Μαρία Λουκά. Εργαστήριο Matlab Πολυώνυμα - Παρεμβολή. Τμήμα Πληροφορικής και Τηλεπικοινωνιών.
|
|
- Ῥέα Κορομηλάς
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Μαρία Λουκά Εργαστήριο Matlab Πολυώνυμα - Παρεμβολή Τμήμα Πληροφορικής και Τηλεπικοινωνιών.
2 Στη MATLAB τα πολυώνυμα αναπαριστώνται από πίνακες που περιέχουν τους συντελεστές τους σε φθίνουσα διάταξη. Για παράδειγμα το πολυώνυμο p(x)=x 2-3x+5 αναπαριστάται από τον πίνακα p = [1, -3, 5 ] Ενώ ο πίνακας q = [ 1, 0, 7, -1, 0 ] παριστάνει το πολυώνυμο q(x)=x 4 +7x 2 -x H εντολή length επιστρέφει το μήκος της μεγαλύτερης διάστασης ενός πίνακα X. Για διανύσματα, το μήκος είναι απλά το πλήθος των στοιχείων. Το μήκος ενός κενού πίνακα είναι το 0. Παράδειγμα 1: X = zeros(3,7); L = length(x)=7 Παράδειγμα 2: v = 5:10= , L = length(v)=6
3 Η r = roots(p) υπολογίζει όλες τις ρίζες ενός πολυωνύμου όπου p ο πίνακας που περιέχει τους συντελεστές του πολυωνύμου. Παράδειγμα 1: Για τη λύση της εξίσωσης 3x 2-2x-4=0, να δημιουργηθεί ένας πίνακας που να αναπαριστά το πολυώνυμο και στη συνέχεια να βρεθούν οι ρίζες του. Επομένως έχουμε: p = [3-2 -4]; % ο πίνακας r = roots(p) Απάντηση: Οι ρίζες του πολυωνύμου είναι οι: r =
4 Παράδειγμα 2: Για τη λύση της εξίσωσης x 4-1=0, να δημιουργηθεί ένας πίνακας που να αναπαριστά το πολυώνυμο και στη συνέχεια να βρεθούν οι ρίζες του. Επομένως έχουμε: p = [ ];% ο πίνακας r = roots(p) Απάντηση: Οι ρίζες του πολυωνύμου είναι οι: r = i i i i
5 Μπορούμε όμως να κάνουμε και την αντίστροφη διαδικασία, δηλαδή να υπολογίσουμε τους συντελεστές ενός πολυωνύμου, του οποίου γνωρίζουμε μόνο τις ρίζες. Σε αυτήν την περίπτωση θα χρησιμοποιήσουμε την εντολή poly(r), όπου r ένας πίνακας που περιέχει τις ρίζες του πολυωνύμου που ψάχνουμε. Έστω για παράδειγμα ότι θέλουμε να βρούμε το πολυώνυμο που έχει για ρίζες τα x = 3 και x = 4. Θα δημιουργήσουμε πρώτα τον πίνακα με τις ρίζες αυτές, ο οποίος θα είναι ο: r = [3 4] ενώ στη συνέχεια θα δώσουμε την εντολή: p = poly(r) η οποία θα μου δώσει τους συντελεστές του πολυωνύμου με τις παραπάνω ρίζες p= Το πολυώνυμο δηλαδή είναι το x 2-7x+12.
6 Επίσης με τη συνάρτηση poly μπορούμε να υπολογίσουμε τους συντελεστές του χαρακτηριστικού πολυωνύμου ενός πίνακα Α nxn Παράδειγμα: Έστω A = [1 2 3; 4 5 6; 7 8 0], τότε η p = poly(a) επιστρέφει το διάνυσμα , οι τιμές του οποίου είναι οι συντελεστές του χαρακτηριστικού πολυωνύμου det(a-λi)=0. Αν στη συνέχεια χρησιμοποιήσουμε την r=roots(p) θα υπολογίσουμε τις ρίζες του ανωτέρω πολυωνύμου, οι οποίες είναι οι
7 Για να υπολογίσουμε τις τιμές ενός πολυωνύμου μπορούμε στη Matlab να χρησιμοποιήσουμε την εντολή polyval(p,x), όπου p ο πίνακας που περιέχει τους συντελεστές του πολυωνύμου που μας ενδιαφέρει, και x το σημείο ή τα σημεία για τα οποία θέλουμε να υπολογίσουμε την τιμή του πολυωνύμου. Έστω για παράδειγμα ότι θέλουμε να υπολογίσουμε την τιμή του πολυωνύμου y=3x 3-5x για x = 5. Καταρχήν θα πρέπει να δημιουργήσουμε τον πίνακα με τους συντελεστές του πολυωνύμου, ο οποίος θα είναι της μορφής: p = [ ] αφού λείπουν οι όροι δεύτερης και μηδενικής τάξης. Για να υπολογίσουμε τελικά την τιμή που ζητάμε θα πρέπει να δώσουμε την εντολή: y = polyval(p,5) Tο αποτέλεσμα της εντολής αυτής είναι y=350.
8 Την εντολή polyval μπορούμε να τη χρησιμοποιήσουμε και στην περίπτωση που θέλουμε να υπολογίσουμε ταυτόχρονα τις τιμές ενός πολυωνύμου σε διάφορα σημεία. Έστω για παράδειγμα ότι θέλουμε να υπολογίσουμε τις τιμές του παραπάνω πολυωνύμου στα στοιχεία x=1, x=3, x=7 και x=15. Αρχικά, μπορούμε να εισάγουμε όλες τις τιμές που μας ενδιαφέρουν κατευθείαν στην εντολή y=polyval (p, [1, 3, 7, 15]) όπου τις τιμές που μας ενδιαφέρουν θα τις εισάγουμε μέσα σε αγκύλες. Το αποτέλεσμα θα είναι το: y= Εναλλακτικά μπορούμε να δημιουργήσουμε έναν πίνακα με τις τιμές που μας ενδιαφέρουν και να εισάγουμε αυτόν στην εντολή polyval, δηλ. x=[1,3, 7, 15] y=polyval(p,x) Το αποτέλεσμα θα είναι το ίδιο.
9 Η τελευταία αυτή εναλλακτική μας δυνατότητα μας βοηθάει προφανώς στην περίπτωση όπου θέλουμε να σχεδιάσουμε τη γραφική παράσταση ενός πολυωνύμου. Έστω για παράδειγμα ότι θέλουμε να σχεδιάσουμε τη γραφική παράσταση του παραπάνω πολυωνύμου, για τιμές του x από -50 μέχρι 50. Όπως έχουμε αναφέρει ήδη, για να σχεδιάσουμε τη γραφική παράσταση μιας συνάρτησης πρέπει να δώσουμε στο πρόγραμμα δυο πίνακες που να περιέχουν το πεδίο ορισμού (x) και το πεδίο τιμών (y) της. Αρχικά, λοιπόν πρέπει να δημιουργήσουμε έναν πίνακα που να περιέχει το πεδίο ορισμού που μας ενδιαφέρει. Αυτός θα είναι ένας πίνακας της μορφής: x =[-50:1:50] αν υποθέσουμε ότι επιλέγουμε για βήμα το 1. Στη συνέχεια με χρήση των εντολών polyval και plot έχουμε τη γραφική παράσταση.
10 Έχουμε λοιπόν: p=[ ] x= [-50:1:50]; y=polyval(p,x); plot(x,y)
11 Μέθοδος ελαχίστων τετραγώνων Η εντολή p = polyfit(x,y,n) επιστρέφει κατά φθίνουσα διάταξη τους συντελεστές ενός πολυωνύμου p(x) βαθμού n όπως αυτοί προκύπτουν από την εφαρμογή της μεθόδου ελαχίστων τετραγώνων για τα δεδομένα y. Το μήκος του p είναι n+1. Το πολυώνυμο είναι το p(x)=p 1 x n +p 2 x n p n x+p n+1. Το πρώτο όρισμα x της συνάρτησης polyfit αναπαριστά τα δεδομένα στον άξονα x, το δεύτερο όρισμα y αναπαριστά τα δεδομένα στον άξονα y και τέλος το τρίτο όρισμα n δηλώνει τη τάξη του πολυωνύμου. Παράδειγμα 1: x= [0, 0.3, 0.8, 1.1, 1.6, 2.3] y= [0.5, 0.92, 1.14, 1.25, 1.25, 1.40] p1= polyfit(x,y,1); Αποτέλεσμα: p1= Δηλ. y=0.3387*x
12 Παράδειγμα 2: Για x, y του παραδείγματος 1, η p2= polyfit(x,y,2), δίνει αποτέλεσμα έναν πίνακα τριών στοιχείων, τους συντελεστές δηλ. ενός πολυωνύμου βαθμού 2. p2= Το πολυώνυμο δηλ. είναι το y= *x *x
13 Σχέση μεταξύ των συναρτήσεων polyfit και polyval Σε σχέση με το παράδειγμα 1 της polyfit έχουμε τα ακόλουθα παραδείγματα: Παράδειγμα 1α: x_interest=1.5; y_interest=polyval(p1, x_interest); Το αποτέλεσμα θα είναι το: y_interest=1.2404=0.3387*(1.5) Δηλαδή με τη χρήση της συνάρτησης polyval πήραμε την τιμή του πολυωνύμου p1 όταν x_interest=1.5.
14 Παράδειγμα 1β: Το διάνυσμα x_interest δημιουργείται σαν μια ακολουθία αριθμών x_interest=[0: 0.1: 3] δηλ. είναι το x_interest=0, 0.1, 0.2,.,3 και y_interest=polyval(p1,x_interest) δηλ. έχουμε το y_interest=0.3387*(x_interest) και το αποτέλεσμα θα είναι το y_interest= , , ,, Συμπέρασμα: Θα πάρουμε δηλαδή την τιμή του πολυωνύμου p1 για κάθε τιμή του x_interest. Η γραφική παράσταση που προκύπτει είναι η:
15 plot(x_interest, y_interest);
16 Σε σχέση με το παράδειγμα 2 της polyfit έχουμε τα ακόλουθα παραδείγματα: Παράδειγμα 2α: x_interest=1.5; y_interest=polyval(p2, x_interest); Το αποτέλεσμα θα είναι το: y_interest=1.3425= *(1.5) *(1.5) Δηλαδή με τη χρήση της συνάρτησης polyval πήραμε την τιμή του πολυωνύμου p2 όταν x_interest=1.5.
17 Παράδειγμα 2β: Το διάνυσμα x_interest δημιουργείται σαν μια ακολουθία αριθμών x_interest=[0: 0.1: 3] δηλ. είναι το x_interest=0, 0.1, 0.2,.,3 και y_interest=polyval(p2,x_interest) δηλ. έχουμε το y_interest= *(x_interest) *(x_interest) και το αποτέλεσμα θα είναι το y_interest= , , ,, Συμπέρασμα: Θα πάρουμε δηλαδή την τιμή του πολυωνύμου p2 για κάθε τιμή του x_interest. Η γραφική παράσταση που προκύπτει είναι η:
18 plot(x_interest, y_interest);
19 Για τον πολλαπλασιασμό μεταξύ πολυωνύμων θα χρησιμοποιήσουμε την εντολή conv(p1,p2), όπου p1 και p2 τα πολυώνυμα που θέλουμε να πολλαπλασιάσουμε, ενώ για τη διαίρεση μεταξύ πολυωνύμων θα χρησιμοποιήσουμε την εντολή deconv(p1,p2), όπου p1 το πολυώνυμο - διαιρετέος και p2 το πολυώνυμο - διαιρέτης. Τα ονόματα των παραπάνω εντολών προέρχονται από τις αγγλικές λέξεις convolution (συνέλιξη) και deconvolution (αποσυνέλιξη). Έστω για παράδειγμα ότι θέλουμε να πολλαπλασιάσουμε μεταξύ τους τα πολυώνυμα y=2x 2 +5x και y=3x Καταρχήν θα πρέπει να δημιουργήσουμε τους πίνακες με τους συντελεστές τους. Αυτοί θα είναι της μορφής: p1 = [2 5 0] και p2 = [ ] Για τον πολλαπλασιασμό των δύο πολυωνύμων θα χρησιμοποιήσουμε τελικά την εντολή: w = conv(p1,p2) Tο αποτέλεσμα θα είναι:
20 w= το οποίο αντιστοιχεί στο πολυώνυμο y=6x 5 +15x 4 +12x 2 +30x, το οποίο είναι και το γινόμενο των παραπάνω πολυωνύμων. Παράδειγμα 2: Έστω ότι θέλουμε να διαιρέσουμε το πολυώνυμο y=3x 2 +5x+1 με το πολυώνυμο y=4x+7. Καταρχήν θα δημιουργήσουμε κατά τα γνωστά τους πίνακες με τους συντελεστές τους, οι οποίοι θα είναι δύο πίνακες της μορφής: p1 = [3 5 1] και p2= [4 7] Για τη διαίρεση μεταξύ των δύο πολυωνύμων θα χρησιμοποιήσουμε την εντολή: [q,r] = deconv(p1,p2) Προσοχή: Στην περίπτωση της διαίρεσης πρέπει να χρησιμοποιήσουμε δύο πίνακες για να αποθηκεύσουμε το αποτέλεσμα, έναν για το πηλίκο της διαίρεσης και έναν για το υπόλοιπο αυτής.
21 Το αποτέλεσμα είναι: q= r= δηλ. ο υπολογιστής μας επιστρέφει ως πηλίκο της διαίρεσης το πολυώνυμο y=0.75x και ως υπόλοιπο της το y =
22 Πεπερασμένες Διαφορές Υποθέτουμε ότι έχουμε ένα πίνακα τιμών μιας συνάρτησης f(x). Οι πρώτης τάξης προς τα εμπρός διαφορές στο σημείο x n ορίζονται από τις σχέσεις Δf n = f(x n+1 ) f(x n ) = f n+1 f n Στη συνέχεια δίνεται το script divdiff.m που υλοποιεί τον πίνακα των προς τα εμπρός διαφορών με δύο τρόπους: Παράδειγμα: X=[ ]; % Τιμές εισόδου για το X Y=[ ]; % Τιμές εισόδου για το Y n = length(x); D = zeros(n,n); % Αν ήθελα αρχικοποίηση με κενό, ώστε να μη φαίνονται % τα μηδενικά, θα έγραφα D=[]; D(:,1) = Y'; disp('d'); disp(d);
23 Πεπερασμένες Διαφορές α τρόπος for j=2:n, for k=j:n, D(k,j) = (D(k,j-1)-D(k-1,j-1)); disp('d'); disp(d); end end Αποτέλεσμα:
24 Πεπερασμένες Διαφορές β τρόπος for i=1:4 D(i,1)=X(i); D(i,2)=Y(i); end for j=3:8 for k=1:n-1 D(k,j) = (D(k+1,j-1)-D(k,j-1)); disp('d'); disp(d); end n=n-1; end Αποτέλεσμα
25 Πολυώνυμο παρεμβολής με διηρημένες διαφορές του Newton Μη ισαπέχοντα σημεία Στη συνέχεια δίνεται η συνάρτηση newpoly.m που υλοποιεί τη μέθοδο του πολυωνύμου παρεμβολής με διηρημένες διαφορές του Newton, και βρίσκει την προσεγγιστική τιμή της συνάρτησης f(x)=1+x 3, για x 0 =1.5. function [C,D] = newpoly(x,y) n = length(x); % Δημιουργία πίνακα διηρημένων διαφορών D = zeros(n,n); D(:,1) = Y'; for j=2:n, for k=j:n, D(k,j) = (D(k,j-1)-D(k-1,j-1))/(X(k)-X(k-j+1)); disp('x(k)-x(k-j+1)');disp(x(k)-x(k-j+1)); %το βήμα disp('d'); disp(d); end end
26 Πολυώνυμο παρεμβολής με διηρημένες διαφορές του Newton Μη ισαπέχοντα σημεία % Προσδιορισμός του πολυωνύμου C = D(n,n); for k=(n-1):-1:1, C = conv(c,poly(x(k))); m = length(c); C(m) = C(m) + D(k,k); disp('c'); disp(c); end a=(diag(d))'; % Υπολογισμός των a i % disp('a'); disp(a); xp=1.5; fp=a(1)+a(2)*xp+a(3)*xp*(xp-1)+a(4)*xp*(xp-1)*(xp-2); disp('fp');disp(fp);
27 Πολυώνυμο παρεμβολής με διηρημένες διαφορές του Newton Μη ισαπέχοντα σημεία Στη συνέχεια δίνεται το script σε MATLAB που καλεί τη συνάρτηση που υλοποιεί τη μέθοδο του πολυωνύμου παρεμβολής με τις διηρημένες διαφορές του Newton (newton_poly.m): X=[ ]; % Τιμές εισόδου του X Y=[ ]; % Τιμές εισόδου του Y c=newpoly(x,y);% Εύρεση πολυωνύμου με την παρεμβολή Newton xx=[-3:0.02: 3]; % πεδίο ορισμού του x yy=polyval(c,xx); % τιμή y για κάθε x που ανήκει στο [-3,3] clf plot(xx,yy,'b-',x,y,'*') % γραφική παράσταση πολυωνύμου
28 Πολυώνυμο παρεμβολής με διηρημένες διαφορές του Newton Μη ισαπέχοντα σημεία X(k)-X(k-j+1) 1 D X(k)-X(k-j+1) 1 D X(k)-X(k-j+1) 1 D X(k)-X(k-j+1) 2 D
29 Πολυώνυμο παρεμβολής με διηρημένες διαφορές του Newton Μη ισαπέχοντα σημεία X(k)-X(k-j+1) 2 D X(k)-X(k-j+1) 3 D Απάντηση: Το πολυώνυμο έχει συντελεστές δηλ. είναι το x 3 +1 Η προσεγγιστική τιμή του στο x 0 =1.5 είναι fp
30 Πολυώνυμο παρεμβολής με διηρημένες διαφορές του Newton Μη ισαπέχοντα σημεία Και η γραφική του παράσταση στο [-3,3] είναι η
31 Πολυώνυμο παρεμβολής με διηρημένες διαφορές του Newton Μη ισαπέχοντα σημεία Αν X=[ ]; Y=[ ]; Τότε a p(x)=x 2 -x p(1.5)=3.75 Και η γραφική του παράσταση στο [-5,5] είναι η διπλανή:
Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον (Εργαστήριο 7)
Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον (Εργαστήριο 7) Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Δρ. Δημήτρης Βαρσάμης Αριθμητικές Μέθοδοι (E 7) Δεκέμβριος 2014
Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον (Εργαστήριο 7)
Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον (Εργαστήριο 7) Δρ Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Δρ Δημήτρης Βαρσάμης Αριθμητικές Μέθοδοι (E 7) Δεκέμβριος 2014 1
Προγραμματισμός Ηλεκτρονικών Υπολογιστών 2 - Εργαστήριο
Προγραμματισμός Ηλεκτρονικών Υπολογιστών 2 - Εργαστήριο Ενότητα 7: Πολυώνυμα Διδάσκουσα: Τσαγκαλίδου Ροδή Τμήμα: Ηλεκτρολόγων Μηχανικών ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον
Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Οκτώβριος 2015 Δρ. Δημήτρης Βαρσάμης Οκτώβριος 2015 1 / 37 Αριθμητικές Μέθοδοι
1. Κατασκευάστε ένα διάνυσμα με στοιχεία τους ζυγούς αριθμούς μεταξύ του 31 και 75
1. Κατασκευάστε ένα διάνυσμα με στοιχεία τους ζυγούς αριθμούς μεταξύ του 31 και 75 2. Έστω x = [2 5 1 6] α. Προσθέστε το 16 σε κάθε στοιχείο β. Προσθέστε το 3 σε κάθε στοιχείο που βρίσκεται σε μονή θέση.
Εισαγωγή στους Υπολογιστές
Εισαγωγή στους Υπολογιστές Ενότητα #6: Προγραμματισμός στο MATLAB Καθ. Δημήτρης Ματαράς Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Προγραμματισμός στο MATLAB Εντολή ελέγχου ροής if Γενική μορφή σύνταξης:
Εισαγωγή στην Αριθμητική Ανάλυση
Εισαγωγή στην Αριθμητική Ανάλυση Εισαγωγή στη MATLAB ΔΙΔΑΣΚΩΝ: ΓΕΩΡΓΙΟΣ ΑΚΡΙΒΗΣ ΒΟΗΘΟΙ: ΔΗΜΗΤΡΙΑΔΗΣ ΣΩΚΡΑΤΗΣ, ΣΚΟΡΔΑ ΕΛΕΝΗ E-MAIL: SDIMITRIADIS@CS.UOI.GR, ESKORDA@CS.UOI.GR Τι είναι Matlab Είναι ένα περιβάλλον
Για τη δημιουργία ενός διανύσματος με στοιχεία από το 0 μέχρι το 20 με βήμα το 2 (χρησιμοποιείται συνήθως για διανύσματα χρόνου) δίνουμε
Εργαστήριο Συστημάτων Αυτομάτου Ελέγχου Άσκηση 1 η Εισαγωγή στο Matlab 1 Άσκηση 1 η : Εισαγωγή στο Matlab Αντικείμενο Εξοικείωση με τις βασικές λειτουργίες του Matlab (πρόγραμμα αριθμητικής ανάλυσης και
f x και τέσσερα ζευγάρια σημείων
ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, 014 015, 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #: ΑΡΙΘΜΗΤΙΚΗ ΠΑΡΕΜΒΟΛΗ Ημερομηνία ανάρτησης εργασίας στην ιστοσελίδα του μαθήματος: 1 11 014 Ημερομηνία παράδοσης εργασίας: 18 11 014 Επιμέλεια απαντήσεων:
Μαρία Λουκά. Εργαστήριο Matlab. Αριθμητικός υπολογισμός ιδιοτιμών και ιδιοδιανυσμάτων. Τμήμα Πληροφορικής και Τηλεπικοινωνιών.
Μαρία Λουκά Εργαστήριο Matlab Αριθμητικός υπολογισμός ιδιοτιμών και ιδιοδιανυσμάτων Τμήμα Πληροφορικής και Τηλεπικοινωνιών. Βασικές Συναρτήσεις της Matlab Γραμμικοί δείκτες (Linear indices) Ένας γραμμικός
ΤΕΙ ΗΠΕΙΡΟΥ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΤΗΛΕΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ
Συστήματα Ψηφιακής Επεξεργασίας Σήματος σε Πραγματικό Χρόνο 2009 10 ΤΕΙ ΗΠΕΙΡΟΥ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΤΗΛΕΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ Συστήματα Ψηφιακής Επεξεργασία Σήματος σε Πραγματικό
Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον (Εργαστήριο 6)
Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον (Εργαστήριο 6) Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Δρ. Δημήτρης Βαρσάμης Αριθμητικές Μέθοδοι (E 6) Σεπτέμβριος 2015
Μαρία Λουκά. Εργαστήριο Matlab Άμεσες Μέθοδοι. Τμήμα Πληροφορικής και Τηλεπικοινωνιών
Μαρία Λουκά Εργαστήριο Matlab Άμεσες Μέθοδοι. Τμήμα Πληροφορικής και Τηλεπικοινωνιών Βασικές συναρτήσεις του Matlab b = trace(a) : Είναι το άθροισμα των διαγωνίων στοιχείων του πίνακα Α. d = det(a) : επιστρέφει
Β ΜΕΡΟΣ: ΕΦΑΡΜΟΓΗ ΤΟΥ MATLAB ΣΤΗΝ ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ
Β ΜΕΡΟΣ: ΕΦΑΡΜΟΓΗ ΤΟΥ MATLAB ΣΤΗΝ ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ 1. Εύρεση ρίζας Στο κεφάλαιο αυτό θα ασχοληθούμε με την εύρεση ρίζας μιας συνάρτησης ή αλλιώς με την ευρεση λύσης της εξίσωσης: Πριν αναφερθούμε στην
Δ = δπ + υ με υ < δ. (Ταυτότητα της Ευκλείδειας διαίρεσης),
ΜΕΡΟΣ Α 1.7 ΔΙΑΙΡΕΣΗ ΠΟΛΥΩΝΥΜΩΝ 19 1. 7 ΔΙΑΙΡΕΣΗ ΠΟΛΥΩΝΥΜΩΝ Διαίρεση πολυωνύμων Αν έχουμε δύο φυσικούς αριθμούς Δ (διαιρετέος) και δ (διαιρέτης) με δ και κάνουμε τη διαίρεση Δ : δ, τότε βρίσκουμε δύο άλλους
ΠΛΗΡΟΦΟΡΙΚΗ Ι (MATLAB) Ενότητα 5
ΠΛΗΡΟΦΟΡΙΚΗ Ι (MATLAB) Ενότητα 5 Σημειώσεις βασισμένες στο βιβλίο Το MATLAB στην Υπολογιστική Επιστήμη και Τεχνολογία Μια Εισαγωγή Πίνακες (Arrays) [1/2] Δομές δεδομένων για την αποθήκευση δεδομένων υπό
Στη MATLAB τα πολυώνυμα αναπαριστώνται από διανύσματα που περιέχουν τους συντελεστές τους σε κατιούσα διάταξη. Για παράδειγμα το πολυώνυμο
ΠΟΛΥΩΝΥΜΑ. Γενικά περί πολυωνύμων Στη MATLAB τα πολυώνυμα αναπαριστώνται από διανύσματα που περιέχουν τους συντελεστές τους σε κατιούσα διάταξη. Για παράδειγμα το πολυώνυμο αναπαριστάται από το διάνυσμα
Ένα πρόβλημα στη μετεωρολογία
ΜΑΣ 191.1 Εαρινό Εξάμηνο 2018 ΠΑΡΑΔΕΙΓΜΑ ΕΡΓΑΣΙΑΣ Ένα πρόβλημα στη μετεωρολογία Ένας μετεωρολόγος καταγράφει τις εξής θερμοκρασίες ανά δίωρα διαστήματα: Θερμ. ( o F) Ωρα 60 56 39 32 40 45 70 12 μεσάνυχτα
ΑΣΚΗΣΕΙΣ ΣΤΑ ΠΟΛΥΩΝΥΜΑ ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ. β) x 9x. ε) (x 1) 3(x 1) 2(x 1) 0. (2x 1) x 128 0
ΑΣΚΗΣΕΙΣ ΣΤΑ ΠΟΛΥΩΝΥΜΑ ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ 1. Να λύσετε τις εξισώσεις: α) x x 10x 0 5 x 9x γ) x 8x 0 x x x 0 x (x ) 9(x ) ε) (x 1) (x 1) (x 1) 0. Να λύσετε τις εξισώσεις: 5 α) x 0 7 γ) (x ) 1 0 (x 1)
ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι
ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι κ. ΠΕΤΑΛΙΔΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται
Αριθμητική Ανάλυση & Εφαρμογές
Αριθμητική Ανάλυση & Εφαρμογές Διδάσκων: Δημήτριος Ι. Φωτιάδης Τμήμα Μηχανικών Επιστήμης Υλικών Ιωάννινα 2017-2018 Υπολογισμοί και Σφάλματα Παράσταση Πραγματικών Αριθμών Συστήματα Αριθμών Παράσταση Ακέραιου
Εργαστήρια Αριθμητικής Ανάλυσης Ι. 4 ο Εργαστήριο. Διανύσματα-Πίνακες 1 ο Μέρος
Εργαστήρια Αριθμητικής Ανάλυσης Ι 4 ο Εργαστήριο Διανύσματα-Πίνακες 1 ο Μέρος 2017 Εισαγωγή Όπως έχουμε προαναφέρει σε προηγούμενα εργαστήρια. Ο βασικός τύπος δεδομένων στο Matlab είναι οι πίνακες. Ένα
4.2 ΔΙΑΙΡΕΣΗ ΠΟΛΥΩΝΥΜΩΝ
4 ΔΙΑΙΡΕΣΗ ΠΟΛΥΩΝΥΜΩΝ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΘΕΩΡΗΜΑ (ΤΑΥΤΟΤΗΤΑ ΤΗΣ ΔΙΑΙΡΕΣΗΣ) Για κάθε ζεύγος πολυωνύμων ( και ( με ( 0 υπάρχουν δυο μοναδικά πολυώνυμα ( και (, τέτοια ώστε : ( ( όπου το ( ή είναι το μηδενικό
Εργαστήρια Αριθμητικής Ανάλυσης Ι. 9 ο Εργαστήριο. Απαλοιφή Gauss με μερική οδήγηση - Παρεμβολη
Εργαστήρια Αριθμητικής Ανάλυσης Ι 9 ο Εργαστήριο Απαλοιφή Gauss με μερική οδήγηση - Παρεμβολη 2018 Απαλοιφή Gauss Με Μερική Οδήγηση Για την εύρεση του οδηγού στοιχείου στο k ο βήμα, αναζητούμε το μέγιστο
Α.Τ.Ε.Ι Σερρών Σχολή Τεχνολογικών Εφαρμογών. Τμήμα Μηχανολογίας. Εισαγωγή στο MATLAB ΙΩΑΝΝΗΣ ΜΟΥΣΤΑΚΑΣ. Μηχανικός Πληροφορικής, MSc
Α.Τ.Ε.Ι Σερρών Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανολογίας Εισαγωγή στο MATLAB ΙΩΑΝΝΗΣ ΜΟΥΣΤΑΚΑΣ Μηχανικός Πληροφορικής, MSc Σέρρες, Φεβρουάριος 2011 Περιεχόμενα 1. Γενικά... 2 1.1. Τι είναι το MATLAB;...
4.1. Πολυώνυμα. Η έννοια του πολυωνύμου
4.1 Πολυώνυμα Η έννοια του πολυωνύμου ΟΡΙΣΜΟΙ 1. Μονώνυμο του x ονομάζουμε κάθε παράσταση της μορφής αx ν, όπου α R, ν N (σταθερές) και x R (μεταβλητή).. Πολυώνυμο του x ονομάζουμε κάθε παράσταση της μορφής:
Νέο υλικό. www.cs.uoi.gr/~develeg. Matlab2.pdf - Παρουσίαση μαθήματος 2. Matlab-reference.pdf Σημειώσεις matlab στα ελληνικά (13 σελίδες).
Matlab Μάθημα Νέο υλικό www.cs.uoi.gr/~develeg Matlab.pdf - Παρουσίαση μαθήματος. Matlab-reference.pdf Σημειώσεις matlab στα ελληνικά (3 σελίδες). Επαναληπτικές δομές Όταν εκτελείται μια πράξη σε ένα διάνυσμα,
Κεφάλαιο 6. Αριθμητική παρεμβολή
Κεφάλαιο 6. Αριθμητική παρεμβολή Σύνοψη Στο κεφάλαιο αυτό παρουσιάζεται η μέθοδος της Αριθμητικής Παρεμβολής, δηλαδή η εύρεση της τιμής y k μιας συνάρτησης για ένα δεδομένο x k, όταν δεν γνωρίζουμε την
ΠΟΛΥΩΝΥΜΑ. Λυμένα Παραδείγματα
ΠΟΛΥΩΝΥΜΑ Λυμένα Παραδείγματα. Να βρεθούν οι τιμές του λ R για τις οποίες το πολυώνυμο Ρ () = (4λ -9) +(λ -λ-) +λ- είναι το μηδενικό. Το Ρ () θα είναι το μηδενικό πολυώνυμο, για εκείνες τις τιμές του λ
Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον
Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Οκτώβριος 2014 Δρ. Δημήτρης Βαρσάμης Οκτώβριος 2014 1 / 42 Αριθμητικές Μέθοδοι
Πολυωνυμική εξίσωση βαθμού ν ονομάζεται κάθε εξίσωση της μορφής α ν x ν +α ν-1 x ν α 1 x+α 0 =0,με α 0,α 1,...
3 0 ΛΥΚΕΙΟ ΚΕΡΑΤΣΙΝΙΟΥ Λ. ΒΟΥΛΓΑΡΗ ΜΑΘΗΜΑΤΙΚΟΣ ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΕΞΙΣΩΣΕΙΣ ΠΟΥ ΑΝΑΓΟΝΤΑΙ ΣΕ ΠΟΛΥΩΝΥΜΙΚΕΣ Πολυωνυμική εξίσωση βαθμού ν ονομάζεται κάθε εξίσωση της μορφής α ν x ν +α ν-1 x ν-1 +...+α
Αριθµητική Ανάλυση. Ενότητα 5 Προσέγγιση Συναρτήσεων. Ν. Μ. Μισυρλής. Τµήµα Πληροφορικής και Τηλεπικοινωνιών,
Αριθµητική Ανάλυση Ενότητα 5 Προσέγγιση Συναρτήσεων Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Καθηγητής: Ν. Μ. Μισυρλής Αριθµητική Ανάλυση - Ενότητα 5 1 / 55 Παρεµβολή Ας υποθέσουµε ότι δίνονται
ΑΣΚΗΣΕΙΣ ΣΤΑ ΠΟΛΥΩΝΥΜΑ (ΑΡΙΘΜΗΤΙΚΗ ΤΙΜΗ,ΠΡΑΞΕΙΣ,ΙΣΟΤΗΤΑ) P( x) ( 4) x ( 8) x ( 5 6) x 16 είναι το μηδενικό πολυώνυμο.
ΑΣΚΗΣΕΙΣ ΣΤΑ ΠΟΛΥΩΝΥΜΑ (ΑΡΙΘΜΗΤΙΚΗ ΤΙΜΗ,ΠΡΑΞΕΙΣ,ΙΣΟΤΗΤΑ) 1. Δίνονται τα πολυώνυμα: P ( x) x x, Q( x) x x 1. Να βρεθούν: a) P( x) Q( x) ) P( x) Q( x) ) P( x) Q( x). Να βρεθεί η τιμή του λ R για την οποία
Μαθηματικά Γ Γυμνασίου. Επαναληπτικές Ασκήσεις στο Κεφάλαιο 1: 1.2-1.5 Μονώνυμα - Πολυώνυμα - Ταυτότητες
Μαθηματικά Γ Γυμνασίου Επαναληπτικές Ασκήσεις στο Κεφάλαιο 1: 1.2-1.5 Μονώνυμα - Πολυώνυμα - Ταυτότητες Αλγεβρικές παραστάσεις - Μονώνυμα Πράξεις με μονώνυμα Πολυώνυμα Πρόσθεση και Αφαίρεση πολυωνύμων
1. Το πολυώνυµο P (x) = 3 (x - 1) 2-3x είναι Α. µηδενικού βαθµού Β. πρώτου βαθµού Γ. δευτέρου βαθµού. το µηδενικό πολυώνυµο Ε.
Ερωτήσεις πολλαπλής επιλογής 1. Το πολυώνυµο P (x) = 3 (x - 1) 2-3x 2 + 5 είναι Α. µηδενικού βαθµού Β. πρώτου βαθµού Γ. δευτέρου βαθµού. το µηδενικό πολυώνυµο Ε. τρίτου βαθµού 2. Αν το πολυώνυµο P (x)
ΠΟΛΥΩΝΥΜΑ. Κεφάλαιο 2ο: Ερωτήσεις του τύπου Σωστό-Λάθος
Κεφάλαιο 2ο: ΠΟΛΥΩΝΥΜΑ Ερωτήσεις του τύπου Σωστό-Λάθος 1. * Οι πραγματικοί αριθμοί είναι σταθερά πολυώνυμα. Σ Λ 2. * Το σταθερό πολυώνυμο 0 λέγεται μηδενικό πολυώνυμο. Σ Λ 3. * Κάθε σταθερό και μη μηδενικό
ΠΟΛΥΩΝΥΜΑ ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ
ΠΟΛΥΩΝΥΜΑ ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Έννοια του πολυωνύμου. Ας υποθέσουμε ότι έχουμε μια μεταβλητή x που μπορεί να πάρει κάθε πραγματική τιμή. Μονώνυμο του x, είναι κάθε παράσταση της μορφής : x όπου α είναι
Προγραμματισμός και Χρήση Ηλεκτρονικών Υπολογιστών - Βασικά Εργαλεία Λογισμικού
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΟ ΚΕΝΤΡΟ Προγραμματισμός και Χρήση Ηλεκτρονικών Υπολογιστών - Βασικά Εργαλεία Λογισμικού Μάθημα 5ο Aντώνης Σπυρόπουλος Πράξεις μεταξύ των
Συνέλιξη Κρουστική απόκριση
Συνέλιξη Κρουστική απόκριση Το εργαστήριο αυτό ασχολείται με τα «διασημότερα συστήματα στην επεξεργασία σήματος. Αυτά δεν είναι παρά τα γραμμικά χρονικά αμετάβλητα (ΓΧΑ) συστήματα. Ένα τέτοιο σύστημα μπορεί
Πίνακες >>A = [ 1,6; 7, 11]; Ή τον πίνακα >> B = [2,0,1; 1,7,4; 3,0,1]; Πράξεις πινάκων
Πίνακες Ένας πίνακας είναι μια δισδιάστατη λίστα από αριθμούς. Για να δημιουργήσουμε ένα πίνακα στο Matlab εισάγουμε κάθε γραμμή σαν μια ακολουθία αριθμών που ξεχωρίζουν με κόμμα (,) ή κενό (space) και
ΠΟΛΥΩΝΥΜΑ. Κεφάλαιο 2ο: Ερωτήσεις του τύπου Σωστό-Λάθος
Κεφάλαιο ο: ΠΟΛΥΩΝΥΜΑ Ερωτήσεις του τύπου Σωστό-Λάθος 1. * Οι πραγματικοί αριθμοί είναι σταθερά πολυώνυμα. Σ Λ. * Το σταθερό πολυώνυμο 0 λέγεται μηδενικό πολυώνυμο. Σ Λ 3. * Κάθε σταθερό και μη μηδενικό
Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον (Εργαστήριο 3)
Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον (Εργαστήριο 3) Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Δρ. Δημήτρης Βαρσάμης Αριθμητικές Μέθοδοι (E 3) Σεπτέμβριος 2015
Εισαγωγή στη Matlab Εισαγωγή στην Αριθμητική Ανάλυση Διδάσκων: Γεώργιος Ακρίβης Βοηθός: Δημήτριος Ζαβαντής
Εισαγωγή στη Matlab Εισαγωγή στην Αριθμητική Ανάλυση Διδάσκων: Γεώργιος Ακρίβης Βοηθός: Δημήτριος Ζαβαντής email: dzavanti@cs.uoi.gr Περιεχόμενα Τι είναι η Matlab; Ιστορικά Χρήσεις και στοιχεία της Matlab
Ανάλυση συστημάτων με χρήση μετασχηματισμού Laplace
Ανάλυση συστημάτων με χρήση μετασχηματισμού Laplace. Ο Μετασχηματισμός Laplace Ο μετασχηματισμός Laplace μιας συνάρτησης f(t) δίνεται από τη σχέση: st L[ f ( t)] = F( = f ( t) e dt Η χρήση του μετασχηματισμού
Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον
Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Οκτώβριος 2015 Δρ. Δημήτρης Βαρσάμης Οκτώβριος 2015 1 / 68 Αριθμητικές Μέθοδοι
όπου Η μήτρα ή πίνακας του συστήματος
Έστω το γραμμικό σύστημα: Το ίδιο σύστημα σε μορφή πινάκων: 3 5 7 3 2 y x y x B X y x 3 7 5 3 2 όπου Η μήτρα ή πίνακας του συστήματος B Η μήτρα ή πίνακας των σταθερών όρων X Η μήτρα ή πίνακας των αγνώστων
ΣΥΣΤΗΜΑΤΑ. 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις)
6 ΣΥΣΤΗΜΑΤΑ 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις) Η εξίσωση αx βy γ Στο Γυμνάσιο διαπιστώσαμε με την βοήθεια παραδειγμάτων ότι η εξίσωση αx βy γ, με α 0 ή β 0, που λέγεται γραμμική εξίσωση,
Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει:
Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει: Να αναγνωρίζει πότε μια αλγεβρική παράσταση της πραγματικής μεταβλητής x, είναι πολυώνυμο και να διακρίνει τα στοιχεία του: όροι, συντελεστές, σταθερός
Μ Α Θ Η Μ Α Τ Ι Κ Α Γ ΓΥΜΝΑΣΙΟΥ ΖΕΡΒΟΣ ΜΑΝΟΛΗΣ
Μ Α Θ Η Μ Α Τ Ι Κ Α Γ ΓΥΜΝΑΣΙΟΥ ΖΕΡΒΟΣ ΜΑΝΟΛΗΣ 1 ΜΕΡΟΣ Α ΚEΦΑΛΑΙΟ 1 Ο ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ 1.1 ΠΡΑΞΕΙΣ ΜΕ ΠΡΑΓΜΑΤΙΚΟΥΣ ΑΡΙΘΜΟΥΣ Α. Οι πραγματικοί αριθμοί και οι πράξεις τους 1. ΕΡΩΤΗΣΗ Τι ονομάζουμε
2.2 ιαίρεση Πολυωνύμων
ιαίρεση Πολυωνύμων η Μορφή Ασκήσεων: Ασκήσεις που μας ζητούν να διαιρέσουμε δύο πολυώνυμα Δίνονται τα πολυώνυμα: P x x x x 8x 4 = + +4 και δ ( x) = x x α) Να βρεθεί το πηλίκο και το υπόλοιπο της διαίρεσης
4.3. ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΚΑΙ ΑΝΙΣΩΣΕΙΣ
4.3. ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΚΑΙ ΑΝΙΣΩΣΕΙΣ Αν η εξίσωση α ν x ν +α ν-1 x ν-1 +... +α 1 x+α 0 = 0 με α ν,α ν-1,...,α 1,α 0 Ζ : έχει ρίζα τον ακέραιο αριθμό ρ, τότε το ρ διαιρεί το α 0. έχει ρίζα το κλάσμα,
Εισαγωγή στο GNU Octave/MATLAB
Εισαγωγή στο GNU Octave/MATLAB Δρ. Βασίλειος Δαλάκας Καλώς ήρθατε στο εργαστήριο Σημάτων και Συστημάτων με το λογισμικό Octave (Οκτάβα). Οι σημειώσεις αυτές έχουν βασιστεί στις σημειώσεις του εργαστηρίου
7. Αν υψώσουμε και τα δύο μέλη μιας εξίσωσης στον κύβο (και γενικά σε οποιαδήποτε περιττή δύναμη), τότε προκύπτει
8 7y = 4 y + y ( 8 7y) = ( 4 y + y) ( y) + 4 y y 4 y = 4 y y 8 7y = 4 y + ( 4 y) = ( 4 y y) ( 4 y) = 4( 4 y)( y) ( 4 y) 4( 4 y)( y) = 0 ( 4 y) [ 4 y 4( y) ] = 4 ( 4 y)( y + 4) = 0 y = ή y = 4) 0 4 H y
Κεφάλαιο 4 ο ΠΟΛΥΩΝΥΜΑ-ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ
Κεφάλαιο 4 ο ΠΟΛΥΩΝΥΜΑ-ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ 4.1 πωλυωνυμα Η έννοια του πολυωνύμου Έστω x μια μεταβλητή που μπορεί να πάρει οποιαδήποτε πραγματική τιμή. Καλούμε μονώνυμο του x κάθε παράσταση της μορφής
Προγραμματισμός και Χρήση Ηλεκτρονικών Υπολογιστών - Βασικά Εργαλεία Λογισμικού
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΟ ΚΕΝΤΡΟ Προγραμματισμός και Χρήση Ηλεκτρονικών Υπολογιστών - Βασικά Εργαλεία Λογισμικού Μάθημα 8ο Aντώνης Σπυρόπουλος Ανώνυμες συναρτήσεις
ΜΑΣ 371: Αριθμητική Ανάλυση ΙI ΑΣΚΗΣΕΙΣ. 1. Να βρεθεί το πολυώνυμο Lagrange για τα σημεία (0, 1), (1, 2) και (4, 2).
ΜΑΣ 37: Αριθμητική Ανάλυση ΙI ΑΣΚΗΣΕΙΣ Να βρεθεί το πολυώνυμο Lagrage για τα σημεία (, ), (, ) και (4, ) Να βρεθεί το πολυώνυμο παρεμβολής Lagrage που προσεγγίζει τη συνάρτηση 3 f ( x) si x στους κόμβους
( ) Ίσες συναρτήσεις. = g, Οι συναρτήσεις f, g λέμε ότι είναι ίσες και συμβολίζουμε f. όταν: Έχουν το ίδιο πεδία ορισμού Α
.5.. Ίσες συναρτήσεις ΣΥΝΑΡΤΗΣΕΙΣ 7 Ο ΜΑΘΗΜΑ Οι συναρτήσεις f, g λέμε ότι είναι ίσες και συμβολίζουμε f = g, Έχουν το ίδιο πεδία ορισμού Α Για κάθε x Α ισχύει f ( x) = g( x) Αν για τις συναρτήσεις: f:
Matlab. Εισαγωγικές έννοιες. C. C. Katsidis
Matlab Εισαγωγικές έννοιες C. C. Katsidis m-file editor Εισαγωγή στο Matlab Command Window Εισαγωγή στο Matlab Ορισμός και γραφικές παραστάσεις συναρτήσεων στο matlab (συνάρτηση y=x 2 ) Ορισμός και γραφικές
αριθμούς Βασικές ασκήσεις Βασική θεωρία iii) φυσικοί; ii) ακέραιοι; iii) ρητοί;
Πράξεις με πραγματικούς αριθμούς Βασικές ασκήσεις Βασική θεωρία Ρητοί και άρρητοι αριθμοί. α) Ποιοι αριθμοί ονομάζονται: iii) φυσικοί; ii) ακέραιοι; iii) ρητοί; iv) άρρητοι; v) πραγματικοί; β) Να βρείτε
12. ΑΝΙΣΩΣΕΙΣ Α ΒΑΘΜΟΥ. είναι δύο παραστάσεις μιας μεταβλητής x πού παίρνει τιμές στο
ΓΕΝΙΚΑ ΠΕΡΙ ΑΝΙΣΩΣΕΩΝ Έστω f σύνολο Α, g Α ΒΑΘΜΟΥ είναι δύο παραστάσεις μιας μεταβλητής πού παίρνει τιμές στο Ανίσωση με έναν άγνωστο λέγεται κάθε σχέση της μορφής f f g g ή, η οποία αληθεύει για ορισμένες
ΜΕΜ251 Αριθμητική Ανάλυση
ΜΕΜ251 Αριθμητική Ανάλυση Διάλεξη 10, 12 Μαρτίου 2018 Μιχάλης Πλεξουσάκης Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Περιεχόμενα 1. Παρεμβολή 2. Παράσταση και υπολογισμός του πολυωνύμου παρεμβολής
1. Αν α 3 + β 3 + γ 3 = 3αβγ και α + β + γ 0, δείξτε ότι το πολυώνυµο P (x) = (α - β) x 2 + (β - γ) x + γ - α είναι
_ ΑΣΚΗΣΕΙΣ ΠΟΛΥΩΝΥΜΩΝ 1. Αν α + β + γ = αβγ και α + β + γ 0, δείξτε ότι το πολυώνυµο P () = (α - β) + (β - γ) + γ - α είναι το µηδενικό πολυώνυµο.. Να δειχθεί ότι το πολυώνυµο P () = (κ - ) + (λ + 6) +
Εργαστήριο Γραμμικής Άλγεβρας. H Matlab ως γλώσσα προγραμματισμού
Πανεπιστήμιο Θεσσαλίας Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής με Εφαρμογές στη Βιοϊατρική Εργαστήριο Γραμμικής Άλγεβρας H Matlab ως γλώσσα προγραμματισμού Προγραμματιστικές δομές Έλεγχος ροής if if
KΕΦΑΛΑΙΟ 1 ΧΡΗΣΙΜΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΝΝΟΙΕΣ. { 1,2,3,..., n,...
KΕΦΑΛΑΙΟ ΧΡΗΣΙΜΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΝΝΟΙΕΣ Βασικές έννοιες διαιρετότητας Θα συµβολίζουµε µε, τα σύνολα των φυσικών αριθµών και των ακεραίων αντιστοίχως: {,,3,,, } { 0,,,,, } = = ± ± ± Ορισµός Ένας φυσικός αριθµός
ημιουργία και διαχείριση πινάκων
ημιουργία και διαχείριση πινάκων Για να δημιουργήσουμε έναν πίνακα στο MATLAB μπορούμε να γράψουμε A = [ 2 3 ; 7 9 0 ; - 0 5; -2-3 9 -] βλέπουμε ότι αμέσως μας επιστρέφει τον πίνακα που ορίσαμε A = 2 3
Αριθμητική Ανάλυση και Εφαρμογές
Αριθμητική Ανάλυση και Εφαρμογές Διδάσκων: Δημήτριος Ι. Φωτιάδης Τμήμα Μηχανικών Επιστήμης Υλικών Ιωάννινα 07-08 Πεπερασμένες και Διαιρεμένες Διαφορές Εισαγωγή Θα εισάγουμε την έννοια των διαφορών με ένα
Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση Ι. Λυχναρόπουλος
9/6/5 Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση Ι. Λυχναρόπουλος Άσκηση (Μονάδες ) 5 Δίνεται ο πίνακας A 5. Αν διαγωνοποιείται να τον διαγωνοποιήσετε και στη συνέχεια να k υπολογίσετε το A όπου k θετικός
ΕΙΣΑΓΩΓΗ ΣΤΟ MATHLAB Α ΜΕΡΟΣ
ΕΙΣΑΓΩΓΗ ΣΤΟ MATHLAB Α ΜΕΡΟΣ ΕΙΣΑΓΩΓΗ ΠΙΝΑΚΩΝ ΣΤΟ MATHLAB Αν θέλουμε να εισάγουμε έναν πίνακα στο mathlab και να προβληθεί στην οθόνη βάζουμε τις τιμές του σε άγκιστρα χωρίζοντάς τις με κόμματα ή κενό
1 x m 2. degn = m 1 + m m n. a(m 1 m 2...m k )x m 1
1 Πολυώνυμα και συσχετικός χώρος Ορισμός 3.1 Ενα μονώνυμο N στις μεταβλητές x 1, x 2,..., x n είναι ένα γινόμενο της μορφής x m 1 2...x m n n, όπου όλοι οι εκθέτες είναι φυσικοί αριθμοί. Ο βαθμός του μονωνύμου
Εφαρμοσμένα Μαθηματικά 3η εργαστηριακή άσκηση
ΤΕΙ ΑΘΗΝΑΣ ΤΜΗΜΑ ΝΑΥΠΗΓΙΚΗΣ Εφαρμοσμένα Μαθηματικά 3η εργαστηριακή άσκηση ΣΠΟΥΔΑΣΤΗΣ: ΧΑΤΖΗΓΕΩΡΓΙΟΥ ΑΝΤΩΝΗΣ Α.Μ. 09036 Εξάμηνο ΠΤΧ ΚΑΘΗΓΗΤΗΣ: ΔΡ. ΜΠΡΑΤΣΟΣ ΑΘΑΝΑΣΙΟΣ Περιεχόμενα 3.1 Πολυωνυμική παρεμβολή...
ΑΕΝ / ΑΣΠΡΟΠΥΡΓΟΥ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΑΥΤΟΜΑΤΙΣΜΟΥ. Σημειώσεις για τη χρήση του MATLAB στα Συστήματα Αυτομάτου Ελέγχου
ΑΕΝ / ΑΣΠΡΟΠΥΡΓΟΥ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΑΥΤΟΜΑΤΙΣΜΟΥ Σημειώσεις για τη χρήση του MATLAB στα Συστήματα Αυτομάτου Ελέγχου Κ. ΝΑΣΟΠΟΥΛΟΣ - Α. ΧΡΗΣΤΙ ΟΥ Κ. ΝΑΣΟΠΟΥΛΟΣ - Α. ΧΡΗΣΤΙ ΟΥ Οκτώβριος 011 MATLAB
ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι
ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι κ ΠΕΤΑΛΙΔΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται
Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον (Εργαστήριο 5)
Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον (Εργαστήριο 5) Δρ Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Δρ Δημήτρης Βαρσάμης Αριθμητικές Μέθοδοι (E 5) Σεπτέμβριος 2015 1
Μαθηματικά Γ Γυμνασίου. Επαναληπτικές Ασκήσεις στο Κεφάλαιο 1: Μονώνυμα - Πολυώνυμα - Ταυτότητες
Μαθηματικά Γ Γυμνασίου Επαναληπτικές Ασκήσεις στο Κεφάλαιο :.2 -.5 Μονώνυμα - Πολυώνυμα - Ταυτότητες Αλγεβρικές παραστάσεις - Μονώνυμα Πράξεις με μονώνυμα Πολυώνυμα Πρόσθεση και Αφαίρεση πολυωνύμων Πολλαπλασιασμός
ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι
ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι κ. ΠΕΤΑΛΙΔΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται
ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ενότητα 3: ΣΥΝΕΛΙΞΗ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ενότητα 3: ΣΥΝΕΛΙΞΗ Aναστασία Βελώνη Τμήμα Η.Υ.Σ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Μαθηματικά Γ Γυμνασίου
Α λ γ ε β ρ ι κ έ ς π α ρ α σ τ ά σ ε ι ς 1.1 Πράξεις με πραγματικούς αριθμούς (επαναλήψεις συμπληρώσεις) A. Οι πραγματικοί αριθμοί και οι πράξεις τους Διδακτικοί στόχοι Θυμάμαι ποιοι αριθμοί λέγονται
4.1. Πολυώνυμα. Η έννοια του πολυωνύμου
4.1 Πολυώνυμα Η έννοια του πολυωνύμου ΟΡΙΣΜΟΙ 1. Μονώνυμο του x ονομάζουμε κάθε παράσταση της μορφής αx ν, όπου α R, ν N (σταθερές) και x R (μεταβλητή). 2. Πολυώνυμο του x ονομάζουμε κάθε παράσταση της
ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου
ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου Κεφάλαιο ο Αλγεβρικές Παραστάσεις ΛΕΜΟΝΙΑ ΜΠΟΥΤΣΚΟΥ Γυμνάσιο Αμυνταίου ΜΑΘΗΜΑ Α. Πράξεις με πραγματικούς αριθμούς ΑΣΚΗΣΕΙΣ ) ) Να συμπληρώσετε τα κενά ώστε στην κατακόρυφη στήλη
Α Λ Γ Ε Β Ρ Α Β Λ Υ Κ Ε Ι Ο Υ. ΚΕΦΑΛΑΙΟ 4 ο ΠΟΛΥΩΝΥΜΑ-ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ
Α Λ Γ Ε Β Ρ Α Β Λ Υ Κ Ε Ι Ο Υ ΚΕΦΑΛΑΙΟ 4 ο ΠΟΛΥΩΝΥΜΑ-ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Συνοπτική Θεωρία Ασκήσεις της Τράπεζας Θεμάτων Ερωτήσεις Σωστού-Λάθους Διαγωνίσματα Επιμέλεια: Συντακτική ομάδα mathp.gr Συντονισμός
Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον
Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Οκτώβριος 2015 Δρ. Δημήτρης Βαρσάμης Οκτώβριος 2015 1 / 47 Αριθμητικές Μέθοδοι
Τάσος Αρβανίτης Σελίδα 1 από 28
ΕΝΔΕΙΚΤΙΚΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΘΕΩΡΙΑ Θέμα 1 ο : α) Τι λέμε ταυτότητα; (ορισμό) β) Να συμπληρώσετε τις παρακάτω ταυτότητες i) ( ) ii) ( ) γ) Πως πολλαπλασιάζουμε πολυώνυμο με πολυώνυμο; (ορισμό) Θέμα ο :
lnx ln x ln l x 1. = (0,1) (1,7].
ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 1: ΕΝΝΟΙΑ ΠΡΑΓΜΑΤΙΚΗΣ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ. IΣΟΤΗΤΑ ΣΥΝΑΡΤΗΣΕΩΝ - ΠΡΑΞΕΙΣ ΜΕ ΣΥΝΑΡΤΗΣΕΙΣ - ΣΥΝΘΕΣΗ ΣΥΝΑΡΤΗΣΕΩΝ [Ενότητα
1.7 ΙΑΙΡΕΣΗ ΠΟΛΥΩΝΥΜΩΝ
1 1.7 ΙΑΙΡΕΣΗ ΠΟΛΥΩΝΥΜΩΝ ΘΕΩΡΙΑ 1. Ταυτότητα Ευκλείδειας διαίρεσης : Για δύο οποιαδήποτε πολυώνυµα (x) και δ(x) µε δ(x) µπορούµε να βρούµε δύο άλλα πολυώνυµα π(x) και υ(x) τέτοια ώστε να ισχύει (x) = δ(x)π(x)
ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ΕΠΙΜΕΛΕΙΑ ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ. ΚΕΦΑΛΑΙΟ 4ο ΠΟΛΥΩΝΥΜΑ ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΕΠΙΜΕΛΕΙΑ: ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ
ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 4ο ΠΟΛΥΩΝΥΜΑ ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΕΠΙΜΕΛΕΙΑ ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ 1 ΚΕΦΑΛΑΙΟ 4ο ΠΟΛΥΩΝΥΜΑ ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΠΟΛΥΩΝΥΜΑ 1. Τι καλούμε μονώνυμο, τι πολυώνυμο, τι όροι,τι συντελεστές
ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ. (2 μονάδες) Δίνονται τα σημεία (-2, -16), (-1, -3), (0, 0), (1, -1) και (2, 0). Υπολογίστε το πολυώνυμο παρεμβολής Newton.
ΠΟΛΙΤΙΚΩΝ ΔΟΜΙΚΩΝ ΕΡΓΩΝ ΑΚΑΔ. ΕΤΟΣ - Τ. Ε. Ι. Σ Ε Ρ Ρ Ω Ν Σέρρες, 9 Ιανουαρίου ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ Ομάδα Α ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ ΘΕΜΑ ον (+ μονάδες) Δίνεται ο πρόβολος, με μήκος = m, με κατανεμημένο φορτίο που
ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι
ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι κ. ΠΕΤΑΛΙΔΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται
ΒΟΗΘΗΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΣΤΑ ΓΕΝΙΚΑ ΜΑΘΗΜΑΤΙΚΑ
ΤΜΗΜΑ ΔΙΕΘΝΟΥΣ ΕΜΠΟΡΙΟΥ ΒΟΗΘΗΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΣΤΑ ΓΕΝΙΚΑ ΜΑΘΗΜΑΤΙΚΑ ΚΕΦΑΛΑΙΑ: ) ΠΙΝΑΚΕΣ ) ΟΡΙΖΟΥΣΕΣ ) ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ 4) ΠΑΡΑΓΩΓΟΙ ΜΑΡΙΑ ΡΟΥΣΟΥΛΗ ΚΕΦΑΛΑΙΟ ΠΙΝΑΚEΣ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ ΟΡΙΣΜΟΣ Πίνακας
Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους
Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ Κεφάλαιο 1 ο ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ 1.1 Πράξεις με πραγματικούς αριθμούς Α. Οι πραγματικοί αριθμοί και οι πράξεις τους 1. Ποιοι αριθμοί ονομάζονται: α) ρητοί β) άρρητοι γ) πραγματικοί;
Δηλαδή η ρητή συνάρτηση είναι πηλίκο δύο ακέραιων πολυωνύμων. Επομένως, το ζητούμενο ολοκλήρωμα είναι της μορφής
D ολοκλήρωση ρητών συναρτήσεων Το θέμα μας στην ενότητα αυτή είναι η ολοκλήρωση ρητών συναρτήσεων. Ας θυμηθούμε πρώτα ποιες συναρτήσεις ονομάζονται ρητές. Ορισμός: Μία συνάρτηση ονομάζεται ρητή όταν μπορεί
ΚΕΦΑΛΑΙΟ 2 Ο ΠΟΛΥΩΝΥΜΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ - ΑΣΚΗΣΕΙΣ
ΚΕΦΑΛΑΙΟ Ο ΠΟΛΥΩΝΥΜΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ - ΑΣΚΗΣΕΙΣ ΚΕΦΑΛΑΙΟ Ο ΠΟΛΥΩΝΥΜΑ 10 ΕΠΑΝΑΛΗΨΕΙΣ ΑΠΟ ΠΡΟΗΓΟΥΜΕΝΕΣ ΤΑΞΕΙΣ α ) Ταυτότητες 1. (a-β)(a+β)=a - b. (a ± b ) = a ± ab + b 3 3 3 3. (a ± b ) = a ± 3a b + 3ab
Ασκήσεις. ι) α α ιι) α α ΠΡΟΣΘΕΣΗ - ΑΦΑΙΡΕΣΗ ΡΗΤΩΝ
ΠΡΟΣΘΕΣΗ - ΑΦΑΙΡΕΣΗ ΡΗΤΩΝ Ασκήσεις ) Να βρείτε τους ακεραίους, οι οποίοι έχουν απόλυτη τιμή μικρότερη ή ίση του. ) Να βρείτε τους ακεραίους, οι οποίοι έχουν απόλυτη τιμή μεγαλύτερη του. ) Η απόσταση δύο
ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 10: ΕΥΡΕΣΗ ΤΟΠΙΚΩΝ ΑΚΡΟΤΑΤΩΝ
ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 1: ΕΥΡΕΣΗ ΤΟΠΙΚΩΝ ΑΚΡΟΤΑΤΩΝ [Ενότητα Προσδιορισμός των Τοπικών Ακροτάτων - Θεώρημα Εύρεση Τοπικών Ακροτάτων του κεφ27 Μέρος Β του σχολικού βιβλίου] ΣΗΜΕΙΩΣΕΙΣ Εύρεση
Αριθμητική Ανάλυση και Εφαρμογές
Αριθμητική Ανάλυση και Εφαρμογές Διδάσκων: Δημήτριος Ι. Φωτιάδης Τμήμα Μηχανικών Επιστήμης Υλικών Ιωάννινα 07-08 Αριθμητική Παραγώγιση Εισαγωγή Ορισμός 7. Αν y f x είναι μια συνάρτηση ορισμένη σε ένα διάστημα
Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον
Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Οκτώβριος 2015 Δρ. Δημήτρης Βαρσάμης Οκτώβριος 2015 1 / 63 Αριθμητικές Μέθοδοι
2.2 ιαίρεση Πολυωνύμων
ιαίρεση Πολυωνύμων Ταυτότητα διαίρεσης Όπως στους ακέραιους αριθμούς, έτσι και στα πολυώνυμα ισχύει η ταυτότητα της διαίρεσης Πιο συγκεκριμένα ισχύει ότι: Για κάθε ζεύγος πολυωνύμων Δ ( ) και δ ( ), με
Διακριτός Μετασχηματισμός Fourier
Διακριτός Μετασχηματισμός Fourier 1 Διακριτός Μετασχηματισμός Fourier Ο μετασχηματισμός Fourier αποτελεί τον ακρογωνιαίο λίθο της επεξεργασίας σήματος αλλά και συχνή αιτία πονοκεφάλου για όσους πρωτοασχολούνται
ΜΑΘΗΜΑΤΙΚΑ - Γ ΓΥΜΝΑΣΙΟΥ
ΜΑΘΗΜΑΤΙΚΑ - Γ ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ Α': ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ ο: Αλγεβρικές παραστάσεις Παράγραφος A..: Πράξεις με πραγματικούς αριθμούς (επαναλήψεις συμπληρώσεις) Β: Πράξεις με μονώνυμα Τα σημαντικότερα σημεία
ΑΛΓΕΒΡΑ Α ΓΥΜΝΑΣΙΟΥ ΘΕΤΙΚΟΙ ΚΑΙ ΑΡΝΗΤΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ
ΘΕΤΙΚΟΙ ΚΑΙ ΑΡΝΗΤΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ ΚΕΦΑΛΑΙΟ 7 Ο ΘΕΤΙΚΟΙ ΚΑΙ ΑΡΝΗΤΙΚΟΙ ΑΡΙΘΜΟΙ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ 1. Όταν μπροστα" (αριστερα") απο" ε"ναν αριθμο" γραφει" το συ"μβολο + το"τε ο αριθμο"ς