Για τη δημιουργία ενός διανύσματος με στοιχεία από το 0 μέχρι το 20 με βήμα το 2 (χρησιμοποιείται συνήθως για διανύσματα χρόνου) δίνουμε
|
|
- Ἀσκληπιάδης Σκλαβούνος
- 9 χρόνια πριν
- Προβολές:
Transcript
1 Εργαστήριο Συστημάτων Αυτομάτου Ελέγχου Άσκηση 1 η Εισαγωγή στο Matlab 1 Άσκηση 1 η : Εισαγωγή στο Matlab Αντικείμενο Εξοικείωση με τις βασικές λειτουργίες του Matlab (πρόγραμμα αριθμητικής ανάλυσης και επεξεργασίας δεδομένων). Υπάρχουν πολλά διαφορετικά εργαλεία (toolboxes) που επεκτείνουν τις βασικές λειτουργίες του Matlab σε διάφορες περιοχές εφαρμογών. Στη σειρά των ασκήσεων που ακολουθεί χρησιμοποιείται εκτενώς το εργαλείο των συστημάτων ελέγχου control systems toolbox Διανύσματα (Vectors) Απαιτούμενες Θεωρητικές Γνώσεις Για τη δημιουργία ενός απλού διανύσματος, εισάγουμε όλα τα στοιχεία του διανύσματος (διαχωρίζοντάς τα με ένα κενό) ανάμεσα σε αγκύλες και το θέτουμε ίσο με μια μεταβλητή: a = [ ] Το Matlab επιστρέφει a = Για τη δημιουργία ενός διανύσματος με στοιχεία από το 0 μέχρι το 20 με βήμα το 2 (χρησιμοποιείται συνήθως για διανύσματα χρόνου) δίνουμε t = 0:2:20 t = Οι πράξεις με τα διανύσματα είναι το ίδιο εύκολες με τη δημιουργία τους. Αν υποθέσουμε ότι θέλουμε να προσθέσουμε το 2 σε όλα τα στοιχεία του διανύσματος a δίνουμε b = a + 2 b = Για να προσθέσουμε δύο διανύσματα ίδιου μήκους μεταξύ τους δίνουμε c = a + b
2 Εργαστήριο Συστημάτων Αυτομάτου Ελέγχου Άσκηση 1 η Εισαγωγή στο Matlab 2 c = Η αφαίρεση γίνεται με τον ίδιο τρόπο Συναρτήσεις (Functions) Μ-Files Το Matlab διαθέτει πολλές τυποποιημένες συναρτήσεις. Κάθε συνάρτηση είναι ένας κώδικας που πραγματοποιεί συγκεκριμένη εργασία. Έτσι το Matlab περιέχει συναρτήσεις όπως οι sin, cos, log, exp, sqrt και πολλές άλλες. Επίσης, περιέχει και γνωστές σταθερές, όπως τα pi, i ή j για την τετραγωνική ρίζα του 1. Αν δώσουμε το Matlab επιστρέφει sin(pi/4) Το Matlab διαθέτει πολύ καλό on-line help (βοήθεια). Για να δούμε τη χρήση της κάθε συνάρτησης ή εντολής, πληκτρολογούμε help [function ή command name] στη γραμμή εντολών του Matlab. Το Matlab μας δίνει τη δυνατότητα να γράψουμε τις δικές μας συναρτήσεις με την εντολή function και τα m-files. Αυτό που πραγματικά γίνεται όταν δίνουμε μια εντολή στο Matlab, είναι η εκτέλεση ενός m-file το οποίο εκτελεί μια συγκεκριμένη εργασία. Τα m-files είναι όμοια με τις υπορουτίνες των γλωσσών προγραμματισμού και έχουν εισόδους (παράμετροι που εισάγονται στο m-file), εξόδους (παράμετροι που επιστρέφονται από το m-file) και ένα κύριο σώμα από εντολές που μπορεί να περιέχει τοπικές μεταβλητές. Το Matlab ονομάζει αυτά τα m-files functions. Στη νέα συνάρτηση δίνεται ένα όνομα αρχείου με κατάληξη «..m». Το αρχείο αυτό αποθηκεύεται στον ίδιο φάκελο που βρίσκεται και το Matlab ή σε ένα φάκελο που βρίσκεται στο path του Matlab. Μια συνάρτηση μπορεί να έχει πολλές μεταβλητές εισόδου και εξόδου. Η πρώτη γραμμή του αρχείου πρέπει να περιέχει τη σύνταξη αυτής της συνάρτησης ως function[output1,output2] = filename[input1,input2,input3] Οι επόμενες γραμμές περιέχουν, συνήθως, κείμενο που περιγράφει τον κώδικα του m-file ή οδηγίες που είναι χρήσιμες στο χρήστη για μελλοντική τροποποίηση του κώδικα. Οι βοηθητικές αυτές γραμμές ξεκινούν με % για να τις αγνοεί το Matlab. Τέλος, μετά το βοηθητικό κείμενο, ακολουθεί το κύριο μέρος του m-file που περιλαμβάνει όλες τις εντολές. Ακολουθεί ένα παράδειγμα για την add.m. function[var3] = add(var1,var2) %η add είναι μια συνάρτηση που προσθέτει δύο αριθμούς var3 = var1+var2; Σώζοντας αυτές τις γραμμές με το όνομα add.m στο φάκελο του Matlab, μπορούμε να το χρησιμοποιήσουμε δίνοντας y=add(3,8)
3 Εργαστήριο Συστημάτων Αυτομάτου Ελέγχου Άσκηση 1 η Εισαγωγή στο Matlab 3 y = Διαγράμματα (Plots) Ας υποθέσουμε ότι θέλουμε να σχεδιάσουμε την κυματομορφή ενός ημιτόνου σε συνάρτηση με το χρόνο. Πρώτα δημιουργούμε ένα διάνυσμα χρόνου και μετά υπολογίζουμε την τιμή του ημιτόνου σε κάθε χρονική στιγμή. Το ερωτηματικό στο τέλος κάθε γραμμής δίνει στο Matlab την εντολή να μην δείχνει κάθε φορά τα αποτελέσματα. Έτσι t = 0:0.25:7; y = sin(t); plot (t,y) Η βασική σύνταξη της εντολής plot είναι plot(x,y) οπότε και σχεδιάζονται τα στοιχεία του διανύσματος x στον οριζόντιο άξονα και τα στοιχεία του διανύσματος y στον κατακόρυφο άξονα. Για να σχεδιάσουμε τον απλό τύπο y=3x δίνουμε x = 0:0.1:100; y = 3*x; plot (x,y) Είναι σημαντικό να τονιστεί ότι τα διανύσματα x και y πρέπει να είναι του ίδιου μήκους. Το χρώμα και το είδος της γραμμής στη γραφική παράσταση μπορούν να αλλάξουν προσθέτοντας μια τρίτη παράμετρο στην εντολή plot μέσα σε απλά εισαγωγικά. Για παράδειγμα, για να σχεδιαστεί η παραπάνω γραφική παράσταση με κόκκινο χρώμα και με κουκίδες δίνουμε x = 0:0.1:100; y = 3*x; plot (x,y, r: )
4 Εργαστήριο Συστημάτων Αυτομάτου Ελέγχου Άσκηση 1 η Εισαγωγή στο Matlab 4 Η παράμετρος αυτή αποτελείται από έναν έως τρεις χαρακτήρες που υποδηλώνουν τα παρακάτω y yellow. point m magenta o circle c cyan x x-mark r red + plus g green - solid b blue * star w white : dotted k black -. dashdot -- dashed Μπορούμε να σχεδιάσουμε περισσότερα από ένα διαγράμματα στους ίδιους άξονες. Έστω ότι θέλουμε να σχεδιάσουμε ένα ημίτονο και ένα συνημίτονο στους ίδιους άξονες με διαφορετικό χρώμα και διαφορετικό τύπο γραμμής για το καθένα: x = linspace(0,2*pi,50); y = sin(x); z = cos(x); plot (x,y, r, x,z, gx ) Η linspace δημιουργεί 50 σημεία ανάμεσα στο 0 και το 2π. Προσθέτοντας και άλλες παραμέτρους μπορούμε να σχεδιάσουμε όσες διαφορετικές συναρτήσεις θέλουμε στο ίδιο σχεδιάγραμμα. Όταν σχεδιάζει κανείς πολλά διαγράμματα στους ίδιους άξονες είναι χρήσιμο να τα διαφοροποιεί με διαφορετικό χρώμα και τύπο γραμμής. Το ίδιο μπορεί να επιτευχθεί με τις εντολές hold on και hold off. Τα παραπάνω διαγράμματα μπορούν να παραχθούν και ως x = linspace(0,2*pi,50); y = sin(x); plot (x,y, r ); z = cos(x); hold on plot (x,z, gx ) hold off Χρησιμοποιώντας την εντολή hold on, όλα τα διαγράμματα από εκεί και στο εξής σχεδιάζονται πάνω στους ίδιους άξονες, χωρίς να σβήνεται το προηγούμενο διάγραμμα, μέχρι να χρησιμοποιηθεί η εντολή hold off. Περισσότερα από ένα διαγράμματα μπορούν να τοποθετηθούν στην ίδια εικόνα με την εντολή subplot. Αυτή η εντολή διαχωρίζει την εικόνα σε τόσα διαγράμματα όσα θέλουμε και τα τοποθετεί όλα στην ίδια εικόνα. Η εντολή χρησιμοποιείται ως subplot(m,n,p). Η εικόνα χωρίζεται σε m γραμμές και n στήλες δημιουργώντας m*n διαγράμματα σε μια εικόνα. Το p-στο διάγραμμα επιλέγεται ως το τρέχον ενεργό διάγραμμα. Ας υποθέσουμε ότι θέλουμε να σχεδιάσουμε ένα
5 Εργαστήριο Συστημάτων Αυτομάτου Ελέγχου Άσκηση 1 η Εισαγωγή στο Matlab 5 ημίτονο, ένα συνημίτονο και μια εφαπτομένη σε μια εικόνα αλλά όχι στους ίδιους άξονες. Θα δώσουμε x = linspace(0,2*pi,50); y = sin(x); z = cos(x); w= tan(x); subplot (2,2,1) plot (x,y) subplot (2,2,2) plot (x,z) subplot (2,2,3) plot (x,w) Πρέπει να τονιστεί ότι κάθε διάγραμμα που δημιουργείται με την εντολή plot μετά την subplot τοποθετείται εκεί που χρησιμοποιήθηκε τελευταία φορά η subplot αντικαθιστώντας το διάγραμμα που βρισκόταν εκεί. Για να λυθεί αυτό το πρόβλημα, η εικόνα πρέπει να εκκαθαρίζεται (χρησιμοποιώντας την εντολή clf) ή να δημιουργείται νέα εικόνα (χρησιμοποιώντας την εντολή figure). Η εντολή axis αλλάζει τους άξονες του διαγράμματος ώστε να παρατηρούμε μόνο το τμήμα της γραφικής παράστασης που μας ενδιαφέρει και εισάγεται ως axis([xmin, xmax, ymin, ymax]). Ας υποθέσουμε ότι θέλουμε να δούμε το διάγραμμα της συνάρτησης y=e 5t -1. Θα δώσουμε στο Matlab t = 0:0.01:5; y = exp(5*t)-1; plot (t,y) Όπως φαίνεται η γραφική παράσταση πηγαίνει στο άπειρο. Παρατηρώντας τον άξονα y (κλίμακα: 8e10) είναι φανερό ότι δεν μπορούμε να αποκομίσουμε πολλά από αυτή τη γραφική παράσταση. Για να δούμε καλύτερα θα εστιάσουμε στο πρώτο μισό του διαγράμματος ως axis ([0, 1, 0, 50]) Αυτό το διάγραμμα είναι πολύ πιο χρήσιμο. Μπορεί να δει κανείς πιο καθαρά τι γίνεται καθώς η συνάρτηση πλησιάζει προς το άπειρο. Η εντολή axis μπορεί να χρησιμοποιηθεί και με την εντολή subplot αρκεί να εισάγεται πριν από αυτήν.
6 Εργαστήριο Συστημάτων Αυτομάτου Ελέγχου Άσκηση 1 η Εισαγωγή στο Matlab 6 Πολύ χρήσιμη στα διαγράμματα είναι και η πρόσθεση κειμένου. Μπορεί κανείς να δώσει τίτλο σε ένα διάγραμμα (με την εντολή title), υπότιτλο στον άξονα x (με την εντολή xlabel), υπότιτλο στον άξονα y (με την εντολή ylabel) και να προσθέσει κείμενο. Όλες αυτές οι εντολές εισάγονται μετά την εντολή plot. Ο τίτλος τοποθετείται κεντραρισμένος πάνω από το διάγραμμα με την εντολή title( title string ). Ο υπότιτλος στον άξονα x τοποθετείται με την εντολή xlabel( x-axis string ). Ο υπότιτλος στον άξονα y τοποθετείται με την εντολή ylabel( y-axis string ). Το κείμενο μπορεί να τοποθετηθεί πάνω στο διάγραμμα με δύο τρόπους, την εντολή text και την εντολή gtext. Η πρώτη εντολή προϋποθέτει ότι ξέρει κανείς τις συντεταγμένες του σημείου που θέλει να τοποθετήσει το κείμενο. Η εντολή είναι τότε text(xcor,ycor, text string ). Για τη δεύτερη εντολή δε χρειάζεται να γνωρίζει κανείς τις συντεταγμένες. Η εντολή είναι τότε gtext( text string ) και απλά μετακινεί κανείς ένα σταυρό με το mouse στην επιθυμητή περιοχή και κάνει κλικ εκεί που θέλει να τοποθετηθεί το κείμενο. Έστω, ότι έχουμε δημιουργήσει ένα διάγραμμα βηματικής απόκρισης. Στο Matlab θα δώσουμε title ( step response of something ) xlabel ( time (sec) ) ylabel ( position, velocity, or something like that ) gtext ( unnecessary labeling ) Το κείμενο «unnecessary labeling» τοποθετήθηκε στη θέση που κάναμε κλικ. Το αποτέλεσμα είναι το παρακάτω. Άλλες εντολές που χρησιμοποιούνται με την εντολή plot είναι: clf (εκκαθαρίζει το τρέχον διάγραμμα) figure (ανοίγει νέα εικόνα) close (κλείνει την τρέχουσα εικόνα) loglog (ότι και η plot αλλά οι δύο άξονες είναι λογαριθμικοί με βάση το 10) semilogx (ότι και η plot αλλά ο άξονας x είναι λογαριθμικός με βάση το 10) semilogy (ότι και η plot αλλά ο άξονας y είναι λογαριθμικός με βάση το 10 grid (προσθέτει πλέγμα στο διάγραμμα) 1.4. Πολυώνυμα (Polynomials) Στο Matlab ένα πολυώνυμο αναπαριστάνεται με ένα διάνυσμα. Για να το δημιουργήσει κανείς απλά εισάγει κάθε συντελεστή του πολυωνύμου με αύξουσα σειρά. Ας υποθέσουμε ότι θέλουμε να εισάγουμε το πολυώνυμο s 4 +3s 3-15s 2-2s+9: Το Matlab επιστρέφει x = [ ]
7 Εργαστήριο Συστημάτων Αυτομάτου Ελέγχου Άσκηση 1 η Εισαγωγή στο Matlab 7 x = Το Matlab μπορεί να μεταχειριστεί κάθε διάνυσμα μήκους n+1 ως ένα πολυώνυμο n-οστής τάξης. Αν από το πολυώνυμο λείπουν κάποιοι συντελεστές, πρέπει κανείς να εισάγει μηδενικά στην κατάλληλη θέση στο διάνυσμα. Για παράδειγμα το πολυώνυμο s 4 +1 αναπαρίσταται στο Matlab ως y = [ ] Η τιμή ενός πολυωνύμου μπορεί να βρεθεί με τη συνάρτηση polyval. Για παράδειγμα, για να βρεθεί η τιμή του παραπάνω πολυωνύμου για s=2 θέτουμε z = polyval([ ],2) z = 17 Πολύ εύκολα υπολογίζονται και οι ρίζες ενός πολυωνύμου. Αυτό είναι χρήσιμο κυρίως για τα πολυώνυμα μεγάλου βαθμού όπως το s 4 +3s 3-15s 2-2s+9: roots([ ]) Ας θεωρήσουμε ότι θέλουμε να πολλαπλασιάσουμε δύο πολυώνυμα μεταξύ τους. Το γινόμενο βρίσκεται παίρνοντας τη συνέλιξη (convolution) των συντελεστών τους. Αυτό το κάνει η εντολή conv. Για παράδειγμα x = [1 2]; y = [1 4 8]; z = conv(x,y) z = Το ίδιο εύκολη είναι και η διαίρεση δύο πολυωνύμων. Η συνάρτηση deconv επιστρέφει το υπόλοιπο και το πηλίκο. Ας διαιρέσουμε το z με το y για να δούμε αν θα πάρουμε το x. [xx, R] = deconv(z,y) xx = 1 2 R =
8 Εργαστήριο Συστημάτων Αυτομάτου Ελέγχου Άσκηση 1 η Εισαγωγή στο Matlab 8 Αν η διαίρεση δεν ήταν τελεία το υπόλοιπο θα ήταν κάτι διαφορετικό από μηδέν. Για την πρόσθεση δύο πολυωνύμων του ίδιου βαθμού χρησιμοποιούμε απλά z=x+y (τα διανύσματα x και y πρέπει να είναι του ίδιου βαθμού). Για την πρόσθεση πολυωνύμων ανόμοιου βαθμού πρέπει κανείς να δημιουργήσει την κατάλληλη συνάρτηση με m-file. Εδώ χρησιμοποιούμε τη συνάρτηση polyadd ως z = polyadd(x,y) x = 1 2 y = z = Πίνακες (Matrices) Η εισαγωγή πινάκων στο Matlab είναι το ίδιο με την εισαγωγή διανυσμάτων, με τη διαφορά ότι κάθε γραμμή στοιχείων διαχωρίζεται με ένα ερωτηματικό (;) ή enter, δηλαδή Β = [ ; ; ] Β = ή Β = [ ] πάλι Β = Η διαχείριση των πινάκων στο Matlab γίνεται με πολλούς τρόπους. Μπορεί να κανείς να βρει τον transpose πίνακα με το σήμα της αποστρόφου όπως C = B C =
9 Εργαστήριο Συστημάτων Αυτομάτου Ελέγχου Άσκηση 1 η Εισαγωγή στο Matlab 9 Να σημειωθεί ότι αν ο C ήταν μιγαδικός, η απόστροφος θα έδινε το συζυγή μιγαδικό transpose. Για να πάρουμε τον transpose δίνουμε τελεία και απόστροφο (. ) (οι δύο εντολές είναι ίδιες αν ο πίνακας είναι μη μιγαδικός). Δύο πίνακες μπορούν να πολλαπλασιαστούν μεταξύ τους. Να υπενθυμιστεί ότι η τάξη παίζει ρόλο στον πολλαπλασιασμό πινάκων. ενώ D = B * C D = D = C * B D = Άλλος τρόπος διαχείρισης πινάκων είναι ο πολλαπλασιασμός των αντίστοιχων στοιχείων δύο πινάκων χρησιμοποιώντας τον τελεστή.* (οι πίνακες πρέπει να είναι του ίδιου μεγέθους για να γίνει αυτό): Ε = [1 2;3 4] F = [2 3;4 5] G = Ε.* F Ε = F = G = Για τετραγωνικό πίνακα, όπως ο Ε, μπορεί να γίνει πολλαπλασιασμός με τον εαυτό του όσες φορές θέλουμε υψώνοντάς τον στην αντίστοιχη δύναμη: Ε^
10 Εργαστήριο Συστημάτων Αυτομάτου Ελέγχου Άσκηση 1 η Εισαγωγή στο Matlab 10 Αν θέλαμε να υψώσουμε στην τρίτη δύναμη κάθε στοιχείο του πίνακα, μπορεί να γίνει υψώνοντας το κάθε ένα χωριστά ως Ε.^ Για να βρούμε τον αντίστροφο ενός πίνακα X = inv(e) X = ή για τον υπολογισμό των ιδιοτιμών του eig(ε) Υπάρχει και συνάρτηση για την εύρεση των συντελεστών του χαρακτηριστικού πολυωνύμου ενός πίνακα. Η συνάρτηση poly δημιουργεί ένα διάνυσμα που περιλαμβάνει τους συντελεστές του χαρακτηριστικού πολυωνύμου. p = poly(e) p = Να υπενθυμίσουμε εδώ ότι οι ιδιοτιμές ενός πίνακα είναι οι ίδιες με τις ρίζες του χαρακτηριστικού πολυωνύμου: roots(p) Χρήσιμες Συμβουλές - Εκτύπωση Μπορούμε να δούμε τις τιμές μιας συγκεκριμένης μεταβλητής ανά πάσα χρονική στιγμή πληκτρολογώντας απλά το όνομά της. Επίσης, παραπάνω από μια εντολές μπορούν να γραφούν στην ίδια γραμμή αρκεί να διαχωρίζονται με ερωτηματικό ή κόμμα. Όσο δεν δίνουμε όνομα σε μια μεταβλητή το Matlab την αποθηκεύει με το όνομα «ans». Για να εκτυπώσουμε ένα διάγραμμα ή ένα m-file απλά επιλέγουμε print από το file menu του παραθύρου του διαγράμματος ή του m-file.
11 Εργαστήριο Συστημάτων Αυτομάτου Ελέγχου Άσκηση 1 η Εισαγωγή στο Matlab 11 Διαδικασία 1.1. Δημιουργήστε ένα διάνυσμα a με στοιχεία τους αριθμούς 2,4,6,8,10,12 και ένα διάνυσμα t με στοιχεία από το 0 μέχρι το 15 με βήμα το Στη συνέχεια κάνετε τις πράξεις b=a+3, c=a+b, d=a-2 και e=a-d Υπολογίστε το ημίτονο, συνημίτονο και εφαπτομένη των 45 ο. Στη συνέχεια κάνετε τις πράξεις log10, ln10, e 10 και 10. Όπου απαιτείται χρησιμοποιείστε το help για να βρείτε τις κατάλληλες συναρτήσεις Δημιουργήστε ένα m-file που να υπολογίζει τον μέσο όρο των βαθμών που παίρνει ένας μαθητής. Οι είσοδοι πρέπει να είναι οι βαθμοί και ο αριθμός των μαθημάτων Για τις τιμές του διανύσματος t της διαδικασίας 1.1 σχεδιάστε το ημίτονο, το συνημίτονο και την εφαπτομένη πάνω στους ίδιους άξονες με διαφορετικά χρώματα και διαφορετικού τύπου σημεία Για 10<x<10 να σχεδιαστεί η συνάρτηση y=5χ+3 με βήμα Χρησιμοποιείστε πράσινο χρώμα και αστεράκια Τα τέσσερα διαγράμματα των διαδικασιών 1.4 και 1.5 να σχεδιαστούν ξανά, όχι πάνω στους ίδιους άξονες, αλλά στην ίδια εικόνα αφού πρώτα χωριστεί σε τέσσερα μικρότερα υποδιαγράμματα Να σχεδιαστεί η συνάρτηση y=5t-e 2t. Εστιάστε στο σημείο καμπής της γραφικής παράστασης με την βοήθεια της εντολής axis. Στη συνέχεια προσθέστε τίτλο στο διάγραμμα και υπότιτλους στους άξονες x και y Υπολογίστε την τιμή του πολυωνύμου s 5 +3s 4-2s 2 +1 για s=3. Στη συνέχεια βρείτε τις ρίζες του πολυωνύμου Έστω τα πολυώνυμα s 5 +3s 4-2s 2 +1 και 3s 3 +2s 2 -s+2. Να υπολογιστεί το γινόμενο, το πηλίκο τους και το άθροισμά τους (με απλή πρόσθεση πολυωνύμων) Προσπαθήστε να δημιουργήστε το m-file για τη συνάρτηση polyadd Εισαγάγετε έναν πίνακα 5x5 με όποια στοιχεία θέλετε και ονομάστε τον Β. Υπολογίστε τον ανάστροφό του C. Κάνετε τους πολλαπλασιασμούς BC και CB Δημιουργήστε δύο πίνακες E και F 3x3 με όποια στοιχεία θέλετε. Υπολογίστε τον πίνακα G που προκύπτει από τον πολλαπλασιασμό των αντίστοιχων στοιχείων των δύο πινάκων. Υψώστε τον πίνακα Ε στο τετράγωνο και στη συνέχεια υπολογίστε τον πίνακα που προκύπτει υψώνοντας κάθε στοιχείο του Ε στο τετράγωνο. Βρείτε τον αντίστροφο του Ε καθώς και τις ιδιοτιμές του. Ποιο είναι το χαρακτηριστικό πολυώνυμο του Ε;
Εργαστήριο Μαθηματικής Ανάλυσης Ι. Εισαγωγή στη Matlab Βασικές Συναρτήσεις-Γραφικές παραστάσεις. Πανεπιστήμιο Θεσσαλίας. Σχολή Θετικών Επιστημών
Πανεπιστήμιο Θεσσαλίας Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής με εφαρμογές στη Βιοϊατρική Εργαστήριο Μαθηματικής Ανάλυσης Ι Εισαγωγή στη Matlab Βασικές Συναρτήσεις-Γραφικές παραστάσεις Εισαγωγή στη
Διαβάστε περισσότεραΕισαγωγή στην Αριθμητική Ανάλυση
Εισαγωγή στην Αριθμητική Ανάλυση Εισαγωγή στη MATLAB ΔΙΔΑΣΚΩΝ: ΓΕΩΡΓΙΟΣ ΑΚΡΙΒΗΣ ΒΟΗΘΟΙ: ΔΗΜΗΤΡΙΑΔΗΣ ΣΩΚΡΑΤΗΣ, ΣΚΟΡΔΑ ΕΛΕΝΗ E-MAIL: SDIMITRIADIS@CS.UOI.GR, ESKORDA@CS.UOI.GR Τι είναι Matlab Είναι ένα περιβάλλον
Διαβάστε περισσότεραΤυπικές χρήσεις της Matlab
Matlab Μάθημα 1 Τι είναι η Matlab Ολοκληρωμένο Περιβάλλον Περιβάλλον ανάπτυξης Διερμηνευμένη γλώσσα Υψηλή επίδοση Ευρύτητα εφαρμογών Ευκολία διατύπωσης Cross platform (Wintel, Unix, Mac) Τυπικές χρήσεις
Διαβάστε περισσότεραΣύντομες εισαγωγικές σημειώσεις για την. Matlab
Σύντομες εισαγωγικές σημειώσεις για την Matlab Δήλωση Μεταβλητών Για να εισάγει κανείς δεδομένα στη Matlab υπάρχουν πολλοί τρόποι. Ο πιο απλός είναι στη γραμμή εντολών να εισάγουμε αυτό που θέλουμε και
Διαβάστε περισσότεραΕισαγωγή στη Matlab Βασικές Συναρτήσεις
Πανεπιστήμιο Θεσσαλίας Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής με Εφαρμογές στη Βιοϊατρική Εργαστήριο Γραμμικής Άλγεβρας Εισαγωγή στη Matlab Βασικές Συναρτήσεις 2016-2017 Εισαγωγή στη Matlab Matlab
Διαβάστε περισσότερα3) το παράθυρο Πίνακας τιμών όπου εμφανίζονται οι τιμές που παίρνουν οι παράμετροι
Ο Δ Η Γ Ι Ε Σ Γ Ι Α Τ Ο M O D E L L U S 0.0 4. 0 5 Για να κατεβάσουμε το πρόγραμμα Επιλέγουμε Download στη διεύθυνση: http://modellus.co/index.php/en/download. Στη συνέχεια εκτελούμε το ModellusX_windows_0_4_05.exe
Διαβάστε περισσότερα2 ο ΕΡΓΑΣΤΗΡΙΟ ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα 2 ο ΕΡΓΑΣΤΗΡΙΟ ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ενότητα: ΜΑΘΑΙΝΟΝΤΑΣ ΤΟ MATLAB, ΜΕΡΟΣ B Aναστασία Βελώνη Τμήμα Η.Υ.Σ Άδειες Χρήσης Το παρόν
Διαβάστε περισσότεραΑΕΝ / ΑΣΠΡΟΠΥΡΓΟΥ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΑΥΤΟΜΑΤΙΣΜΟΥ. Σημειώσεις για τη χρήση του MATLAB στα Συστήματα Αυτομάτου Ελέγχου
ΑΕΝ / ΑΣΠΡΟΠΥΡΓΟΥ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΑΥΤΟΜΑΤΙΣΜΟΥ Σημειώσεις για τη χρήση του MATLAB στα Συστήματα Αυτομάτου Ελέγχου Κ. ΝΑΣΟΠΟΥΛΟΣ - Α. ΧΡΗΣΤΙ ΟΥ Κ. ΝΑΣΟΠΟΥΛΟΣ - Α. ΧΡΗΣΤΙ ΟΥ Οκτώβριος 011 MATLAB
Διαβάστε περισσότεραΣυστήματα Αναμονής (Queuing Systems)
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ - ΕΜΠ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧ. ΥΠΟΛΟΓΙΣΤΩΝ Τομέας Επικοινωνιών, Ηλεκτρονικής & Συστημάτων Πληροφορικής Εργαστήριο Διαχείρισης & Βέλτιστου Σχεδιασμού Δικτύων Τηλεματικής
Διαβάστε περισσότεραΓενικός τρόπος σύνταξης: Όνομα_συνάρτησης(όρισμα1,όρισμα2,,όρισμαΝ) Η ονομασία τους είναι δεσμευμένη. Παραδείγματος χάριν: sin(x) cos(x) tan(x) exp(x)
Εσωτερικές (built-in) συναρτήσεις του Matlab Γενικός τρόπος σύνταξης: Όνομα_συνάρτησης(όρισμα1,όρισμα2,,όρισμαΝ) Επιτελούν διάφορες προκαθορισμένες λειτουργίες Η ονομασία τους είναι δεσμευμένη Παραδείγματος
Διαβάστε περισσότεραΕισαγωγή στη Matlab Εισαγωγή στην Αριθμητική Ανάλυση Διδάσκων: Γεώργιος Ακρίβης Βοηθός: Δημήτριος Ζαβαντής
Εισαγωγή στη Matlab Εισαγωγή στην Αριθμητική Ανάλυση Διδάσκων: Γεώργιος Ακρίβης Βοηθός: Δημήτριος Ζαβαντής email: dzavanti@cs.uoi.gr Περιεχόμενα Τι είναι η Matlab; Ιστορικά Χρήσεις και στοιχεία της Matlab
Διαβάστε περισσότεραΜαρία Λουκά. Εργαστήριο Matlab Πολυώνυμα - Παρεμβολή. Τμήμα Πληροφορικής και Τηλεπικοινωνιών.
Μαρία Λουκά Εργαστήριο Matlab Πολυώνυμα - Παρεμβολή Τμήμα Πληροφορικής και Τηλεπικοινωνιών. Στη MATLAB τα πολυώνυμα αναπαριστώνται από πίνακες που περιέχουν τους συντελεστές τους σε φθίνουσα διάταξη. Για
Διαβάστε περισσότεραΓραφικές παραστάσεις (2ο μέρος)
Γραφικές παραστάσεις (2ο μέρος) Σε αυτήν την ενότητα θα εξοικειωθείτε με τον τρόπο απεικόνισης γραφικών παραστάσεων στο MATLAB χρησιμοποιώντας την εντολή plot με πίνακες. Επίσης, θα δείτε επιπλέον εντολές
Διαβάστε περισσότεραΗβασική δοµή δεδοµένων είναι ο πίνακας που δεν χρειάζεται να οριστεί η διάσταση του.
MATrix LABoratory Ηβασική δοµή δεδοµένων είναι ο πίνακας που δεν χρειάζεται να οριστεί η διάσταση του. Τι είναι το MATLAB ; Μια γλώσσα υψηλού επιπέδου η οποία είναι χρήσιµη για τεχνικούς υπολογισµούς.
Διαβάστε περισσότεραΕισαγωγή στο Πρόγραμμα Maxima
Εισαγωγή στο Πρόγραμμα Maxima Το Maxima είναι ένα πρόγραμμα για την εκτέλεση μαθηματικών υπολογισμών, συμβολικών μαθηματικών χειρισμών, αριθμητικών υπολογισμών και γραφικών παραστάσεων. Το Maxima λειτουργεί
Διαβάστε περισσότεραΈναρξη Τερματισμός του MatLab
Σύντομος Οδηγός MATLAB Β. Χ. Μούσας 1/6 Έναρξη Τερματισμός του MatLab Η έναρξη της λειτουργίας του MatLab εξαρτάται από το λειτουργικό σύστημα. Στα συστήματα UNIX πληκτρολογούμε στη προτροπή του συστήματος
Διαβάστε περισσότερα1 η Εργαστηριακή Άσκηση MATLAB Εισαγωγή
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΗΠΕΙΡΟΥ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Τ.Ε. Εργαστήριο Επεξεργασία Εικόνας & Βίντεο 1 η Εργαστηριακή Άσκηση MATLAB Εισαγωγή Νικόλαος Γιαννακέας Άρτα 2018 1 Εισαγωγή Το Matlab
Διαβάστε περισσότερα1. ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB... 13
ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ 1. ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB... 13 1.1. Τι είναι το Matlab... 13 1.2. Περιβάλλον εργασίας... 14 1.3. Δουλεύοντας με το Matlab... 16 1.3.1. Απλές αριθμητικές πράξεις... 16 1.3.2. Σχόλια...
Διαβάστε περισσότερα2. Δισδιάστατα γραφικά
2. Δισδιάστατα γραφικά 2.1 Δισδιάστατες γραφικές παραστάσεις συναρτήσεων μίας μεταβλητής. Η βασική εντολή σχεδίασης, του Sage, μιας γραφικής παράστασης μίας συνάρτησης μίας μεταβλητής είναι η συνάρτηση
Διαβάστε περισσότεραΕισαγωγή στο Περιβάλλον Επιστημονικού Προγραμματισμού MATLAB-Simulink. Δημήτριος Τζεράνης Λεωνίδας Αλεξόπουλος
Εισαγωγή στο Περιβάλλον Επιστημονικού Προγραμματισμού MATLAB-Simulink Δημήτριος Τζεράνης Λεωνίδας Αλεξόπουλος 1 Τι είναι τα Matlab και Simulink? Το Matlab (MATrix LABoratory) είναι ένα περιβάλλον επιστημονικού
Διαβάστε περισσότεραΠρογραμματισμός Ηλεκτρονικών Υπολογιστών 2 - Εργαστήριο
Προγραμματισμός Ηλεκτρονικών Υπολογιστών 2 - Εργαστήριο Ενότητα 8: Γραφικές παραστάσεις Διδάσκουσα: Τσαγκαλίδου Ροδή Τμήμα: Ηλεκτρολόγων Μηχανικών ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Διαβάστε περισσότεραΠρογραμματισμός και Χρήση Ηλεκτρονικών Υπολογιστών - Βασικά Εργαλεία Λογισμικού
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΟ ΚΕΝΤΡΟ Προγραμματισμός και Χρήση Ηλεκτρονικών Υπολογιστών - Βασικά Εργαλεία Λογισμικού Μάθημα 5ο Aντώνης Σπυρόπουλος Πράξεις μεταξύ των
Διαβάστε περισσότεραΠεριεχόμενα. 26 Γραφικά δύο διαστάσεων... 11. 27 Γραφικά τριών διαστάσεων... 45
Περιεχόμενα 26 Γραφικά δύο διαστάσεων... 11 26.1 Η συνάρτηση plot...11 26.2 Στυλ γραμμών, σημειωτές, και χρώματα...14 26.3 Κάνναβοι διαγραμμάτων, πλαίσιο αξόνων, και ετικέτες...16 26.4 Προσαρμογή αξόνων
Διαβάστε περισσότεραΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι
ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι κ. ΠΕΤΑΛΙΔΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται
Διαβάστε περισσότερα5 η ΕΝΟΤΗΤΑ Γραφήματα στο MATLAB
ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΜΠ ΜΕΘΟΔΟΙ ΕΠΙΛΥΣΗΣ ΜΕ Η/Υ 5 η ΕΝΟΤΗΤΑ Γραφήματα στο MATLAB Ν.Δ. Λαγαρός Μ. Φραγκιαδάκης Α. Στάμος Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες Χρήσης Creative
Διαβάστε περισσότεραΓραφικές παραστάσεις (1ο μέρος)
ΤΕΙ ΑΘΗΝΑΣ Τμήμα Ηλεκτρονικής Φυσική των Αισθητήρων Γραφικές παραστάσεις (1ο μέρος) Σε αυτήν την ενότητα θα εξοικειωθείτε με τον τρόπο απεικόνισης γραφικών παραστάσεων στο MATLAB, και συγκεκριμένα με τις
Διαβάστε περισσότερα1. Κατασκευάστε ένα διάνυσμα με στοιχεία τους ζυγούς αριθμούς μεταξύ του 31 και 75
1. Κατασκευάστε ένα διάνυσμα με στοιχεία τους ζυγούς αριθμούς μεταξύ του 31 και 75 2. Έστω x = [2 5 1 6] α. Προσθέστε το 16 σε κάθε στοιχείο β. Προσθέστε το 3 σε κάθε στοιχείο που βρίσκεται σε μονή θέση.
Διαβάστε περισσότεραΠανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Ηλεκτρονική Υγεία. Εργαστήριο 5 ο : MATLAB
Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Ηλεκτρονική Υγεία Εργαστήριο 5 ο : MATLAB Αν. καθηγητής Αγγελίδης Παντελής e-mail: paggelidis@uowm.gr Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Άδειες
Διαβάστε περισσότερα3 ο ΕΡΓΑΣΤΗΡΙΟ ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα 3 ο ΕΡΓΑΣΤΗΡΙΟ ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ενότητα: ΔΟΥΛΕΥΟΝΤΑΣ ΜΕ ΣΗΜΑΤΑ Aναστασία Βελώνη Τμήμα Η.Υ.Σ Άδειες Χρήσης Το παρόν εκπαιδευτικό
Διαβάστε περισσότεραΥΠΟΛΟΓΙΣΤΕΣ Ι. Τύποι δεδομένων ΤΥΠΟΙ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΠΡΑΞΕΙΣ. Παράδειγμα #1. Πράξεις μεταξύ ακεραίων αριθμών
ΥΠΟΛΟΓΙΣΤΕΣ Ι ΤΥΠΟΙ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΠΡΑΞΕΙΣ Τύποι δεδομένων Οι παρακάτω τύποι δεδομένων υποστηρίζονται από τη γλώσσα προγραμματισμού Fortran: 1) Ακέραιοι αριθμοί (INTEGER). 2) Πραγματικοί αριθμοί απλής ακρίβειας
Διαβάστε περισσότεραΒασικά στοιχεία στο Matlab
Αριθμητική : + - * / ^ 3ˆ2 - (5 + 4)/2 + 6*3 >> 3^2 - (5 + 4)/2 + 6*3 22.5000 Βασικά στοιχεία στο Matlab Το Matlab τυπώνει την απάντηση και την καταχωρεί σε μια μεταβλητή που την ονομάζει ans. Αν θέλουμε
Διαβάστε περισσότεραΥΠΟΛΟΓΙΣΤΕΣ ΙΙ. Τύποι δεδομένων ΤΥΠΟΙ ΔΕΔΟΜΕΝΩΝ ΠΡΑΞΕΙΣ ΜΕΤΑΒΛΗΤΕΣ. Ακέραιοι αριθμοί (int) Πράξεις μεταξύ ακεραίων αριθμών
ΥΠΟΛΟΓΙΣΤΕΣ ΙΙ ΤΥΠΟΙ ΔΕΔΟΜΕΝΩΝ ΠΡΑΞΕΙΣ ΜΕΤΑΒΛΗΤΕΣ 1 Τύποι δεδομένων Η γλώσσα προγραμματισμού C++ υποστηρίζει τους παρακάτω τύπους δεδομένων: 1) Ακέραιοι αριθμοί (int). 2) Πραγματικοί αριθμοί διπλής ακρίβειας
Διαβάστε περισσότεραΣχολή Τεχνολογικών Εφαρμογών. Τμήμα Αυτοματισμού. Σημειώσεις Εργαστηρίου Ψηφιακού Ελέγχου. Σχεδίαση Συστημάτων Ελέγχου με χρήση MATLAB
Σχολή Τεχνολογικών Εφαρμογών Τμήμα Αυτοματισμού Σημειώσεις Εργαστηρίου Ψηφιακού Ελέγχου Σχεδίαση Συστημάτων Ελέγχου με χρήση MATLAB Επιμέλεια: Ξανθή Παπαγεωργίου E-mail: xanthi.papageorgiou@gmail.com Τμήματα:
Διαβάστε περισσότεραM files RCL Κυκλώματα
M files RCL Κυκλώματα Στο MATLAB γράφουμε τις δικές μας εντολές και προγράμματα μέσω αρχείων που καλούνται m-files. Έχουν το επίθεμα.m π.χ compute.m Υπάρχουν δύο είδη m-files: τα αρχεία script (script
Διαβάστε περισσότεραΕισαγωγή στο GNU Octave/MATLAB
Εισαγωγή στο GNU Octave/MATLAB Δρ. Βασίλειος Δαλάκας Καλώς ήρθατε στο εργαστήριο Σημάτων και Συστημάτων με το λογισμικό Octave (Οκτάβα). Οι σημειώσεις αυτές έχουν βασιστεί στις σημειώσεις του εργαστηρίου
Διαβάστε περισσότεραΕργαστήριο Γραμμικής Άλγεβρας. H Matlab ως γλώσσα προγραμματισμού
Πανεπιστήμιο Θεσσαλίας Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής με Εφαρμογές στη Βιοϊατρική Εργαστήριο Γραμμικής Άλγεβρας H Matlab ως γλώσσα προγραμματισμού Προγραμματιστικές δομές Έλεγχος ροής if if
Διαβάστε περισσότεραΠρογραμματισμός Ηλεκτρονικών Υπολογιστών 2 - Εργαστήριο
Προγραμματισμός Ηλεκτρονικών Υπολογιστών 2 - Εργαστήριο Ενότητα 7: Πολυώνυμα Διδάσκουσα: Τσαγκαλίδου Ροδή Τμήμα: Ηλεκτρολόγων Μηχανικών ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Διαβάστε περισσότερα4. Εισαγωγή στο Matlab
ΠΠΜ 500: Εφαρμογές Μηχανικής με Ανάπτυξη Λογισμικού 4. Εισαγωγή στο Matlab Εαρινό εξάμηνο 2006 Πέτρος Κωμοδρόμος komodromos@ucy.ac.cy http://www. www.eng. eng.ucy.ac.cy/petros 1 Θέματα Εισαγωγή στο Matlab
Διαβάστε περισσότεραΕισαγωγή στους Υπολογιστές
Εισαγωγή στους Υπολογιστές Ενότητα #6: Προγραμματισμός στο MATLAB Καθ. Δημήτρης Ματαράς Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Προγραμματισμός στο MATLAB Εντολή ελέγχου ροής if Γενική μορφή σύνταξης:
Διαβάστε περισσότεραΥΠΟΛΟΓΙΣΤΕΣ ΙI. Άδειες Χρήσης. Τύποι δεδομένων, μεταβλητές, πράξεις. Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Άδειες Χρήσης ΥΠΟΛΟΓΙΣΤΕΣ ΙI Τύποι δεδομένων, μεταβλητές, πράξεις Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης Το παρόν εκπαιδευτικό
Διαβάστε περισσότεραΕισαγωγή στο MATLAB. Βιομηχανικός Αυτοματισμός Γιώργος Σούλτης
Εισαγωγή στο MATLAB Όταν μιλάμε για ψηφιακή προσομοίωση εννοούμε την αριθμητική επίλυση των εξισώσεων μέσω ειδικού λογισμικού. Η ιλιγγιώδεις εξελίξεις στην πληροφορική δημιουργούν καθημερινά νέα δεδομένα.
Διαβάστε περισσότεραΑΠΟΚΡΙΣΗ ΣΥΣΤΗΜΑΤΩΝ ΣΤΟ ΠΕΔΙΟ ΤΟΥ ΧΡΟΝΟΥ ΚΑΙ ΤΩΝ ΣΥΧΝΟΤΗΤΩΝ
ΑΠΟΚΡΙΣΗ ΣΥΣΤΗΜΑΤΩΝ ΣΤΟ ΠΕΔΙΟ ΤΟΥ ΧΡΟΝΟΥ ΚΑΙ ΤΩΝ ΣΥΧΝΟΤΗΤΩΝ ΣΚΟΠΟΣ ΤΗΣ ΑΣΚΗΣΗΣ Σημαντική πληροφορία για τη συμπεριφορά και την ευστάθεια ενός γραμμικού συστήματος, παίρνεται, μελετώντας την απόκρισή του
Διαβάστε περισσότεραΓ. Ν. Π Α Π Α Δ Α Κ Η Σ Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ ( M S C ) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ. ΠΡΟΓΡΑΜΜΑ: Σπουδές στις Φυσικές Επιστήμες
Γ. Ν. Π Α Π Α Δ Α Κ Η Σ Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ ( M S C ) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΠΡΟΓΡΑΜΜΑ: Σπουδές στις Φυσικές Επιστήμες ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΦΥΕ10 (Γενικά Μαθηματικά Ι) ΠΕΡΙΕΧΕΙ ΤΙΣ
Διαβάστε περισσότεραΒασικά στοιχεία του MATLAB
ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΗΣ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ ΕΡΓΑΣΤΗΡΙΟ Εξοικείωση µε το περιβάλλον του MATLAB και χρήση βασικών εντολών και τεχνικών δηµιουργίας προγραµµάτων, συναρτήσεων
Διαβάστε περισσότεραΧρονικές σειρές 1 ο μάθημα: Εισαγωγή στη MATLAB
Χρονικές σειρές 1 ο μάθημα: Εισαγωγή στη MATLAB Εαρινό εξάμηνο 2018-2019 Τμήμα Μαθηματικών ΑΠΘ Διδάσκουσα: Αγγελική Παπάνα Μεταδιδακτορική Ερευνήτρια Πολυτεχνική σχολή, Α.Π.Θ. & Οικονομικό Τμήμα, Πανεπιστήμιο
Διαβάστε περισσότεραΟ ΗΓΙΕΣ ΧΡΗΣΗΣ ΤΟΥ MATLAB
Ο ΗΓΙΕΣ ΧΡΗΣΗΣ ΤΟΥ MATLAB (το παρόν αποτελεί τροποποιηµένη έκδοση του οµόνυµου εγχειριδίου του κ. Ν. Μαργαρη) 1 ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ 1.1 ΠΡΑΞΕΙΣ ΜΕ ΠΡΑΓΜΑΤΙΚΟΥΣ ΑΡΙΘΜΟΥΣ 1.1.1 ΠΡΟΣΘΕΣΗ» 3+5 8 % Το σύµβολο
Διαβάστε περισσότεραΕισαγωγή στην Επιστήμη των Η/Υ ΙΙ. Παλινδρόμηση Δημιουργία Video Συναρτήσεις GUI Μάθημα 6
Εισαγωγή στην Επιστήμη των Η/Υ ΙΙ Παλινδρόμηση Δημιουργία Video Συναρτήσεις GUI Μάθημα 6 Σημειώσεις 1. Φορτώνουμε το αρχείο στη Matlab με την εντολή load και αποθηκεύουμε τα αποτελέσματα στην μεταβλητή
Διαβάστε περισσότεραΠρογραμματισμός Ηλεκτρονικών Υπολογιστών 2 - Εργαστήριο
Προγραμματισμός Ηλεκτρονικών Υπολογιστών 2 - Εργαστήριο Ενότητα 2: Δημιουργία και Επεξεργασία διανυσμάτων και πινάκων μέσω του Matlab Διδάσκουσα: Τσαγκαλίδου Ροδή Τμήμα: Ηλεκτρολόγων Μηχανικών ΤΕ Άδειες
Διαβάστε περισσότεραΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8
ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ Άλγεβρα 1 ο Κεφάλαιο 1. Τι ονομάζουμε αριθμητική και τι αλγεβρική παράσταση; Να δώσετε από ένα παράδειγμα. Μια παράσταση που περιέχει πράξεις με αριθμούς, καλείται αριθμητική παράσταση,
Διαβάστε περισσότεραΤετραγωνικά μοντέλα. Τετραγωνικό μοντέλο συνάρτησης. Παράδειγμα τετραγωνικού μοντέλου #1. Παράδειγμα τετραγωνικού μοντέλου #1
Τετραγωνικό μοντέλο συνάρτησης Τετραγωνικά μοντέλα Δ. Γ. Παπαγεωργίου Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων dpapageo@cc.uoi.gr http://pc64.materials.uoi.gr/dpapageo Για συνάρτηση μιας
Διαβάστε περισσότεραΚεφάλαιο 0 Μιγαδικοί Αριθμοί
Κεφάλαιο 0 Μιγαδικοί Αριθμοί 0 Βασικοί ορισμοί και πράξεις Είναι γνωστό ότι δεν υπάρχει πραγματικός αριθμός που επαληθεύει την εξίσωση x Η ανάγκη επίλυσης τέτοιων εξισώσεων οδηγεί στο σύνολο των μιγαδικών
Διαβάστε περισσότεραΗΜΥ 100 Εισαγωγή στην Τεχνολογία ιάλεξη 17
ΗΜΥ 100 Εισαγωγή στην Τεχνολογία ιάλεξη 17 10 Νοεµβρίου, 2006 Γεώργιος Έλληνας Επίκουρος Καθηγητής ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΑ ΘΕΜΑΤΑ
Διαβάστε περισσότεραΣύντομη Αναφορά σε Βασικές Έννοιες Ψηφιακής Επεξεργασίας Σημάτων
Πρόγραμμα Μεταπτυχιακών Σπουδών: «Τεχνολογίες και Συστήματα Ευρυζωνικών Εφαρμογών και Υπηρεσιών» Μάθημα: «Επεξεργασία Ψηφιακού Σήματος και Σχεδιασμός Υλικού» Σύντομη Αναφορά σε Βασικές Έννοιες Ψηφιακής
Διαβάστε περισσότεραΝέο υλικό. www.cs.uoi.gr/~develeg. Matlab2.pdf - Παρουσίαση μαθήματος 2. Matlab-reference.pdf Σημειώσεις matlab στα ελληνικά (13 σελίδες).
Matlab Μάθημα Νέο υλικό www.cs.uoi.gr/~develeg Matlab.pdf - Παρουσίαση μαθήματος. Matlab-reference.pdf Σημειώσεις matlab στα ελληνικά (3 σελίδες). Επαναληπτικές δομές Όταν εκτελείται μια πράξη σε ένα διάνυσμα,
Διαβάστε περισσότεραΕπιστηµονικός Υπολογισµός Ι - Πρώτη εργαστηριακή άσκηση
Επιστηµονικός Υπολογισµός Ι - Πρώτη εργαστηριακή άσκηση Ηµεροµηνία επιστροφής : Τετάρτη 4/11/2010 18 Οκτωβρίου 2010 1 Γραµµική άλγεβρα (20 µονάδες) Η παράγωγος ενός µητρώου H ορίζεται ως η παράγωγος κάθε
Διαβάστε περισσότεραΠαράδειγμα «Ημίτονο και ζωγραφική!»: Έχει δει στα μαθηματικά τη γραφική παράσταση της συνάρτησης του ημιτόνου; Σας θυμίζει κάτι η παρακάτω εικόνα;
Τελεστές, συνθήκες και άλλα! Όπως έχει διαφανεί από όλα τα προηγούμενα παραδείγματα, η κατασκευή κατάλληλων συνθηκών στις εντολές εάν, εάν αλλιώς, για πάντα εάν, περίμενε ώσπου, επανέλαβε ώσπου, είναι
Διαβάστε περισσότεραΥπολογιστές Ι. Άδειες Χρήσης. Τύποι δεδομένων. Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Άδειες Χρήσης Υπολογιστές Ι Τύποι δεδομένων Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Διαβάστε περισσότεραΕΙΣΑΓΩΓΗ ΣΤΟ MATHLAB Α ΜΕΡΟΣ
ΕΙΣΑΓΩΓΗ ΣΤΟ MATHLAB Α ΜΕΡΟΣ ΕΙΣΑΓΩΓΗ ΠΙΝΑΚΩΝ ΣΤΟ MATHLAB Αν θέλουμε να εισάγουμε έναν πίνακα στο mathlab και να προβληθεί στην οθόνη βάζουμε τις τιμές του σε άγκιστρα χωρίζοντάς τις με κόμματα ή κενό
Διαβάστε περισσότεραΜιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1. Μιγαδικοί αριθμοί. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1
ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1 Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1 Μιγαδικοί αριθμοί Τι είναι και πώς τους αναπαριστούμε Οι μιγαδικοί αριθμοί είναι μια επέκταση του συνόλου
Διαβάστε περισσότερα1. Εισαγωγή στο Sage.
1. Εισαγωγή στο Sage. 1.1 Το μαθηματικό λογισμικό Sage Το Sage (System for Algebra and Geometry Experimentation) είναι ένα ελεύθερο (δωρεάν) λογισμικό μαθηματικών ανοιχτού κώδικα που υποστηρίζει αριθμητικούς
Διαβάστε περισσότεραΤετραγωνικά μοντέλα. Τετραγωνικό μοντέλο συνάρτησης. Παράδειγμα τετραγωνικού μοντέλου #1. Παράδειγμα τετραγωνικού μοντέλου #1
Τετραγωνικό μοντέλο συνάρτησης Τετραγωνικά μοντέλα Δ. Γ. Παπαγεωργίου Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων dpapageo@cc.uoi.gr http://pc164.materials.uoi.gr/dpapageo Για συνάρτηση μιας
Διαβάστε περισσότεραΗΜΥ 100 Εισαγωγή στην Τεχνολογία ιάλεξη 14
ΗΜΥ 100 Εισαγωγή στην Τεχνολογία ιάλεξη 14 20 Οκτωβρίου, 2005 Ηλίας Κυριακίδης Λέκτορας ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ 2005Ηλίας Κυριακίδης,
Διαβάστε περισσότεραόπου Η μήτρα ή πίνακας του συστήματος
Έστω το γραμμικό σύστημα: Το ίδιο σύστημα σε μορφή πινάκων: 3 5 7 3 2 y x y x B X y x 3 7 5 3 2 όπου Η μήτρα ή πίνακας του συστήματος B Η μήτρα ή πίνακας των σταθερών όρων X Η μήτρα ή πίνακας των αγνώστων
Διαβάστε περισσότεραΕργαστήρια Αριθμητικής Ανάλυσης Ι. 4 ο Εργαστήριο. Διανύσματα-Πίνακες 1 ο Μέρος
Εργαστήρια Αριθμητικής Ανάλυσης Ι 4 ο Εργαστήριο Διανύσματα-Πίνακες 1 ο Μέρος 2017 Εισαγωγή Όπως έχουμε προαναφέρει σε προηγούμενα εργαστήρια. Ο βασικός τύπος δεδομένων στο Matlab είναι οι πίνακες. Ένα
Διαβάστε περισσότεραΜαρία Λουκά. Εργαστήριο Matlab Γραφικές Παραστάσεις. Τμήμα Πληροφορικής και Τηλεπικοινωνιών
Μαρία Λουκά Εργαστήριο Matlab Γραφικές Παραστάσεις Τμήμα Πληροφορικής και Τηλεπικοινωνιών 2-d Γραφικές Παραστάσεις Γραφικές Παραστάσεις 2 Διαστάσεων Εντολή plot Οι γραφικές παραστάσεις 2 διαστάσεων ( στο
Διαβάστε περισσότεραΣυναρτήσεις στη Visual Basic 6.0
Προγραμματισμός & Εφαρμογές Υπολογιστών Μάθημα 4ο Συναρτήσεις στη Visual Basic 6.0 Κ. Κωστοπούλου Σειρά εκτέλεσης των πράξεων Όταν ορίζετε μια ακολουθία αριθμητικών πράξεων είναι δυνατόν να προκύψει αμφισημία.
Διαβάστε περισσότεραΠρογραμματισμός Ηλεκτρονικών Υπολογιστών 2 - Εργαστήριο
Προγραμματισμός Ηλεκτρονικών Υπολογιστών 2 - Εργαστήριο Ενότητα 1: Εισαγωγή στο Matlab Διδάσκουσα: Τσαγκαλίδου Ροδή Τμήμα: Ηλεκτρολόγων Μηχανικών ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Διαβάστε περισσότεραΣτη MATLAB τα πολυώνυμα αναπαριστώνται από διανύσματα που περιέχουν τους συντελεστές τους σε κατιούσα διάταξη. Για παράδειγμα το πολυώνυμο
ΠΟΛΥΩΝΥΜΑ. Γενικά περί πολυωνύμων Στη MATLAB τα πολυώνυμα αναπαριστώνται από διανύσματα που περιέχουν τους συντελεστές τους σε κατιούσα διάταξη. Για παράδειγμα το πολυώνυμο αναπαριστάται από το διάνυσμα
Διαβάστε περισσότεραΠρογραμματισμός και Χρήση Ηλεκτρονικών Υπολογιστών - Βασικά Εργαλεία Λογισμικού
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΟ ΚΕΝΤΡΟ Προγραμματισμός και Χρήση Ηλεκτρονικών Υπολογιστών - Βασικά Εργαλεία Λογισμικού Μάθημα 2ο Μεταβλητές Μεταβλητή ονομάζεται ένα μέγεθος
Διαβάστε περισσότεραΣΥΝΑΡΤΗΣΕΙΣ. Η σύνταξη μιας συνάρτησης σ ένα κελί έχει την γενική μορφή: =όνομα_συνάρτησης(όρισμα1; όρισμα2;.)
ΣΥΝΑΡΤΗΣΕΙΣ Συνάρτηση είναι ένας έτοιμος τύπος ο οποίος δέχεται σαν είσοδο τιμές ή συνθήκες και επιστρέφει ένα αποτέλεσμα, το οποίο μπορεί να είναι μια τιμή αριθμητική, αλφαριθμητική, λογική, ημερομηνίας
Διαβάστε περισσότερα11 ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ
11 ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ 11.1 Γενικά περί συνήθων διαφορικών εξισώσεων Μια συνήθης διαφορική εξίσωση (ΣΔΕ) 1 ης τάξης έχει τη μορφή dy d = f (, y()) όπου f(, y) γνωστή και y() άγνωστη συνάρτηση.
Διαβάστε περισσότεραΣημαντικές δυνατότητες των σύγχρονων υπολογιστικών μηχανών: Αξιόπιστη καταγραφή πολύ μεγάλου όγκου δεδομένων
Σημαντικές δυνατότητες των σύγχρονων υπολογιστικών μηχανών: Γρήγορες προσθέσεις αριθμών Γρήγορες συγκρίσεις αριθμών Αξιόπιστη καταγραφή πολύ μεγάλου όγκου δεδομένων Σχετικά γρήγορη μετάδοση και πρόσληψη
Διαβάστε περισσότερα1ο Κεφάλαιο: Συστήματα
ο Κεφάλαιο: Συστήματα Γραμμικά συστήματα i. Ποια εξίσωση λέγεται γραμμική; ii. Πως μεταβάλλεται η ευθεία y, 0 ή 0 για τις διάφορες τιμές των α,β,γ; iii. Τι ονομάζεται λύση μιας γραμμικής εξίσωσης; iv.
Διαβάστε περισσότεραΡητή μετατροπή αριθμητικής τιμής σε άλλο τύπο. Τι θα τυπωθεί στον παρακάτω κώδικα;
Ρητή μετατροπή αριθμητικής τιμής σε άλλο τύπο Τι θα τυπωθεί στον παρακάτω κώδικα; Ρητή μετατροπή αριθμητικής τιμής σε άλλο τύπο Τι θα τυπωθεί στον παρακάτω κώδικα; Χωρίς να αλλάξουμε τον τύπο των a,b,
Διαβάστε περισσότεραΓνωριμία με το MATLAB
Γνωριμία με το MATLAB Εισαγωγή Πινάκων u = [8 5-9] Εισάγει ένα διάνυσμα-γραμμή. s = [2;-5; 7] Εισάγει ένα διάνυσμα-στήλη. Α = [5-2 5; -2 7-8; 2 6 4] Εισάγει πίνακα 3x3. Βασικές Συναρτήσεις sa = abs(s)
Διαβάστε περισσότεραΣυλλογή & Επεξεργασία Δεδομένων Εργαστήριο 8 Επεξεργασία Σήματος με την Ανάλυση Fourier. Σύστημα Συλλογής & Επεξεργασίας Μετρήσεων
Συλλογή & Επεξεργασία Δεδομένων Εργαστήριο 8 Επεξεργασία Σήματος με την Ανάλυση Fourier. Σύστημα Συλλογής & Επεξεργασίας Μετρήσεων Σκοπός Βασική δομή ενός προγράμματος στο LabVIEW. Εμπρόσθιο Πλαίσιο (front
Διαβάστε περισσότεραHomework#13 Trigonometry Honors Study Guide for Final Test#3
Homework#13 Trigonometry Honors Study Guide for Final Test#3 1. Στο παρακάτω σχήμα δίνεται ο μοναδιαίος κύκλος: Να γράψετε τις συντεταγμένες του σημείου ή το όνομα του άξονα: 1. (ε 1) είναι ο άξονας 11.
Διαβάστε περισσότεραΓραφικά περιβάλλοντα από τον χρήστη Graphical User Interfaces (GUI)
Γραφικά περιβάλλοντα από τον χρήστη Graphical User Interfaces (GUI) Θα γράψουμε το πρώτο μας GUI το οποίο : 1. Θα σχεδιάζει μια συνάρτηση 2. Θα παρέχει κουμπιά για να αλλάζουμε το χρώμα του γραφήματος
Διαβάστε περισσότεραΣημειώσεις Matlab. ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ Μάθημα: Αριθμητική Ανάλυση Διδάσκων: Καθηγητής Θ.Η. Σίμος.
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ Μάθημα: Αριθμητική Ανάλυση Διδάσκων: Καθηγητής Θ.Η. Σίμος Σημειώσεις Matlab Γενικά a = 2 Εκχώρηση της τιμής 2 στη μεταβλητή a. b = 3; Εκχώρηση της τιμής
Διαβάστε περισσότεραΧρονικές σειρές 4 o μάθημα: ΠΙΝΑΚΕΣ ΚΑΙ ΔΙΑΝΥΣΜΑΤΑ
Χρονικές σειρές 4 o μάθημα: ΠΙΝΑΚΕΣ ΚΑΙ ΔΙΑΝΥΣΜΑΤΑ Εαρινό εξάμηνο 2018-2019 Τμήμα Μαθηματικών ΑΠΘ Διδάσκουσα: Αγγελική Παπάνα Μεταδιδακτορική Ερευνήτρια Πολυτεχνική σχολή, Α.Π.Θ. & Οικονομικό Τμήμα, Πανεπιστήμιο
Διαβάστε περισσότεραΌταν οι αριθμοί είναι ομόσημοι Βάζουμε το κοινό πρόσημο και προσθέτουμε
Κανόνες των προσήμων Στην πρόσθεση Όταν οι αριθμοί είναι ομόσημοι Βάζουμε το κοινό πρόσημο και προσθέτουμε (+) και (+) κάνει (+) + + 3 = +5 (-) και (-) κάνει (-) - - 3 = -5 Όταν οι αριθμοί είναι ετερόσημοι
Διαβάστε περισσότεραΧρήσεις Η/Υ και Βάσεις Βιολογικών Δεδομένων : ΒΙΟ109 [4] Επεξεργασία Δεδομενων σε λογιστικα φυλλα
Χρήσεις Η/Υ και Βάσεις Βιολογικών Δεδομένων : ΒΙΟ109 [4] Επεξεργασία Δεδομενων σε λογιστικα φυλλα Στόχοι του μαθήματος Στο συγκεκριμένο μάθημα θα παρουσιαστούν οι βασικές λειτουργίες ενός προγράμματος
Διαβάστε περισσότεραΑλληλεπίδραση με το Matlab
Αλληλεπίδραση με το Matlab Περιγραφή της διαδικασίας πως εργαζόμαστε με το Matlab, και της προετοιμασίας και παρουσίασης των αποτελεσμάτων μιας εργασίας με το Matlab. Ειδικότερα θα συζητήσουμε μερικά στοιχεία
Διαβάστε περισσότεραΑ.Τ.Ε.Ι Σερρών Σχολή Τεχνολογικών Εφαρμογών. Τμήμα Μηχανολογίας. Εισαγωγή στο MATLAB ΙΩΑΝΝΗΣ ΜΟΥΣΤΑΚΑΣ. Μηχανικός Πληροφορικής, MSc
Α.Τ.Ε.Ι Σερρών Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανολογίας Εισαγωγή στο MATLAB ΙΩΑΝΝΗΣ ΜΟΥΣΤΑΚΑΣ Μηχανικός Πληροφορικής, MSc Σέρρες, Φεβρουάριος 2011 Περιεχόμενα 1. Γενικά... 2 1.1. Τι είναι το MATLAB;...
Διαβάστε περισσότεραΣυλλογή & Επεξεργασία Δεδομένων Εργαστήριο 9 Ανάλυση Fourier: Από τη Θεωρία στην Πρακτική Εφαρμογή των Μαθηματικών
Συλλογή & Επεξεργασία Δεδομένων Εργαστήριο 9 Ανάλυση Fourier: Από τη Θεωρία στην Πρακτική Εφαρμογή των Μαθηματικών Τύπων. Σύστημα Συλλογής & Επεξεργασίας Μετρήσεων Σκοπός Βασική δομή ενός προγράμματος
Διαβάστε περισσότεραΠαρουσίαση του Mathematica
Παρουσίαση του Mathematica Εργαστήριο Σκυλίτσης Θεοχάρης Καλαματιανός Ρωμανός Καπλάνης Αθανάσιος Ιόνιο Πανεπιστήμιο (www.ionio.gr)( Εισαγωγή Σύμβολα πράξεων ή συναρτήσεων: Πρόσθεση + Αφαίρεση - Πολλαπλασιασμός
Διαβάστε περισσότεραΙωάννης Σ. Μιχέλης Μαθηματικός
1 Άλγεβρα 1 ο Κεφάλαιο Ερώτηση 1 : Τι ονομάζεται αριθμητική και τι αλγεβρική παράσταση; Μία παράσταση, που περιέχει πράξεις με αριθμούς ονομάζεται αριθμητική παράσταση. Μία παράσταση, που περιέχει πράξεις
Διαβάστε περισσότεραΤΕΙ ΗΠΕΙΡΟΥ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΤΗΛΕΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ
Συστήματα Ψηφιακής Επεξεργασίας Σήματος σε Πραγματικό Χρόνο 2009 10 ΤΕΙ ΗΠΕΙΡΟΥ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΤΗΛΕΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ Συστήματα Ψηφιακής Επεξεργασία Σήματος σε Πραγματικό
Διαβάστε περισσότεραΜαθηματικά Γ Γυμνασίου. Επαναληπτικές Ασκήσεις στο Κεφάλαιο 1: 1.2-1.5 Μονώνυμα - Πολυώνυμα - Ταυτότητες
Μαθηματικά Γ Γυμνασίου Επαναληπτικές Ασκήσεις στο Κεφάλαιο 1: 1.2-1.5 Μονώνυμα - Πολυώνυμα - Ταυτότητες Αλγεβρικές παραστάσεις - Μονώνυμα Πράξεις με μονώνυμα Πολυώνυμα Πρόσθεση και Αφαίρεση πολυωνύμων
Διαβάστε περισσότεραΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ
ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΡΓΑΣΤΗΡΙΟ 3 ΕΡΓΑΣΤΗΡΙΟ 3 ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΒΑΣΙΚΕΣ ΔΟΜΕΣ ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΔΗΜΙΟΥΡΓΙΑ ΔΙΑΝΥΣΜΑΤΩΝ Χ (ΤΕΤΜΗΜΕΝΩΝ) ΚΑΙ Υ (ΤΕΤΑΓΜΕΝΩΝ) ΤΩΝ ΣΗΜΕΙΩΝ
Διαβάστε περισσότερα7. Αν υψώσουμε και τα δύο μέλη μιας εξίσωσης στον κύβο (και γενικά σε οποιαδήποτε περιττή δύναμη), τότε προκύπτει
8 7y = 4 y + y ( 8 7y) = ( 4 y + y) ( y) + 4 y y 4 y = 4 y y 8 7y = 4 y + ( 4 y) = ( 4 y y) ( 4 y) = 4( 4 y)( y) ( 4 y) 4( 4 y)( y) = 0 ( 4 y) [ 4 y 4( y) ] = 4 ( 4 y)( y + 4) = 0 y = ή y = 4) 0 4 H y
Διαβάστε περισσότεραΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB. Κολοβού Αθανασία Ε.Τ.Ε.Π.
ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB Κολοβού Αθανασία Ε.Τ.Ε.Π. http://users.uoa.gr/~akolovou/ MATRIX LABORATORY Μαθηματικό λογισμικό πακέτο Everything is a matrix Εύκολο να ορίσουμε τους πίνακες >> A = [6 3; 5 0] A = 6
Διαβάστε περισσότεραΠΛΗΡΟΦΟΡΙΚΗ Ι (MATLAB) Ενότητα 5
ΠΛΗΡΟΦΟΡΙΚΗ Ι (MATLAB) Ενότητα 5 Σημειώσεις βασισμένες στο βιβλίο Το MATLAB στην Υπολογιστική Επιστήμη και Τεχνολογία Μια Εισαγωγή Πίνακες (Arrays) [1/2] Δομές δεδομένων για την αποθήκευση δεδομένων υπό
Διαβάστε περισσότεραΗλεκτρονικοί Υπολογιστές
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 5: Εντολές Αντικατάστασης, Συναρτήσεις και Σχόλια στη C++ Ζαχαρούλα Ανδρεοπούλου Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Διαβάστε περισσότεραΨηφιακή Επεξεργασία Σήματος
Ψηφιακή Επεξεργασία Σήματος Εργαστήριο 3 Εισαγωγή στα Σήματα Αλέξανδρος Μανουσάκης Τι είναι σήμα; Ως σήμα ορίζουμε το σύνολο των τιμών που λαμβάνει μια ποσότητα (εξαρτημένη μεταβλητή) όταν αυτή μεταβάλλεται
Διαβάστε περισσότεραΔηλαδή η ρητή συνάρτηση είναι πηλίκο δύο ακέραιων πολυωνύμων. Επομένως, το ζητούμενο ολοκλήρωμα είναι της μορφής
D ολοκλήρωση ρητών συναρτήσεων Το θέμα μας στην ενότητα αυτή είναι η ολοκλήρωση ρητών συναρτήσεων. Ας θυμηθούμε πρώτα ποιες συναρτήσεις ονομάζονται ρητές. Ορισμός: Μία συνάρτηση ονομάζεται ρητή όταν μπορεί
Διαβάστε περισσότεραI. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr
I ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ i e ΜΕΡΟΣ Ι ΟΡΙΣΜΟΣ - ΒΑΣΙΚΕΣ ΠΡΑΞΕΙΣ Α Ορισμός Ο ορισμός του συνόλου των Μιγαδικών αριθμών (C) βασίζεται στις εξής παραδοχές: Υπάρχει ένας αριθμός i για τον οποίο ισχύει i Το σύνολο
Διαβάστε περισσότεραΙγνάτιος Ιωαννίδης Χρήσιμες Γνώσεις 5
Ιγνάτιος Ιωαννίδης Χρήσιμες Γνώσεις 5 Α Σύνολα αριθμών Για τα σύνολα των αριθμών γνωρίζουμε ότι N Z Q R. ) Το N= { 0,,,,... } είναι το σύνολο των φυσικών αριθμών. ) Το Z = { 0, ±, ±, ±,... } είναι το σύνολο
Διαβάστε περισσότεραΥπολογισμός αθροισμάτων
Υπολογισμός αθροισμάτων Τα αθροίσματα θα τα δημιουργούμε σαν συναρτήσεις και θα τα αποθηκεύουμε σε αρχείο (m-file) με την ίδια ονομασία με τη συνάρτηση. Για να δημιουργήσουμε ένα άθροισμα ξεκινάμε μηδενίζοντας
Διαβάστε περισσότερα