Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον
|
|
- Παύλος Βικελίδης
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Οκτώβριος 2015 Δρ. Δημήτρης Βαρσάμης Οκτώβριος / 47
2 Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Τέταρτη Σειρά Διαφανειών 1 Αριθμητική επίλυση εξισώσεων 2 Επαναληπτικές Μέθοδοι 3 Μέθοδος Σταθερού Σημείου 4 Μέθοδος Newton 5 Μέθοδος Τέμνουσας 6 Συγκεντρωτικά Αποτελέσματα Δρ. Δημήτρης Βαρσάμης Οκτώβριος / 47
3 Εισαγωγή Αριθμητική επίλυση εξισώσεων (μη γραμμικές) Μέθοδοι με διαδοχικές δοκιμές σε διάστημα: Μέθοδος Διχοτόμησης Μέθοδος Εσφαλμένης Θέσης (Regula-Falsi) Μέθοδοι με επαναληπτικούς αναδρομικούς τύπους: Μέθοδος Τέμνουσας Μέθοδος Newton Μέθοδος Muller Δρ. Δημήτρης Βαρσάμης Οκτώβριος / 47
4 Μέθοδος Σταθερού Σημείου Εύρεση μιας σχέσης της μορφής x = g(x) την οποία την μετατρέπουμε ως αναδρομική x n = g (x n 1 ) Η επιλογή της συνάρτησης υπόκειται σε μαθηματικούς περιορισμούς Κάθε συνεχής συνάρτηση g : [a, b] [a, b] έχει σταθερό σημείο δηλαδή, g(x ) = x. Μια συνεχής συνάρτηση g : [a, b] [a, b] έχει μοναδικό σταθερό σημείο αν είναι συστολή. Μια συνάρτηση g : [a, b] [a, b] είναι συστολή όταν g (x) k < 1, x (a, b) Δρ. Δημήτρης Βαρσάμης Οκτώβριος / 47
5 Μέθοδος Σταθερού Σημείου - Υλοποίηση ΒΗΜΑ 1 o Επιλέγουμε μια αρχική εκτίμηση της ρίζας x 1. ΒΗΜΑ 2 o Σε κάθε βήμα i βρίσκεται μία νέα προσέγγιση της ρίζας όπου είναι η τιμή του x δίνεται από την σχέση: x i = g(x i 1 ) ΒΗΜΑ 3 o Αν f(x i ) = 0 τότε το x i είναι η ζητούμενη ρίζα και σταματάει η διαδικασία. Αυτή η περίπτωση όμως σπάνια συμβαίνει στην πράξη. ΒΗΜΑ 4 o Επιστρέφουμε στο 2 o βήμα και επαναλαμβάνουμε την διαδικασία για να βρούμε τη νέα προσέγγιση x i+1, μέχρι να εκπληρωθεί ένα από τα κριτήρια τερματισμού. Δρ. Δημήτρης Βαρσάμης Οκτώβριος / 47
6 Μέθοδος Σταθερού Σημείου - Υλοποίηση Κριτήρια τερματισμού: Όταν η απόλυτη τιμή της διαφοράς μεταξύ της τρέχουσας προσεγγιστικής ρίζας (x i ) και της προηγούμενης προσεγγιστικής ρίζας (x i 1 ) είναι μικρότερη από την ακρίβεια λύσης tol που έχει δηλώσει ο χρήστης, δηλαδή θα έχουμε ταύτιση των σημείων. Επομένως θα ισχύει: x i x i 1 < tol όπου tol = k με k τον αριθμό των δεκαδικών ψηφίων της επιθυμητής ακρίβειας. Η τιμή x i να είναι ρίζα της συνάρτησης f(x), δηλαδή να ισχύει ότι f(x i ) = 0. Οι επαναλήψεις που έχει δηλώσει ο χρήστης για την εύρεση της ρίζας εξαντλήθηκαν. Δρ. Δημήτρης Βαρσάμης Οκτώβριος / 47
7 Μέθοδος Σταθερού Σημείου - Παράδειγμα Να βρεθεί η ρίζα της εξίσωσης f(x) = 0 με f(x) = x 3 + x + 1 στο διάστημα ( 1, 1). Πρώτη προσέγγιση. Η εξίσωση f(x) = 0 θα γίνει x 3 + x + 1 = 0 x = x 3 1 x n = x 3 n 1 1 Άρα, επομένως g(x) = x 3 1 με g (x) = 3x 2 g (x) = 3x 2 < 3, x ( 1, 1) Δρ. Δημήτρης Βαρσάμης Οκτώβριος / 47
8 Μέθοδος Σταθερού Σημείου - Παράδειγμα και g([ 1, 1]) = [ 2, 0] δηλαδή, η g δεν πληροί τις προϋποθέσεις. Αν υπολογίσουμε τις τιμές των x n = x 3 n 1 1 με αρχική τιμή x 1 = 0 x 1 = 0 x 2 = 1 x 3 = 0 x 4 = 1 x 5 = 0 Δρ. Δημήτρης Βαρσάμης Οκτώβριος / 47
9 Μέθοδος Σταθερού Σημείου - Παράδειγμα Δεύτερη προσέγγιση. Η εξίσωση f(x) = 0 θα γίνει Άρα, επομένως g (x) = x 3 + x + 1 = 0 x(x 2 + 1) = 1 x = 1 x x 1 n = x 2 n g(x) = 1 x με g (x) = 2x (x 2 + 1) 2 2x (x 2 + 1) 2 < 0.65, x ( 1, 1) Δρ. Δημήτρης Βαρσάμης Οκτώβριος / 47
10 Μέθοδος Σταθερού Σημείου - Παράδειγμα και g([ 1, 1]) = [ 1, 0.5] δηλαδή, η g πληροί (εν μέρει) τις προϋποθέσεις. 1 Αν υπολογίσουμε τις τιμές των x n = με αρχική x 2 n τιμή x 1 = 0 x 1 = 0 x 2 = 1 x 3 = 0.5 x 4 = 0.8 x 5 = Δρ. Δημήτρης Βαρσάμης Οκτώβριος / 47
11 Μέθοδος Σταθερού Σημείου - Παράδειγμα Τρίτη προσέγγιση. Η εξίσωση f(x) = 0 θα γίνει Άρα, x 3 + x + 1 = 0 x 3 + 2x = x 1 x = x 1 x x n = x n 1 1 x 2 n g(x) = x 1 x με g (x) = x2 2x 2 (x 2 + 2) 2 επομένως g (x) = x2 2x 2 (x 2 + 2) 2 < 0.6, x ( 1, 1) Δρ. Δημήτρης Βαρσάμης Οκτώβριος / 47
12 Μέθοδος Σταθερού Σημείου - Παράδειγμα και g([ 1, 1]) = [ 0.7, 0] δηλαδή, η g πληροί (εν μέρει) τις προϋποθέσεις. Αν υπολογίσουμε τις τιμές των x n = x n 1 1 με αρχική x 2 n τιμή x 1 = 0 x 1 = 0 x 2 = 0.5 x 3 = x 4 = x 5 = Δρ. Δημήτρης Βαρσάμης Οκτώβριος / 47
13 Μέθοδος Σταθερού Σημείου - Σύνοψη Η γενική επαναληπτική μέθοδος μπορεί να αποτύχει να συγκλίνει σε δυο περιπτώσεις: Όταν η συνάρτηση g(x) απειρίζεται. Όταν η συνάρτηση g(x) ταλαντώνεται. Δρ. Δημήτρης Βαρσάμης Οκτώβριος / 47
14 Μέθοδος Σταθερού Σημείου - Σύνοψη Πλεονεκτήματα: 1 Είναι η βασική επαναληπτική μέθοδος. 2 Απαιτεί αρχική τιμή και όχι διάστημα. Μειονεκτήματα: 1 Η μέθοδος είναι επιρρεπής σε ταλαντώσεις. 2 Δεν υπάρχει εγγύηση ότι η μέθοδος αυτή θα συγκλίνει. 3 Απαιτεί ανώτερες μαθηματικές γνώσεις για την σωστή επιλογή της συνάρτησης g(x). Δρ. Δημήτρης Βαρσάμης Οκτώβριος / 47
15 Μέθοδος Newton Σχήμα: Γραφική αναπαράσταση της μεθόδου Newton Δρ. Δημήτρης Βαρσάμης Οκτώβριος / 47
16 Μέθοδος Newton - Υλοποίηση ΒΗΜΑ 1 o ΒΗΜΑ 2 o Επιλέγουμε ένα σημείο x 1 ως αρχική προσέγγιση της ρίζας. Σε κάθε βήμα i βρίσκεται μία νέα προσέγγιση της ρίζας όπου είναι η τιμή του x i για την οποία η εφαπτόμενη τέμνει τον άξονα x x η οποία δίνεται από την σχέση: x i+1 = x i f(x i) f (x i ) ΒΗΜΑ 3 o Αν f(x i ) = 0 τότε το x i είναι η ζητούμενη ρίζα και σταματάει η διαδικασία. Αυτή η περίπτωση όμως σπάνια συμβαίνει στην πράξη. Δρ. Δημήτρης Βαρσάμης Οκτώβριος / 47
17 Μέθοδος Newton - Υλοποίηση ΒΗΜΑ 4 o Επιστρέφουμε στο 2 o βήμα και επαναλαμβάνουμε την διαδικασία για να βρούμε τη νέα προσέγγιση x i+1, μέχρι να εκπληρωθεί ένα από τα κριτήρια τερματισμού. Δρ. Δημήτρης Βαρσάμης Οκτώβριος / 47
18 Μέθοδος Newton - Υλοποίηση Κριτήρια τερματισμού: Όταν η απόλυτη τιμή της διαφοράς μεταξύ της τρέχουσας προσεγγιστικής ρίζας (x i ) και της προηγούμενης προσεγγιστικής ρίζας (x i 1 ) είναι μικρότερη από την ακρίβεια λύσης tol που έχει δηλώσει ο χρήστης, δηλαδή θα έχουμε ταύτιση των σημείων. Επομένως θα ισχύει: x i x i 1 < tol όπου tol = k με k τον αριθμό των δεκαδικών ψηφίων της επιθυμητής ακρίβειας. Η τιμή x i να είναι ρίζα της συνάρτησης f(x), δηλαδή να ισχύει ότι f(x i ) = 0. Οι επαναλήψεις που έχει δηλώσει ο χρήστης για την εύρεση της ρίζας εξαντλήθηκαν. Δρ. Δημήτρης Βαρσάμης Οκτώβριος / 47
19 Μέθοδος Newton - Παράδειγμα Να βρεθεί η ρίζα της συνάρτησης f(x) = x 3 + x + 1 με τη μέθοδο Newton με αρχική τιμή x 1 = 1 με ακρίβεια 5 δεκαδικών ψηφίων και με μέγιστο αριθμό επαναλήψεων 50. i x i f(x i ) η προσεγγιστική λύση βρέθηκε μετά από 5 επαναλήψεις και είναι x 6 = Δρ. Δημήτρης Βαρσάμης Οκτώβριος / 47
20 Μέθοδος Newton - Σύνοψη Πλεονεκτήματα: 1 Στις περισσότερες συναρτήσεις είναι και η πιο γρήγορη. Μειονεκτήματα: 1 Η μέθοδος είναι επιρρεπής σε ταλαντώσεις. 2 Δεν υπάρχει εγγύηση ότι η μέθοδος αυτή θα συγκλίνει. 3 Απαιτεί σε κάθε ρίζα, η παράγωγος να είναι μη μηδενική, αλλιώς η μέθοδος αποτυγχάνει. Αν μηδενιστεί, τότε τείνει στο άπειρο η προσεγγιστική ρίζα και δεν μπορούμε να την επαναφέρουμε. 4 Είναι απαραίτητος ο υπολογισμός της παραγώγου. Δρ. Δημήτρης Βαρσάμης Οκτώβριος / 47
21 Μέθοδος Newton - Σύνοψη Σχήμα: Περίπτωση αποτυχίας της εφαρμογής της μεθόδου Newton όταν η παράγωγος της συνάρτησης μηδενίζεται. Δρ. Δημήτρης Βαρσάμης Οκτώβριος / 47
22 Μέθοδος Newton - Σύνοψη Σχήμα: Περίπτωση αποτυχίας της εφαρμογής της μεθόδου Newton όταν εισέρχεται σε κλειστό βρόχο. Δρ. Δημήτρης Βαρσάμης Οκτώβριος / 47
23 Μέθοδος Newton - Σύνοψη Σχήμα: Περίπτωση αποτυχίας της εφαρμογής της μεθόδου Newton όταν η συνάρτηση προσεγγίζει ασυμπτωτικά το 0 και γίνει λανθασμένη επιλογή του αρχικού σημείου. Δρ. Δημήτρης Βαρσάμης Οκτώβριος / 47
24 Μέθοδος Newton - Αλγόριθμος ΕΙΣΟΔΟΣ: f(x), f (x), x 1, tol, n ΒΗΜΑ 1 o Θέσε x(1) = x 1, i = 2 ΒΗΜΑ 2 o Όταν i n εκτέλεσε τα βήματα 3-5 ΒΗΜΑ 3 o ΒΗΜΑ 4 o Θέσε x(i) = x(i 1) f(x(i 1)) f (x(i 1)) Αν f(x(i)) = 0 ή x(i) x(i 1) < tol τότε ΕΞΟΔΟΣ: Το x(i) είναι η λύση και τερμάτισε ΒΗΜΑ 5 Θέσε i = i + 1 ΒΗΜΑ 6 ΕΞΟΔΟΣ: Η μέθοδος εξάντλησε όλες τις επαναλήψεις και τερμάτισε Δρ. Δημήτρης Βαρσάμης Οκτώβριος / 47
25 Μέθοδος Newton - Αλγόριθμος Υλοποίηση της μεθόδου Newton σε συνάρτηση Matlab function out=newton(f, df, x1, tol, n) x(1)=x1; i=2; while i<=n x(i)=x(i-1)-f(x(i-1))/df(x(i-1)); if f(x(i))==0 abs(x(i)-x(i-1))<tol break; end i = i + 1; end if i>n k=1:n; else k=1:i; end out=[k', x', f(x)']; Δρ. Δημήτρης Βαρσάμης Οκτώβριος / 47
26 Μέθοδος Newton Δρ. Δημήτρης Βαρσάμης Οκτώβριος / 47
27 Μέθοδος Newton Δρ. Δημήτρης Βαρσάμης Οκτώβριος / 47
28 Μέθοδος Newton Δρ. Δημήτρης Βαρσάμης Οκτώβριος / 47
29 Μέθοδος Newton Δρ. Δημήτρης Βαρσάμης Οκτώβριος / 47
30 Μέθοδος Τέμνουσας Σχήμα: Γραφική αναπαράσταση της μεθόδου Τέμνουσας Δρ. Δημήτρης Βαρσάμης Οκτώβριος / 47
31 Μέθοδος Τέμνουσας - Υλοποίηση ΒΗΜΑ 1 o Επιλέγουμε 2 σημεία x 1 και x 2. ΒΗΜΑ 2 o Υπολογίζουμε ως νέα ρίζα (x i+1 ), το σημείο τομής της ευθείας που διέρχεται από τα σημεία (x i 1, f(x i 1 )), (x i, f(x i )) με τον άξονα x x το οποίο δίνεται από την εξίσωση x i+1 = x i x i x i 1 f(x i ) f(x i 1 ) f(x i) ΒΗΜΑ 3 o Αν f(x i ) = 0 τότε το x i είναι η ζητούμενη ρίζα και σταματάει η διαδικασία. Αυτή η περίπτωση όμως σπάνια συμβαίνει στην πράξη. ΒΗΜΑ 4 o Επιστρέφουμε στο 2 o βήμα και επαναλαμβάνουμε την διαδικασία για να βρούμε τη νέα προσέγγιση x i+1, μέχρι να εκπληρωθεί ένα από τα κριτήρια τερματισμού. Δρ. Δημήτρης Βαρσάμης Οκτώβριος / 47
32 Μέθοδος Τέμνουσας - Υλοποίηση Κριτήρια τερματισμού: Όταν η απόλυτη τιμή της διαφοράς μεταξύ της τρέχουσας προσεγγιστικής ρίζας (x i ) και της προηγούμενης προσεγγιστικής ρίζας (x i 1 ) είναι μικρότερη από την ακρίβεια λύσης tol που έχει δηλώσει ο χρήστης, δηλαδή θα έχουμε ταύτιση των σημείων. Επομένως θα ισχύει: x i x i 1 < tol όπου tol = k με k τον αριθμό των δεκαδικών ψηφίων της επιθυμητής ακρίβειας. Η τιμή x i να είναι ρίζα της συνάρτησης f(x), δηλαδή να ισχύει ότι f(x i ) = 0. Οι επαναλήψεις που έχει δηλώσει ο χρήστης για την εύρεση της ρίζας εξαντλήθηκαν. Δρ. Δημήτρης Βαρσάμης Οκτώβριος / 47
33 Μέθοδος Τέμνουσας - Παράδειγμα Να βρεθεί η ρίζα της συνάρτησης f(x) = x 3 + x + 1 με τη μέθοδο Τέμνουσας με αρχικές τιμές x 1 = 1, x 2 = 1 με ακρίβεια 5 δεκαδικών ψηφίων και με μέγιστο αριθμό επαναλήψεων 50. i x i f(x i ) η προσεγγιστική λύση βρέθηκε μετά από 6 επαναλήψεις και είναι x 8 = Δρ. Δημήτρης Βαρσάμης Οκτώβριος / 47
34 Μέθοδος Τέμνουσας - Σύνοψη Πλεονεκτήματα: 1 Μπορούμε να βρούμε την ρίζα ακόμη κι αν δεν βρίσκεται ανάμεσα στις αρχικές τιμές x 1, x 2. 2 Είναι ταχύτερη από την μέθοδο της Regula Falsi. 3 Δεν χρειάζεται ο υπολογισμός της παραγώγου. Μειονεκτήματα: 1 Επειδή η ρίζα δεν εγκλωβίζεται σε διάστημα, δεν υπάρχει εγγύηση ότι η μέθοδος θα συγκλίνει. Δρ. Δημήτρης Βαρσάμης Οκτώβριος / 47
35 Μέθοδος Τέμνουσας - Αλγόριθμος ΕΙΣΟΔΟΣ: f(x), x 1, x 2, tol, n ΒΗΜΑ 1 o Θέσε x(1) = x 1, x(2) = x 2, i = 3 ΒΗΜΑ 2 o Όταν i n εκτέλεσε τα βήματα 3-5 ΒΗΜΑ 3 o Θέσε ΒΗΜΑ 4 o x(i) = x(i 1) x(i 1) x(i 2) f(x(i 1)) f(x(i 2)) f(x(i 1)) Αν f(x(i)) = 0 ή x(i) x(i 1) < tol τότε ΕΞΟΔΟΣ: Το x(i) είναι η λύση και τερμάτισε ΒΗΜΑ 5 Θέσε i = i + 1 ΒΗΜΑ 6 ΕΞΟΔΟΣ: Η μέθοδος εξάντλησε όλες τις επαναλήψεις και τερμάτισε Δρ. Δημήτρης Βαρσάμης Οκτώβριος / 47
36 Μέθοδος Τέμνουσας - Αλγόριθμος Υλοποίηση της μεθόδου Τέμνουσας σε συνάρτηση Matlab function out=secant(f,x0,x1,tol,n) x(1)=x0; x(2)=x1; i=3; while i<=n x(i)=x(i-1)-f(x(i-1))*(x(i-1)-x(i-2))/(f(x(i-1))-f(x (i-2))); if f(x(i))==0 (abs(x(i)-x(i-1))<tol) disp('secant method has converged'); break; end i=i+1; end if i>n k=1:n; else k=1:i; end Δρ. Δημήτρης Βαρσάμης Οκτώβριος / 47
37 Μέθοδος Τέμνουσας - Αλγόριθμος Δρ. Δημήτρης Βαρσάμης Οκτώβριος / 47
38 Μέθοδος Τέμνουσας - Αλγόριθμος Δρ. Δημήτρης Βαρσάμης Οκτώβριος / 47
39 Μέθοδος Τέμνουσας - Αλγόριθμος Δρ. Δημήτρης Βαρσάμης Οκτώβριος / 47
40 Μέθοδος Τέμνουσας - Αλγόριθμος Δρ. Δημήτρης Βαρσάμης Οκτώβριος / 47
41 Συγκεντρωτικά Αποτελέσματα Bisection method x 19 = Regula-Falsi method x 10 = Secant method x 8 = Newton method x 6 = Δρ. Δημήτρης Βαρσάμης Οκτώβριος / 47
42 Συγκεντρωτικά Αποτελέσματα Δρ. Δημήτρης Βαρσάμης Οκτώβριος / 47
43 Συγκεντρωτικά Αποτελέσματα Δρ. Δημήτρης Βαρσάμης Οκτώβριος / 47
44 Συγκεντρωτικά Αποτελέσματα Δρ. Δημήτρης Βαρσάμης Οκτώβριος / 47
45 Συγκεντρωτικά Αποτελέσματα Δρ. Δημήτρης Βαρσάμης Οκτώβριος / 47
46 Συγκεντρωτικά Αποτελέσματα Δρ. Δημήτρης Βαρσάμης Οκτώβριος / 47
47 Συγκεντρωτικά Αποτελέσματα Δρ. Δημήτρης Βαρσάμης Οκτώβριος / 47
ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι
ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι κ. ΠΕΤΑΛΙΔΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται
Διαβάστε περισσότεραΑριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον
Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Οκτώβριος 2014 Δρ. Δημήτρης Βαρσάμης Οκτώβριος 2014 1 / 42 Αριθμητικές Μέθοδοι
Διαβάστε περισσότεραΕπαναληπτικές μέθοδοι
Επαναληπτικές μέθοδοι Η μέθοδος της διχοτόμησης και η μέθοδος Regula Fals που αναφέραμε αξιοποιούσαν το κριτήριο του Bolzano, πραγματοποιώντας διαδοχικές υποδιαιρέσεις του διαστήματος [α, b] στο οποίο,
Διαβάστε περισσότεραΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι
ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι κ. ΠΕΤΑΛΙΔΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται
Διαβάστε περισσότεραΑριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον (Εργαστήριο 6)
Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον (Εργαστήριο 6) Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Δρ. Δημήτρης Βαρσάμης Αριθμητικές Μέθοδοι (E 6) Σεπτέμβριος 2015
Διαβάστε περισσότεραΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ
ΤΕΙ ΣΕΡΡΩΝ -- ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΕΠΙΚΟΙΝΩΝΙΩΝ ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΜΑΘΗΜΑ 3 ο ΤΕΙ ΣΕΡΡΩΝ -- ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΕΠΙΚΟΙΝΩΝΙΩΝ Μάθημα 3 ο Αριθμητική επίλυση εξισώσεων (μη
Διαβάστε περισσότεραΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι
ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι κ. ΠΕΤΑΛΙΔΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται
Διαβάστε περισσότεραΑριθμητική εύρεση ριζών μη γραμμικών εξισώσεων
Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων Με τον όρο μη γραμμικές εξισώσεις εννοούμε εξισώσεις της μορφής: f( ) 0 που προέρχονται από συναρτήσεις f () που είναι μη γραμμικές ως προς. Περιέχουν δηλαδή
Διαβάστε περισσότεραΑριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον (Εργαστήριο 4)
Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον (Εργαστήριο 4) Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Δρ. Δημήτρης Βαρσάμης Αριθμητικές Μέθοδοι (E 4) Σεπτέμβριος 2015
Διαβάστε περισσότεραΑριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον (Εργαστήριο 5)
Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον (Εργαστήριο 5) Δρ Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Δρ Δημήτρης Βαρσάμης Αριθμητικές Μέθοδοι (E 5) Σεπτέμβριος 2015 1
Διαβάστε περισσότεραΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι
ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι κ ΠΕΤΑΛΙΔΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται
Διαβάστε περισσότεραΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ
ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΜΑΘΗΜΑ 2 ο Μάθημα 2 ο Αριθμητική επίλυση εξισώσεων (μη γραμμικές) Μέθοδοι με διαδοχικές δοκιμές σε διάστημα (Διχοτόμησης, Regula-Falsi) Μέθοδοι με επαναληπτικούς
Διαβάστε περισσότεραΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι
ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι κ. ΠΕΤΑΛΙΔΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται
Διαβάστε περισσότεραΜΕΜ251 Αριθμητική Ανάλυση
ΜΕΜ251 Αριθμητική Ανάλυση Διάλεξη 02, 09 Φεβρουαρίου 2018 Μιχάλης Πλεξουσάκης Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Περιεχόμενα 1. Μη γραμμικές εξισώσεις 2. Η μέθοδος της διχοτόμησης 1 Μη γραμμικές
Διαβάστε περισσότεραΑριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Κεντρικής Μακεδονίας - Σέρρες Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Δρ. Δημήτρης Βαρσάμης
Διαβάστε περισσότεραΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι
ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι κ. ΠΕΤΑΛΙΔΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται
Διαβάστε περισσότεραΑριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον
Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Οκτώβριος 2015 Δρ. Δημήτρης Βαρσάμης Οκτώβριος 2015 1 / 68 Αριθμητικές Μέθοδοι
Διαβάστε περισσότεραNon Linear Equations (2)
Non Linear Equations () Τρίτη, 17 Φεβρουαρίου 015 5:14 μμ 15.0.19 Page 1 15.0.19 Page 15.0.19 Page 3 15.0.19 Page 4 15.0.19 Page 5 15.0.19 Page 6 15.0.19 Page 7 15.0.19 Page 8 15.0.19 Page 9 15.0.19 Page
Διαβάστε περισσότεραΑριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον
Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Οκτώβριος 2015 Δρ. Δημήτρης Βαρσάμης Οκτώβριος 2015 1 / 37 Αριθμητικές Μέθοδοι
Διαβάστε περισσότεραΜέθοδοι μονοδιάστατης ελαχιστοποίησης
Βασικές αρχές μεθόδων ελαχιστοποίησης Μέθοδοι μονοδιάστατης ελαχιστοποίησης Οι μέθοδοι ελαχιστοποίησης είναι επαναληπτικές. Ξεκινώντας από μια αρχική προσέγγιση του ελαχίστου (την συμβολίζουμε ) παράγουν
Διαβάστε περισσότεραΜέθοδοι μονοδιάστατης ελαχιστοποίησης
Βασικές αρχές μεθόδων ελαχιστοποίησης Μέθοδοι μονοδιάστατης ελαχιστοποίησης Οι μέθοδοι ελαχιστοποίησης είναι επαναληπτικές. Ξεκινώντας από μια αρχική προσέγγιση του ελαχίστου (την συμβολίζουμε ) παράγουν
Διαβάστε περισσότεραΑριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον (Εργαστήριο 3)
Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον (Εργαστήριο 3) Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Δρ. Δημήτρης Βαρσάμης Αριθμητικές Μέθοδοι (E 3) Σεπτέμβριος 2015
Διαβάστε περισσότεραΧρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ. Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ»
Χρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ» 2 ΔΥΝΑΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Προβλήματα ελάχιστης συνεκτικότητας δικτύου Το πρόβλημα της ελάχιστης
Διαβάστε περισσότεραΑριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον (Εργαστήριο 8)
Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον (Εργαστήριο 8) Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Δρ. Δημήτρης Βαρσάμης Αριθμητικές Μέθοδοι (E 8) Σεπτέμβριος 2015
Διαβάστε περισσότεραΑριθμητική Λύση Μη Γραμμικών Εξισώσεων Η ΜΕΘΟ ΟΣ ΤΗΣ ΙΧΟΤΟΜΙΣΗΣ 01/25/05 ΜΜΕ 203 ΙΑΛ 2 1
Αριθμητική Λύση Μη Γραμμικών Εξισώσεων Η ΜΕΘΟ ΟΣ ΤΗΣ ΙΧΟΤΟΜΙΣΗΣ 01/25/05 ΜΜΕ 203 ΙΑΛ 2 1 Ηβάση της Μεθόδου της ιχοτόμησης Θεώρημα: Μία εξίσωση f()=0, όπου το f() είναι μια πραγματική συνεχής συνάρτηση,
Διαβάστε περισσότεραΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι
ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι κ. ΠΕΤΑΛΙΔΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται
Διαβάστε περισσότεραΑριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον
Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Οκτώβριος 2015 Δρ. Δημήτρης Βαρσάμης Οκτώβριος 2015 1 / 63 Αριθμητικές Μέθοδοι
Διαβάστε περισσότεραΑριθμητική Ανάλυση και Εφαρμογές
Αριθμητική Ανάλυση και Εφαρμογές Διδάσκων: Δημήτριος Ι. Φωτιάδης Τμήμα Μηχανικών Επιστήμης Υλικών Ιωάννινα 2017-2018 Αριθμητική Επίλυση Εξισώσεων Εισαγωγή Ορισμός 5.1 Γενικά, το πρόβλημα της αριθμητικής
Διαβάστε περισσότεραΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ
ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΡΓΑΣΤΗΡΙΟ 3 ΕΡΓΑΣΤΗΡΙΟ 3 ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΒΑΣΙΚΕΣ ΔΟΜΕΣ ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΔΗΜΙΟΥΡΓΙΑ ΔΙΑΝΥΣΜΑΤΩΝ Χ (ΤΕΤΜΗΜΕΝΩΝ) ΚΑΙ Υ (ΤΕΤΑΓΜΕΝΩΝ) ΤΩΝ ΣΗΜΕΙΩΝ
Διαβάστε περισσότερα( ) ( ) ( ) ( ) ενώ η εξίσωση της παραβολής είναι η
ΤΕΜΦΕ 4 ο Εξάµηνο Αριθµητική Ανάλυση Ι 1 η Εργαστηριακή Άσκηση Μέθοδος Müller Αν θέλαµε να ερµηνεύσουµε γεωµετρικά τη µέθοδο Secant θα βλέπαµε ότι σε κάθε βήµα φέρουµε την ευθεία που διέρχονται από τις
Διαβάστε περισσότερα5269: Υπολογιστικές Μέθοδοι για Μηχανικούς. Εύρεση Ριζών.
5269: Υπολογιστικές Μέθοδοι για Μηχανικούς Εύρεση Ριζών http://ecourses.chemeng.ntua.gr/courses/computational_methods_for_engineers/ Εύρεση Ριζών Πρόβλημα : Ζητείται x 0, τέτοιο ώστε f(x 0 )=0 x0 : ρίζα,
Διαβάστε περισσότεραΑριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Κεντρικής Μακεδονίας - Σέρρες Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Δρ. Δημήτρης Βαρσάμης
Διαβάστε περισσότεραΜέθοδοι πολυδιάστατης ελαχιστοποίησης
Μέθοδοι πολυδιάστατης ελαχιστοποίησης με παραγώγους Μέθοδοι πολυδιάστατης ελαχιστοποίησης Δ. Γ. Παπαγεωργίου Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων dpapageo@cc.uoi.gr http://pc64.materials.uoi.gr/dpapageo
Διαβάστε περισσότεραΒασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D.
Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D. Μη γραμμικός προγραμματισμός: μέθοδοι μονοδιάστατης ελαχιστοποίησης Πανεπιστήμιο Θεσσαλίας Σχολή Θετικών Επιστημών ΤμήμαΠληροφορικής Διάλεξη 6 η /2017 Τι παρουσιάστηκε
Διαβάστε περισσότεραΜΕΜ251 Αριθμητική Ανάλυση
ΜΕΜ251 Αριθμητική Ανάλυση Διάλεξη 03, 12 Φεβρουαρίου 2018 Μιχάλης Πλεξουσάκης Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Περιεχόμενα 1. Επαναληπτικές μέθοδοι - Γενική θεωρία 2. Η μέθοδος του Newton
Διαβάστε περισσότεραΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι
ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι κ. ΠΕΤΑΛΙΔΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται
Διαβάστε περισσότεραΣχολή Μηχανολόγων Μηχανικών ΕΜΠ 4 ο Εξάμηνο ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ. Πρώτη Ενότητα Αριθμητική Επίλυση Μη-Γραμμικών Εξισώσεων
Σχολή Μηχανολόγων Μηχανικών ΕΜΠ 4 ο Εξάμηνο ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ Πρώτη Ενότητα Αριθμητική Επίλυση Μη-Γραμμικών Εξισώσεων ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, Κ. ΓΙΑΝΝΑΚΟΓΛΟΥ, Σχ. Μηχ. Μηχ. ΕΜΠ 1 Αριθμητική Επίλυση Μη-Γραμμικών
Διαβάστε περισσότεραΚεφάλαιο 2. Πραγματικές ρίζες μη γραμμικών συναρτήσεων
Κεφάλαιο. Πραγματικές ρίζες μη γραμμικών συναρτήσεων Σύνοψη Στο κεφάλαιο αυτό παρουσιάζονται μερικές από τις πιο συνήθως χρησιμοποιούμενες αριθμητικές μεθόδους για την εύρεση πραγματικών ριζών μη γραμμικών
Διαβάστε περισσότερα2.1 Αριθμητική επίλυση εξισώσεων
. Αριθμητική επίλυση εξισώσεων Στο κεφάλαιο αυτό διαπραγματεύεται μεθόδους εύρεσης των ριζών εξισώσεων γραμμικών ή μη-γραμμικών για τις οποίες δεν υπάρχουν αναλυτικές 5 4 3 εκφράσεις. Παραδείγματα εξισώσεων
Διαβάστε περισσότεραΒασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D.
Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D. Μη γραμμικός προγραμματισμός: βελτιστοποίηση χωρίς περιορισμούς Πανεπιστήμιο Θεσσαλίας Σχολή Θετικών Επιστημών ΤμήμαΠληροφορικής Διάλεξη 7-8 η /2017 Τι παρουσιάστηκε
Διαβάστε περισσότεραHY213. ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ
HY3. ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ ΕΠΙΛΥΣΗ ΜΗ ΓΡΑΜΜΙΚΩΝ ΕΞΙΣΩΣΕΩΝ Π. ΤΣΟΜΠΑΝΟΠΟΥΛΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧ. & ΜΗΧ. ΥΠΟΛΟΓΙΣΤΩΝ Βασικά σημεία Μη γραμμικές εξισώσεις με πραγματικές ρίζες. Μέθοδος
Διαβάστε περισσότεραΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, , 3 ο ΕΞΑΜΗΝΟ ΑΠΑΝΤΗΣΕΙΣ ΕΡΓΑΣΙΑΣ #1: ΑΡΙΘΜΗΤΙΚΗ ΚΙΝΗΤΗΣ ΥΠΟ ΙΑΣΤΟΛΗΣ ΚΑΙ ΡΙΖΕΣ ΕΞΙΣΩΣΕΩΝ ΕΠΙΜΕΛΕΙΑ: Σ.
ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, 005-06, 3 ο ΕΞΑΜΗΝΟ ΑΠΑΝΤΗΣΕΙΣ ΕΡΓΑΣΙΑΣ #: ΑΡΙΘΜΗΤΙΚΗ ΚΙΝΗΤΗΣ ΥΠΟ ΙΑΣΤΟΛΗΣ ΚΑΙ ΡΙΖΕΣ ΕΞΙΣΩΣΕΩΝ ΕΠΙΜΕΛΕΙΑ: Σ. Βαρούτης. Πως ορίζεται και τι σηµαίνει ο όρος lop στους επιστηµονικούς υπολογισµούς.
Διαβάστε περισσότεραΠΛΗΡΟΦΟΡΙΚΗ Ι Ενότητα 5: Μαθηματικές εφαρμογές
ΠΛΗΡΟΦΟΡΙΚΗ Ι Ενότητα 5: Μαθηματικές εφαρμογές Μιχάλης Δρακόπουλος Σχολή Θετικών επιστημών Τμήμα Μαθηματικών Μαθηµατικές εφαρµογές 34 Μέγιστος Κοινός ιαιρέτης (gcd) - I Εξαντλητικός αλγόριθµος 1 1. Εστω
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ - ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, 3 Ο ΕΞΑΜΗΝΟ, ΔΙΔΑΣΚΩΝ: Δρ Ιωάννης Αθ.
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ - ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, 3 Ο ΕΞΑΜΗΝΟ, 2009-2010 ΔΙΔΑΣΚΩΝ: Δρ Ιωάννης Αθ. Σταυράκης 1 η Σειρά Ασκήσεων 13.10.2009 Άσκηση 1. Δίνονται τα
Διαβάστε περισσότεραΘεώρημα Bolzano. Γεωμετρική Ερμηνεία του θ.bolzano. Θ. Bolzano και ύπαρξη ρίζας
Θεώρημα Bolzano Έστω μια συνάρτηση f η οποία είναι ορισμένη σε ένα κλειστό διάστημα [α, β]. Αν: Η f είναι συνεχής στο [α, β] και Ισχύει f(a)f(β) < 0, τότε υπάρχει τουλάχιστον ένα x 0 (α, β) τέτοιο ώστε
Διαβάστε περισσότεραΑξιοποίηση Η/Υ και Πληροφορικής στην Μηχανική
ΠΠΜ100 & ΜΜΠ100: Εισαγωγή στην Μηχανική Αξιοποίηση Η/Υ και Πληροφορικής στην Μηχανική ιάλεξη 4 η 2 Οκτωβρίου Πέτρος Κωµοδρόµος komodromos@ucy.ac.cy http://www.ucy.ac.cy/~petrosk Περιεχόµενα ιάλεξη #1:
Διαβάστε περισσότεραΕΡΓΑΣΙΑ 1 Ημερομηνία Ανάρτησης: 02/02/2017 Ημερομηνία Παράδοσης: 16/02/2017, 09:00 π.μ. Στόχος Ορισμός
ΕΡΓΑΣΙΑ 1 Ημερομηνία Ανάρτησης: 02/02/2017 Ημερομηνία Παράδοσης: 16/02/2017, 09:00 π.μ. Στόχος Στόχος αυτής της εργασίας είναι η χρησιμοποίηση δομών ελέγχου και βρόχων. Διαβάστε προσεχτικά το πρόβλημα
Διαβάστε περισσότεραΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΒΙΟΜΗΧΑΝΙΑΣ ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, 3 Ο ΕΞΑΜΗΝΟ, ΔΙΔΑΣΚΩΝ: Δρ Ιωάννης Αθ. Σταυράκης
ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΒΙΟΜΗΧΑΝΙΑΣ ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, 3 Ο ΕΞΑΜΗΝΟ, 2008-2009 ΔΙΔΑΣΚΩΝ: Δρ Ιωάννης Αθ. Σταυράκης 14.10.2008 Να μετατραπεί ο αριθμός στο δυαδικό σύστημα.! " Ο αριθμός μετατρέπεται αρχικά
Διαβάστε περισσότεραΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ
ΥΠΕΥΘΥΝΟΣ ΚΑΘΗΓΗΤΗΣ Α. Ντούνης ΔΙΔΑΣΚΩΝ ΑΚΑΔ. ΥΠΟΤΡΟΦΟΣ Χ. Τσιρώνης ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ - Επίλυση ασκήσεων - Αλγόριθμοι αναζήτησης - Επαναληπτική κάθοδος ΕΠΙΛΥΣΗ ΑΣΚΗΣΕΩΝ ΠΡΑΞΗΣ Θα επιλυθούν
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 2 ΜΗ ΓΡΑΜΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ
ΚΕΦΑΛΑΙΟ ΜΗ ΓΡΑΜΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Η αδυναµία επίλυσης της πλειοψηφίας των µη γραµµικών εξισώσεων µε αναλυτικές µεθόδους, ώθησε στην ανάπτυξη αριθµητικών µεθόδων για την προσεγγιστική επίλυσή τους, π.χ. συν()
Διαβάστε περισσότεραΑριθµητική επίλυση εξισώσεων και παρεµβολή µέσω υπολογιστή για την εκπαιδευτική διαδικασία
Πρόγραµµα Μεταπτυχιακών Σπουδών "Υπολογιστικά Μαθηµατικά και Πληροφορική" Κατεύθυνση: Τεχνολογίες Πληροφορικής και Επικοινωνιών στην Εκπαίδευση Αριθµητική επίλυση εξισώσεων και παρεµβολή µέσω υπολογιστή
Διαβάστε περισσότεραΑριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον (Εργαστήριο 8)
Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον (Εργαστήριο 8) Δρ Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Δρ Δημήτρης Βαρσάμης Αριθμητικές Μέθοδοι (E 8) Δεκέμβριος 2017 1
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ - ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, 3 Ο ΕΞΑΜΗΝΟ, ΔΙΔΑΣΚΩΝ: Δρ Ιωάννης Αθ.
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ - ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, 3 Ο ΕΞΑΜΗΝΟ, 2011-2012 ΔΙΔΑΣΚΩΝ: Δρ Ιωάννης Αθ. Σταυράκης 1 η Σειρά Ασκήσεων 26.10.2011 Άσκηση 1. Να μετατραπεί
Διαβάστε περισσότεραΠΛΗΡΟΦΟΡΙΚΗ Ι Ενότητα 3: Συναρτήσεις
ΠΛΗΡΟΦΟΡΙΚΗ Ι Ενότητα 3: Συναρτήσεις Μιχάλης Δρακόπουλος Σχολή Θετικών επιστημών Τμήμα Μαθηματικών Συναρτήσεις 60 Ροή ελέγχου Είναι η σειρά µε την οποία εκτελούνται οι εντολές. Μέχρι τώρα, «σειριακή»,
Διαβάστε περισσότεραΚεφ. 6Β: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών
Κεφ. 6Β: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών. Εισαγωγή (ορισμός προβλήματος, αριθμητική ολοκλήρωση ΣΔΕ, αντικατάσταση ΣΔΕ τάξης n με n εξισώσεις ης τάξης). Μέθοδος Euler 3. Μέθοδοι
Διαβάστε περισσότεραΆσκηση εφαρμογής της μεθόδου Newton Raphson
Άσκηση εφαρμογής της μεθόδου Newton Raphson Η ακόλουθη αντίδραση πραγματοποιείται σε έναν αντιδραστήρα αέριας φάσης: H 2 S+O 2 H 2 +SO 2 Όταν το σύστημα φτάσει σε ισορροπία στους 600Κ και 10 atm, τα μοριακά
Διαβάστε περισσότεραΠαράδειγμα #2 ΑΡΙΘΜΗΤΙΚΗ ΚΙΝΗΤΗΣ ΥΠΟΔΙΑΣΤΟΛΗΣ ΚΑΙ ΡΙΖΕΣ ΕΞΙΣΩΣΕΩΝ. ΕΠΙΜΕΛΕΙΑ: Σ. Βαρούτης
Παράδειγμα # ΑΡΙΘΜΗΤΙΚΗ ΚΙΝΗΤΗΣ ΥΠΟΔΙΑΣΤΟΛΗΣ ΚΑΙ ΡΙΖΕΣ ΕΞΙΣΩΣΕΩΝ ΕΠΙΜΕΛΕΙΑ: Σ. Βαρούτης. Πως ορίζεται και τι σημαίνει ο όρος lop στους επιστημονικούς υπολογισμούς. Ο όρος lop (loatig poit operatio) συναντάται
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 5: ΘΕΩΡΗΜΑ ROLLE [Θεώρημα Rolle του κεφ.2.5 Μέρος Β του σχολικού βιβλίου]. ΣΗΜΕΙΩΣΕΙΣ
ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 5: ΘΕΩΡΗΜΑ ROLLE [Θεώρημα Rolle του κεφ..5 Μέρος Β του σχολικού βιβλίου]. ΣΗΜΕΙΩΣΕΙΣ MICHEL ROLLE Μία μορφή του θεωρήματος Rolle δόθηκε από τον Ινδό αστρονόμο Bhaskara
Διαβάστε περισσότερα17. Εισαγωγή σε αριθμητικές μεθόδους για μηχανικούς και αλγορίθμους
ΠΠΜ 500: Εφαρμογές Μηχανικής με Ανάπτυξη Λογισμικού 17. Εισαγωγή σε αριθμητικές μεθόδους για μηχανικούς και αλγορίθμους Εαρινό εξάμηνο 2012 Πέτρος Κωμοδρόμος komodromos@ucy.ac.cy http://www.eng.ucy.ac.cy/petros
Διαβάστε περισσότεραΠιο συγκεκριμένα, η χρήση του MATLAB προσφέρει τα ακόλουθα πλεονεκτήματα.
i Π Ρ Ο Λ Ο Γ Ο Σ Το βιβλίο αυτό αποτελεί μια εισαγωγή στα βασικά προβλήματα των αριθμητικών μεθόδων της υπολογιστικής γραμμικής άλγεβρας (computational linear algebra) και της αριθμητικής ανάλυσης (numerical
Διαβάστε περισσότεραΠροσεγγιστική λύση Γραμμικών Συστημάτων με την μέθοδο Gauss-Seidel. Δημιουργία κώδικα στο Matlab
Προσεγγιστική λύση Γραμμικών Συστημάτων με την μέθοδο Gauss-Seidel Δημιουργία κώδικα στο Matlab Χατζηγεωργίου Αντώνης Νοέμβριος 2013 Περιεχόμενα 1. Αρχικό πρόβλημα.... 3 2. Εφαρμογή της θεωρίας.... 4 3.
Διαβάστε περισσότεραΜαρία Χ.Γουσίδου-Κουτίτα Επίκουρη Καθηγήτρια Τμήματος Μαθηματικών Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ
Μαρία Χ.Γουσίδου-Κουτίτα Επίκουρη Καθηγήτρια Τμήματος Μαθηματικών Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ ΘΕΣΣΑΛΟΝΙΚΗ 2004 Κάθε γνήσιο αντίτυπο υπογράφεται από τη συγγραφέα ΑΡΙΘΜΗΤΙΚΗ
Διαβάστε περισσότεραΚεφ. 7: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών
Κεφ. 7: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών 7. Εισαγωγή (ορισμός προβλήματος, αριθμητική ολοκλήρωση ΣΔΕ, αντικατάσταση ΣΔΕ τάξης n με n εξισώσεις ης τάξης) 7. Μέθοδος Euler 7.3
Διαβάστε περισσότερατην αρχή των αξόνων και ύστερα να υπολογίσετε το εμβαδόν του
ΑΣΚΗΣΗ 47 Δίνεται η συνάρτηση f(x) = και οι ευθείες (ε ): y = x και (ε ): y = x +. Να αποδείξετε ότι:. Η (ε ) είναι ασύμπτωτη της C f στο, ενώ η (ε ) είναι ασύμπτωτη της C f στο +. Για κάθε x R ισχύει
Διαβάστε περισσότεραΚατ οίκον Εργασία 1 Σκελετοί Λύσεων
ΕΠΛ Δομές Δεδομένων και Αλγόριθμοι Σεπτέμβριος 008 Κατ οίκον Εργασία Σκελετοί Λύσεων Άσκηση Παρατηρούμε ότι ο χρόνος εκτέλεσης μέσης περίπτωσης της κάθε εντολής if ξεχωριστά: if (c mod 0) for (k ; k
Διαβάστε περισσότεραΥπολογισμός αθροισμάτων
Υπολογισμός αθροισμάτων Τα αθροίσματα θα τα δημιουργούμε σαν συναρτήσεις και θα τα αποθηκεύουμε σε αρχείο (m-file) με την ίδια ονομασία με τη συνάρτηση. Για να δημιουργήσουμε ένα άθροισμα ξεκινάμε μηδενίζοντας
Διαβάστε περισσότεραΚατ οίκον Εργασία 1 Σκελετοί Λύσεων
ΕΠΛ 1 Δομές Δεδομένων και Αλγόριθμοι Σεπτέμβριος 009 Κατ οίκον Εργασία 1 Σκελετοί Λύσεων Άσκηση 1 Αρχικά θα πρέπει να υπολογίσουμε τον αριθμό των πράξεων που μπορεί να εκτελέσει ο υπολογιστής σε μια ώρα,
Διαβάστε περισσότεραΕπαναληπτικές Διαδικασίες
Επαναληπτικές Διαδικασίες Οι επαναληπτικές δομές ( εντολές επανάληψης επαναληπτικά σχήματα ) χρησιμοποιούνται, όταν μια ομάδα εντολών πρέπει να εκτελείται αρκετές- πολλές φορές ανάλογα με την τιμή μιας
Διαβάστε περισσότεραΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 10: ΕΥΡΕΣΗ ΤΟΠΙΚΩΝ ΑΚΡΟΤΑΤΩΝ
ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 1: ΕΥΡΕΣΗ ΤΟΠΙΚΩΝ ΑΚΡΟΤΑΤΩΝ [Ενότητα Προσδιορισμός των Τοπικών Ακροτάτων - Θεώρημα Εύρεση Τοπικών Ακροτάτων του κεφ27 Μέρος Β του σχολικού βιβλίου] ΣΗΜΕΙΩΣΕΙΣ Εύρεση
Διαβάστε περισσότεραΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2019 Β ΦΑΣΗ
ΤΑΞΗ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ / ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ Ημερομηνία: Σάββατο 11 Μαΐου 19 Διάρκεια Εξέτασης: 3 ώρες ΘΕΜΑ Α ΕΚΦΩΝΗΣΕΙΣ Α1. Έστω f μια
Διαβάστε περισσότεραΑριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον (Εργαστήριο 7)
Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον (Εργαστήριο 7) Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Δρ. Δημήτρης Βαρσάμης Αριθμητικές Μέθοδοι (E 7) Δεκέμβριος 2014
Διαβάστε περισσότεραΑ. Η γραφική παράσταση της συνάρτησης 2. f(x) = α x 2 + β x + γ, α 0. f (x) x. Παράδειγμα. Περιοδικό ΕΥΚΛΕΙΔΗΣ Β Ε.Μ.Ε.
Περιοδικό ΕΥΚΛΕΙΔΗΣ Β Ε.Μ.Ε. (τεύχος 55) Μαθηματικά για την Α τάξη του Λυκείου Το τριώνυμο f(x) = α x + β x + γ, α Κώστα Βακαλόπουλου, Νίκου Ταπεινού Α. Η γραφική παράσταση της συνάρτησης f(x) αx βx γ,
Διαβάστε περισσότεραΑριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον (Εργαστήριο 7)
Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον (Εργαστήριο 7) Δρ Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Δρ Δημήτρης Βαρσάμης Αριθμητικές Μέθοδοι (E 7) Δεκέμβριος 2014 1
Διαβάστε περισσότεραΓΕΛ. ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ
ΓΕΛ. ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ 213-14 Ονοματεπώνυμο Τμήμα Θεώρημα Rolle Michel Rolle (1652 1719) Γάλλος μαθηματικός γεννήθηκε στο Ambert- Basse και πέθανε στο Παρίσι. Αυτοδίδακτος μαθηματικός σε αυτόν οφείλεται ο
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ - ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, 3 Ο ΕΞΑΜΗΝΟ, ΔΙΔΑΣΚΩΝ: Δρ Ιωάννης Αθ.
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ - ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, 3 Ο ΕΞΑΜΗΝΟ, 2010-2011 ΔΙΔΑΣΚΩΝ: Δρ Ιωάννης Αθ. Σταυράκης 1 η Σειρά Ασκήσεων 12.10.2010 Άσκηση 1. Να μετατρέψετε
Διαβάστε περισσότεραΑσκήσεις Επανάληψης Γ Λυκείου
Ασκήσεις Επανάληψης Γ Λυκείου Ασκήσεις Επανάληψης σε όλο το εύρος της διδακτέας ύλης Κων/νος Παπασταματίου Κ. Καρτάλη 8 (με Δημητριάδος) Τηλ. 4 598 Θε ματα Δεσμω ν 98- Επιμέλεια Κων/νος Παπασταματίου Σελίδα
Διαβάστε περισσότερα1η Οµάδα Ασκήσεων. ΑΣΚΗΣΗ 1 (Θεωρία)
ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟ ΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ KAI THΛΕΠΙΚΟΙΝΩΝΙΩΝ ΤΟΜΕΑΣ ΘΕΩΡΗΤΙΚΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ 13/3/8 1η Οµάδα Ασκήσεων ΑΣΚΗΣΗ 1 (Θεωρία) 1.1 Σε ένα σύστηµα
Διαβάστε περισσότεραΑριθμητική Ανάλυση και Εφαρμογές
Αριθμητική Ανάλυση και Εφαρμογές Διδάσκων: Δημήτριος Ι. Φωτιάδης Τμήμα Μηχανικών Επιστήμης Υλικών Ιωάννινα 07-08 Αριθμητική Παραγώγιση Εισαγωγή Ορισμός 7. Αν y f x είναι μια συνάρτηση ορισμένη σε ένα διάστημα
Διαβάστε περισσότεραΥπολογιστική Φυσική Υ0338 Σχολή Θετικών Επιστηµών Τµήµα Φυσικής Εθνικό και Καποδιστριακό Πανεπιστήµιο Αθηνών Κώστας Θεοφιλάτος
Υπολογιστική Φυσική Υ0338 Σχολή Θετικών Επιστηµών Τµήµα Φυσικής Εθνικό και Καποδιστριακό Πανεπιστήµιο Αθηνών 2019-2020 Κώστας Θεοφιλάτος τι; Αριθµητική Ανάλυση Υπολογιστική Φυσική Επιστήµη Υπολογιστών
Διαβάστε περισσότεραΣυνέχεια συνάρτησης Σελ 17. Η απόδειξη ύπαρξης ρίζας εξίσωσης (τουλάχιστον μία) σε
Συνέχεια συνάρτησης Σελ 17 ΜΕΘΟΔΟΛΟΓΙΑ 4.0.1 Η απόδειξη ύπαρξης ρίζας εξίσωσης (τουλάχιστον μία) σε κάποιο διάστημα τιμών της μεταβλητής της, οδηγεί στην εφαρμογή του θεωρήματος Βlzan ως εξής: i) Μεταφέρουμε
Διαβάστε περισσότεραΘΕΜΑ 2ο. Άσκηση εφαρµογής της µεθόδου Newton Raphson
ΘΕΜΑ 2ο Άσκηση εφαρµογής της µεθόδου Newton Raphson Θέµα 2: Η ακόλουθη αντίδραση πραγµατοποιείται σε έναν αντιδραστήρα αέριας φάσης: H 2 S+O 2 H 2 +SO 2 Όταν το σύστηµα φτάσει σε ισορροπία στους 600Κ και
Διαβάστε περισσότερατριώνυμο Η εξίσωση δευτέρου βαθμού στην πλήρη της μορφή ονομάζεται τριώνυμο, γιατί αποτελείται από τρία μονώνυμα. Η γενική μορφή της είναι:
κεφάλαιο 4 Α τριώνυμο επίλυση της εξίσωσης δευτέρου βαθμού Η εξίσωση δευτέρου βαθμού στην πλήρη της μορφή ονομάζεται τριώνυμο, γιατί αποτελείται από τρία μονώνυμα. Η γενική μορφή της είναι: αx + βx + γ
Διαβάστε περισσότεραΕργαστήριο 9 Συναρτήσεις στη PASCAL. Η έννοια του κατακερματισμού. Συναρτήσεις. Σκοπός
Εργαστήριο 9 Συναρτήσεις στη PASCAL Η έννοια του κατακερματισμού. Συναρτήσεις. Σκοπός 7.1 ΕΠΙΔΙΩΞΗ ΤΗΣ ΕΡΓΑΣΙΑΣ Η έννοια της συνάρτησης ως υποπρογράμματος είναι τόσο βασική σε όλες τις γλώσσες προγραμματισμού,
Διαβάστε περισσότεραlim f ( x) x + f ( x) x a x a x a 2x 1
Ασύµπτωτες γραφικής παραστάσεως συναρτήσεως Ασύµπτωτες της γραφικής παραστάσεως συναρτήσεως y f ( ) ονοµάζονται οι ευθείες που για πολύ µικρές ή µεγάλες τιµές των, y προσεγγίζουν ικανοποιητικά την γραφική
Διαβάστε περισσότερα( 2) 1 0,. Αν ρ 1, ρ 2 οι ρίζες της (ε) και
ΘΕΜΑ ο Δίνεται η συνάρτηση f με τύπο : f( x) α Να βρείτε το πεδίο ορισμού της x x x x β Να βρείτε τα σημεία τομής της με τους άξονες αν υπάρχουν γ Αν α, β ρίζες της εξίσωσης: ΘΕΜΑ ο x x f ( x), να δείξετε
Διαβάστε περισσότεραΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ( ΘΕΡΙΝΑ )
5 1 1 1η σειρά ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ( ΘΕΡΙΝΑ ) ΘΕΜΑ 1 Α. Ας υποθέσουμε ότι x 1,x,...,x κ είναι οι τιμές μιας μεταβλητής X, που αφορά τα άτομα ενός δείγματος μεγέθους
Διαβάστε περισσότεραA = x x 1 + 2x 2 + 4
Επιχειρησιακή Ερευνα η Σειρά Ασκήσεων Ενδεικτικές Λύσεις 1. (α ) Η συνάρτηση f(x 1, x ) = x 1 + x x 1 x + x μπορεί να γραφεί ως f( x) = x A x + b x όπου x = x 1 A = 1 1 1 x b = 0 Θα χρειαστούμε το διάνυσμα
Διαβάστε περισσότεραΣτη C++ υπάρχουν τρεις τύποι βρόχων: (a) while, (b) do while, και (c) for. Ακολουθεί η σύνταξη για κάθε μια:
Εργαστήριο 6: 6.1 Δομές Επανάληψης Βρόγχοι (Loops) Όταν θέλουμε να επαναληφθεί μια ομάδα εντολών τη βάζουμε μέσα σε ένα βρόχο επανάληψης. Το αν θα (ξανα)επαναληφθεί η εκτέλεση της ομάδας εντολών καθορίζεται
Διαβάστε περισσότερα1 η δεκάδα θεµάτων επανάληψης
1 η δεκάδα θεµάτων επανάληψης 1. Έστω η εξίσωση (k 5k+ 4) x (k 1)x + 1= 0 Να βρείτε την τιµή του k ώστε η εξίσωση να έχει µία µόνο ρίζα την οποία ρίζα να προσδιορίσετε i Να βρείτε την τιµή του k ώστε η
Διαβάστε περισσότεραΘΕΩΡΗΜΑ ROLLE. τέτοιο ώστε. στο οποίο η εφαπτομένη είναι παράλληλη στον άξονα χχ. της γραφικής παράστασης της f x με. Κατηγορίες Ασκήσεων
Διατύπωση: Εάν για μια συνάρτηση ΘΕΩΡΗΜΑ ROLLE x ισχύουν Η x συνεχής στο [α,β] Η x παραγωγίσιμη στο (α, β) a τότε υπάρχει ένα τουλάχιστον, τέτοιο ώστε ' 0 Γεωμετρική Ερμηνεία : Γεωμετρικά το θεώρημα ROLLE
Διαβάστε περισσότεραΘεώρημα Bolzano. ΑΠΑΝΤΗΣΗ. Έστω μια συνάρτηση f, ορισμένη σε ένα κλειστό διάστημα [, ]. Αν: η f είναι συνεχής στο [, ] και, επιπλέον, ισχύει
Θεώρημα Bolzno. ΑΠΑΝΤΗΣΗ Έστω μια συνάρτηση f, ορισμένη σε ένα κλειστό διάστημα [, ]. Αν: η f είναι συνεχής στο [, ] και, επιπλέον, ισχύει f f 0, τότε υπάρχει ένα, τουλάχιστον, 0 (, ) τέτοιο, ώστε f( 0
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ Ι Β ΜΕΡΟΣ
ΤΕΙ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΤΡΟΦΙΜΩΝ ΜΑΘΗΜΑΤΙΚΑ Ι Περιληπτικές Σημειώσεις-Ασκήσεις Β ΜΕΡΟΣ ΦΩΤΟΥΛΑ ΑΡΓΥΡΟΠΟΥΛΟΥ KAΘ. ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑΤΟΣ ΔΕΟ Msc. Θεωρητικά Μαθηματικά ΚΑΛΑΜΑΤΑ 2016 0 ΠΕΡΙΕΧΟΜΕΝΑ
Διαβάστε περισσότερα4.3 Δραστηριότητα: Θεώρημα Fermat
4.3 Δραστηριότητα: Θεώρημα Fermat Θέμα της δραστηριότητας Η δραστηριότητα αυτή εισάγει το Θεώρημα Fermat και στη συνέχεια την απόδειξή του. Ακολούθως εξετάζεται η χρήση του στον εντοπισμό πιθανών τοπικών
Διαβάστε περισσότεραΤμήμα Διοίκησης Επιχειρήσεων
Τμήμα Διοίκησης Επιχειρήσεων ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΤΗ ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ Ενότητα 2: Γραφική επίλυση προβληµάτων γραµµικού προγραµµατισµού(γ.π.) ιδάσκων: Βασίλειος Ισµυρλής Τηλ:6979948174, e-mail: vasismir@gmail.com
Διαβάστε περισσότεραΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. 2x 1. είναι Τότε έχουμε: » τον χρησιμοποιούμε κυρίως σε θεωρητικές ασκήσεις.
ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ : ΣΥΝΑΡΤΗΣΗ - ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗ [Υποκεφάλαιο. Μονότονες συναρτήσεις Αντίστροφη συνάρτηση του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ Παράδειγμα.
Διαβάστε περισσότεραΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ
ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΜΑΘΗΜΑ 1 ο 1 Εισαγωγή Έντυπα εγχειρίδια ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, ΑΚΡΙΒΗΣ Γ.Δ., ΔΟΥΓΑΛΗΣ Β.Α. Αριθμητική ανάλυση με εφαρμογές σε matlab & mathematica,
Διαβάστε περισσότεραΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑΣ B ΛΥΚΕΙΟΥ
ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑΣ B ΛΥΚΕΙΟΥ 1 ln 4 i Να βρείτε το πεδίο ορισμού της ii Να δείξετε ότι η παραπάνω συνάρτηση γράφεται: ln iii Να λύσετε την εξίσωση ln 5 ln 3 4 a a1 4,, a i Να βρείτε τον αριθμό
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ 1 ΛΥΣΕΙΣ Ανάλυση Πολυπλοκότητας
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 231: Δομές Δεδομένων και Αλγόριθμοι ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ 1 ΛΥΣΕΙΣ Ανάλυση Πολυπλοκότητας ΠΕΡΙΓΡΑΦΗ Σε αυτή την άσκηση καλείστε να αναλύσετε και να υπολογίσετε το
Διαβάστε περισσότεραa n = 3 n a n+1 = 3 a n, a 0 = 1
Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων
Διαβάστε περισσότεραΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ
ΥΠΕΥΘΥΝΟΣ ΚΑΘΗΓΗΤΗΣ Α. Ντούνης ΔΙΔΑΣΚΩΝ Χ. Τσιρώνης ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ - Αλγόριθμοι κλίσης - Gradient tools in MATLAB - Επίλυση ΝCM και CM ΑΛΓΟΡΙΘΜΟΙ ΚΛΙΣΗΣ Κατευθυντική αναζήτηση επί
Διαβάστε περισσότερα