On Classical Solutions of Linear Stochastic Integro-Differential Equations
|
|
- Ὀφιοῦχος Χριστόπουλος
- 7 χρόνια πριν
- Προβολές:
Transcript
1 On Classical Soluions of Linear Sochasic Inegro-Differenial Equaions November 27, 204 arxiv: v2 [mah.pr] 26 Nov 204 James-Michael Leahy The Universiy of Edinburgh, Remigijus Mikulevičius The Universiy of Souhern California, Absrac We prove he exisence of classical soluions o parabolic linear sochasic inegrodifferenial equaions wih adaped coefficiens using Feynman-Kac ransformaions, condiioning, and he inerlacing of space-inverses of sochasic flows associaed wih he equaions. The equaions are forward and he derivaion of exisence does no use he general heory of SPDEs. Uniqueness is proved in he class of classical soluions wih polynomial growh. Conens Inroducion 2 2 Ouline of main resuls 4 3 Proof of main heorems 3. Proof of uniqueness for Theorem Small jump case Adding free and zero-order erms Adding uncorrelaed par Proof of Theorem 2.2) Inerlacing a sequence of large jumps Proof of Theorem 2.5) 26 4 Appendix Maringale and poin measure measure momen esimaes Opional projecion Esimaes of Hölder coninuous funcions Sochasic Fubini hoerem Iô-Wenzell formula 43
2 Inroducion 2 Inroducion Le Ω,F,P) be a complee filered probabiliy space andf 0 be a sub-sigma-algebra of F. We assume ha his probabiliy space suppors a sequence w ; ), 0, N, of independen one-dimensional Wiener processes and a Poisson random measure p d, dz) on R +,BR + ) wih inensiy measureπ dz)d, where,,π ) is a sigma-finie measure space. We also assume ha w ; ) and p d, dz) are independen off 0. Le F=F ) 0 be he sandard augmenaion of he filraion F ) 0, where for each 0, F =σ F 0, w s), p [0, s],γ) : s,γ ). For each real number T> 0, we ler T,O T, andp T be he F-progressive, F-opional, and F-predicable sigma-algebra onω [0, T], respecively. Denoe by q d, dz)= p d, dz) π dz)d he compensaed Poisson random measure. Le D, E, V be disjoin - measurable subses such ha D E V = andπv )<. Le 2, 2,π 2 ) be a sigma-finie measure space and D 2, E 2 2 be disjoin 2 -measurable subses such ha D 2 E 2 = 2. Fix an arbirary posiive real number T> 0 and inegers d, d 2. Leα 0, 2] and leτ T be a sopping ime. LeF τ be he sopping ime sigma-algebra associaed wihτ and leϕ :Ω R d R d 2 bef τ BR d )-measurable. We consider he sysem of sochasic inegro-differenial equaions on [0, T] R d given by du l = L ;l + +L 2;l )u + [,2] α)b i i u l + c l l u l + f l ) d+ N ;l ) u + g l dw ; I ;l,zu + h l z)) [ D z)q d, dz)+ E V z)p d, dz)], τ T, u l =ϕl, τ, l {,..., d 2 },.) where forφ C c R d ), k {, 2}, and l {,..., d 2 }, and L k;l N ;l φx) := {2} α) σk;i k; j x)σ x) i j φ l x)+ {2} α)σ k;i 2 + ρ k;l l x, z) φ l x+h k x, z)) φ l x) ) π k dz) D k + φ l x+h k x, z)) φ l x),2] α)h k;i x, z) i φ l x) ) π k dz) D k + {2} k) I l l d 2 +ρ 2;l l x, z))φ l x+h 2 x, z)) φl x) ) π 2 dz), E 2 φx) := {2} α)σ ;i I ;l,zφx) :=I l l d 2 +ρ ;l l x) i φ l x)+υ ;l l x)φ l x),, x, z))φ l x+h x, z)) φl x), x)υ k;l l x) φ l i x) H k x, z) α + ρ k x, z) 2) π k dz)+ H k x, z) α + ρ k x, z) ) π k dz)<. D k E k
3 Inroducion 3 The summaion convenion wih respec o repeaed indices i, j {,..., d }, l {,..., d 2 }, and N is used here and below. The d 2 d 2 dimensional ideniy marix is denoed by I d2. For a subse A of a larger se X, A denoes he{0, }-valued funcion aking he value on he se A and 0 on he complemen of A. We assume ha for each k {, 2}, σ k x)=σk;i ω, x)) i d,, b x)=b i ω, x)) i d, c x)=c l l ω, x)) l, l d 2, υ k x)=υk;l l ω, x)) l, l d 2,, f x)= f i ω, x)) i d 2, g x)=g i ω, x)) i d2,, are random fields onω [0, T] R d ha arer T BR d )-measurable. Moreover, for each k {, 2}, we assume ha H k x, z)=hk;i ω, x, z)) i d,ρ k x, z)=ρk;l l ω, x, z)) l, l d 2, are random fields onω [0, T] R d k ha arep T BR d ) k -measurable. Moreover, we assume ha h x, z)=h i ω, x, z)) i d 2, is a random field onω [0, T] R d ha isp T BR d )-measurable Sysems of linear sochasic inegro-differenial equaions appear in many conexs. They may be considered as exensions of boh firs-order symmeric hyperbolic sysems and linear fracional advecion-diffusion equaions. The equaion.) also arises in non-linear filering of semimaringales as he equaion for he unormalized filer of he signal see, e.g., [Gri76] and [GM]). Moreover,.) is inimaely relaed o linear ransformaions of inverse flows of jump SDEs and i is precisely his connecion ha we will exploi o obain soluions. There are various echniques available o derive he exisence and uniqueness of classical soluions of linear parabolic SPDEs and SIDEs. One approach is o develop a heory of weak soluions for he equaions e.g. variaional, mild soluion, or ec...) and hen sudy furher regulariy in classical funcion spaces via an embedding heorem. We refer he reader o [Par72, Par75, MP76, KR77, Tin77, Gyö82, Wal86, DP92, Kry99, CK0, P07, Hau05, R07, BvNVW08, HØU0, LM4a] for more informaion abou weak soluions of SPDEs driven by coninuous and disconinuous maringales and maringale measures. This approach is especially imporan in he non-degenerae seing where some smoohing occurs and has he obvious advanage ha i is broader in scope. Anoher approach is o regard he soluion as a funcion wih values in a probabiliy space and use he mehod deerminisic PDEs i.e. Schauder esimaes, see, e.g. [Mik00, MP09]). A hird approach is a direc one ha uses soluions of sochasic differenial equaions. The direc mehod allows o obain classical soluions in he enire Hölder scale while no resricing o ineger derivaive assumpions for he coefficiens and daa. In his paper, we derive he exisence of a classical soluions of.) wih regular coefficiens using a Feynman-Kac-ype ransformaion and he inerlacing of he space-inverse firs inegrals [KR8]) of a sochasic flow associaed wih he equaion. The consrucion of he soluion gives an insigh ino he srucure of he soluion as well. We prove ha he soluion of.) is unique in he class of classical soluions wih polynomial growh
4 Ouline of main resuls 4 i.e. weighed Hölder spaces). As an immediae corollary of our main resul, we obain he exisence and uniqueness of classical soluions of linear inegro-differenial equaions wih random coefficiens, since he coefficiensσ, H, a,ρ, and free erms g and h can be zero. Our work here direcly exends he mehod of characerisics for deerminisic firs-order parial differenial equaions and he well-known Feynman-Kac formula for deerminisic second-order PDEs. In he coninuous case i.e. H 0, H 2 0, h 0), he classical soluion of.) was consruced in [KR8, Kun8, Kun86, Roz90] see references herein as well) using he firs inegrals of he associaed backward SDE. This mehod was also used o obain classical soluions of.) in [DPMT07]. In he references above, he forward Liouville equaion for he firs inegrals of associaed sochasic flow was derived direcly. However, since he backward equaion involves a ime reversal, he coefficiens and inpu funcions are assumed o be non-random. The generalized soluions of.) wih d 2 =, non-random coefficiens, non-degenerae diffusion, and finie measuresπ =π 2 were discussed in [MB07]. In his paper, we give a direc derivaion of.) and all he equaions considered are forward, possibly degenerae, and he coefficiens and inpu funcions are adaped. For oher ineresing and relaed developmens, we refer he reader o [Pri2, ha3, Pri4]. This paper is organized as follows. In Secion 2, our noaion is se forh and he main resuls are saed. In Secion 3, he main heorem is proved and is divided ino a proof of uniqueness and exisence. In Secion 4, he appendix, auxiliary facs ha are used hroughou he paper are discussed. 2 Ouline of main resuls For each ineger n, le R n be he space of d-dimensional Euclidean poins x=x,..., x n ). For each x, denoe by x he Euclidean norm of x. Le R + denoe he se of non-negaive real-numbers. Le N be he se of naural numbers. Elemens of R d and R d 2 are undersood as column vecors and elemens of R 2d and R 2d 2 are undersood as marices of dimension d d and d 2 d 2, respecively. For each ineger n, he norm of an elemen x ofl 2 R n ), he space of square-summable R n -valued sequences, is denoed by x. For a opological space X,X) we denoe he Borel sigma-field on X bybx). For each i {,..., d }, le i = x i be he spaial derivaive operaor wih respec o x i and wrie i j = i j for each i, j {,..., d }. For a once differeniable funcion f = f..., f d ) : R d R d, we denoe he gradien of f by f= j f i ) i, j d. Similarly, for a once differeniable funcion f= f,..., f d ) : R d l 2 R d ), we denoe he gradien of f by f = j f i ) i, j d, and undersand i as a funcion from R d ol 2 R 2d ). For a muli-indexγ=γ,...,γ d ) {0,, 2,...,} d of lengh γ :=γ + +γ d, denoe by γ he operaor γ = γ γ d d, where 0 i is he ideniy operaor for all i {,..., d }. For each ineger d, we denoe by C c Rd ; R d ) he space of infiniely differeniable funcions wih compac suppor in R d. For a Banach space V wih norm V, domain Q of R d, and coninuous funcion f : Q
5 Ouline of main resuls 5 V, we define f 0;Q;V = sup f x) x Q and f x) f y) V [ f ] β;q;v = sup, β 0, ]. x,y Q,x y x y β V For each real numberβ R, we wrieβ=[β] +{β} +, and{β} + 0, ]. For a Banach space V wih norm V, real numberβ>0, and domain Q of R d, we denoe byc β Q; V) he Banach space of all bounded coninuous funcions f : Q V having finie norm f β;q;v := γ f 0;Q;V + [ γ f ] {β} + ;Q;V. γ [β] γ =[β] When Q=R d and V= R n or V=l 2 R n ) for any ineger n, we drop he subscrips Q and V from he norm β;q;v and wrie β. For a Banach space V and for eachβ>0, denoe byc β loc Rd ; V) he Fréche space of coninuous funcions f : R d V saisfying f C β Q; V) for all bounded domains Q R d. We call a funcion f : R d R d a C β loc Rd ; R d )-diffeomorphism if f is a homeomorphism and boh f and is inverse f are inc β loc Rd ; R d ). For a Fréche spaceχ, we denoe by D[0, T];χ) he space ofχ-valued càdlàg funcions on [0, T]. Unless oherwise specified, we endow D[0, T]; χ) wih he supremum seminorms. The noaion N= N,, ) is used o denoe a posiive consan depending only on he quaniies appearing in he parenheses. In a given conex, he same leer is ofen used o denoe differen consans depending on he same parameer. If we do no specify o which space he parameersω,, x, y, z and n belong, hen we meanω Ω, [0, T], x, y R d, z k, and n N. Le r x) := + x 2, x R d. Le us inroduce some regulariy condiions on he coefficiens and free erms. We consider hese assumpions for β > α and β > α. Assumpion 2. β). ) There is a consan N 0 > 0 such ha for each k {, 2} and all ω, Ω [0, T], r b 0 + b β + r σk 0 + σ k β N 0. Moreover, for each k {, 2} and all ω,, z) Ω [0, T] D k E k ), r Hk z) 0 K k z) and Hk z) β K k z) where K k, K k :Ω [0, T] D k E k ) R + arep T k -measurable funcions saisfying K k z)+ K D k z)+ K k z) α + K k z)2) π k dz)+ K k z) α + K k z)) π k dz) N 0, k E k for all ω,, z) Ω [0, T] D k E k ).
6 Ouline of main resuls 6 2) For each k {, 2}, here is a consanη k 0, ) such ha for all ω,, x, z) {ω,, x, z) Ω [0, T] R d D k E k ) : H kω, x, z) >ηk }, Id + H k x, z)) N 0. Assumpion 2.2 β). There is a consan N 0 > 0 such ha for each k {, 2} and all ω, ) Ω [0, T], c β+ υ k β+ r θ f β+ r θ g β N 0. Moreover, for each k {, 2} and all ω,, z) Ω [0, T] D k E k ), ρ k z) β l k z), r θ h z) β l k z), where l k :Ω [0, T] k R + arep T k -measurable funcion saisfying l k D z)+ l k z)2 π k dz)+ l k z)πk dz) N 0, k E k for all ω,, z) Ω [0, T] D k E k ). Remark 2.. I follows from Lemma 4.0 and Remark 4. ha if Assumpion 2. β) holds for some β> α, hen for allω,, and z D k E k, x H k x, z) := x+h k x, z) is a diffeomorphism. Le Assumpions 2. β) and 2.2 β) hold for some β > α and β > α. In our derivaion of a soluions of.), we firs obain soluions of equaions of a special form. Specifically, consider he sysem of SIDEs on [0, T] R d given by dû l = ) ) L ;l +L 2;l )û + ˆb i i u l + ĉ l l u l + fˆ l d+ N ;l û + g l dw ; + I ;l,zû + h l z)) [ D z)q d, dz)+ E z)p d, dz)], τ< T, û l =ϕl, τ, l {,..., d 2 }, 2.) where ˆb i x) := [,2] α)b i x)+ + k= ĉ l l x) :=c l l x)+ + 2 {2} α)σ k= 2,2] α) H k;i D k 2 k; j {2} α)σ 2 k= k= fˆ l x) := f l x)+σ ρ k;l l D k ; j x, z) ρ k;l l x) j g l x)+ k; j x, z) H k;i x) j υ k;l l x) x) j σ k;i x) H k; x, z), z) ) π k dz), H k; x, z), z))π k dz), h l x, z) h l H ; x, z), z) ) π dz). D
7 Ouline of main resuls 7 Le w 2; ), 0, N, be a sequence of independen one-dimensional Wiener processes. Le p 2 d, dz) be a Poisson random measure on [0, ) 2,B[0, ) 2 ) wih inensiy measureπ 2 dz)d. Exending he probabiliy space if necessary, we ake w 2 and p 2 d, dz) o be independen of w and p d, dz). Le Fˆ =σ w 2 s ), p 2 [0, s],γ) : s,γ 2) and F = F ) T be he sandard augmenaion of F ˆ F ) T. Denoe by q2 d, dz) = p 2 d, dz) π 2 dz)d he compensaed Poisson random measure. We associae wih he SIDE 2.), he F-adaped sochasic flow X = X x)=x τ, x),, x) [0, T] R d, generaed by he SDE dx = [,2] α)b X )d+ 2 k= 2 k= H k H k; D k H k H k; E k 2 k= {2} α)σ k; X )dw k; X, z), z)[p k d, dz),2] α)π k dz)d] X, z), z)p k d, dz), τ< T, X = x, τ, 2.2) and he F-adaped random fieldφ x)=φ τ, x),, x) [0, T] R d, solving he linear SDE given by dφ x)=c X x))φ x)+ f X x))) d+ + 2 k= + ρ k H k; k h H ; Φ x)=ϕx), τ. 2 k= υ k; X x))φ x)dw k; + g X x))dw ; X x), z), z)φ x)[ D kz)q k d, dz)+ E kz)p k d, dz)] X x), z), z)[ D z)q d, dz)+ E z)p d, dz)], τ< T, The coming heorem is our exisence, uniqueness, and represenaion heorem for 2.). Le us describe our soluion class. For eachβ 0, ), denoe byc β R d ) he linear space of all F-adaped random fields v=v x) such ha P-a.s. [τn,τ n+ )r λ n v D[0, T];C β R d, R d 2 )), where τ n ) n 0 is an increasing sequence of F-sopping imes wihτ 0 = 0 andτ n = T for sufficienly large n, and where for each n,λ n is a posiivef τn -measurable random variable.
8 Ouline of main resuls 8 Theorem 2.2. Le Assumpions 2. β) and 2.2 β) hold for some β> α and β>α. For each sopping imeτ T andf τ BR d )-measurable random fieldϕsuch ha for some β α, β β) andθ 0, P-a.s. r θ ϕ C β R d ), here exiss a unique soluion û=ûτ) of 2.) inc β R d ) and for all, x) [0, T] R d, P-a.s. û τ, x)=e [ Φ τ, X τ, x)) F ]. 2.3) Moreover, for eachǫ> 0 and p 2, [ ] E sup r θ θ ǫ û τ) p Fτ β N r θ ϕ p β + ), 2.4) T for a consan N= Nd, d 2, p, N 0, T,β,η,η 2,ǫ,θ,θ ). Using Iô s formula i is easy o check ha if m= and g x)=0, h x)=0, and ρ k x, z), for all ω,, x, z) Ω [[τ, T]] R d D k E k ), k {, 2}, hen Φ x)=ψ x)φx)+ψ x) Ψ s x) f sx s x))ds, where P-a.s. for all and x, Ψ x)=e [τ,τ ] cs X s x)) 2 k= 2 υ k; s e 2 k= ]τ,τ ] e 2 k= ]τ,τ ] X s x))υ k; s ]τ,τ ] X s x)) ) ds+ 2 υk; k= ]τ,τ ] s X s x))dw k; s D k ln +ρ k s H s k; X s x),z),z) ) ρ k s H s k; X s x),z),z) ) π k dz)ds k ln +ρ k s H k; s X s x),z),z) ) [ D k z)q k ds,dz)+ E k z)p k ds,dz)]. 2.5) The following corollary hen follows direcly from 2.3) and he 2.5). Corollary 2.3. Le m=and assume ha g x)=0, h x, z)=0, ρ k x, z), ω,, x, z) [[τ, T]] Rd D k E k ), k {, 2}. Moreover, le Assumpions 2. β) and 2.2 β) hold for some β > α and β > α. Le τ T be sopping ime andϕbe af τ BR d )-measurable random field such ha for some β α, β β) andθ 0, P-a.s. r θ ϕ C β R d ). ) If for all ω,, x) [[τ, T]] R d, f x) 0 andϕx) 0, hen he soluion û of.) saisfies û x) 0, P-a.s. for all, x) [0, T] R d. 2) If for all ω,, x, z) [[τ, T]] R d D k E k ), k {, 2},υ k x)=0, f x) 0, c x) 0, ϕx), andρ k x, z) 0, hen he soluion û of.) saisfies û x), P-a.s. for all, x) [0, T] R d.
9 Ouline of main resuls 9 Remark 2.4. SinceL 2 can be he zero operaor, boh Theorem 2.2 and Corollary 2.3 apply o fully degenerae equaions and parial differenial equaions wih random coefficiens. Now, le us discuss our exisence and uniqueness heorem for.). We consruc he soluion of u=uτ) of.) by inerlacing he soluions of 2.) along a sequence of large jump momens see Secion 3.5). By using an inerlacing procedure we are also able o drop he condiion of boundedness of I+ H x, z)) on he se ω,, x, z) {ω,, x, z) Ω [0, T] R d D E ) : H ω, x, z) >η k }. Also, in order o remove he erms in ˆb, ĉ, and fˆ ha appear in 2.), bu no in.), we subrac erms from he relevan coefficiens in he flow and he ransformaion. However, in order o do his, we need o impose sronger regulariy assumpions on some of he coefficiens and free erms. We will inroduce he parameersµ,µ 2,δ,δ 2 [0, α ], which essenially allows one o rade-off inegrabiliy in z 2 and regulariy in x of he coefficiens H k x, z),ρ k x, z), h k x, z). I is worh menioning ha he removal of erms and he inerlacing procedure are independen of each oher and ha i is due only o he weak assumpions on H andρ on he se V ha we do no have momen esimaes and a simple represenaion propery like 2.4) for he soluion of.). Neverheless, here is a represenaion of sors and we refer he reader o he proof of he coming heorem for an explici consrucion of he soluion. We inroduce he following assumpion for β> α, β>α, andδ,δ 2,µ,µ 2 [0, α]. 2 Assumpion 2.3 β,µ,µ 2,δ,δ 2 ). ) There is a consan N 0 {, 2} and all ω, ) Ω [0, T], > 0 such ha for each k r b 0 + b β + σ k β+ N 0. 2) For each k {, 2} and all ω, ) Ω [0, T], H k z) 0 K k z), H k z) β, z D k, r Hk z) 0 K k z), Hk z) β K k z), z Ek, ρ k, z) β l k z), z Dk, r θ h z) β l z), z D, where K k, K k, l k :Ω [0, T] D k E k ) R + arep T k -measurable funcions saisfying for all ω,, z) Ω [0, T] D k E k ), K k z)+ K k z)+l k z) N 0 and K k z) α + K k z)2 + l k z)2) π k dz)+ K k z) α + K k z)) π k dz) N 0. D k E k
10 Ouline of main resuls 0 3) For each k {, 2} and all ω, ) Ω [0, T], υ k β+ N 0, ifσ k 0, g β+ N 0, ifσ 0, γ H k z)) { β} + +δ k K k z), z Dk, if{ β} + +δ k, γ =[ β] γ H k z) 0 K k z), γ H k z)) { β} + +δ k K k z), z D k, if{ β} + +δ k >, γ =[ β] γ =[ β] γ ρ k z)) { β} + +µ k l k z), z Dk, if{ β} + +µ k, γ =[ β] γ ρ k z) 0 l k z), γ ρ k z)) { β} + +µ k l k z), z D k, if{ β} + +µ k >, γ =[ β] γ =[ β] γ h z)) { β} + +µ l z), z D, if{ β} + +µ, γ =[ β] γ h z) 0 l z), γ h z)) { β} + +µ l z), z D, if{ β} + +µ >, γ =[ β] γ =[ β] where K k, l k :Ω [0, T] D k R + arep T k -measurable funcions saisfying for all ω,, z) Ω [0, T] D k, K k z)+ l k z)+ K k z) α α δ k [0, α 2 ]δ k )+ K k z) 2 + l k z) α α µ k [0, α 2 ]µ k )+ l k z) 2) π k dz) N 0. D k 4) There is a consanη 2 0, ) such ha for all ω,, x, z) {ω,, x, z) Ω [0, T] R d 2 : H 2ω, x, z) >η2 }, Id + H 2 x, z)) N 0. Assumpion 2.4 β). ) There is a consan N 0 > 0 such ha for each k {, 2} and all ω, ) Ω [0, T], c β+ r θ f β N 0, υ k β N 0, ifσ k = 0, g β N 0, ifσ = 0, ρ k, z) β l k z), z Ek, r θ h z) β l z), z E, where for all ω, ) Ω [0, T], E k l k z)π k dz) N 0. 2) There exis processesξ,ζ :Ω [0, T] V R + ha arep T measurable saisfying r ξ z) H z) β + r ξ z) ρ z) β+ r ξ z) h z) β ζ z), for all ω,, z) Ω [0, T] V. We now sae our exisence and uniqueness heorem for.). Theorem 2.5. Le Assumpions 2.3 β,δ,δ 2,µ,µ 2 ) and 2.4 β) hold for some β> α, β>α, andδ,δ 2,µ,µ 2 [0, α ]. For each sopping imeτ T andf 2 τ BR d )-measurable random fieldϕsuch ha for someβ α, β β) andθ 0, P-a.s. r θ ϕ C β R d ), here exiss a unique soluion u=uτ) of.) inc β R d ).
11 Proof of main heorems 3 Proof of main heorems We will firs prove uniqueness of he soluion of 2.) in he classc β R d ). The exisence par of he proof of Theorem 2.2 is divided ino a series of seps. In he firs sep, by appealing o he represenaion heorem we derived for soluions of coninuous SPDEs in Theorem 2.4 in [LM4b], we use an inerlacing procedure and he srong limi heorem given in Theorem 2.3 in [LM4b] o show ha he space inverse of he flow generaed by a jump SDE i.e. he SDE 2.2) wihou he uncorrelaed noise) solves a degenerae linear SIDE. Then we linearly ransform he inverse flow of a jump SDE o obain soluions of degenerae linear SIDEs wih free and zero-order erms and an iniial condiion. In he las sep of he proof of Theorem 2.2, we inroduce an independen Wiener process and Poisson random measure as explained above, apply he resuls we know for fully degenerae equaions, and hen ake he opional projecion of he equaion. In he las secion, Secion 3.4, we prove Theorem 2.5 using an inerlacing procedure and removing he exra erms in ˆb, ĉ and f ˆ. The uniqueness of he soluion u of.) follows direcly from our consrucion. 3. Proof of uniqueness for Theorem 2.2 Proof of Uniqueness for Theorem 2.2. Fix a sopping imeτ T andf τ BR d )-measurable random fieldϕsuch ha for someβ α, β β) andθ 0, P-a.s. r θ ϕ C β R d ). In his secion we will drop he dependence of processes, x, and z when we feel i will no obscure he argumen. Le û τ) and û 2 τ) be soluions of 2.) inc β. I follows ha v := û τ) û 2 τ) solves and P-a.s. dv l = [L;l + +L 2;l )v + ˆb i iv l + ĉl l v l ]d+n ; v l dw; I ;l,zv [ D z)q d, dz)+ E z)p d, dz)], τ< T, v l = 0, τ, l {,..., d 2}, [τn,τ n+ )r λ n v D[0, T];C β R d, R d 2 )), where τ n ) n 0 is an increasing sequence of F-sopping imes wihτ 0 = 0 andτ n = T for sufficienly large n, and where for each n,λ n is a posiivef τn -measurable random variable. Clearly i suffices o akeτ =τ andλ 0 = 0. Thus, v x)=0 for all ω, ) [[τ 0,τ )). Assume ha for some n, P-a.s. for all and x, v τn x)=0. We will show ha P-a.s. for all and x, ṽ x) := v τn ) τ n+ x)=0. Applying Iô s formula, for each x, P-a.s. for all, we find d ṽ 2 = 2ṽ l L;l ṽ + N ṽ 2 + 2ṽ l bi iṽ l + ) 2ṽl cl l ṽ l d ) + 2ṽ l I;l,z ṽ + I ;l,zṽ 2 π dz) d D E + ) 2v l L2;l ṽ + 2ṽ l I2;l,zṽ d+2v l N ; ṽ l dw;
12 3. Proof of uniqueness for Theorem ṽ l I ;l,zṽ + I ;l,zṽ 2) q d, dz), τ n < τ n+, ṽ 2 = 0, τ n, l {,..., d 2 }, 3.) where forφ C c Rd ), k {, 2}, and l {,..., d 2 }, and L k;l φ := 2 σk;i σ k; j i j φ l +σ k; j j σ k;i i φ l +σ k;i υ k;l l i φ l +σ k; j j a k;l l φ l I k;l φ := ρ k;l l φ l H k ) ρ k;l l H ) k; )φ l π k dz) D k + φ l H k ) φ l +,2] α)f k;i i φ l) π k dz) D k + I l l d 2 +ρ k;l l )φ l H k ) φ l) π k dz). E k For eachωand, le Q = ṽ x) 2 r λ x)dx, R d whereλ=λ n + d + 2)/2 and d > d. Noe ha EQ r d x)dxe r λ n ṽ 0 <. R d I suffices o show ha sup T EQ = 0. To his end, we will muliply he equaion 3.) by he weigh r 2λ = r 2λ n+ r d, inegrae in x, and change he order of he inegrals in ime and space. Thus, we mus verify he assumpions of sochasic Fubini heorem hold see Corollary 4.3 and Remark 4.4 as well) wih he finie measureµdx)=r d x)dx on R d. Since b andσ k have linear growh anυ k and c are bounded, owing o Lemma 4.6, we easily obain ha here is a consan N= Nd, d 2, N 0,λ n ) such ha P-a.s for all, 2 2 r λ n ṽ r λ n 2 L k ṽ + r λ n N ṽ 2 r d dx N sup r λ n ṽ 2 β, and R d R d k= R d 4 r λ n ṽ 2 r λ n N ṽ 2 r d dx N sup 2 r λ n ṽ r λ n b i ṽ +2 r λ n ṽ r λ n cṽ ) r d T T r λ n ṽ 4 β, dx N sup T r λ n ṽ 2 β.
13 3. Proof of uniqueness for Theorem For allφ C α loc Rd ) and all k,ω,, x, p, and z, r p φ H k ) φ+,2] α)f k;i i φ) = φ H k ) φ,2] α)h k;i i φ+,2] α)h k;i + F k;i ) i φ +p,2] α)h k;i + F k;i )r 2 xi φ+ k= +,2] α) rp H k ) r p rp H k ) r p φ H k ),2] α) φ) + ph k;i r 2 xi φ, 3.2) where φ := r p φ. By Taylor s formula, for allφ C α R d ) and all k,ω,, x, and z, we have φ H k ) φ,2] α)h k;i i φ r α φ α r H α ) Combining 3.2), 3.3), and he esimaes given in Lemma 4.0 ), for all k,ω,, x and z, we obain r α ρk H k; ) ρ k N ρ α r Hk α 0 and r λ n α ṽ H k ) ṽ+,2] α)f k;i i ṽ N r λ n ṽ α r Hk α 0 + r H ) 0[H k ] + r + H [α] 0 + [H] [α] +, 3.4) for some consan N= Nd,λ n, N 0,η,η 2 ). Therefore, P-a.s for all, 2 2 r λ n R d ṽ r λ n 2 I k ṽ + r λ I z ṽ 2 π dz) r d dx N sup r λ n ṽ 2 β, D E T and R d 2 r λ n ṽ r λ n 2 I k zṽ + r λ n I z ṽ 2) 2 r d dx N sup T r λ n ṽ 4 β, for some consan N= Nd, d 2,λ n, N 0,η,η 2 ). Le L 2 R d ) be he space of square-inegrable funcions f : R d R d 2 wih norm 0 and inner produc, ) 0. Moreover, le L 2 R d ;l 2 R d 2 )) be he space of square-inegrable funcions f : R d l 2 R d 2 ) wih norm 0. Wih he help of he above esimaes and Corollary 4.3, denoing v=r λ ṽ, P-a.s. for all, we have ) d v v = l, L v ) 0 + N v v,ī,z v ) 0 + Ī,z v 2 0 π dz) d D E + 2ṽ, b i iṽ + c l ṽ l ) 0 + 2ṽ, L 2 ṽ) ) 0 + 2ṽ,Ī 2,zṽ) 0 d+2v, N ; ṽ ) 0 dw ; ) + 2ṽ,Ī,zṽ ) 0 + Ī,zṽ 2 0 q d, dz), τ n < τ n+, v 2 0 = 0, τ n, l {,..., d 2 }, 3.5) where all coefficiens and operaors are defined as in 2.) wih he following changes:
14 3. Proof of uniqueness for Theorem ) for each k {, 2},υ k is replaced wih 2) for each k {, 2},ρ k replaced wih k= D k ῡ k;l l :=υ k;l l 2 + {2} α)λσ k;i r xi δ l l; ρ k;l l :=ρ k;l l + rλ H k ) r λ I l l d 2 +ρ k;l l ); 3) c is replaced wih 2 c l l = c l l +λb i r 2 x i δ l l+ λ 2 k; 4 σ k;i σ j r xi x j k= 2 r λ + r λ H k; ) Im+ρ l l k H k; )),2] α)λr 2 x ih k;i H k; ) π k dz). Since for all k,ω and, r σk 0 + r σk β + υ k β N 0, for β> α and β>α, i is clear ha ῡ k α N. Moreover, since for all k,ω and, r Hk 0 + H k β K k and ρ β lk, applying he esimaes in Lemma 4.0) ), we ge ρ k α l k + K k +l k ) and c α N 0. We will now esimae he drif erms of 3.5) in erms of v 2 0. We wrie f g if f x) dx R d = gx) dx and f g if f x) dx gx) dx. Using he divergence heorem, for R d R d R d any v : R d R d 2,σ : R d R d andυ:r d R 2d 2 and all x, we ge σ i σ j v l v l i j 2 σi σ j ) i j v σ i σ j v l i vl j = σi i j σ j +σ i j σ j i ) v 2 σ i σ j v l i vl j, and 2σ i j σ j v l v l i σi j σ j ) i v 2 = σ i i j σ j +σ i j σ j i ) v 2, σ i v l υ l l v l i +σi v l υ l l v l i =σi v l υ l l sym v l i σi υ l l sym ) i v 2 = σ i i υl l sym +σ i υ l l sym ) v 2, whereυ l l sym = υ l l +υ ll )/2. Consequenly, for allω,, and x, we have and 2 v l L ;l v+ N v 2 2 divσ 2 i σ ; j j σ ;i ) v 2 ῡ ;l l sym v l v l divσ ; + ῡ v 2 N v 2 2 v l L 2);l v +ǫ) σ 2;i i v 2 + N v 2, for anyǫ> 0, where in he las esimae we have also used Young s inequaliy. By Lemma 4.0 2) and basic properies of he deerminan, here is a consan N= Nd, N 0,η,η 2 ) such ha for all k,ω,, x, and z, de H k; =dei d + F k ) F k N H k
15 3.2 Small jump case 5 and de H k; div F k F k 2 N H k 2. Thus, inegraing by pars, for allω,, and x, we ge 2 v l Ī ;l v+ Ī v 2 π dz) 2 ρ ;l l sym H ; )de H ; )π dz) v l v l D E D + de H ; +,2] α) D div F ) π dz) v 2 D E + E 2 ρ ;l l sym H ; ) v l v l + ρ H ; ) v 2) de H ; π dz) D E N K z) 2 + l z)k z)+l z) 2) π dz)+ K k z)+l k z) ) ) π dz) v 2. D E Analogously, for allω,, and x, we obain 2 v l Ī 2;l v +ǫ) v H 2 ) v 2 π 2 dz)+n v 2. D 2 E 2 Therefore, combining he above esimaes, P-a.s. for all, Q N 0 Q s ds+ M, 3.6) where M ) T is a càdlàg square-inegrable maringale. Taking he expecaion of 3.6) and applying Gronwall s lemma, we ge sup T EQ = 0, which implies ha P-a.s. for all and x, ṽ x)=0. This complees he proof. 3.2 Small jump case Se w ) = w ; ),,,π) =,,π ), pd, dz) = p d, dz), and qd, dz) = q d, dz). Leσ x)=σ i x)) i d, be al 2 R d )-valuedr T BR d )-measurable funcion defined onω [0, T] R d and H x, z)=h ix, z)) i d be ap T BR d ) -measurable funcion defined onω [0, T] R d. We inroduce he following assumpion for β > α. Assumpion 3. β). ) There is a consan N 0 > 0 such ha for all ω, ) Ω [0, T], Moreover, for all ω,, z) Ω [0, T], r b 0 + r σ 0 + b β + σ β N 0. r H z) 0 K z) and H z) β K z), where K :Ω [0, T] R + is ap T -measurable funcion saisfying K z)+ K z)+ K z) α + K z) 2) πdz) N 0, for all ω,, z) Ω [0, T].
16 3.2 Small jump case 6 2) There is a consanη 0, ) such ha for all ω,, x, z) {ω,, x, z) Ω [0, T] R d : H ω, x, z) >η}, I d + H x, z) ) N 0. Le Assumpion 3.β) hold for some β > α. Le τ T be a sopping ime. Consider he sysem of SIDEs on [0, T] R d given by dv x)= {2} α) ) σi x)σ j x) i j v x)+b i 2 x) iv x) d+ {2} α)σ i x) i v x)dw +,2] α) v x+h x, z)) v x)+f x, z) i v x))πdz)d + v x+h x, z)) v x)) [,2] α)qd, dz)+ [0,] α)pd, dz)], τ< T, where and v x)= x, τ, b i x) := [,2] α)b i x)+ {2} α)σ j x) j σ i x) F x, z) := H H x, z), z). 3.7) We associae wih 3.7), he sochasic flow Y = Y τ, x),, x) [0, T] R d, generaed by he SDE dy = [,2] α)b Y )d {2} α)σ Y )dw + F Y, z)[,2] z)qd, dz)+ [0,] z)pd, dz)], τ< T, 3.8) Y = x, τ. Owing o pars ) and 2) of Lemma 4.0, for eachω,, and z, he inverse of he mapping F x, z) := x+f x, z)= x H H x, z), z) is H x, z) := x+h x, z) and here is a consan N= Nd, N 0,β,η) such ha for allω,, x, y, and z, r F z) 0 NK z), F z) β K z), I d + F x, z)) N. Thus, by Theorem 2. in [LM4b], here is a modificaion of he soluion of 3.8), which we sill denoe by Y = Y τ, x), ha is ac β loc -diffeomorphism for anyβ [,β). Moreover, P-a.s. Y τ, ), Y τ, ) D[0, T];C β loc Rd ; R d )), and Y τ, ) coincides wih he inverse of Y τ, ) for all. The following proposiion shows ha he inverse flow Y τ) solves 3.7). Proposiion 3.. Le Assumpion 3.β) hold for someβ> α. For each sopping ime τ T andβ [ α,β), v x)=v τ, x)=y τ, x) solves 3.7) and for eachǫ> 0 and p 2, here is a consan N= Nd, p, N 0, T,β,η,ǫ) such ha [ ] [ ] E sup r +ǫ) v τ) p 0 + E sup r ǫ v τ) p β N. 3.9) T T
17 3.2 Small jump case 7 Proof. The esimae 3.9) is given in Theorem 2. in [LM4b] see also Remark 2.), so we only need o show ha Y τ, x) solves 3.7). Le δ n ) n be a sequence such haδ n 0,η) for all n andδ n 0 as n. I is clear ha here is a consan N= NN 0 ) such ha for all ω and, dv n) π{z : K z)>δ n }) N. 3.0) δ α n For each n, consider he sysem of SIDEs on [0, T] R d given by x)= {2} α) σi x)σ j x) i j v n) x)+b i 2 x) iv n) +,2] α) + {K >δ n }z) v n) x+h x, z)) v n) ) x) d x)+f i x, z) iv n) x) ) πdz)d {K >δ n }z) v n) x+h x, z)) v n) x) ) [,2] α)qd, dz)+ [0,] α)pd, dz)], and he sochasic flow Y n) dy n) + {2} α)σ i x) i v n) x)dw, τ< T, v n) x)= x, τ, 3.) = Y n) τ, x),, x) [0, T] R d, generaed by he SDE = [,2] α)b Y n) )d {2} α)σ + Y n) )dw {K >δ n }z)f Y n), z)[,2] α)qd, dz)+ [0,] α)pd, dz)], τ< T, Y n) x)= x, τ. 3.2) Since 3.0) holds, we can rewrie equaion 3.2) as ) dy n) = [,2] α)b Y n) )+,2] α) {K >δ n }z)f Y n), z)πdz) d 3.3) {2} α)σ Y n ))dw + {K >δ n }z)f Y, n) z)pd, dz), τ< T, and 3.) as dv n) x)= {2} α) 2 σi x)σ j ) x) x) i j v n) x)+b i x) jσ i d + {2} α)σ i x) i v n) x)dw +,2] α) {K >δ n }z)fx, i z)πdz) i v n) x)d + {K >δ n }z) v n) x+h x, z)) v n) x) ) pd, dz), τ< T. 3.4) We claim ha he soluion Y n) = Y n) x) of 3.3) can be wrien as he soluion of coninuous SDEs wih a finie number of jumps inerlaced. Indeed, for each n and sopping imeτ T,
18 3.2 Small jump case 8 consider he sochasic flow Ỹ n) dỹ n) = Ỹ n) = [ [,2] α)b Ỹ n) )+,2] α) {2} α)σ Ỹ n) = x, τ. Ỹ n) τ, x),, x) [0, T] R d, generaed by he SDE {K>δn }, z)f Ỹ n), z)πdz)]d )dw,τ < T, By Theorems 2. and 2.4 and Remark 2.2 in [LM4b], here is a modificaion of Ỹ n) = Ỹ n) τ, x), sill denoed Ỹ n) τ, x), ha is ac β loc-diffeomorphism. Furhermore, P-a.s. we have ha and ṽ n) = ṽ n) For each n, le τ, x)=ỹ n); dṽ n) x)= Ỹ n) τ, ), Ỹ n); τ, ) C[0, T];C β loc ) τ, x) solves he SPDE given by {2} α) 2 σi x)σ j + {2} α)σ i x) i v n) +,2] α) ṽ n) x)= x, τ. x) i j v n) x)dw x)+b i x) iv n) x) ) d {K>δn }, z)f i, z)πdz)d i v n) x), τ < T, A n) = {Ks >δ n }z)pds, dz), 0, ]0,] and define he sequence of sopping imes τ n) l ) l= recursively byτn) 0 =τand τ n) l+ = inf{ >τ n) l : A n) 0 } T. Fix some n. I is clear ha P-a.s. for all x and [0,τ n) ), Y n); τ, x)=ỹ n); τ, x)=ṽ n) τ, x) saisfies 3.4) up o, bu no including imeτ n). Moreover, P-a.s. for all x, and hence Consequenly, v n) for some l, v n) Y n) τ n) τ, x)=ỹ n) τ n τ, x)+ Y n); τ, x)= τ n) τ, x)=y n); τ, x)=y n); ṽ n) τ n) F τ n) Ỹ n) τ n) τ, x+h τ n) x), z)p{τn) τ, }, dz), x, z))p{τ n) }, dz). τ, x) solves 3.4) up o and including imeτ n) τ, x) solves 3.4) up o and including imeτ n) l. Assume ha. Clearly,
19 3.3 Adding free and zero-order erms 9 P-a.s. for all x and [τ n) l,τ n) l+ [τ n) l,τ n) l+ ), Y n); Moreover, P-a.s. for all x, which implies ha v n) ), Yn) x)=ỹ n) x)=ỹ n) τ n) l, Y n) τ n) l τ n) l, Y n) x))=ṽn) τ n) l x)), and hus P-a.s. for all x and τ n) l, Y n) x)). τ n) Yn τn l+, x)= ṽ n τ n l,τn l+, x+hτn l+, x, z))p{τn l+ }, dz), U τ, x)=y n); τ, x) solves 3.4) up o and including imeτ n l+. There- τ, x)=y n); τ, x) solves 3.4). I is easy o see ha for fore, by inducion, for each n, v n) allω,, and z, and hus r {K >δ n }z)f z) r F z) 0 + {K >δ n }z) F z) F z) β {K δ n }z)k z) dpd lim {K δn n }, z)k z) D 2 πdz)+dpd lim {K δn n }, z)k z)πdz)=0. E By virue of Theorem 2.3 in [LM4b], for eachǫ> 0, and p 2, we have [ ] [ ]) lim E sup r +ǫ) n Y n) τ) r +ǫ) Y τ) p 0 + E sup r ǫ Yn) τ) r ǫ Y τ) p β = 0, T T [ ] lim E sup r +ǫ) n Y n); τ) r +ǫ) Y τ) p 0 = 0 T and [ lim E sup r ǫ n T Yn); τ) r ǫ Y l ] τ) p β = 0. Then passing o he limi in boh sides of 3.) and making use of Assumpion 3.β), he esimae 3.4), and basic convergence properies of sochasic inegrals, we find ha v τ, x)=x τ, x) solves 3.7). 3.3 Adding free and zero-order erms Se w ) = w ; ),,,π) =,,π ), pd, dz) = p d, dz), and qd, dz)= p d, dz) π dz)d. Also, se D=D, E = E, and assume = D E. Leυ x)= υ l l ω, x)) l, l d 2, be al 2 R 2d 2 )-valuedr T BR d )-measurable funcion defined onω [0, T] R d andρ x, z)=ρ l l ω, x, z)) l, l d 2 be ap T BR d ) -measurable funcion defined onω [0, T] R d. We inroduce he following assumpions forβ> α and β>α.
20 3.3 Adding free and zero-order erms 20 Assumpion 3.2 β). ) There is a consan N 0 > 0 such ha for all ω, ) Ω [0, T], Moreover, for all ω,, z) Ω [0, T], r b 0 + r σ 0 + b β + σ β N 0. r H z) 0 K z) and H z) β K z), where K :Ω [0, T] R + is ap T -measurable funcion saisfying K z)+ K z)+ K z) α + K z) 2) πdz)+ K z) α + K z) ) πdz) N 0, for all ω,, z) Ω [0, T]. D 2) There is a consanη 0, ) such ha for all ω,, x, z) {ω,, x, z) Ω [0, T] R d : H ω, x, z) >η}, I d + H x, z) ) N 0. Assumpion 3.3 β). There is a consan N 0 > 0 such ha for all ω, ) Ω [0, T], Moreover, for all ω,, z) Ω [0, T], c β+ υ β+ r θ f β+ r θ g β N 0. ρ z) β+ r θ h z) β l z), where l :Ω [0, T] R + is ap T -measurable funcion saisfying l z)+ l z) 2 πdz)+ l z)πdz) N 0. ω,, z) Ω [0, T]. D Le Assumpions 3.2 β) and 3.3 β) hold for some β> α and β>α. Leτ T be a sopping ime andϕ :Ω R d R d 2 be af τ BR d )-measurable random field. Consider he sysem of SIDEs on [0, T] R d given by dv l = ) ) L l v + ˆb i i φ l +ĉ l l φ l + ˆf l d+ N l v + g l dw + I l,z v + h l z)) [ D z)qd, dz)+ E z)pd, dz)], τ< T, E v l =ϕl, τ, l {,..., d 2 }, 3.5) where forφ C c Rd ) and l {,..., d 2 }, L l φx) := {2} α) σi x)σ j x) i j φ l x)+ {2} α)σ i x)a l l x) φ l i x) 2 + ρ l l x, z) φ l x+h x, z)) φ l x) ) πdz) D k + φ l x+h x, z)) φ l x),2] α) i φ l x)h i x, z)) πdz) D k Nφ l l x) := {2} α)σ i x) i φ l x)+υ l l x)φ l x), I l,z φl x) := I d2 +ρ l l x, z))φ l x+h x, z)) φ l x), E
21 3.3 Adding free and zero-order erms 2 and where ˆb i x) := [,2]α)b i x)+ {2}α)σ j x) j σ i x) +,2] α)h i x, z) Hi H x, z), z) ) πdz), D ĉ l l x) :=c l l x)+ {2} α)σ j x) j υ l l x)+ ρ l l x, z) ρ l l H x, z), z) ) πdz), ˆf l l x) := f x)+ {2}α)σ j x) j g l x)+ D D h l x, z) h l H x, z), z) ) πdz). We associae wih 3.5) he sochasic flow X = X x)=x τ, x),, x) [0, T] R d, given by 3.8). LeΓ x)=γ τ, x),, x) [0, T] R d, be he soluion of he linear SDE given by dγ x)=c X x))γ x)+ f X x))) d+ υ X x))γ x)+g X x)) ) dw + ρ H X x), z), z)γ x)[ D z)qd, dz)+ E z)pd, dz)] + h H X x), z), z)[ D z)qd, dz)+ E z)pd, dz)], τ< T, Γ x)=0, τ. 3.6) LeΨ x)=ψ τ, x),, x) [0, T] R d, be he unique soluion of he linear SDE given by dψ x)=c X x))ψ x)d+υ X x))φ x)dw + ρ H X x), z), z)ψ x)[ D z)qd, dz)+ E z)pd, dz)], τ< T, Ψ x)=i d2, τ. In he following lemma, we obain p-h momen esimaes of he weighed Hölder norms ofγandψ. Lemma 3.2. Le Assumpions 3.2 β) and 3.3 β) hold for some β> α and β>α. For each sopping imeτ T andβ [0, β β), here exiss a D[0, T],C β loc Rd ))-modificaion ofγτ) andψτ), also denoed by Γτ) andψτ), respecively. Moreover, for eachǫ> 0 and p 2, here is a consan N= Nd, d 2, p, N 0, T,β,η,ǫ,θ) such ha [ [ E sup[ r θ+ǫ) Γ τ) p β ]+E sup r ǫ Ψ τ) p β ] N. 3.7) T T Proof. Leτ T be a fixed sopping ime andβ := β β. Esimaing 3.6) direcly and using he Burkholder-Davis-Gundy inequaliy, Lemma 4., he muliplicaive decomposiion h x, H X x), z), z)=r θ X x)) rθ H X x), z)) r θ X x)) h H X x), z), z) r θ H X x), z)),
22 3.3 Adding free and zero-order erms 22 Hölder s inequaliy, Lemma 4.0 ), Lemma 3.2 in [LM4b], and Gronwall s inequaliy, we ge ha for all x and y, [ ] E sup Γ x) p Nr θp x) T and [ ] E sup Γ x) Γ y) p Nr pθ x) r pθ y)) x y β )p, T where N= Nd, p, N 0, T,η,θ) is a posiive consan. Now, assume ha [β]. As in he proof of Theorem 3.4 in [Kun04], i follows hau = Γ τ, x) solves du = ) υ X )U + υ X ) X Γ + g X ) X dw + ρ H X, z), z)u [ D z)qd, dz)+ E z)pd, dz)] + ρ H X, z), z) [ H X )]Γ [ D z)qd, dz)+ E z)pd, dz)] + h x, H X, z), z) [ H X )]][ D z)qd, dz)+ E z)pd, dz)] + c X )U + c X ) X Γ + f X ) X ) d, τ< T, U = 0, τ. Recall ha by Lemma 4.6, a funcionφ : R d R n, n saisfies r θ φ β < if an only if r θ φ 0,..., r θ γ φ 0, γ [β], and [r θ γ φ] {β} + are finie. Esimaing as above and using Proposiion 3.4 in [LM4b], we obain ha for each p 2, here is a consan N= Nd, d 2, p, N 0, T,θ) such ha for all x and y, [ ] E sup Γ x) p r pθ x)n T and [ ] E sup Γ x) Γ y) p Nr pθ x) r pθ y)) x y β ) )p. T Using inducion, we ge ha for each p 2 and all muli-indicesγ wih 0 γ [β] and all x, E sup [ γ Γ x) p ] r pθ x)n, T and for all muli-indicesγ wih γ =[β] and all x, y, [ ] E sup γ Γ x) γ Γ y) p Nr pθ x) r pθ y)) x y β [β] )p, T for a consan N = Nd, d 2, p, N 0, T,β,η,θ). I is also clear ha for each p 2 and all muli-indicesγ wih 0 γ [β] and all x, [ E sup γ Ψ x) ] N, p T
23 3.3 Adding free and zero-order erms 23 and for all muli-indicesγ wih γ =[β] and all x, y, [ E sup γ Ψ x) γ Ψ y) ] N x y p β [β] )p. T We obain he exisence of a D[0, T],C β loc Rd ))-modificaion ofγτ) andψτ) using esimae 3.7) and Corollary 5.4 in [LM4b]. This complees he proof. Le Φ x)= Φ τ, x),, x) [0, T] R d, be he soluion of he linear SDE given by d Φ x)= c X x)) Φ x)+ f X x)) ) d+ υ X x)) Φ x)+g X x)) ) dw + ρ H X x), z), z) Φ x, y)[ D z)qd, dz)+ E z)pd, dz)] + h H X x), z), z)[ D z)qd, dz)+ E z)pd, dz)], τ< T, Φ x)=ϕx), τ. The following is a simple corollary of Lemma 3.2. Corollary 3.3. Le Assumpions 3.2 β) and 3.3 β) hold for some β> α and β>α. For each sopping imeτ T andf τ BR d )-measurable random fieldϕsuch ha for some β [0, β β), P-a.s.ϕ C β loc Rd ), here is a D[0, T];C β loc Rd, R d 2 ))-modificaion of Φτ), also denoed by Φτ), and P-a.s. for all, x) [0, T] R d, Φ τ, x)=ψ x)ϕx)+γ x). Moreover, if for someθ 0 andβ [0, β β), P-a.s. r θ ϕ C β R d ), hen for each ǫ> 0 and p 2, here is a consan N= Nd, d 2, p, N 0, T,θ,θ,β,ǫ) such ha [ ] E sup r θ θ ) ǫ Φ τ) p Fτ β N r θ ϕ p β + ). 3.8) T Now we are ready o sae our main resul concerning fully-degenerae SIDEs and heir connecion wih linear ransformaions of inverse flows of jump SDEs. Proposiion 3.4. Le Assumpions 3.2 β) and 3.3 β) hold for some β> α and β>α. For each sopping imeτ T andf τ BR d )-measurable random fieldϕsuch ha for some β α, β β) andθ 0, P-a.s. r θ ϕ C β R d ), we have ha P-a.s. Φτ, X τ)) D[0, T];C β loc Rd )) and v x)=v τ, x)= Φ τ, X τ, x)) solves 3.5). Moreover, for eachǫ> 0 and p 2, [ ] E sup r θ θ ) ǫ v τ) p Fτ β N r θ ϕ p β + ), 3.9) T for a consan N= Nd, d 2, p, N 0, T,β,η,ǫ,θ,θ ).
24 3.4 Adding uncorrelaed par Proof of Theorem 2.2) 24 Proof. Fix a sopping imeτ T and random fieldϕsuch ha for someβ α, β β) and θ 0, P-a.s. r θ R d ). By virue of Corollary ϕ Cβ 3.3 and Theorem 2. in [LM4b], P-a.s. Φτ, X τ)) D[0, T];C β loc Rd, R d 2 )). Then using he Io-Wenzell formula Proposiion 4.6) and following a simple calculaion, we obain ha v τ, x) := Φ τ, X τ, x)) solves 3.5). By Theorem 2. in [LM4b] and Corollary 3.3, for eachǫ> 0 and p 2, here exiss a consan N= Nd, p, N 0, T,β,η,ǫ) such ha E[sup r +ǫ) X τ) p β ]+E[sup r ǫ X τ) p β ] N. 3.20) T T Therefore applying Lemma 4.9 and Hölder s inequaly and using he esimaes 3.20) and 3.8), we obain 3.9), which complees he proof. 3.4 Adding uncorrelaed par Proof of Theorem 2.2) Proof of Theorem 2.2. Fix a sopping imeτ Tand random fieldϕsuch ha for some β α, β β) andθ 0, P-a.s. r θ ϕ C β R d ). Consider he sysem of SIDEs given by dṽ l = ) ) L ;l +L 2;l )ṽ + [,2] α)ˆb i i u l + ĉ l l u l x)+ fˆ l d+ N ;l ṽ + g l dw ; +N 2;l ṽ dw 2; + I ;l,zṽ + h l z)) [ D z)q d, dz)+ E p d, dz)] + I 2;l,zṽ [ D 2z)q 2 d, dz)+ E 2z)p 2 d, dz)] τ< T, 2 ṽ l =ϕl, τ, l {,..., d 2 }, where forφ C c Rd ) and l {,..., d 2 }, N 2;l φx) := {2} α)σ 2;i I 2;l,zφx) := I l l d 2 +ρ 2;l l x) i φ l x)+υ 2;l l x)φ l x),, x, z))φ l x+h 2 x, z)) φ l x). By Proposiion 3.4, P-a.s.Φτ, X τ)) D[0, T];C β loc Rd )) and ṽ τ, x)=φ τ, X τ, x)) solves 3.5). We wrie v x)=v τ, x). Moreover, for eachǫ> 0 and p 2, [ ] E sup r θ θ ) ǫ ṽ τ) p Fτ β N r θ ϕ p β + ), 3.2) T where N= Nd, d 2, p, N 0, T,β,η,η 2,ǫ,θ,θ ) is a posiive consan. Wihou loss of generaliy we will assume ha for allωand, r θ ϕ β N, since we can always muliply he equaion by indicaor funcion. For each n N {0}, le C n loc Rd ) be he separable
25 3.4 Adding uncorrelaed par Proof of Theorem 2.2) 25 Fréche space of n-imes coninuously differeniable funcions f : R d R d 2 endowed wih he counable se of semi-norms given by f n,in = sup γ f x), k N. 0 γ n x k Owing o Lemma 4.2, here is a he family of measures Eω du), ω, ) Ω [0, T] on D[0, T]; C [β] loc Rd )), corresponding oa=ṽ such ha for all bounded G :Ω [0, T] [0, T] D[0, T]; C [β] loc Rd )) R d 2 ha areo T B [0, T]) BD[0, T]; C [β] loc Rd ))) measurable, P-a.s. for all, we have E [G, ṽ)]= D[0,T];C [β ] loc R d ;R d 2 )) G, U)E du)=e [G, ṽ) F ], where he righ-hand-side is he càdlàg modificaion of he condiional expecaion. Se û x)=û τ, x)= E [ṽ τ, x)]= U x)e du). D[0,T];C [β ] loc R d ;R d 2 )) Leλ=θ θ )+ǫ. We claim ha for all muli-indicesγ wih γ [β], P-a.s. for all and x, γ [r λ x)û x)]= γ [r λ D[0,T];C [β ] x)u x)]e du)=e [ γ [r λ x)ṽ x)]]. R loc d ;R d 2 )) Indeed, since ] M = E [sup γ [r λ ṽs] 0, [0, T], s T is a F, P) maringale, we have [ [ E and hence P-a.s. for all, D[0,T];C [β ] loc R d ;R d 2 )) sup M ] 4E [ 2 M T 2] 4E T sup γ [r λ s T,x R d sup γ [r λ ṽ] 2 0 ]<, 3.22) T x)u sx)] E du)=e [sup Similarly, since E [ sup T r λ ṽ 2 β ] <, P-a.s. for each x and y, and hence, P-a.s. γ [r λ x)û x)] γ [r λ y)û y)] x y {β } + sup r λ T û β sup T T γ [r λ ṽ] 0 ]<. [ γ [r λ E x)ṽ x)] γ [r λ y)ṽ y)] x y {β } + E [ r λ ṽ β ], ] E [sup r λ ṽ β <. T ]
26 3.5 Inerlacing a sequence of large jumps Proof of Theorem 2.5) 26 Thus, P-a.s. r λ )ûτ) D[0, R d )) and 2.4) T];Cβ follows from 3.2) see he argumen 3.22)). For each l {,..., d 2 }, le A l x)=ϕl x)+ L ;l s +L 2;l s )û sx)+ [,2] α)ˆb i s x) iû l s x)+ĉl l s x)û l s x)+ fˆ s l x)) ds ]τ,τ ] + N ;l s û s x)+g l s x)) dw ; s ]τ,τ ] + I ;l s,zû s x)+h l sx, z) ) [ D z)q ds, dz)+ E z)p ds, dz)]. ]τ,τ ] By Theorem 2.2 in [Jac79], he represenaion propery holds for F, P), and hence every bounded F, P)- maringale issuing from zero can be represened as M = o s dw; s + e s z)q ds, dz), [0, T], ]0,] ]0,] where E o s 2 ds+e e s z) 2 π dz)ds<. ]0,T] ]0,T] Then for an arbirary F-sopping ime τ T and bounded F, P)- maringale, applying Iô s produc rule and aking he expecaion, we obain Eṽ τ τ, x) M τ = EA τ x) M τ. Since he opional projecion is unique, P-a.s. for all and x, û x)=a x). This complees he proof. 3.5 Inerlacing a sequence of large jumps Proof of Theorem 2.5) Proof of Theorem 2.5. Fix a sopping imeτ Tand random fieldϕsuch ha for some β α, β β) andθ 0, P-a.s. r θ ϕ C β R d ). For anyδ>0, we can rewrie.) as du l = L ;l +L 2;l )u + [,2] α) b i iu l + ) ) cl l u l + f l d+ N ;l u + g l dw ; Ī;l +,zu + h l z)) [ D z)q d, dz)+ E z)p d, dz)] + D E ) {K >δ} z)+ V z) ) I ;l,zu + h l z)) p d, dz), τ< T, u l =ϕl, τ, l {,..., d 2 }, 3.23) where forφ C c Rd ) and l {,..., d 2 }, L ;l φx) := {2} α) σ;i ; j x)σ x) i j φ l x)+ {2} α)σ k;i x)υ ;l l x) φ l i x) 2 + ρ ;l l x, z) φ l x+ H x, z)) φ l x) ) π dz) D + φ l x+ H x, z)) φ l x),2] α) H ;i x, z) i φ l x) ) π dz), D
27 3.5 Inerlacing a sequence of large jumps Proof of Theorem 2.5) 27 Ī,z φl x)=i l l d 2 + {K δ}z)ρ ;l l x, z))φ l x+ {K δ}z)h x, z)) φl x), H := {K δ}h, ρ := {K δ}ρ, h := {K δ}h, b i x) := bi D x),2] α)h ;i {K >δ} x, z)π dz), c l l x) := c l l x) ρ ;l l D {K >δ} x, z)π dz). For an arbirary sopping imeτ T andf τ BR d )-measurable random fieldϕ τ :Ω R d R d 2 saisfying for someθτ )>0, P-a.s. r θτ ) ϕ τ C β R d ), consider he sysem of SIDEs on [0, T] R d given by dv l = ) ) L ;l +L 2;l )v + [,2] α) b i i v l + c l l v l + f l d+ N ;l v + g l dw ; Ī;l +,zu + h l z)) [ D z)q d, dz)+ E z)p d, dz)], τ < T, v l =ϕ τ ;l, τ, l {,..., d 2 }. 3.24) Se H 2 = H 2 and ρ 2 =ρ 2. In order o invoke Theorem 2.2 and obain a unique soluion v = v τ, x)=v τ,ϕ τ, x) of 3.24), we will show ha for allωand, where r b 0 + b β + c β+ r θ f β N 0, 3.25) 2 b i x) := [,2]α) b i x) {2} α)σ 2 k= c l l x) := c l l x) 2 k= k=,2] α) H k;i D k 2 k= f l x) := f l x) σ k;l l ρ D k ; j {2} α)σ k;i x, z) ρ k;l l x) j g l x) k; j x, z) H k;i x) i υ k;l l x) x) j σ k;i x) k; H x, z), z) ) π k dz), k; H x, z), z) ) π k dz), D h l x, z) h l ; H x, z), z) ) π dz). Owing o Assumpion 2.3 β,δ,δ 2,µ,µ 2 ), we easily deduce ha here is a consan N= Nd, N 0, β) such ha for each k {, 2} and allωand, σ k; j j σ k; β+ σ k; j j a k; x) β+ σ ; j j g β N, ifα=2. Since H 0 δ, for any fixedη <, for all ω,, x, z) {ω,, x, z) Ω [0, T] R d D E ) : H ω, x, z) >η }, + H Id ω, x, z)) δ.
28 3.5 Inerlacing a sequence of large jumps Proof of Theorem 2.5) 28 Appealing o Assumpion 2.3 β,δ,δ 2,µ,µ 2 ) and applying Lemma 4.0, we obain ha here is a consan N= Nd, d 2, N 0 ) such ha for each k {, 2} and allω,, and z, and H k;i z) H k;i ρ k z) ρ k r θ h z) r θ h k; H z), z) β NK k z)+ K k z)) 2 + N 0,] { β} + +δ k ) K k z)k k z) δk + N,2] { β} + +δ k ) K k z)kk z)δk + K k z)2), H k; z), z) β Nl k z)k k z)+ K k z))+ N 0,] { β} + +µ k ) l k z)k k z) µk + N,2] { β} + +µ k ) l k z)kk z)µk + l k z) K k z)), ; H z), z) β Nl z)k z)+ K k z))+n 0,]{ β} + +µ ) l k z)k z)µ + N,2] { β} + +µ ) l k z)k z) µ + l k z) K z) ). Moreover, using Lemma 4.0, we find ha here is a consan N= Nd, d 2, N 0 ) such ha for each k {, 2}, and allω,, and z, r H k k; H z), z) 0 r Hk 0, [ H k;i k; H z), z)] β H k β. Combining he above esimaes and using Hölder s inequaliy and he inegrabiliy properies of l k z) and Kk z), we obain 3.25). Therefore, by Theorem 2.2, for each sopping ime τ T and andf τ BR d )-measurable random fieldϕ τ saisfying for someθτ )>0, P-a.s. r θτ ) ϕ τ C β R d ), here exiss a unique soluion v x)=v τ,ϕ τ, x) of 3.24) such ha [ ] E sup r θτ ) θ ǫ v τ ) p Fτ β N r θτ ) ϕ τ p β + ), 3.26) T where N= Nd, d 2, p, N 0, T,β,η,η 2,ǫ,θ,θτ )) is a posiive consan. Le A = D E ) {Ks>η }z)+ V z) ) p ds, dz), T. ]0,] Define a sequence of sopping imes τ n ) n 0 recursively byτ =τ and τ n+ = inf>τ n : A 0) T. We obain he exisence of a unique soluion u=uτ) of 3.23) inc β R d ) by inerlacing soluions of 3.24) along he sequence of sopping imes τ n ). For ω, ) [[0,τ )), we se u τ, x)=v τ,ϕ, x) and noe ha [ ] E sup r θ θ ǫ u τ) p Fτ β N r θ ϕ p β + ). τ For eachωand x, we se u τ x)=u τ x)+ D E ) {K >η }, z)+ V z) ) I,zu τ x)+h l τ x, z) ) p {τ }, dz).
29 Appendix 29 By virue of Lemma 4.9, here is a consan N= Nd, d 2,θ,θ,ζ τ z),β ) and hence where u τ H τ z) r ξ τ z)θ θ +ǫ+β ) β N r θ θ ǫ u l τ β, r λ u τ x) β N r θ θ ǫ u l τ β +ζ τ z), λ = ξ τ z)θ θ + +ǫ+β )) θ θ θ +ǫ). We hen proceed inducively, each ime making use of he esimae 3.26), o obain a unique soluion u=uτ) of 3.23), and hence.), inc β R d ). This complees he proof of Theorem Appendix 4. Maringale and poin measure measure momen esimaes Se,,π)=,,π ), pd, dz)= p d, dz), and qd, dz)=q d, dz). We will make use of he following momen esimaes o derive he esimaes ofγ andψ in Lemma 3.2. The noaion a p b is used o indicae ha he quaniy a is bounded above and below by a consan depending only on p imes b. Lemma 4.. Le h :Ω [0, T] R d bep T -measurable ) For each sopping imeτ T and p 2, [ p] E h s z)qds, dz) sup τ ]0,] 2) For each sopping imeτ T and p, E [ sup τ ) p ] h s z) pds, dz) ]0,] [ E p ]0,τ] + E [ E p ]0,τ] ]0,τ] [ + E ] h s z) p πdz)ds p/2 h s z) πdz)ds). 2 ]0,τ] ] h s z) p πdz)ds ) p ] h s z) πdz)ds, Proof. We will only prove par 2), since par ) is well-known see, e.g., [Kun04]) and i follows from 2) by he Burkholder-Davis-Gundy inequaliy. Assume ha h ω, z)>0 for allω, and z. Le A = h s z)pds, dz) and L = h s z)πdz)ds, T. ]0,] ]0,]
30 4. Maringale and poin measure measure momen esimaes 30 I suffices o prove he claim for p>, since he case p= is obvious. Fix an arbirary sopping imeτ T and p>. For allωand, we have A p [ = As + A s ) p A p ] s. Thus, using he inequaliy s b p a+b) p a p pa+b) p b p2 p [a p b+b p ], a, b 0, for allωand, we ge [ p2 p 2 and A p 0 A p ] A p s h s z)pds, dz)+ h s z) p pds, dz). ]0,] h ]0,] h s z) p pds, dz). Then since A is an increasing process, we have [ ] E h s z) p pds, dz) EAτ p p2p 2 E Aτ p L τ + h s z) p pds, dz). ]0,τ] ]0,τ] I is easy o see ha EL p τ = pe ]0,τ] Ls p dl s = pe ]0,τ] Applying Young s inequaliy, for allε>0, P-a.s., Ls p da s pe[lτ p A τ ]. A p τ L τ εa p τ+ p )p ε p p p L p τ and L p τ A τ εl p τ+ p )p ε p p p A p τ. Combining he above esimaes, for anyε 0, ), we have p ε p p p pε ) pp ) p EL p τ E ]0,τ] h s z) p pds, dz) EA p τ. and for anyε 2 0, p2 p 2 ) EAτ p p2 p 2 p2 p 2 ε 2 ) E which complees he proof. ]0,τ] h s z) p pds, dz)+ p )p L p ε p 2 p p τ,
31 4.2 Opional projecion Opional projecion The following lemma concerning he opional projecion plays an inegral role in Secion 3.4 and he proof of Theorem 2.2. Lemma 4.2. cf. Theorem in [Mey76]) LeXbe a Polish space and D [0, T];X) be he space ofx-valued càdlàg rajecories wih he SkorokhodJ -opology. IfAis a random variable aking values in D [0, T];X), hen here exiss a family ofb[0, T]) F -measurable non-negaive measures E du), ω, ) Ω [0, T], on D [0, T];X) and a random-variable ζ saisfying P ζ< T)=0 such ha E D [0, T];X))= for <ζand E D[0, T];X))=0 for ζ. In addiion, E is càdlàg in he opology of weak convergence, E = E + for all [0, T], and for each coninuous and bounded funcional F on D [0, T];X), he process E F) is he càdlàg version of E[F A) F ]. If G :Ω [0, T] [0, T] D [0, T];X) R d 2 is bounded ando B [0, T]) B D [0, T];X))-measurable, hen G ω,, U)E du)=e G ) D[0,T];X) is he opional projecion of G A)=G ω,,a). Furhermore, if G= G ω,, U) is bounded andp B[0, T]) BD[0, T];X))-measurable, hen E G ) is he predicable projecion of G A)=G ω,,a). Proof. We follow he proof of Theorem in [Mey76]. Since D[0, T];X) is a Polish space, for each [0, T], here is family of probabiliy measures Ẽ ωdw),ω Ω, on D[0, T];X) such ha for each A BD[0, T];X)), Ẽ A) isf -measurable and P-a.s., P A A F )=Ẽ A). For eachω Ω, le I ω) be he se of all 0, T] such ha for each bounded coninuous funcion F on D[0, T];X), he funcion r Ẽω r F)= Fw)Ẽ r dw) D[0,T];X) has a righ-hand limi on [0, s) Q and a lef-hand limi on 0, s] Q for every raional s [0, T] Q. Leζ ω)=sup : Iω)) T. I is easy o see ha P ξ<t)=0. We se Ẽω = 0 ifξω)< T. The funcion Ẽ ω has lef-hand and righ-hand limis for all Q [0, T]. We define Eω=Ẽ ω + for each [0, T) he limi is aken along he raionals), and Eω T is he lef-hand limi a T along he raionals. The saemen follows by repeaing he proof of Theorem in [Mey76] in an obvious way. 4.3 Esimaes of Hölder coninuous funcions In he coming lemmas, we esablish some properies of weighed Hölder spaces ha are used Secion 3.5 and he proof of Theorem 2.5.
Necessary and sufficient conditions for oscillation of first order nonlinear neutral differential equations
J. Mah. Anal. Appl. 321 (2006) 553 568 www.elsevier.com/locae/jmaa Necessary sufficien condiions for oscillaion of firs order nonlinear neural differenial equaions X.H. ang a,, Xiaoyan Lin b a School of
Linear singular perturbations of hyperbolic-parabolic type
BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Number 4, 3, Pages 95 11 ISSN 14 7696 Linear singular perurbaions of hyperbolic-parabolic ype Perjan A. Absrac. We sudy he behavior of soluions
( ) ( t) ( 0) ( ) dw w. = = β. Then the solution of (1.1) is easily found to. wt = t+ t. We generalize this to the following nonlinear differential
Periodic oluion of van der Pol differenial equaion. by A. Arimoo Deparmen of Mahemaic Muahi Iniue of Technology Tokyo Japan in Seminar a Kiami Iniue of Technology January 8 9. Inroducion Le u conider a
( ) ( ) ( ) Fourier series. ; m is an integer. r(t) is periodic (T>0), r(t+t) = r(t), t Fundamental period T 0 = smallest T. Fundamental frequency ω
Fourier series e jm when m d when m ; m is an ineger. jm jm jm jm e d e e e jm jm jm jm r( is periodi (>, r(+ r(, Fundamenal period smalles Fundamenal frequeny r ( + r ( is periodi hen M M e j M, e j,
Oscillation Criteria for Nonlinear Damped Dynamic Equations on Time Scales
Oscillaion Crieria for Nonlinear Damped Dynamic Equaions on ime Scales Lynn Erbe, aher S Hassan, and Allan Peerson Absrac We presen new oscillaion crieria for he second order nonlinear damped delay dynamic
Uniform Convergence of Fourier Series Michael Taylor
Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal
University of Washington Department of Chemistry Chemistry 553 Spring Quarter 2010 Homework Assignment 3 Due 04/26/10
Universiy of Washingon Deparmen of Chemisry Chemisry 553 Spring Quarer 1 Homework Assignmen 3 Due 4/6/1 v e v e A s ds: a) Show ha for large 1 and, (i.e. 1 >> and >>) he velociy auocorrelaion funcion 1)
Nonlinear Analysis: Modelling and Control, 2013, Vol. 18, No. 4,
Nonlinear Analysis: Modelling and Conrol, 23, Vol. 8, No. 4, 493 58 493 Exisence and uniqueness of soluions for a singular sysem of higher-order nonlinear fracional differenial equaions wih inegral boundary
Oscillation criteria for two-dimensional system of non-linear ordinary differential equations
Elecronic Journal of Qualiaive Theory of Differenial Equaions 216, No. 52, 1 17; doi: 1.14232/ejqde.216.1.52 hp://www.mah.u-szeged.hu/ejqde/ Oscillaion crieria for wo-dimensional sysem of non-linear ordinary
Example Sheet 3 Solutions
Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note
Appendix. The solution begins with Eq. (2.15) from the text, which we repeat here for 1, (A.1)
Aenix Aenix A: The equaion o he sock rice. The soluion egins wih Eq..5 rom he ex, which we reea here or convenience as Eq.A.: [ [ E E X, A. c α where X u ε, α γ, an c α y AR. Take execaions o Eq. A. as
2 Composition. Invertible Mappings
Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,
Managing Production-Inventory Systems with Scarce Resources
Managing Producion-Invenory Sysems wih Scarce Resources Online Supplemen Proof of Lemma 1: Consider he following dynamic program: where ḡ (x, z) = max { cy + E f (y, z, D)}, (7) x y min(x+u,z) f (y, z,
Matrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
Every set of first-order formulas is equivalent to an independent set
Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent
On local motion of a general compressible viscous heat conducting fluid bounded by a free surface
ANNALE POLONICI MAHEMAICI LIX.2 (1994 On local moion of a general compressible viscous hea conducing fluid bounded by a free surface by Ewa Zadrzyńska ( Lódź and Wojciech M. Zaja czkowski (Warszawa Absrac.
A Simple Version of the Lucas Model
Aricle non publié May 11, 2007 A Simple Version of he Lucas Model Mazamba Tédie Absrac This discree-ime version of he Lucas model do no include he physical capial. We inregrae in he uiliy funcion he leisure
ST5224: Advanced Statistical Theory II
ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known
The Student s t and F Distributions Page 1
The Suden s and F Disribuions Page The Fundamenal Transformaion formula for wo random variables: Consider wo random variables wih join probabiliy disribuion funcion f (, ) simulaneously ake on values in
Statistical Inference I Locally most powerful tests
Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided
The one-dimensional periodic Schrödinger equation
The one-dmensonal perodc Schrödnger equaon Jordan Bell jordan.bell@gmal.com Deparmen of Mahemacs, Unversy of Torono Aprl 23, 26 Translaons and convoluon For y, le τ y f(x f(x y. To say ha f : C s unformly
J. of Math. (PRC) u(t k ) = I k (u(t k )), k = 1, 2,, (1.6) , [3, 4] (1.1), (1.2), (1.3), [6 8]
Vol 36 ( 216 ) No 3 J of Mah (PR) 1, 2, 3 (1, 4335) (2, 4365) (3, 431) :,,,, : ; ; ; MR(21) : 35A1; 35A2 : O17529 : A : 255-7797(216)3-591-7 1 d d [x() g(, x )] = f(, x ),, (11) x = ϕ(), [ r, ], (12) x(
Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X.
Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequalit for metrics: Let (X, d) be a metric space and let x,, z X. Prove that d(x, z) d(, z) d(x, ). (ii): Reverse triangle inequalit for norms:
16. 17. r t te 2t i t 1. 18 19 Find the derivative of the vector function. 19. r t e t cos t i e t sin t j ln t k. 31 33 Evaluate the integral.
SECTION.7 VECTOR FUNCTIONS AND SPACE CURVES.7 VECTOR FUNCTIONS AND SPACE CURVES A Click here for answers. S Click here for soluions. Copyrigh Cengage Learning. All righs reserved.. Find he domain of he
Approximation of the Lerch zeta-function
Approximaion of he Lerch zea-funcion Ramūna Garunkši Deparmen of Mahemaic and Informaic Vilniu Univeriy Naugarduko 4 035 Vilniu Lihuania ramunagarunki@mafvul Abrac We conider uniform in parameer approximaion
4.6 Autoregressive Moving Average Model ARMA(1,1)
84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this
On shift Harnack inequalities for subordinate semigroups and moment estimates for Lévy processes
Available online a www.sciencedirec.com ScienceDirec Sochasic Processes and heir Applicaions 15 (15) 3851 3878 www.elsevier.com/locae/spa On shif Harnack inequaliies for subordinae semigroups and momen
The third moment for the parabolic Anderson model
The hird momen for he parabolic Anderson model Le Chen Universiy of Kansas Thursday nd Augus, 8 arxiv:69.5v mah.pr] 5 Sep 6 Absrac In his paper, we sudy he parabolic Anderson model saring from he Dirac
Second Order Partial Differential Equations
Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y
Solution Series 9. i=1 x i and i=1 x i.
Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x
Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in
Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that
C.S. 430 Assignment 6, Sample Solutions
C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order
ORDINAL ARITHMETIC JULIAN J. SCHLÖDER
ORDINAL ARITHMETIC JULIAN J. SCHLÖDER Abstract. We define ordinal arithmetic and show laws of Left- Monotonicity, Associativity, Distributivity, some minor related properties and the Cantor Normal Form.
ΕΡΓΑΣΙΑ ΜΑΘΗΜΑΤΟΣ: ΘΕΩΡΙΑ ΒΕΛΤΙΣΤΟΥ ΕΛΕΓΧΟΥ ΦΙΛΤΡΟ KALMAN ΜΩΥΣΗΣ ΛΑΖΑΡΟΣ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΘΕΩΡΗΤΙΚΗ ΠΛΗΡΟΦΟΡΙΚΗ ΚΑΙ ΘΕΩΡΙΑ ΣΥΣΤΗΜΑΤΩΝ & ΕΛΕΓΧΟΥ ΕΡΓΑΣΙΑ ΜΑΘΗΜΑΤΟΣ: ΘΕΩΡΙΑ ΒΕΛΤΙΣΤΟΥ ΕΛΕΓΧΟΥ ΦΙΛΤΡΟ KALMAN ΜΩΥΣΗΣ
Homework 8 Model Solution Section
MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx
2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)
Uppsala Universitet Matematiska Institutionen Andreas Strömbergsson Prov i matematik Funktionalanalys Kurs: F3B, F4Sy, NVP 2005-03-08 Skrivtid: 9 14 Tillåtna hjälpmedel: Manuella skrivdon, Kreyszigs bok
ω = radians per sec, t = 3 sec
Secion. Linear and Angular Speed 7. From exercise, =. A= r A = ( 00 ) (. ) = 7,00 in 7. Since 7 is in quadran IV, he reference 7 8 7 angle is = =. In quadran IV, he cosine is posiive. Thus, 7 cos = cos
INDIRECT ADAPTIVE CONTROL
INDIREC ADAPIVE CONROL OULINE. Inroducion a. Main properies b. Running example. Adapive parameer esimaion a. Parameerized sysem model b. Linear parameric model c. Normalized gradien algorihm d. Normalized
Reservoir modeling. Reservoir modelling Linear reservoirs. The linear reservoir, no input. Starting up reservoir modeling
Reservoir modeling Reservoir modelling Linear reservoirs Paul Torfs Basic equaion for one reservoir:) change in sorage = sum of inflows minus ouflows = Q in,n Q ou,n n n jus an ordinary differenial equaion
Bounding Nonsplitting Enumeration Degrees
Bounding Nonsplitting Enumeration Degrees Thomas F. Kent Andrea Sorbi Università degli Studi di Siena Italia July 18, 2007 Goal: Introduce a form of Σ 0 2-permitting for the enumeration degrees. Till now,
Multiple positive periodic solutions of nonlinear functional differential system with feedback control
J. Mah. Anal. Appl. 288 (23) 819 832 www.elsevier.com/locae/jmaa Muliple posiive periodic soluions of nonlinear funcional differenial sysem wih feedback conrol Ping Liu and Yongkun Li Deparmen of Mahemaics,
Other Test Constructions: Likelihood Ratio & Bayes Tests
Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :
= e 6t. = t 1 = t. 5 t 8L 1[ 1 = 3L 1 [ 1. L 1 [ π. = 3 π. = L 1 3s = L. = 3L 1 s t. = 3 cos(5t) sin(5t).
Worked Soluion 95 Chaper 25: The Invere Laplace Tranform 25 a From he able: L ] e 6 6 25 c L 2 ] ] L! + 25 e L 5 2 + 25] ] L 5 2 + 5 2 in(5) 252 a L 6 + 2] L 6 ( 2)] 6L ( 2)] 6e 2 252 c L 3 8 4] 3L ] 8L
Reminders: linear functions
Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U
EE512: Error Control Coding
EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3
Homework 3 Solutions
Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For
Positive solutions for a multi-point eigenvalue. problem involving the one dimensional
Elecronic Journal of Qualiaive Theory of Differenial Equaions 29, No. 4, -3; h://www.mah.u-szeged.hu/ejqde/ Posiive soluions for a muli-oin eigenvalue roblem involving he one dimensional -Lalacian Youyu
Section 8.3 Trigonometric Equations
99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.
Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013
Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering
Partial Differential Equations in Biology The boundary element method. March 26, 2013
The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet
Congruence Classes of Invertible Matrices of Order 3 over F 2
International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and
Fractional Colorings and Zykov Products of graphs
Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is
SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions
SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)
arxiv: v1 [math.ap] 10 Apr 2017
C 1,θ -Esimaes on he disance of Inerial Manifolds José M. Arriea and Esperanza Sanamaría arxiv:1704.03017v1 [mah.ap] 10 Apr 2017 Absrac: In his paper we obain C 1,θ -esimaes on he disance of inerial manifolds
6.3 Forecasting ARMA processes
122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear
Concrete Mathematics Exercises from 30 September 2016
Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)
Lecture 13 - Root Space Decomposition II
Lecture 13 - Root Space Decomposition II October 18, 2012 1 Review First let us recall the situation. Let g be a simple algebra, with maximal toral subalgebra h (which we are calling a CSA, or Cartan Subalgebra).
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr (T t N n) Pr (max (X 1,..., X N ) t N n) Pr (max
Strain gauge and rosettes
Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified
Math221: HW# 1 solutions
Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin
o f P r o b a b i l i t y
E l e c r o n i c J o u r n a l o f P r o b a b i l i y Vol. 4 999 Paper no. 7, pages 25. Journal URL hp://www.mah.washingon.edu/~ejpecp Paper URL hp://www.mah.washingon.edu/~ejpecp/ejpvol4/paper7. abs.hml
ON LOCAL MOTION OF A COMPRESSIBLE BAROTROPIC VISCOUS FLUID WITH THE BOUNDARY SLIP CONDITION. Marek Burnat Wojciech M. ZajĄczkowski. 1.
opological Mehods in Nonlinear Analysis Journal of he Juliusz Schauder Cener Volume 1, 1997, 195 223 ON LOCAL MOION OF A COMPRESSIBLE BAROROPIC VISCOUS FLUID WIH HE BOUNDARY SLIP CONDIION Marek Burna Wojciech
6.1. Dirac Equation. Hamiltonian. Dirac Eq.
6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2
Lecture 12 Modulation and Sampling
EE 2 spring 2-22 Handou #25 Lecure 2 Modulaion and Sampling The Fourier ransform of he produc of wo signals Modulaion of a signal wih a sinusoid Sampling wih an impulse rain The sampling heorem 2 Convoluion
The Euler Equations! λ 1. λ 2. λ 3. ρ ρu. E = e + u 2 /2. E + p ρ. = de /dt. = dh / dt; h = h( T ); c p. / c v. ; γ = c p. p = ( γ 1)ρe. c v.
hp://www.nd.ed/~gryggva/cfd-corse/ The Eler Eqaions The Eler Eqaions The Eler eqaions for D flow: + + p = x E E + p where Define E = e + / H = h + /; h = e + p/ Gréar Tryggvason Spring 3 Ideal Gas: p =
HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:
HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying
3 Frequency Domain Representation of Continuous Signals and Systems
3 Frequency Domain Represenaion of Coninuous Signals and Sysems 3. Fourier Series Represenaion of Periodic Signals............. 2 3.. Exponenial Fourier Series.................... 2 3..2 Discree Fourier
Parametrized Surfaces
Parametrized Surfaces Recall from our unit on vector-valued functions at the beginning of the semester that an R 3 -valued function c(t) in one parameter is a mapping of the form c : I R 3 where I is some
12. Radon-Nikodym Theorem
Tutorial 12: Radon-Nikodym Theorem 1 12. Radon-Nikodym Theorem In the following, (Ω, F) is an arbitrary measurable space. Definition 96 Let μ and ν be two (possibly complex) measures on (Ω, F). We say
On Strong Product of Two Fuzzy Graphs
Inernaional Journal of Scienific and Research Publicaions, Volume 4, Issue 10, Ocober 014 1 ISSN 50-3153 On Srong Produc of Two Fuzzy Graphs Dr. K. Radha* Mr.S. Arumugam** * P.G & Research Deparmen of
SOME PROPERTIES OF FUZZY REAL NUMBERS
Sahand Communications in Mathematical Analysis (SCMA) Vol. 3 No. 1 (2016), 21-27 http://scma.maragheh.ac.ir SOME PROPERTIES OF FUZZY REAL NUMBERS BAYAZ DARABY 1 AND JAVAD JAFARI 2 Abstract. In the mathematical
Problem Set 3: Solutions
CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C
ECE Spring Prof. David R. Jackson ECE Dept. Notes 2
ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =
w o = R 1 p. (1) R = p =. = 1
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max
Riemann Hypothesis: a GGC representation
Riemann Hypohesis: a GGC represenaion Nicholas G. Polson Universiy of Chicago Augus 8, 8 Absrac A GGC Generalized Gamma Convoluion represenaion for Riemann s reciprocal ξ-funcion is consruced. This provides
CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS
CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =
Vol. 40 No Journal of Jiangxi Normal University Natural Science Jul. 2016
4 4 Vol 4 No 4 26 7 Journal of Jiangxi Normal Universiy Naural Science Jul 26-5862 26 4-349-5 3 2 6 2 67 3 3 O 77 9 A DOI 6357 /j cnki issn-5862 26 4 4 C q x' x /q G s = { α 2 - s -9 2 β 2 2 s α 2 - s
A Two-Sided Laplace Inversion Algorithm with Computable Error Bounds and Its Applications in Financial Engineering
Electronic Companion A Two-Sie Laplace Inversion Algorithm with Computable Error Bouns an Its Applications in Financial Engineering Ning Cai, S. G. Kou, Zongjian Liu HKUST an Columbia University Appenix
APPENDIX A DERIVATION OF JOINT FAILURE DENSITIES
APPENDIX A DERIVAION OF JOIN FAILRE DENSIIES I his Appedi we prese he derivaio o he eample ailre models as show i Chaper 3. Assme ha he ime ad se o ailre are relaed by he cio g ad he sochasic are o his
Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3
Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all
Existence of travelling wave solutions in delayed reaction diffusion systems with applications to diffusion competition systems
INSTITUTE OF PHYSICS PUBLISHING Nonlineariy 9 (2006) 253 273 NONLINEARITY doi:0.088/095-775/9/6/003 Exisence of ravelling wave soluions in delayed reacion diffusion sysems wih applicaions o diffusion compeiion
Tridiagonal matrices. Gérard MEURANT. October, 2008
Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,
The choice of an optimal LCSCR contract involves the choice of an x L. such that the supplier chooses the LCS option when x xl
EHNIA APPENDIX AMPANY SIMPE S SHARIN NRAS Proof of emma. he choice of an opimal SR conrac involves he choice of an such ha he supplier chooses he S opion hen and he R opion hen >. When he selecs he S opion
F19MC2 Solutions 9 Complex Analysis
F9MC Solutions 9 Complex Analysis. (i) Let f(z) = eaz +z. Then f is ifferentiable except at z = ±i an so by Cauchy s Resiue Theorem e az z = πi[res(f,i)+res(f, i)]. +z C(,) Since + has zeros of orer at
Lecture 21: Properties and robustness of LSE
Lecture 21: Properties and robustness of LSE BLUE: Robustness of LSE against normality We now study properties of l τ β and σ 2 under assumption A2, i.e., without the normality assumption on ε. From Theorem
ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?
Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least
Approximation of distance between locations on earth given by latitude and longitude
Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth
D Alembert s Solution to the Wave Equation
D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique
Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1
Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test
Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1
Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the
Χρονοσειρές Μάθημα 3
Χρονοσειρές Μάθημα 3 Ασυσχέτιστες (λευκός θόρυβος) και ανεξάρτητες (iid) παρατηρήσεις Chafield C., The Analysis of Time Series, An Inroducion, 6 h ediion,. 38 (Chaer 3): Some auhors refer o make he weaker
1. Introduction and Preliminaries.
Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.yu/filomat Filomat 22:1 (2008), 97 106 ON δ SETS IN γ SPACES V. Renuka Devi and D. Sivaraj Abstract We
Chapter 6: Systems of Linear Differential. be continuous functions on the interval
Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations
derivation of the Laplacian from rectangular to spherical coordinates
derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used
The semiclassical Garding inequality
The semiclassical Garding inequality We give a proof of the semiclassical Garding inequality (Theorem 4.1 using as the only black box the Calderon-Vaillancourt Theorem. 1 Anti-Wick quantization For (q,
Solutions to Exercise Sheet 5
Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X
Finite Field Problems: Solutions
Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The
Empirical best prediction under area-level Poisson mixed models
Noname manuscript No. (will be inserted by the editor Empirical best prediction under area-level Poisson mixed models Miguel Boubeta María José Lombardía Domingo Morales eceived: date / Accepted: date