υπέρβαση του ορίου W; Πρόβλημα KNAPSACK Για δεδομένο στόχο K, υπάρχει υποσύνολοs {1,,n}τέτοιο ώστε i S w i W και i S v i K; Κεφάλαιο 9: 2ο μέρος 15
16 KNAPSACK είναι NP-πλήρες: Απόδειξη ΑναγωγήΕΧΑCT COVER BY 3-SETS σε KNAPSACK Θεωρούμε περίπτωση {S 1, S 2,, S n }του EXACT COVER BY 3-SETS, όπου U={1,2,,3m}, όπου m ακέραιος Τα υποσύνολα S i αναπαρίστανται από δυαδικά ανύσματα στον χώρο {0,1} 3m, που επίσης μπορούν να ειδωθούν ως ακέραιοι αριθμοί Έτσι η ένωση των συνόλων αναπαρίσταται ως πρόσθεση ακεραίων ΕΙΔΟΠΟΙΟΣ ΔΙΑΦΟΡΑ: Στην πρόσθεση ακεραίων πρέπει να λαμβάνουμε υπόψη μας και το κρατούμενο! ΛΥΣΗ: Θεωρούμε ότι τα δυαδικά ανύσματα αναπαρίστανται απόακεραίους αριθμούς ως προς βάση n + 1 και όχι ως προς βάση 2. Κεφάλαιο 9: 2ο μέρος 16
17 Ψευδοπολυωνυμικοί Αλγόριθμοι Κάθε περίπτωση του KNAPSACKμπορεί να λυθεί σε χρόνο (nw), όπου nείναι ο αριθμός των αντικειμένων και W είναι το όριο βάρους ΠΡΟΣΟΧΗ: Δεν είναι πολυωνυμικόςαλγόριθμος γιατί το χρονικό του όριο nwδεν αποτελεί πολυωνυμική συνάρτηση της εισόδου του Αντίστοιχη περίπτωση ήταν και ο αλγόριθμος που επέλυε το MAX CUT στην ενότητα 1.2 Οι ψευδοπολυωνυμικοίαλγόριθμοι έχουν χρησιμότητα στην θεωρία της πολυπλοκότητας Κεφάλαιο 13, προσεγγιστικοί αλγόριθμοι Κεφάλαιο 9: 2ο μέρος 17
18 Ισχυρή NP-πληρότητα Αν ένα πρόβλημα παραμένει NP-πλήρες, ακόμα και στις περιπτώσεις του εκείνες όπου το μήκος της εισόδου του n περιορίζεται πολυωνυμικά(είναι δηλαδή της μορφής p(n), όπουp(n)πολυώνυμο) τότε ονομάζεται ισχυρό NP-πλήρες πρόβλημα Όλα τα προβλήματα που εξετάστηκαν στο Κεφ9είναι ισχυρά NP-πλήρη προβλήματα Εξαίρεση το KNAPSACK Τα ισχυρά NP-πλήρη προβλήματα δεν μπορούν να εκφραστούναπό ψευδοπολυωνυμικούςαλγορίθμους Εκτός και αν κάποτε αποδειχθεί ότι P = NP Κεφάλαιο 9: 2ο μέρος 18
19 BIN PACKING είναι NP-πλήρες: ΕπισκόπησηΑπόδειξης BIN PACKING Δίνεται σύνολο Nθετικών ακεραίων α 1,α 2,,α Ν (αντικείμενα), ένας ακέραιος C(η χωρητικότητα) και ένας ακέραιος B(ο αριθμός των δοχείων) Μπορούν οι συγκεκριμένοι αριθμοί να χωριστούν σε B υποσύνολα, κάθε ένα εκ των οποίων έχει χωρητικότητα το πολύ C; Αναγωγή του TRIPARTITE MATCHING σε BIN PACKING Έστω σύνολο αγοριών B={b 1,b 2,,b n }, κοριτσιών G={g 1,g 2,,g n }, σπιτιών H={h 1,h 2,,h n }και τριπλετώνt={t 1,..t m } B x G x H Υπάρχει σύνολο nτριπλετώνστο T, έτσι ώστε κάθε αγόρι, κορίτσι και σπίτινα περιέχεται σε μια από τις n τριπλέτες; Κεφάλαιο 9: 2ο μέρος 19
20 BIN PACKING είναι NP-πλήρες: Απόδειξη Ν = 4m αντικείμενα Ένα για κάθε τριπλέτακαι ένα για κάθε εμφάνιση αγοριού, κοριτσιού ή σπιτιού σε κάθε τριπλέτα b 1 [1], b 1 [2],b 1 [N(b 1 )]: εμφανίσεις του b 1 στις τριπλέτες N(b 1 ): συνολικός αριθμός εμφανίσεων του b 1 Μ πολύ μεγάλος αριθμός (πχ 100n) Μια από τις εμφανίσεις των αγοριών, των κοριτσιών και των σπιτιών (εδώ επιλέχθηκε αυθαίρετα η πρώτη) έχει διαφορετικό μέγεθος από τις άλλες αυτή η εμφάνιση θα συμμετάσχει στο ταίριασμα Χωρητικότητα Cκάθε δοχείου: 40Μ Χωράει ακριβώς μια τριπλέτακαι μια εμφάνιση από κάθε μέλος της με την προϋπόθεση ότι καμία από τις τρείς ή και οι τρεις ανήκουν στην πρώτη εμφάνιση Αριθμός Δοχείων: m Αριθμός Τριπλετών: m N τριπλέτεςστα δοχεία σχηματίζουν tripartite matching Αν υπάρχει tripartite matching, τότε όλα τα αντικείμενα μπορούν να χωρέσουν στα m δοχεία Κεφάλαιο 9: 2ο μέρος 20
21 BIN PACKING είναι NP-πλήρες: Συμπεράσματα Οι αριθμοί που χρησιμοποιήθηκαν στην απόδειξη είναι πολυωνυμικά μεγάλοι, ( x 4 ) x αρχικό instance του TRIPARTITE MATCHING Το BIN PACKING είναι ισχυρό NP-πλήρες πρόβλημα και αποτελεί σημείο αφετηρίας για αναγωγές σε προβλήματα στα οποία οι αριθμοί παίζουν κεντρικό ρόλο Κεφάλαιο 9: 2ο μέρος 21
22 Αναγωγές μεταξύ NP-πλήρων προβλημάτων Έγιναν με την παρακάτω σειρά που και παρουσιάστηκαν από τον Karp (1972) Πηγή: Στάθης Ζάχος και Άρης Παγουρτζής, Διαφάνειες Μαθήματος «Αλγόριθμοι και Πολυπλοκότητα» Κεφάλαιο 9: 2ο μέρος 22
Μη Ντετερμινισμός και NP-Πληρότητα
Μη Ντετερμινισμός και NP-Πληρότητα Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Μη Ντετερμινιστικές Μηχανές Turing Μη ντετερμινιστική
NP-complete problems. IS, 4-Degree IS,CLIQUE, NODE COVER, MAX CUT, MAX BISECTION, BISECTION WIDTH. NP-complete problems 1 / 30
NP-complete problems IS, 4-Degree IS,CLIQUE, NODE COVER, MAX CUT, MAX BISECTION, BISECTION WIDTH Καλογερόπουλος Παναγιώτης (ΜΠΛΑ) NP-complete problems 1 / 30 Independent Set is NP-complete Ορισμός. Εστω
Μη Ντετερμινισμός και NP-Πληρότητα
Μη Ντετερμινισμός και NP-Πληρότητα Διδάσκοντες: Σ Ζάχος, Δ Φωτάκης Επιμέλεια διαφανειών: Δ Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Μη Ντετερμινιστικές
Μη Ντετερμινισμός και NP-Πληρότητα
Μη Ντετερμινισμός και P-Πληρότητα ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Μη Ντετερμινιστικές Μηχανές Turing Μη ντετερμινιστική Μηχ. Turing (ΝTM)
Υπολογιστική Πολυπλοκότητα
Υπολογιστική Πολυπλοκότητα ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Άδεια Χρήσης Το παρόν εκπαιδευτικό
ΑΛΓΟΡΙΘΜΟΙ Άνοιξη I. ΜΗΛΗΣ
ΑΛΓΟΡΙΘΜΟΙ http://eclass.aueb.gr/courses/inf6/ Άνοιξη 26 - I. ΜΗΛΗΣ NP-complete προβλήματα ΑΛΓΟΡΙΘΜΟΙ - ΑΝΟΙΞΗ 26 - Ι. ΜΗΛΗΣ 6 NP-COMPLETENESS II Tree of reductions (partial) Cook s Th. Π NP SAT 3-SAT
Υπολογιστική Πολυπλοκότητα
Υπολογιστική Πολυπλοκότητα ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Υπολογιστική Πολυπλοκότητα Γιατί κάποια (επιλύσιμα) προβλήματα είναι δύσκολο
NP-πληρότητα. Λεωνίδας Παληός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων
NP-πληρότητα Λεωνίδας Παληός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων Πολυωνυμικός μετασχηματισμός Ένας πολυωνυμικός μετασχηματισμός από την L 1 Σ 1 * στην L 2 Σ 2 * είναι μια συνάρτηση
Κλάσεις Πολυπλοκότητας
Κλάσεις Πολυπλοκότητας Παύλος Εφραιμίδης pefraimi ee.duth.gr Κλάσεις Πολυπλοκότητας 1 Οι κλάσεις πολυπλοκότητας P και NP P: Polynomial ΗκλάσηP περιλαμβάνει όλα τα υπολογιστικά προβλήματα που μπορούν
4η Γραπτή Ασκηση Αλγόριθμοι και Πολυπλοκότητα CoReLab ΣΗΜΜΥ 3/2/2019 CoReLab (ΣΗΜΜΥ) 4η Γραπτή Ασκηση 3/2/ / 37
4η Γραπτή Άσκηση Αλγόριθμοι και Πολυπλοκότητα CoReLab ΣΗΜΜΥ 3/2/2019 CoReLab (ΣΗΜΜΥ) 4η Γραπτή Άσκηση 3/2/2019 1 / 37 Άσκηση 1 Πρέπει να βρούμε όλες τις καλές προτάσεις φίλων για τον i ανάμεσα σε όλους
4η Γραπτή Ασκηση Αλγόριθμοι και Πολυπλοκότητα CoReLab ΣΗΜΜΥ 7 Φεβρουαρίου 2017 CoReLab (ΣΗΜΜΥ) 4η Γραπτή Ασκηση 7 Φεβρουαρίου / 38
4η Γραπτή Άσκηση Αλγόριθμοι και Πολυπλοκότητα CoReLab ΣΗΜΜΥ 7 Φεβρουαρίου 2017 CoReLab (ΣΗΜΜΥ) 4η Γραπτή Άσκηση 7 Φεβρουαρίου 2017 1 / 38 Άσκηση 1 Πρέπει να βρούμε όλες τις καλές προτάσεις φίλων για τον
Θεωρία Γραφημάτων Θεμελιώσεις-Αλγόριθμοι-Εφαρμογές
Θεωρία Γραφημάτων Θεμελιώσεις-Αλγόριθμοι-Εφαρμογές Ενότητα 1 ΕΙΣΑΓΩΓΗ ΣΤΗ ΘΕΩΡΙΑ ΓΡΑΦΗΜΑΤΩΝ Σταύρος Δ. Νικολόπουλος 2017-18 www.cs.uoi.gr/~stavros Σχετικά με το Μάθημα Ώρες γραφείου: Δευτέρα Παρασκευή
Κατώτερα φράγματα Κατώτερο φράγμα: εκτίμηση της ελάχιστης εργασίας που απαιτείται για την επίλυση ενός προβλήματος. Παραδείγματα: Αριθμός συγκρίσεων π
Περιορισμοί Αλγοριθμικής Ισχύος Κατηγοριοποίηση πολυπλοκοτήτων Κατώτερα φράγματα Κατώτερο φράγμα: εκτίμηση της ελάχιστης εργασίας που απαιτείται για την επίλυση ενός προβλήματος. Παραδείγματα: Αριθμός
Αλγόριθµοι και Πολυπλοκότητα
Αλγόριθµοι και Πολυπλοκότητα Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Πανεπιστήµιο Αθηνών Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα 15 Ιουνίου 2009 1 / 26 Εισαγωγή Η ϑεωρία
ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ
ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ Ενότητα 13: Πολυωνυμική αναγωγή Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες,
Λύσεις 4ης Σειράς Ασκήσεων
Λύσεις 4ης Σειράς Ασκήσεων Άσκηση 1 Αναγάγουμε τν Κ 0 που γνωρίζουμε ότι είναι μη-αναδρομική (μη-επιλύσιμη) στην γλώσσα: L = {p() η μηχανή Turing Μ τερματίζει με είσοδο κενή ταινία;} Δοσμένης της περιγραφής
Επίπεδα Γραφήματα : Προβλήματα και Υπολογιστική Πολυπλοκότητα
Αλγόριθμοι πολυωνυμικού χρόνου Ένας αλγόριθμος πολυωνυμικού χρόνου έχει χρόνο εκτέλεσης όπου είναι μία (θετική) σταθερά Κλάση πολυπλοκότητας : περιλαμβάνει τα προβλήματα που επιδέχονται λύση σε πολυωνυμικό
Θεωρία Γραφημάτων Θεμελιώσεις-Αλγόριθμοι-Εφαρμογές
Θεωρία Γραφημάτων Θεμελιώσεις-Αλγόριθμοι-Εφαρμογές Ενότητα 7 ΧΡΩΜΑΤΙΣΜΟΣ Σταύρος Δ. Νικολόπουλος 2017-18 www.cs.uoi.gr/~stavros Εισαγωγή Χρωματισμός κορυφών-ακμών-περιοχών. Χρωματική τάξη (color class):
Πολυπλοκότητα. Παράμετροι της αποδοτικότητας ενός αλγόριθμου: Χρόνος εκτέλεσης. Απαιτούμενοι πόροι, π.χ. μνήμη, εύρος ζώνης. Προσπάθεια υλοποίησης
Παράμετροι της αποδοτικότητας ενός αλγόριθμου: Χρόνος εκτέλεσης Απαιτούμενοι πόροι, π.χ. μνήμη, εύρος ζώνης Προσπάθεια υλοποίησης Παράμετροι της αποδοτικότητας ενός αλγόριθμου: Χρόνος εκτέλεσης Απαιτούμενοι
Κλάση NP, NP-Complete Προβλήματα
Κλάση NP, NP-Complete Προβλήματα Βαγγέλης ούρος douros@aueb.gr 1 11/6/2012 Αλγόριθμοι, Εαρινό Εξάμηνο 2012, Φροντιστήριο #14 Προβλήματα Απόφασης & Βελτιστοποίησης 2 Πρόβλημα Απόφασης: Κάθε πρόβλημα που
Αλγόριθμοι Προσέγγισης για NP-Δύσκολα Προβλήματα
Αλγόριθμοι Προσέγγισης για NP-Δύσκολα Προβλήματα Διδάσκοντες: E. Ζάχος, Α. Παγουρτζής Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο
ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ
Ενότητα 4 Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου άδειας
ΔΥΣΚΟΛΙΑ ΣΤΗΝ ΠΡΟΣΕΓΓΙΣΙΜΟΤΗΤΑ
ΔΥΣΚΟΛΙΑ ΣΤΗΝ ΠΡΟΣΕΓΓΙΣΙΜΟΤΗΤΑ Επιμέλεια : Γεωργίου Κωστής Παρουσίαση στα πλαίσια του μαθήματος: Δίκτυα και πολυπλοκότητα Φεβρουάριος 004 μπλ Κίνητρα για τη μελέτη της μη προσεγγισιμότητας Ο πληρέστερος
ΑΛΓΟΡΙΘΜΟΙ. Ενότητα 11: Περιορισμοί της Αλγοριθμικής Ισχύος
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΛΓΟΡΙΘΜΟΙ Ενότητα 11: Περιορισμοί της Αλγοριθμικής Ισχύος Ιωάννης Μανωλόπουλος, Καθηγητής Αναστάσιος Γούναρης, Επίκουρος Καθηγητής Άδειες
Δομές Δεδομένων και Αλγόριθμοι
Δομές Δεδομένων και Αλγόριθμοι Χρήστος Γκόγκος ΤΕΙ Ηπείρου Χειμερινό Εξάμηνο 2014-2015 Παρουσίαση 9 P vs NP 1 / 13 Δυσκολία επίλυσης υπολογιστικών προβλημάτων Κάποια προβλήματα είναι εύκολα να λυθούν με
Αλγόριθμοι και Πολυπλοκότητα
Αλγόριθμοι και Πολυπλοκότητα Ροή Δικτύου Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Μοντελοποίηση Δικτύων Μεταφοράς Τα γραφήματα χρησιμοποιούνται συχνά για την μοντελοποίηση
Chapter 7, 8 : Completeness
CSC 314: Switching Theory Chapter 7, 8 : Completeness 19 December 2008 1 1 Αναγωγές Πολυωνυμικού Χρόνου Ορισμός. f: Σ * Σ * ονομάζεται υπολογίσιμη σε πολυνωνυμικό χρόνο αν υπάρχει μια πολυωνυμικά φραγμένη
Κεφάλαιο 8. NP και Υπολογιστική Δυσεπιλυσιμότητα. Παύλος Εφραιμίδης V1.1,
Κεφάλαιο 8 NP και Υπολογιστική Δυσεπιλυσιμότητα Παύλος Εφραιμίδης V1.1, 2015-01-19 Χρησιμοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. 1 πρόβλημα αναζήτησης (search problem) Ένα πρόβλημα
Σειρά Προβλημάτων 5 Λύσεις
Άσκηση 1 Σειρά Προβλημάτων 5 Λύσεις Να δείξετε ότι οι πιο κάτω γλώσσες είναι διαγνώσιμες. (α) { R η R είναι μια κανονική έκφραση η οποία παράγει μια μη πεπερασμένη γλώσσα} (β) { G η G είναι μια CFG η οποία
για NP-Δύσκολα Προβλήματα
Προσεγγιστικοί Αλγόριθμοι για NP-Δύσκολα Προβλήματα Διδάσκοντες: Σ. Ζάχος, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο
ΑΛΓΟΡΙΘΜΟΙ Άνοιξη I. ΜΗΛΗΣ
ΑΛΓΟΡΙΘΜΟΙ http://eclass.aueb.gr/courses/inf6/ Άνοιξη 06 - I. ΜΗΛΗΣ P NP και NP-complete προβλήματα (Κλάσεις Πολυπλοκότητας) ΑΛΓΟΡΙΘΜΟΙ - ΑΝΟΙΞΗ 06 - Ι. ΜΗΛΗΣ 5 NP-COMPLETENESS I Γιατί για πολλά προβλήματα
Εισαγωγή στην Επιστήμη των Υπολογιστών
Εισαγωγή στην Επιστήμη των Υπολογιστών 4 ο εξάμηνο ΣΗΜΜΥ 5 η ενότητα: Γράφοι: προβλήματα και αλγόριθμοι Επιμέλεια διαφανειών: Στάθης Ζάχος, Άρης Παγουρτζής, Δημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών
Θεωρία Υπολογισμού και Πολυπλοκότητα
Θεωρία Υπολογισμού και Πολυπλοκότητα Κλάσεις P, NP NP-πληρότητα 15 Απριλίου 2008 Δρ. Παπαδοπούλου Βίκη 1 Υπολογίσιμα και Εφικτά Υπολογίσιμα Προβλήματα Είδαμε ότι 1. Οτιδήποτε μπορούμε να περιγράψουμε με
Κεφάλαιο 1. Πέντε Αντιπροσωπευτικά Προβλήματα. Έκδοση 1.4, 30/10/2014. Χρησιμοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne.
Κεφάλαιο 1 Πέντε Αντιπροσωπευτικά Προβλήματα Έκδοση 1.4, 30/10/2014 Χρησιμοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. 1 1.2 Πέντε Αντιπροσωπευτικά Προβλήματα 1. Χρονοπρογραμματισμός Διαστημάτων
Προσεγγιστικοί Αλγόριθμοι για NP- ύσκολα Προβλήματα
Προσεγγιστικοί Αλγόριθμοι για NP- ύσκολα Προβλήματα ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Άδεια
Partition of weighted sets (problems with numbers)
TOPICS IN ALGORITHMS http://eclass.aueb.gr/courses/inf7/ Spring 27 I. ΜILIS Partition of weighted sets (problems with numbers) AUEB / DoI / TOPICS IN ALGORITHMS / Spring 27 / I. MILIS / 6 - PARTITIONS
Θεμελιώδη Θέματα Επιστήμης Υπολογιστών
Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Θεμελιώδη Θέματα Επιστήμης Υπολογιστών Μετασχηματισμοί Υπολογιστικών Προβλημάτων Αναγωγές και Πληρότητα Προσαρμογή από
Εισαγωγή στην Επιστήμη των Υπολογιστών
Εισαγωγή στην Επιστήμη των Υπολογιστών 4 ο εξάμηνο ΣΗΜΜΥ 4 η ενότητα: Γράφοι: προβλήματα και αλγόριθμοι Επιμέλεια διαφανειών: Στάθης Ζάχος, Άρης Παγουρτζής, Δημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών
Κεφάλαιο 8. NP και Υπολογιστική Δυσεπιλυσιμότητα. Χρησιμοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne.
Κεφάλαιο 8 NP και Υπολογιστική Δυσεπιλυσιμότητα Χρησιμοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. 1 πρόβλημα αναζήτησης (search problem) Ένα πρόβλημα αναζήτησης είναι ένα πρόβλημα στο
Κεφάλαιο 8. NP και Υπολογιστική Δυσεπιλυσιµότητα. Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne.
Κεφάλαιο 8 NP και Υπολογιστική Δυσεπιλυσιµότητα Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. 1 πρόβληµα αναζήτησης (search problem) Ένα πρόβληµα αναζήτησης είναι ένα πρόβληµα στο
conp and Function Problems
conp and Function Problems 1 Ένα πρόβλημα απόφασης λέμε ότι επιλύεται σε μηντετερμινιστικό πολυωνυμικό χρόνο αν υπάρχει ένας μηντετερμινιστικός αλγόριθμος που, εκμεταλλευόμενος μια τυχαία επιλογή, μπορεί
Chapter 7, 8 : Time, Space Complexity
CSC 314: Switching Theory Chapter 7, 8 : Time, Space Complexity 12 December 2008 1 1 Υπολογίσιμα και Εφικτά Υπολογίσιμα Προβλήματα Είδαμε ότι 1. Οτιδήποτεμπορούμεναπεριγράψουμεμεένααλγόριθμο μπορεί να
Προσεγγιστικοί Αλγόριθμοι
Πολλά NP-πλήρη προβλήματα έχουν μεγάλο πρακτικό ενδιαφέρον. http://xkcd.com/287/ Πολλά NP-πλήρη προβλήματα έχουν μεγάλο πρακτικό ενδιαφέρον. Πως μπορούμε να αντιμετωπίσουμε το γεγονός ότι είναι απίθανη(;)
Κεφάλαιο 5ο: Ακέραιος προγραμματισμός
Κεφάλαιο 5ο: Ακέραιος προγραμματισμός 5.1 Εισαγωγή Ο ακέραιος προγραμματισμός ασχολείται με προβλήματα γραμμικού προγραμματισμού στα οποία μερικές ή όλες οι μεταβλητές είναι ακέραιες. Ένα γενικό πρόβλημα
Φροντιστήριο 11 Λύσεις
Άσκηση 1 Φροντιστήριο 11 Λύσεις Να αποδείξετε ότι η κλάση Ρ είναι κλειστή ως προς τις πράξεις της ένωσης, της συναρμογής και του συμπληρώματος. Θα πρέπει να δείξουμε ότι: (α) Ένωση: Αν οι Λ 1 και Λ 2 είναι
ΚΕΦΑΛΑΙΟ 12: Θεωρία υπολογισμού
ΚΕΦΑΛΑΙΟ 12: Θεωρία υπολογισμού 12.1 Συναρτήσεις και ο υπολογισμός τους 12.2 Μηχανές Turing 12.3 Καθολικές γλώσσες προγραμματισμού 12.4 Μια μη υπολογίσιμη συνάρτηση 12.5 Πολυπλοκότητα προβλημάτων 12.6
ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΚΕΦΑΛΑΙΟ 1
ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΚΕΦΑΛΑΙΟ 1 1 Βελτιστοποίηση Στην προσπάθεια αντιμετώπισης και επίλυσης των προβλημάτων που προκύπτουν στην πράξη, αναπτύσσουμε μαθηματικά μοντέλα,
ψ φ2 = k χ φ2 = 4k χ φ1 = χ φ1 + χ φ2 + 3 = 4(k 1 + k 2 + 1) + 1 ψ φ1 = ψ φ1 + χ φ2 = k k = (k 1 + k 2 + 1) + 1
Ασκήσεις στο μάθημα της Λογικής 15 Οκτωβρίου 2015 Άσκηση 1. Να δειχτεί ότι δεν υπάρχουν τύποι μήκους 2,3,6 αλλά κάθε άλλο (θετικό ακέραιο) μήκος είναι δυνατό (άσκηση 2, σελίδα 39) Απόδειξη. Δείχνουμε πρώτα
Θεωρία Υπολογισμού και Πολυπλοκότητα Μαθηματικό Υπόβαθρο
Θεωρία Υπολογισμού και Πολυπλοκότητα Μαθηματικό Υπόβαθρο Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Σύνολα Συναρτήσεις και Σχέσεις Γραφήματα Λέξεις και Γλώσσες Αποδείξεις ΕΠΛ 211 Θεωρία
Σχεδίαση & Ανάλυση Αλγορίθμων
Σχεδίαση & Ανάλυση Αλγορίθμων Ενότητα 6 Γραμμικός Προγραμματισμός Σταύρος Δ. Νικολόπουλος Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Ιωαννίνων Webpage: www.cs.uoi.gr/~stavros Γραμμικός Προγραμματισμός
HY380 Αλγόριθμοι και πολυπλοκότητα Hard Problems
HY380 Αλγόριθμοι και πολυπλοκότητα Hard Problems Ημερομηνία Παράδοσης: 0/1/017 την ώρα του μαθήματος ή με email: mkarabin@csd.uoc.gr Γενικές Οδηγίες α) Επιτρέπεται η αναζήτηση στο Internet και στην βιβλιοθήκη
Διατάξεις με επανάληψη: Με πόσους τρόπους μπορώ να διατάξω r από n αντικείμενα όταν επιτρέπονται επαναληπτικές εμφανίσεις των αντικειμένων; Στην αρχή
Στοιχειώδης συνδυαστική Συνδυασμοί και διατάξεις με επανάληψη Διατάξεις με επανάληψη: Με πόσους τρόπους μπορώ να διατάξω r από n αντικείμενα όταν επιτρέπονται επαναληπτικές εμφανίσεις των αντικειμένων;
Τομές Γραφήματος. Γράφημα (μη κατευθυνόμενο) Συνάρτηση βάρους ακμών. Τομή : Διαμέριση του συνόλου των κόμβων σε δύο μη κενά σύνολα
Τομές Γραφήματος Γράφημα (μη κατευθυνόμενο) Συνάρτηση βάρους ακμών Τομή : Διαμέριση του συνόλου των κόμβων σε δύο μη κενά σύνολα και 12 26 20 10 9 7 17 14 4 Τομές Γραφήματος Γράφημα (μη κατευθυνόμενο)
Προσεγγιστικοί Αλγόριθμοι
Πολλά NP-πλήρη προβλήματα έχουν μεγάλο πρακτικό ενδιαφέρον. http://xkcd.com/287/ Πολλά NP-πλήρη προβλήματα έχουν μεγάλο πρακτικό ενδιαφέρον. Πως μπορούμε να αντιμετωπίσουμε το γεγονός ότι είναι απίθανη(;)
Ορατότητα σε απλά πολύγωνα
Ορατότητα σε απλά πολύγωνα Πολύγωνο, απλό πολύγωνο, πολύγωνο με τρύπες: Το σημείο a βλέπει τα σημεία b και c, όχι όμως το d: d c R d b R1 R2 a R3 a b R c Το πρόβλημα φύλαξης της αίθουσας τέχνης Victor
4.4 Το πρόβλημα του ελάχιστου ζευγνύοντος δένδρου
. Το πρόβλημα του ελάχιστου ζευγνύοντος δένδρου Σ αυτή την παράγραφο θα εξεταστεί μια παραλλαγή του προβλήματος της συντομότερης διαδρομής, το πρόβλημα του ελάχιστου ζευγνύοντος δένδρου. Σ αυτό το πρόβλημα
Δρομολόγηση Και Πολύχρωματισμός. Γραφημάτων ΚΑΡΑΓΕΩΡΓΟΣ ΤΙΜΟΘΕΟΣ Α.Μ 1026
Δρομολόγηση Και Πολύχρωματισμός Μονοπατιών Γραφημάτων ΚΑΡΑΓΕΩΡΓΟΣ ΤΙΜΟΘΕΟΣ Α.Μ 1026 Εισαγωγή. Το πρόβλημα με το οποίο θα ασχοληθούμε εδώ είναι γνωστό σαν: Δρομολόγηση και Πολύ-χρωματισμός Διαδρομών (Routing
Θεωρία Υπολογισμού και Πολυπλοκότητα
Θεωρία Υπολογισμού και Πολυπλοκότητα Κεφάλαιο 14. Χρονική Πολυπλοκότητα 17, 20, 24 Απριλίου 2007 Δρ. Παπαδοπούλου Βίκη 1 Υπολογίσιμα και Εφικτά Υπολογίσιμα Προβλήματα Είδαμε ότι 1. Οτιδήποτε μπορούμε να
Ακέραιος Γραμμικός Προγραμματισμός
Τμήμα Μηχανικών Πληροφορικής ΤΕ 2016-2017 Ακέραιος Γραμμικός Προγραμματισμός Γκόγκος Χρήστος ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα τελευταία ενημέρωση: 12/01/2017 1 Ακέραιος Γραμμικός Προγραμματισμός Όταν για
Αλγόριθμοι και Πολυπλοκότητα
Αλγόριθμοι και Πολυπλοκότητα 7ο εξάμηνο ΣHMΜY Εισαγωγή Διδάσκοντες: Άρης Παγουρτζής, Δώρα Σούλιου Στάθης Ζάχος, Δημήτρης Σακαβάλας Επιμέλεια διαφανειών: Άρης Παγουρτζής www.corelab.ntua.gr/courses/algorithms
Ενότητα 5: Αλγόριθμοι γράφων και δικτύων
Εισαγωγή στην Επιστήμη των Υπολογιστών ο εξάμηνο ΣΗΜΜΥ Ενότητα : Αλγόριθμοι γράφων και δικτύων Επιμέλεια διαφανειών: Στάθης Ζάχος, Άρης Παγουρτζής, Δημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών
Ακέραιος Γραμμικός Προγραμματισμός
Τμήμα Μηχανικών Πληροφορικής ΤΕ 2017-2018 Ακέραιος Γραμμικός Προγραμματισμός Γκόγκος Χρήστος ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα τελευταία ενημέρωση: 12/01/2017 1 Ακέραιος Γραμμικός Προγραμματισμός Όταν για
Σχεδίαση και Ανάλυση Αλγορίθμων
Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 10.0 Μετασχηματισμοί Υπολογιστικών Προβλημάτων Αναγωγές NP-πληρότητα Σταύρος Δ. Νικολόπουλος 2016-17 Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Ιωαννίνων Webpage:
Αλγόριθμοι και πολυπλοκότητα NP-Completeness (2)
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Αλγόριθμοι και πολυπλοκότητα NP-Completeness (2) Ιωάννης Τόλλης Τμήμα Επιστήμης Υπολογιστών NP-Completeness (2) x 1 x 1 x 2 x 2 x 3 x 3 x 4 x 4 12 22 32 11 13 21
Προσεγγιστικοί Αλγόριθμοι
Κεφάλαιο 12 Προσεγγιστικοί Αλγόριθμοι 12.1 Προβλήματα Βελτιστοποίησης Σε ένα πρόβλημα βελτιστοποίησης σε κάθε στιγμιότυπο του προβλήματος αντιστοιχούν κάποιες εφικτές (feasible) -δηλαδή επιτρεπτές- λύσεις,
Διαχείριση Εφοδιαστικής Αλυσίδας ΙΙ
Διαχείριση Εφοδιαστικής Αλυσίδας ΙΙ 1 η Διάλεξη: Αναδρομή στον Μαθηματικό Προγραμματισμό 2019, Πολυτεχνική Σχολή Εργαστήριο Συστημάτων Σχεδιασμού, Παραγωγής και Λειτουργιών Περιεχόμενα 1. Γραμμικός Προγραμματισμός
Ακέραιος Γραμμικός Προγραμματισμός
Τμήμα Πληροφορικής & Τηλεπικοινωνιών Πανεπιστήμιο Ιωαννίνων 2018-2019 Ακέραιος Γραμμικός Προγραμματισμός Γκόγκος Χρήστος- Γεωργία Φουτσιτζή Επιχειρησιακή Έρευνα τελευταία ενημέρωση: 12/01/2017 1 Ακέραιος
Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή
Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή raniah@hua.gr 1 Ικανοποίηση Περιορισμών Κατηγορία προβλημάτων στα οποία είναι γνωστές μερικές
ILP-Feasibility conp
Διάλεξη 19: 23.12.2014 Θεωρία Γραμμικού Προγραμματισμού Γραφέας: Χαρίλαος Τζόβας Διδάσκων: Σταύρος Κολλιόπουλος 19.1 Θεωρία Πολυπλοκότητας και προβλήματα απόφασης Για να μιλήσουμε για προβλήματα και τον
Υποθέσεις - - Θεωρήματα Υποθέσεις - Θεωρήματα Στα μαθηματικά και στις άλλες επιστήμες κάνουμε συχνά υποθέσεις. Οταν δείξουμε ότι μια υπόθεση είναι αλη
Υποθέσεις - - Θεωρήματα Μαθηματικά Πληροφορικής 1ο Μάθημα Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών Υποθέσεις - - Θεωρήματα Υποθέσεις - Θεωρήματα Στα μαθηματικά και στις άλλες επιστήμες
ΑΛΓΟΡΙΘΜΟΙ ΚΑΙ ΠΟΛΥΠΛΟΚΟΤΗΤΑ Φεβρουάριος 2005 Σύνολο μονάδων: 91
Ε.Μ.Πoλυτεχνείο ΣΗΜΜΥ, ΣΕΜΦΕ Τομέας Τεχνολογίας Πληροφορικής & Υπολογιστών Διδάσκων: Ε.Ζαχος Ονοματεπώνυμο:... Αριθμός Μητρώου:... Σχολή:... εξάμηνο:... ΑΛΓΟΡΙΘΜΟΙ ΚΑΙ ΠΟΛΥΠΛΟΚΟΤΗΤΑ Φεβρουάριος 005 Σύνολο
Γράφοι: κατευθυνόμενοι και μη
Γράφοι: κατευθυνόμενοι και μη (V,E ) (V,E ) Γράφος (ή γράφημα): ζεύγος (V,E), V ένα μη κενό σύνολο, Ε διμελής σχέση πάνω στο V Μη κατευθυνόμενος γράφος: σχέση Ε συμμετρική V: κορυφές (vertices), κόμβοι
Κατηγορηματικός Λογισμός (ΗR Κεφάλαιο 2.1-2.5)
Κατηγορηματικός Λογισμός (ΗR Κεφάλαιο 2.1-2.5) Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Εισαγωγή στον Κατηγορηματικό Λογισμό Σύνταξη Κανόνες Συμπερασμού Σημασιολογία ΕΠΛ 412 Λογική στην
Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 5: ΚΑΤΗΓΟΡΙΕΣ ΑΛΓΟΡΙΘΜΙΚΩΝ ΠΡΟΒΛΗΜΑΤΩΝ-ΑΝΑΓΩΓΗ
Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 5: ΚΑΤΗΓΟΡΙΕΣ ΑΛΓΟΡΙΘΜΙΚΩΝ ΠΡΟΒΛΗΜΑΤΩΝ-ΑΝΑΓΩΓΗ Δημήτριος Κουκόπουλος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διαχείρισης Πολιτισμικού Περιβάλλοντος και
ΚΕΦΑΛΑΙΟ 4 Η ΑΡΧΗ ΕΓΚΛΕΙΣΜΟΥ ΑΠΟΚΛΕΙΣΜΟΥ
50 ΚΕΦΑΛΑΙΟ Η ΑΡΧΗ ΕΓΚΛΕΙΣΜΟΥ ΑΠΟΚΛΕΙΣΜΟΥ Εισαγωγή. Η αρχή του εγκλεισμού αποκλεισμού είναι ένα ισχυρό μέσο απαρίθμησης με το οποίο υπολογίζεται ο αριθμός των στοιχείων της ένωσης και της τομής των συμπληρωμάτων
Προσεγγιστικοί Αλγόριθμοι βασισμένοι σε Γραμμικό Προγραμματισμό
Προσεγγιστικοί Αλγόριθμοι βασισμένοι σε Γραμμικό Προγραμματισμό ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Προσεγγιστικοί Αλγόριθμοι Απόδοση χειρότερης
Προσεγγιστικοί Αλγόριθμοι για NP- ύσκολα Προβλήματα
Προσεγγιστικοί Αλγόριθμοι για NP- ύσκολα Προβλήματα ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Αντιμετώπιση NP- υσκολίας Αν P NP, όχι αλγόριθμος
βασικές έννοιες (τόμος Β)
θεωρία γραφημάτων Παύλος Εφραιμίδης 1 περιεχόμενα βασικές έννοιες (τόμος Α) βασικές έννοιες (τόμος Β) 2 Θεωρία Γραφημάτων Βασική Ορολογία Τόμος Α, Ενότητα 4.1 Βασική Ορολογία Γραφημάτων Γράφημα Γ = (E,V)
ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ
ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ Ενότητα 12: Μη ντετερμινιστικές μηχανές Turing Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Συνδυαστική Βελτιστοποίηση Σημειώσεις. Β. Ζησιμόπουλος
Συνδυαστική Βελτιστοποίηση Σημειώσεις Β. Ζησιμόπουλος Ιανουάριος 2007 Περιεχόμενα 1 Εισαγωγή στη Συνδυαστική Βελτιστοποίηση 3 1.1 Προβλήματα Βελτιστοποίησης.................. 5 1.2 Πρόβλημα Πλανόδιου Πωλητή
Αθροιστές. Ημιαθροιστής
Αθροιστές Η πιο βασική αριθμητική πράξη είναι η πρόσθεση. Για την πρόσθεση δύο δυαδικών ψηφίων υπάρχουν τέσσερις δυνατές περιπτώσεις: +=, +=, +=, +=. Οι τρεις πρώτες πράξεις δημιουργούν ένα άθροισμα που
Αλγόριθμοι και Πολυπλοκότητα
Αλγόριθμοι και Πολυπλοκότητα Εισαγωγή Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Βιβλιογραφία Jon Kleinberg και Éva Tardos, Σχεδιασμός αλγορίθμων, Εκδόσεις Κλειδάριθμος,
Αλγόριθµοι και Πολυπλοκότητα
Αλγόριθµοι και Πολυπλοκότητα Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Πανεπιστήµιο Αθηνών Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα 30 Απριλίου 2015 1 / 48 Εύρεση Ελάχιστου
Κουτσιούμπας Αχιλλέας U. Adamy, C. Ambuehl, R. Anand, T. Erlebach
Κουτσιούμπας Αχιλλέας ΕΛΕΓΧΟΣ ΚΛΗΣΕΩΝ ΣΕ ΑΚΤΥΛΙΟ U. Adamy, C. Ambuehl, R. Anand, T. Erlebach ΜΠΛΑ 1 Δομή παρουσίασης Γενικά Ορισμός προβλήματος Σχετιζόμενη δουλειά Εισαγωγικά Αλγόριθμος Παράδειγμα εκτέλεσης
ΚΕΦΑΛΑΙΟ 12: Θεωρία υπολογισµών
ΚΕΦΑΛΑΙΟ 12: Θεωρία υπολογισµών 1 Συναρτήσεις και ο υπολογισµός τους 2 Μηχανές Turing 3 Καθολικές γλώσσες προγραµµατισµού 4 Μια µη υπολογίσιµη συνάρτηση 5 Πολυπλοκότητα προβληµάτων 1 Συναρτήσεις Μία συνάρτηση
Προσεγγιστικοί Αλγόριθμοι βασισμένοι σε Γραμμικό Προγραμματισμό
Προσεγγιστικοί Αλγόριθμοι βασισμένοι σε Γραμμικό Προγραμματισμό ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Γενική Προσέγγιση ιατυπώνουμε το πρόβλημα
Ασυμπτωτικός Συμβολισμός
Ασυμπτωτικός Συμβολισμός ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Άδεια Χρήσης Το παρόν εκπαιδευτικό
Multicut and Integer Multicomodity Flow in Trees (chap. 18) Αγγελής Γιώργος
Multicut and Integer Multicomodity Flow in Trees (chap. 18) Αγγελής Γιώργος Εισαγωγή Εύρεση αλγορίθμου με approx ratio 2 και ½ για τα προβλήματα minimum multicut και integer multicommodity flow αντίστοιχα
Σειρά Προβλημάτων 1 Λύσεις
ΕΠΛ2: Θεωρία Υπολογισμού και Πολυπλοκότητα Σειρά Προβλημάτων Λύσεις Άσκηση Να βρείτε το σφάλμα στην πιο κάτω απόδειξη. Ισχυρισμός: Όλα τα βιβλία που έχουν γραφτεί στη Θεωρία Υπολογισμού έχουν τον ίδιο
L A P. w L A f(w) L B (10.1) u := f(w)
Κεφάλαιο 10 NP -πληρότητα Σύνοψη Οι γλώσσες στην κλάση πολυπλοκότητας P μπορούν να αποφασίζονται σε πολωνυμικό χρόνο. Οι επιστήμονες πιστεύουν, αν και δε μπορούν να το αποδείξουν ότι η P είναι ένα γνήσιο
Βασικοί τύποι δεδομένων (Pascal) ΕΠΑ.Λ Αλίμου Γ Πληροφορική Δομημένος Προγραμματισμός (Ε) Σχολ. Ετος Κων/νος Φλώρος
Βασικοί τύποι δεδομένων (Pascal) ΕΠΑ.Λ Αλίμου Γ Πληροφορική Δομημένος Προγραμματισμός (Ε) Σχολ. Ετος 2012-13 Κων/νος Φλώρος Απλοί τύποι δεδομένων Οι τύποι δεδομένων προσδιορίζουν τον τρόπο παράστασης των
Υπολογιστική Πολυπλοκότητα
Υπολογιστική Πολυπλοκότητα Υπολογιστική πολυπλοκότητα αλγόριθµου Α: Ποσότητα υπολογιστικών πόρων που απαιτεί Α ως αύξουσα συνάρτηση µεγέθους στιγµιότυπου εισόδου. Χρόνος, µνήµη, επεξεργαστές, επικοινωνία,
Συνδυαστική Βελτιστοποίηση
Τμήμα Εφαρμοσμένης Πληροφορικής, Παν. Μακεδονίας 1 Άγγελος Σιφαλέρας sifalera@uom.gr 4 η Διάλεξη Τμήμα Εφαρμοσμένης Πληροφορικής, Παν. Μακεδονίας 2 Knapsack Problem, (1/9) Ένας επενδυτής διαθέτει ένα χρηματικό
Γράφοι. Ένας γράφος ή αλλιώς γράφηµα αποτελείται απο. Εφαρµογές: Τηλεπικοινωνιακά και Οδικά ίκτυα, Ηλεκτρονικά Κυκλώµατα, Β.. κ.ά.
Γράφοι Ένας γράφος ή αλλιώς γράφηµα αποτελείται απο πλευρές (ακµές) και κορυφές (κόµβους). Εφαρµογές: Τηλεπικοινωνιακά και Οδικά ίκτυα, Ηλεκτρονικά Κυκλώµατα, Β.. κ.ά. Graph Drawing 4 πιθανές αναπαραστάσεις
Αλγόριθµοι Προσέγγισης για NP- ύσκολα Προβλήµατα
Αλγόριθµοι Προσέγγισης για NP- ύσκολα Προβλήµατα Παύλος Σπυράκης Πανεπιστήµιο Πατρών Τοµέας Θεµελιώσεων και Εφαρµογών της Επιστήµης των Υπολογιστών Ερευνητικό Ακαδηµαϊκό Ινστιτούτο Τεχνολογίας Υπολογιστών
Σειρά Προβλημάτων 5 Λύσεις
Άσκηση 1 Σειρά Προβλημάτων 5 Λύσεις Να δείξετε ότι οι πιο κάτω γλώσσες είναι διαγνώσιμες. (α) ({ G η G είναι μια ασυμφραστική γραμματική που δεν παράγει καμιά λέξη με μήκος μικρότερο του 2 } (β) { Μ,w
Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Θεωρία Υπολογισμού. Ενότητα 3 : Γραφήματα & Αποδείξεις. Αλέξανδρος Τζάλλας
1 Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Θεωρία Υπολογισμού Ενότητα 3 : Γραφήματα & Αποδείξεις Αλέξανδρος Τζάλλας 2 Ανοιχτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ηπείρου Τμήμα Μηχανικών Πληροφορικής
Προσεγγιστικοί Αλγόριθμοι βασισμένοι σε Γραμμικό Προγραμματισμό
Προσεγγιστικοί Αλγόριθμοι βασισμένοι σε Γραμμικό Προγραμματισμό ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Γενική Προσέγγιση ιατυπώνουμε το πρόβλημα
Υποθέσεις - Θεωρήματα. Μαθηματικά Πληροφορικής 1ο Μάθημα. Η χρυσή τομή. Υποθέσεις - Εικασίες
Υποθέσεις - - Θεωρήματα Υποθέσεις - - Θεωρήματα Υποθέσεις - Θεωρήματα Μαθηματικά Πληροορικής ο Μάθημα Στα μαθηματικά και στις άλλες επιστήμες κάνουμε συχνά υποθέσεις. Οταν δείξουμε ότι μια υπόθεση είναι
Γράφοι. Αλγόριθμοι και πολυπλοκότητα. Στάθης Ζάχος, Δημήτρης Φωτάκης
Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Αλγόριθμοι και πολυπλοκότητα Στάθης Ζάχος, Δημήτρης Φωτάκης Γράφοι Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται