CHAPTER 3 MITTAG-LEFFLER FUNCTIONS AND FRACTIONAL CALCULUS
|
|
- Αναστάσιος Βιλαέτης
- 7 χρόνια πριν
- Προβολές:
Transcript
1 CHAPTER 3 MITTAG-LEFFLER FUNCTIONS AND FRACTIONAL CALCULUS [ThischpterisbsedonthelecturesofProfessorR.K.SxenofJiNrinVysUniversity, Jodhpur, R jsthn.] 3.. Introduction This section dels with Mittg-Leffler function nd its generliztions. Its importnce is relised during the lst one nd hlf decdes due to its direct involvement in the problems of physics, biology, engineering nd pplied sciences. Mittg-Leffler function nturlly occurs s the solution of frctionl order differentil equtions or frctionl order integrl equtions. Vrious properties of Mittg- Leffler functions re described. Among the vrious results presented by vrious reserchers, the importnt ones del with Lplce trnsform nd symptotic expnsions of these functions, which re directly pplicble in the solution of differentil equtions nd behvior of the solution for smll nd lrge vlues of the rgument. Hille nd Tmrkin [14, p.86] in 192 hve presented solution of Abel-Volterr type integrl eqution φx) λ φt)dt Γα) x t) 1 α=f x), < x<1 in terms of Mittg-Leffler function. Dzherbshyn [2] hs shown tht both the functions defined by 3.1.1) nd 3.1.2) re entire functions of order p= 1 nd type α σ=1. A detiled ccount of the bsic properties of these functions is given in the third volume of Btemn Mnuscript Project written by A. Erdélyi et l [3] nd published by McGrw-Hill in the yer 1955 under the heding Miscellneous Functions. 71
2 72 3. MITTAG-LEFFLER FUNCTIONS AND FRACTIONAL CALCULUS 3.1. Mittg-Leffler Functions Nottion E α x): Mittg-Leffler function Nottion E α,β x): Generlized Mittg-Leffler function Note : According to Erdélyi, A. et l, E α x) nd E α,β x) re clled Mittg-Leffler functions. Definition E α z) := k= z k, α C,Rα)>) ) Γαk+1) Definition E α,β z) := k= z k, α,β C,Rα)>,Rβ)>) ) Γαk+β) The function E α z) ws defined nd studied by Mittg-Leffler in the yer 193. It is direct generliztion of the exponentil function. The function defined by 3.1.2) gives generliztion of 3.1.1). This generliztion ws studied by Wimn in 195, Agrwl in 1953 nd Humbert nd Agrwl in 1953, nd others. Exmple Prove tht E 1 z) = e z = E 1,1 z). It redily follows from 3.1.1) nd 3.1.2). Exmple Prove tht E 1,2 z)= ez 1 z Solution: We hve E 1,2 z)= k= z k Γk+2) = z k k+1)! = 1 z k= k= z k+1 k+1)! = 1 z ez 1). Definition Hyperbolic function of order n. z nk+r 1 h r z, n) := nk+r 1)! = zr 1 E n,r z n ), r N) ) k=
3 3.1. MITTAG-LEFFLER FUNCTIONS 73 Definition Trigonometric function of order n. 1) k z kn+r 1 k r z, n) : = kn+r 1)! = zr 1 E n,r z n ) ) E 1 2,1z) = k= k= Γ k 2 where erfc is complementry to the error function efc. Definition Error function. erfcz) := 2 π 1/2 To derive 3.1.5), we see tht [ [1], p,297, Eq.7.1.] reds s wheres [ [1],p. 297, Eq.7.1.8] is z z k ez2erfc z), 3.1.5) + 1)= e u2 du=1 erfz), z C, 3.1.6) wz)=e z2 erfc iz) 3.1.7) wz)= Γ n n= 2 iz) n + 1) ) From 3.1.7) nd 3.1.8), we esily obtin 3.1.5). In pssing, we note thtwz) is lso n error function [1]. Definition Mellin-Ross function. E t v, ) :=t v t) k Γv+k+1) = tv E 1,v+1 t) ) k= Definition Robotov s function. β, t) :=t α β k t kα+1) Γ1+α)k+ 1)) = tα E α+1,α+1 βt α+1 ) ) F k= Exmple Prove tht E 1,3 z)= ez z 1 z 2.
4 74 3. MITTAG-LEFFLER FUNCTIONS AND FRACTIONAL CALCULUS Solution: We hve E 1,3 z)= k= z k Γk+ 3) = 1 z 2 k= z k+2 k+2)! = 1 z 2 ez z 1). Exmple Prove tht E 1,r z)= 1 { z r 1 e z The proof is similr to tht in Exmple r 2 k= z k }, r. k! Prove tht 3.1. Revision Exercises [ H 1,1 1,2 x,a) ]=A 1 1) k x k+)/a,a),,1) Γ[1+k+ )A]. k= Prove tht d [ dx H1,1 1,2 x ],A),A),,1) [ = H 1,1 1,2 x ] A,A). A,A),,1) Prove tht 1 2,1[ x H 1,1 1,A),1,1) 1,A) ]=A 1 k= 1) k 1 x ) k+1 A Γ[1 k+1 )/A] Bsic Properties of Mittg-Leffler Function As consequence of the definitions 3.1.1) nd 3.1.2) the following results hold: Theorem There holds the following reltions:
5 3.2. BASIC PROPERTIES OF MITTAG-LEFFLER FUNCTION 75 i) E α,β z)=ze α,α+β z)+ 1 Γβ) 3.2.1) ii) E α,β z)=β E α,β+1 z)+αz d dz E α,β+1z) 3.2.2) d m [ ] iii) z dz) β 1 E α,β z α ) = z β m 1 E α,β m z α ), Rβ m)>, m ) ) Solutions: i) We hve ii) We hve iii) since E α,β z)= k= z k Γαk+β) = k= 1 z k+1 Γα+β+αk) = z E α,α+β z)+ 1 Γβ),Rβ)>. R.H.S=βE α,β+1 z)+αz d dz =βe α,β+1 z)+ k= = E α,β z)=l.h.s. ) m d L.H.S = dz k= = ) m d ) z αk+β 1 = dz k= k= z k Γαk+β+1) αk+β β)z k Γαk+β+1) z αk+β 1 Γαk+β) z αk+β m 1 Γαk+β m),rβ m)>, Γαk+β) Γαk+β m) zαk+β m 1 = z β m 1 E α,β m z α ), m ) = R.H.S.
6 76 3. MITTAG-LEFFLER FUNCTIONS AND FRACTIONAL CALCULUS Following specil cses of 3.2.3) re worth mentioning. If we setα= m n, m, n ) then d m [ )] ) z dz) β 1 E m n,β z m n = z β m 1 E m n,β m z m n forrβ m)>. Replcing k by k+n) = z β m 1 = z β 1 E m n,β k= n z m n Γ = z β m 1 z mk n β+ mk n ) k= n )+z β 1 k=1γ d m ) [z dz) β 1 E m,β z )]=z m β 1 E m,β z m z m + Γβ m) Putting z=t n m in 3.2.4) it yields When m= ) reduces to z mk n ) mk Γ n +β m z mk n β mk n m n t1 m dt) n d m [ ] t β 1) m n E m n,βt) = t β 1) m n E m n,βt)+t β 1) m n n k=1 Γ t k β mk n ) m, n=1, 2, 3) ) forrβ m)> ) ), Reβ m)>, m, n ) ) t 1 n n d [ ] t β 1)n E 1 dt,βt) = t β 1)n E 1 n n,βt)+tβ 1)n n k=1 t k ), Γβ k n Rβ)>1, which cn be written s 1 n d n [t β 1)n E ]=t dt 1n,β t) βn 1 E 1n,β t)+tβn 1 k=1 t k Γβ k n ),Rβ)> )
7 3.2. BASIC PROPERTIES OF MITTAG-LEFFLER FUNCTION Mittg-Leffler functions of rtionl order Now we consider the Mittg-Leffler functions of rtionl orderα= p q with p, q reltively prime. The following reltions redily follow from the definitions 3.1.1) nd 3.1.2). i) ii) pep d dz) z P ) = E p z P ) 3.2.8) d p dz p E p q z p q ) q 1 = E p z p q )+ q k=1 k=1 z kp q Γ1 kp 3.2.9) q ); q=1, 2, 3,. We now derive the reltion ) q 1 γ1 iii) E 1 z 1 q = e [1+ k z q z) ] q Γ1 k q ) ; 3.2.1) where q = 2, 3, nd γα, z) is the incomplete gmm function, defined by γα, z)= z e u u α 1 du. To prove 3.2.1), set p = 1 in 3.2.9) nd multiply both sides by e z nd use the definition ofγ, z). Thus we hve d [ dz e z E 1 q w 1 z 1 q )]=e z k=1 Γ Integrting ) with respect to z, we obtin 3.2.1). z k q 1 k q Euler trnsform of Mittg-Leffler function By virtue of bet function formul it is not difficult to show tht 1 z ρ 1 1 z) σ 1 E α,β xz γ )dz=γσ) 2 ψ 2 [ ρ,γ),1,1) ) ) β,α),σ+ρ,γ) ] x ) whererα)>,rβ)>,rρ)>,rσ)>,γ>. Here 2 ψ 2 is the generlized Wright function ndα,β,ρ,σ C. Specil cses of ): i) Whenρ=β,γ=α, ) yields.
8 78 3. MITTAG-LEFFLER FUNCTIONS AND FRACTIONAL CALCULUS 1 whereα>;β,σ C,Rβ)>,Rσ)> nd, ii) 1 z β 1 1 z) σ 1 E α,β xz α )dz=γσ)e α,σ+β x), ) z) σ 1 1 z) β 1 E α,β [x1 z) α ]dz=γσ)e α,σ+β x), ) whereα>;β,σ C,Rβ)>,Rσ)>. iii) Whenα=β=1, we hve 1 z ρ 1 1 z) σ 1 expxz γ )dz=γσ) 2 ψ 2 [ ρ,γ),1,1) whereγ>,ρ,σ C,Rρ)>,Rσ)>. =Γσ) 1 ψ 1 [ ρ,γ) 1,1),σ+ρ,γ) σ+ρ,γ) ] x ] x, ) Lplce trnsform of Mittg-Leffler function By the ppliction of Lplce integrl, it follows tht z ρ 1 e z E α,β xz γ )dz= 1 [ 1,1),ρ,γ) ρ 2 ψ 1 x ] β,α) γ, ) whereρ,,α,β C,Rα)>,Rβ)>,Rγ)>,R)>,Rρ)>nd z <1. γ Specil cses of ) re worth mentioning. i) Forρ=β,γ=α,Rα)>, ) gives e z z β 1 E α,β xz α )dz= α β α x, ) where,α,β C,Rα)>,Rβ)>,R)> x <1. α When =1, ) yields known result. e z z β 1 E α,β xz α )dz= 1, x <1, ) 1 x whererα)>,rβ)>. If we further tkeβ=1, ) reduces to
9 3.2. BASIC PROPERTIES OF MITTAG-LEFFLER FUNCTION 79 ii) Whenβ=1, ) gives e z E α xz α )dz= 1 1 x, x <1. wherer)>,rα)>, x α < Appliction of Lplce trnsform From ), we find tht e z E α xz α )dz= α 1 α x, ) whererα)>,rβ)> L { x β 1 E α,β x α ) } = sα β s α 3.2.2) We lso hve L{f t); s}= e st f t)dt,rs)> ) Now L { x γ 1 E α,γ x α ) } = sα γ s α ) [ s α β ][ s α γ ]= s2α β+γ) s α s α + s 2α 2 forrs 2 )>R) ) By virtue of the convolution theorem of the Lplce trnsform, it redily follows tht t u β 1 E α,β u α )t u) γ 1 E α,γ t u) α )du = t β+γ 1 E 2α,β+γ 2 t 2α ) ) where Rβ) >, Rγ) >. Further, if we use the identity nd the reltion 1 sα β s2= s α 1 [s β 2 s β α 2 ] )
10 8 3. MITTAG-LEFFLER FUNCTIONS AND FRACTIONAL CALCULUS where Rρ) >, Rs) >, we obtin t where <β<2,rα)>. L { t ρ 1 ; s } =Γρ)s ρ, ) [ t u) u β 1 E α,β u α 1 β ) Γ2 β) t u)α β+1 Γα β+2) ] du=t, ) Next we note tht the following result ) cn be derived by the ppliction of Lplce trnsform of the identity We hve [ s 2α β s 2α 1 1 Γα) ] [s α ]= s2α β s 2α 1 + sα β s α 1 forrsα )> ) x t) α 1 E 2α,β t 2α )t β 1 dt = x β 1 E 2α,β x 2α )+ x β 1 E α,β x α ), ) where Rα) >, Rβ) >. If we set β = 1 in ), it reduces to where Rα) >. 1 Γα) x t) α 1 E 2α t 2α ) dt=e α x α ) E 2α x 2α ) 3.2.3) Contour integrl representtion Lemm Contour integrl representtion for E α z) is given by E α z)= 1 t α 1 e t dt 2πi H t α z, ) where the pth of integrtion H is loop strting nd ending t, nd encircling the circulr disk t z 1/α in the positive sense : π<rg t πon H. To estblish the representtion ) we expnd the integrnd in powers of z, integrte term by term nd pply the Hnkel integrl for the reciprocl of the gmm function, nmely e s s z ds= 2πi H Γz) ) Similrly we cn estblish
11 3.2. BASIC PROPERTIES OF MITTAG-LEFFLER FUNCTION 81 Lemm where α,β>. E α,β z)= 1 t α β e t dt 2πi H t α z ) Y X O = O = o E X H Y Figure 3.1: Showing Hnkel contour H Reltion between Mittg-Leffler functions nd the H-function Both the Mittg-Leffler functions E α z) nd E α,β z) belong to H-function fmily. We derive their reltions with the H function. Lemm integrl Letα =, ). Then E α z) is represented by the Mellin-Brnes E α z)= 1 2πi L Γs)Γ1 s) z) s ds, rg z <π), ) Γ1 αs) where the contour of integrtion L, beginning t i nd ending t +i, seprtes ll poles s= k k ) to the left nd ll poles s=1+n n ) to the right. Proof. We now evlute the integrl ) s the sum of the residues t the points s=, 1, 2,. We find tht
12 82 3. MITTAG-LEFFLER FUNCTIONS AND FRACTIONAL CALCULUS 1 2πi L Γs)Γ1 s) z) s ds= Γ1 αs) = k= k= = E α z), [ Γs)Γ1 s) z) s] Res s= k Γ1 αs) 1) k Γ1+k) k!γ1+αk) z)k ) which yields ) in ccordnce with the definition 3.1.1). It redily follows from the definition of the H - function nd ) tht E α z) cn be represented in the form where H 1,1 1,2 is the H-function, which is studied in Chpter 1. [ E α z)=h 1,1 1,2 z ],1), ),1),,α) Lemm Letα + =, ),β C, then E α,β z)= 1 2πi L Γs)Γ1 s) z) s ds ) Γβ αs) The proof of ) is similr to tht of ). Hence the proof is omitted. From ) nd the definition of the H-function we obtin the reltion [ E α,β z)=h 1,1 1,2 z ],1) ),1), β,α) In prticulr, E α z) cn be expressed in terms of generlized Wright function in the form Similrly, we hve E α z)= 1 ψ 1 [ 1,1) 1,α) ] z ) E α,βz)= 1 ψ 1 [ 1,1) β,α) ] z ) Next if we clculte the residues t the poles of the gmm functionγ1 s) t the points s=1+n n=, 1, 2, ) it gives
13 3.2. BASIC PROPERTIES OF MITTAG-LEFFLER FUNCTION 83 1 Γs)Γ1 s) 2πi L Γ1 αs) z)s ds= = = n= n= [ Γs)Γ1 s) z) s] Res s 1+n Γ1 αs) 1) n n1 n=1 Γ1+n) z) n 1 Γ1 α1+n)) z n Γ1 αn) ) Similrly for E α,βz), if we clculte the residues t s=1+n n=, 1, 2, ), we obtin 1 Γs)Γ1 s) 2πi L Γβ αs) z) s ds= n=1 z n Γβ αn) ) Exercises Let nd U 1 t)=t β 1 E m n,βt m n ) U 2 t)=t β 1 E m,β t m ) U 3 t)=t β 1) n m E m n,βt) U 4 t)=t β 1)n E 1 n,β t). Then show tht these functions respectively stisfy the following differentil equtions of Mittg-Leffler functions. i) ii) d m dt m U 1t) U 1 t)=t β 1 n k=1 Rβ)>m, m, n=1, 2, 3, ) t m n k Γβ mk n ) d m dt m U 2t) U 2 t)= t m+β 1,Rβ)>m, m=1, 2, 3, ) Γβ m)
14 84 3. MITTAG-LEFFLER FUNCTIONS AND FRACTIONAL CALCULUS Prove tht Prove tht Prove tht 1 Γv) z Prove tht m iii) n t1 m n d ) mu3 n t) U 3 t)=t β 1) m n t k dt k=1γβ mk n ) m, n=1, 2, 3, ) iv) 1 d n n[ dt U 4t)) ] t n 1 U 4 t)=t βn 1 t k Γβ k n ) n=1, 2, 3, ). k=1 λ x E α λt α )dt Γα) x t) 1 α= E αλx α ) 1, Rα)>. d [ ] x γ 1 E α,β x α ) = x γ 2 E α,β 1 x α )+γ β)x γ 2 E α,β x α ), β γ. dx t β 1 z t) v 1 E α,β λt α )dt=z β+v 1 E α,β+v λz α ), Rβ)>, Rv)>Rα)>. 1 Γα) Prove tht Prove tht 1 Γα) z 1 Γα) z z t) α 1 cosh λ t)dt=z α E 2,α+1 λz 2 ), Rα)>. z e λt z t) α 1 dt=z α E 1,α+1 λz),rα)>. λ ) sinh t z t) α 1 dt=z α+1 E 2,α+2 λz 2 ), Rα)>. λ
15 3.3. GENERALIZED MITTAG-LEFFLER FUNCTION Prove tht e sρ ρ β 1 E α,β ρ α )dρ= sα β s α 1,Rs)> Prove tht e st E α t α )dt= 1 s s 1 α,rs)> Prove tht u γ 1 E α,γ yu α )x u) β 1 E α,β [zx u) α ]du = ye α,β+γyx α ) ze α,β+γ zx α ) y z wherey, z C;y z, γ>,β>. x β+γ Generlized Mittg-Leffler Function Nottion Eβ,γ δ z) : Generlized Mittg-Leffler function Definition E δ β,γ z) := n= δ) n z n Γβn+γ)n!, 3.3.1) whereβ,γ,δ CwithRβ)>. Forδ=1, it reduces to Mittg-Leffler function 3.1.2). This function ws introduced by T. R. Prbhkr in It is n entire function of orderρ=[rβ)] Specil cses of E δ β,γ z) i) E β z)=eβ,1 1 z) ) ii) E β,γz)=eβ,γ 1 z) 3.3.3) iii) φγ,δ; z)= 1 F 1 γ;δ; z)=γδ)e γ 1,δ z), 3.3.4) whereφγ,δ; z) is Kummer s confluent hypergeometric function.
16 86 3. MITTAG-LEFFLER FUNCTIONS AND FRACTIONAL CALCULUS Mellin-Brnes integrl representtion Lemm Letβ + =, );γ,δ Cγ ). Then Eβ,γ δ z) is represented by the Mellin-Brnes integrl Eβ,γ δ z)= 1 Γs)Γδ s) 2πi Γδ) L Γγ βs) z) s ds, 3.3.5) where rg z) <π; the contour of integrtion beginning t i nd ending t+i, seprtes ll the poles t s= k k ) to the left nd ll the poles t s=n+δ n ) to the right. Proof. We will evlute the integrl on the R.H.S of 3.3.5) s the sum of the residues t the poles s=, 1, 2,. We hve which proves 3.3.5). 1 Γs)Γδ s) 2πi L Γγ βs) z) s ds= k= Res s= k [ Γs)Γδ s) Γγ βs) z) s ] 1) k Γδ+k) = k! Γγ+βk) z)k k= δ) k z k =Γδ) Γβk+γ) k! =Γδ)Eδ β,γ z) k= Reltions with the H function nd Wright hypergeometric function It follows from 3.3.5) tht Eβ,γ δ z) cn be represented in the form Eβ,γ δ z)= 1 [ Γδ) H1,1 1,2 z ] 1 δ,1),1),1 γ,β) 3.3.6) where H 1,1 1,2 z) is the H function, the theory of which cn be found in Chpter 1. This function cn lso be represented by Eβ,γ δ z)= 1 [ δ,1) ] Γδ) 1 ψ 1 z, 3.3.7) γ,β) where 1 ψ 1 is the Wright hypergeometric function p ψ q z).
17 Cses of reducibility 3.3. GENERALIZED MITTAG-LEFFLER FUNCTION 87 In this subsection, we present some interesting cses of reducibility of the function Eβ,γ δ z). The results re given in the form of five theorems. The results re useful in the investigtion of the solutions of certin frctionl-order differentil nd integrl equtions. The proof of the following theorems cn be developed on similr lines to tht of eqution 3.2.1). Theorem holds the reltion Ifβ,γ,δ C withrβ)>,rγ)>,rγ β)>, then there ze δ β,γ z)=eδ β,γ β z) Eδ 1 β,γ β z) ) Corollry Ifβ,γ,δ C,Rγ)>Rβ)>, then we hve z E δ β,γ z)=e β,γ βz) 1 Γγ β) ) Theorem Ifβ,γ,δ C,Rβ)>,Rγ)>1, then there holds the formul β E 2 β,γ z)=e β,γ 1z)+1+β γ)e β,γ z) ) Theorem If Rβ) >, Rγ) > 2 + Rβ), then there holds the formul zeβ,γ 3 z)= 1 [ E 2β 2 β,γ β 2 z) 2γ 3β 3)E β,γ β 1 z) ] + 2β 2 +γ 2 3βγ+3βγ 2γ+1) E β,γ β z) ) Theorem If Rβ) >, Rγ) > 2, then there holds the formul E 3 β,γ z)= 1 [ E 2β 2 β,γ 2 z)+3+3β 2γ)E β,γ 1 z) ] + 2β 2 +γ 2 + 3β 3βγ 2γ+1)E β,γ z) )
18 88 3. MITTAG-LEFFLER FUNCTIONS AND FRACTIONAL CALCULUS Differentition of generlized Mittg-Leffler function Theorem Letβ,γ,δ,ρ,w. Then for ny n, there holds the formul, forrγ)>n, In prticulr for Rγ) > n, nd forrγ)>n, d n [ ] z dz) γ 1 E δ β,γ wzβ ) = z γ n 1 E δ β,γ n wzβ ) ) d n [ ] z dz) γ 1 E β,γ wz β ) = z γ n 1 E β,γ n wz β ) ) d n [ ] z dz) γ 1 φδ;γ;wz) = Γγ) Γγ n) zγ n 1 φδ,γ n;wz) ) Proof. Using 3.3.1) nd tking term by term differentition under the summtion sign, which is possible in ccordnce with uniform convergence of the series in 3.3.1) in ny compct set of, we obtin d n [ ] z dz) γ 1 Eβ,γ δ wzβ ) = δ) k d ) n [ w Γβk+γ) k z βγ+γ 1 ] dz k! k= = z γ n 1 E δ β,γ n wzβ ) forrγ)>n, which estblishes ). Note tht ) follows from ) when δ = 1 due to 3.3.3) nd ) follows from ) whenβ=1 on ccount of 3.3.4) Integrl property of generlized Mittg-Leffler function Corollry Letβ,γ,δ,w,Rγ)>,Rβ)>,Rδ)>. Then z nd ) follows from ). In prticulr, t γ 1 E δ β,γ wtβ )dt=z γ E δ β,γ+1 wzβ ) ) nd z t γ 1 E β,γ wt β )dt=z γ E β,γ+1 wt β ) ) z t γ 1 φγ,δ;wt)dt= 1 δ zδ φγ,δ+1;wx) )
19 3.3. GENERALIZED MITTAG-LEFFLER FUNCTION 89 Remrk The reltions ) nd ) re well known Integrl trnsform of E δ β,γ z) By ppeling to the Mellin inversion formul 3.3.5) yields the Mellin-trnsform of the generlized Mittg-Leffler function. t s 1 Eβ,γ δ wt)dt= Γs)Γδ s) Γδ)w s Γγ sβ) ) If we mke use of the integrl t v 1 e t 2 Wλ,µ t)dt= Γ 1 2 +µ+v)γ 1 2 µ+v) Γ1 λ+v) 3.3.2) whererv±µ)> 1 2, we obtin the Whittker trnsform of the Mittg-Leffler function t ρ 1 e 1 2 pt W λ,µ pt)e δ β,γ wtα )dt= p ρ Γδ) 3 ψ 2 [ δ,1), 1 2 ±µ+ρ,α) γ,β),1 λ+ρ,α) w ] p α ) where 3 ψ 2.) is the generlized Wright function, ndrρ)> Rµ) 1 2,Rp)>o, w p α <1. Whenλ=ndµ= 1 2, then by virtue of the identity W ± 1 2, t)=exp t ), ) 2 the Lplce trnsform of the generlized Mittg-Leffler function is obtined: [ t ρ 1 e pt Eβ,γ δ wtα )dt= p ρ δ,1),ρ,α) Γδ) 2 ψ 1 w ] p α γ,β) ) whererβ)>,rγ)>,rρ)>,rp)>, p> w Rα). In prticulr, forρ=γ nd α = β we obtin result given by Prbhkr [ p.8, Eq. 2.5]. whererβ)>,rγ)>,rp)> nd p> w t γ 1 e pt E δ β,γ wtβ )dt= p γ 1 wp β ) δ ) 1 Rβ). The Euler trnsform of the generlized Mittg-Leffler function follows from the bet function: 1 t 1 1 t) b 1 Eβ,γ δ xtα )dt= Γb) [ δ,1),,α) Γδ) 2 ψ 2 wherer)>,rb)>,rδ)>,rβ)>,rγ)>,α>. 1 γ,β),+b,α) ] x, )
20 9 3. MITTAG-LEFFLER FUNCTIONS AND FRACTIONAL CALCULUS Theorem We hve e pt t αk+β 1 E k) α,β ±tα )dt,= k!pα β p α ) k+1, ) whererp)> 1/α,Rα)>,Rβ)>, nd E k) dk α,β y)= E dy k α,β y). Solution: We will use the following result: The given integrl e t t β 1 E α,β zt α )dt= 1 1 z z <1) ) = dk d k = dk d k e pt t β 1 E α,β ±t α )dt p α β p α ) = k!p α β p α ) k+1, Rβ)>. Corollry where Rp)> 2. e pt t k 1 2 E k) 1 ± t)dt= 2, 1 2 k! p ) k ) Exercises prove tht 1 Γα) Prove tht where 1 Γα) t u γ 1 1 u) α 1 E δ β,γ zuβ )du=e δ β,γ+α z),rα)>,rβ)>,rγ)>. x s) α 1 s t) γ 1 E δ β,γ [λs t)β ]ds=x t) γ+α 1 E δ β,γ+α [λx t)β ] Rα)>,Rγ)>.
21 3.3. GENERALIZED MITTAG-LEFFLER FUNCTION Prove tht where 1 Γα) t s t) α 1 x s) γ 1 E δ β,γ [λx s)β ]ds=x t) γ+α 1 E δ β,γ+α [λx t)β ] Rα)>,Rγ)>,Rβ)> Prove tht for n=1, 2, E δ n,γ z)=π n 1 2 n 1 2 γ Γγ) 1F n δ; n;γ); n n z), where n;γ) represents the sequence of n prmeters γ n, r+1 n,γ+n 1 n Show tht for Rβ) >, Rγ) >, d dz ) m E δ β,γ z)=δ) me δ+m β,γ+mβ z) Prove tht for Rβ) >, Rγ) >, z d dz +δ ) E δ β,γ z)=δeδ+1 β,γ z) Prove tht forrγ)>1, Prove tht γ βδ 1) E δ β,γ z)= Eδ β,γ 1 z) βδeδ+1 β,γ z). t v 1 x t) µ 1 E γ ρ,µw[x t] ρ ) E σ ρ,v wtρ )dt=x µ+v 1 E γ+σ ρ,µ+v wxρ ), whereρ,µ,γ,v,σ,w ;Rρ),Rµ),Rv)> Find nd give the conditions of vlidity. L 1 { s λ 1 z s ρ ) α }
22 92 3. MITTAG-LEFFLER FUNCTIONS AND FRACTIONAL CALCULUS Prove tht L 1 [ s λ 1 z 1 s ) α 2 ]= tλ 1 Γλ) Φ 2[α 1,α 2 ;λ; z 1 t, z 2 t], s ) α 1 1 z 2 whererλ)>,rs)>mx[,rz 1 ),Rz 2 )] ndφ 2.) is the confluent hypergeometric function of two vribles defined by Φ 2 b, b ; c; u, z)= k,l= From the bove result deduce the formul b) k b ) l u k z l. c) k+l k!l! L 1{ s λ 1 z/s) α} = tλ 1 Γλ) whererλ)>,rs)>mx[, z ]. φα,λ; zt), 3.4. Frctionl Integrls This section dels with the definition nd properties of vrious opertors of frctionl integrtion nd frctionl differentition of rbitrry order. Among the vrious opertors studied, it involves the Riemnn-Liouville frctionl integrl opertors, Riemnn-Liouville frctionl differentition opertors, Weyl opertors nd Kober opertors etc. Besides the bsic properties of these opertors, their behviours under Lplce, Fourier nd Mellin trnsforms re lso presented. Appliction of Riemnn-Liouville opertors in the solution of frctionl order differentil nd frctionl order integrl equtions is demonstrted Riemnn-Liouville frctionl integrls of rbitrry order Nottion Definition Ix n, D n x, n {} : Frctionl integrl of integer order n Ix n f x)= D n x f x)= 1 Γn) where n {}. x t) n 1 f t)dt 3.4.1) We begin our study of frctionl clculus by introducing frctionl integrl of integer order n in the form Cuchy formul):
23 3.4. FRACTIONAL INTEGRALS 93 is, D n x f x)= 1 x t) n 1 f t)dt ) Γn) It will be shown tht the bove integrl cn be expressed in terms of n-fold integrl, tht D n x f x)= 1 2 dx 1 dx 2 n 1 dx 3 Proof. When n = 2, then using the well-known Dirichlet formul, nmely f t)dt ) 3.4.3) becomes b dx f x,y)dy= b b dy f x, y)dx 3.4.4) y dx 1 1 f t)dt= = dt f t) t dx 1 x t) f t)dt ) This shows tht the two-fold integrl cn be reduced to single integrl with the help of Dirichlet formul. For n=3, the integrl in 3.4.3) gives D 3 x f x)= = 1 2 dx 1 dx 2 f t)dt [1 2 dx 1 dx 2 Using the result 3.4.5) the integrls within big brckets simplify to yield D 3 x f x)= dx 1 [1 If we use 3.4.4), then the bove expression reduces to D 3 x f x)= dt f t) t Continuing this process, we finlly obtin D n x f x)= x 1 n 1)! x 1 t)dx 1 = ] f t)dt ) ] x 1 t) f t)dt ) x t) 2 f t)dt ) 2! x t) n 1 f t)dt )
24 94 3. MITTAG-LEFFLER FUNCTIONS AND FRACTIONAL CALCULUS It is evident tht the integrl in 3.4.9) is meningful for ny number n provided its rel prt is greter thn zero Riemnn-Liouville frctionl integrls of orderα Nottion orderα. Ix α, D α x, Iα + ; Riemnn-Liouville left-sided frctionl integrl of Nottion orderα. Definition xib α, xd α b, Iα b ; Riemnn-Liouville right-sided frctionl integrl of Let f x) L, b),α C Rα)>), then Ix α f x)= D α x f x)=i+ α f x)= 1 f t)dt Γα) x t) 1 α, x> 3.4.1) is clled Riemnn-Liouville left-sided frctionl integrl of orderα. Definition Let f x) L, b),α C Rα)>), then xi α b f x)= xd α b f x)= I α b f x)= 1 b f t)dt Γα) x t x) 1 α, x<b ) is clled Riemnn-Liouville right-sided frctionl integrl of orderα. Exmple If f x)=x ) β 1, then find the vlue of I α x f x). Solution: We hve Ix α f x)= 1 x t) α 1 t ) β 1 dt Γα) If we substitute t=+yx ) in the bove integrl, it reduces to where Rβ) >. Thus Γβ) Γα+β) x )α+β 1 I α x f x)= Γβ) Γα+β) x )α+β )
25 Exmple It cn be similrly shown tht 3.4. FRACTIONAL INTEGRALS 95 xib α Γβ) gx)= Γα+β) b x)α+β 1, x<b, ) whererβ)>ndgx)=b x) β 1. Note It my be noted tht ) nd ) give the Riemnn-Liouville integrls of the power functions f x)=x ) β 1 ndgx)=b x) β 1,Rβ)> Bsic properties of frctionl integrls Property Frctionl integrls obey the following property: Proof. I α x I x β φ= I x α+β φ= I x β I x α φ, xi b α x I b β φ= x I b α+β φ= x I b β x I b α φ ) By virtue of the definition 3.4.1), it follows tht Ix α I β x φ= 1 dt 1 Γα) x t) 1 α Γβ) 1 x = du φu) Γα)Γβ) If we use the substitutiony= t u x u, the vlue of the second integrl is 1 Γα)Γβ)x u) 1 α β 1 u t φu)du t u) 1 β dt x t) 1 α t u) 1 β ) y β 1 1 y) α 1 dy= x u)α+β 1, Γα+β) which, when substituted in ) yields the first prt of ). The second prt cn be similrly estblished. In prticulr, I n+α x f= I x n I x α f, n,rα)>) ) which shows tht the n-fold differentition d n dx n I x n+α f x)= I x α f x), n,rα)>) ) for ll x. Whenα=, we obtin I x f x)= f x); I n x f x)= dn dx n f x)= f n) x) ) Note The property given in ) is clled semigroup property of frctionl integrtion.
26 96 3. MITTAG-LEFFLER FUNCTIONS AND FRACTIONAL CALCULUS Nottion L, b), spce of Lebesgue mesurble rel or complex vlued functions. Definition L, b), consists of Lebesgue mesurble rel or complex vlued functions f x) on [, b]: L, b)={ f : f 1 b f t) dt<+ } ) Note The opertors I α x nd xi α b re defined on the spce L, b). Property The following results holds. b f x) I α xg)dx= b gx) x Ib α f )dx ) 3.4.2) cn be estblished by interchnging the order of integrtion in the integrl on the left-hnd side of 3.4.2) nd then using the Dirichlet formul 3.4.4). The bove property is clled the property of integrtion by prts for frctionl integrls A useful integrl We now evlute the following integrl given by Sxen nd Nishimoto [Journl of Frctionl clculus, Vol.6, 1994), 65-75]. b t ) α 1 b t) β 1 ct+ d) γ dt=c+d) γ b ) α+β 1 [ Bα,β) 2 F 1 α, γ;α+β; b)c ], ) c+d whererα)>,rβ)>, rg d+bc d+c <π,, c nd d re constnts. Solution: Let I= b t ) α 1 b t) β 1 ct+ d) γ dt = c+d) γ k= 1) k γ) k c k c+d) k b t ) α+k 1 b t) β 1 dt = c+d) γ b ) α+β 1 Bα,β) 2 F 1 γ, α;α+β; b)c c+d ).
27 3.4. FRACTIONAL INTEGRALS 97 In evluting the inner integrl, the modified form of the bet function, nmely b whererα)>,rβ)>, is used. t ) α 1 b t) β 1 dt=b ) α+β 1 Bα,β), ) Exmple As consequence of ), it follows tht Ix α [x ) β 1 cx+d) γ ]=c+d) γ x ) α+β 1 Γβ) Γα+β) x)c 2 F 1 β, γ;α+β; ), ) c+d whererα)>,rβ)>, rg x)c c+d <π;, c nd d being constnts. In similr mnner we obtin the following result. Exmple We lso hve xib α [b x)β 1 cx+d) γ ]=cx+d) γ b x) α+β 1 Γβ) Γα+β) whererα)>,rβ)>, rg x b)c cx+d <π. 2 F 1 α, γ;α+β; x b)c ), ) cx+d Exmple On the otherhnd if we set γ = α β in ) it is found tht whererα)>,rβ)>. D α x [x ) β 1 cx+d) α β ] = Γβ) Γα+β) c+d) α x ) α+β 1 d+ cx) β, ) Exmple Similrly, we hve whererα)>,rβ)>. xi α b [b x)β 1 cx+d) α β ] = Γβ) Γα+β) cx+d) β bc+d) α b x) α+β )
28 98 3. MITTAG-LEFFLER FUNCTIONS AND FRACTIONAL CALCULUS The Weyl integrl Nottion xw α, x I α, Weyl integrl of orderα. Definition , is defined by xw α The Weyl frctionl integrl of f x) of order α, denoted by xw α f x)= 1 t x) α 1 f t)dt, < x< ) ) Γα) x whereα C,Rα)> ) is lso denoted by I α f x). Exmple Prove tht Solution: We hve xw e α λx = e λx, whererα)> ) λα xw α e λx = 1 Γα) = e λx Γα)λ α x = e λx λ α,rα)>. t x) α 1 e λt dt,λ> u α 1 e u du Nottion xd α, Dα : Weyl frctionl derivtive. Definition : is defined by The Weyl frctionl derivtive of orderα, denoted by x D α d ) m xd α f x)= D α f x)= 1) m dx d ) m 1 = 1) m dx Γm α) where m 1 α<m, m N,α c. Exmple Find x D α e λx,λ>. xw m α x ) f x) f t)dt t x) 1+α m, < x< ) )
29 3.4. FRACTIONAL INTEGRALS 99 Solution: We hve xd α e λx = 1) m d dx ) m xw m α e λx = 1) m d dx) m λ m α) e λx 3.4.3) =λ α e λx Bsic properties of Weyl integrl Property : The following reltion holds. ) φx) Ixψx) α dx= ) xw φx) α ψx)dx ) ) is clled the formul for frctionl integrtion by prts. It is lso cled Prsevl equlity ) cn be estblished by interchnging the order of integrtion. Property : Weyl frctionl integrl obeys the semigroup property. Tht is, ) ) ) xw α xw β f = xw α+β f = xw β xw α f ) Proof. We hve xw α xw β f x)= 1 Γα) 1 Γβ) x t dtt x) α 1 u t) α 1 f u)du. Using the modified form of Dirichlet formul 3.4.4), nmely x dtt x) α 1 u t) β 1 f u)du = Bα,β) t nd letting, ) yields the desired result t u t) α+β 1 f u)du, ) ) ) xw α xw β f = xw α+β f )
30 1 3. MITTAG-LEFFLER FUNCTIONS AND FRACTIONAL CALCULUS Nottion Definition W α x,i α +: Weyl integrl with lower limit. Another compnion to the opertor ) is the following: Wx α f x)=i+ α f x)= 1 x t) α 1 f t)dt, < x< ) ) Γα) whereα c, Rα)>). Note : The opertor defined by ) is useful in frctionl diffusion problems of physics nd relted res. Exmple Prove tht Solution: We hve, by setting x t = u. Wx α e x = ex α ) Note : where An lterntive form of ) in terms of convolution is given by Wx α f x)= 1 t+ α 1 f x t)dt ) Γα) t α 1 + = t α 1, t>, t< ) Exmple Prove tht where >, <Rv)<1. xw v cos x)= v cosx+ 1 πv) ) 2 Solution: The result follows from the known integrl x u) v 1 cos x dx= Γv) cosu+ vπ u v 2 ) 3.4.4) where >, <Rv)<1.
31 3.4. FRACTIONAL INTEGRALS 11 Exmple Prove tht Hint : Use the integrl xw sin v x)= v sinx+ 1 πv) ) 2 where >, <Rv)<1. u x u) v 1 sin x dx= Γv) v sinu+ vπ 2 ) ) Exercises Prove tht I α x x )β 1 ) = Γβ) Γα+β) x )α+β 1, Rβ)> Prove tht I α x x±c) γ 1 )= ±c)γ 1 Γα+1) x )α 2F 1 1, 1 γ;α+1; whererβ)>,γ, < x<b Prove tht ]) Ix [x ) α β 1 b x) γ 1 = Γβ) x ) α+β 1 Γα+β) b ) 1 γ 2 F 1 β, 1 γ;α+β; x ) b whererβ)>,γ, < x<b. x ) ±c Prove tht Rβ)>, < x<b. [ x ) Ix α β 1]) b x) α+β = Γβ) Γα+β) x ) α+β 1 b ) α b x) β
32 12 3. MITTAG-LEFFLER FUNCTIONS AND FRACTIONAL CALCULUS Prove tht ]) Ix [x ) α β 1 x±c) γ 1 = Γβ) x ) α+β 1 Γα+β) ±c) 1 r 2 F 1 β, 1 γ;α+β; x ), ±c whererβ)>,γ, ±c> Prove tht Prove tht where x>. [ x ) Ix α β 1]) x±c) α+β = Γβ) Γα+β) x ) α+β 1 ±c) α x±c) β ) Ix α [eλx ] = e λ x ) α E 1,α+1 λx λ) Prove tht where Rβ) > Prove tht ) Ix α [e λx x ) β 1 ] = Γβ) ) Γα+β) eλ x ) α+β 1 1F 1 β;α+β;λx λ, I α x [ ]) x ) β 1 lnx ) = x ) α+β 1 Γβ) Γα+β) [lnx )+ψβ) ψα+β)]. whererβ)>, whereψ.) is the logrithmic derivtive of the gmm function Prove tht where Rν) > 1. [ Ix ν x ) ν 2 J ν λ ]) 2 ) ν +ν x ) = x ) 2 J +ν λ x ), λ
33 3.4. FRACTIONAL INTEGRALS Prove tht where Rβ) >. I ν x [ ]) x ) β 1 2F 1 µ,ν;β;λx )) = Γβ) Γα+β) x )ν+β 1 2F 1 µ,ν;ν+β;λx λ), Prove tht I ν x [x ) β 1 E µ,β x ) µ )])=x ) ν+β 1 E µ,ν+β [x ) µ ] Show tht [ Ix ν ]) x µ 1 sin x where >,Rν)>,Rµ)> Estblish the formul [ Ix ν = xµ+ν 1 Γµ) 2i Γµ+ν) [ 1F 1 µ;µ+ν; ix) 1 F 1 µ;µ+ν; ix) ]) x µ 1 cos x where >,Rν)>,Rµ)> Prove the following results: I ν x = xµ+ν 1 Γµ) 2Γµ+ν) [ 1F 1 µ;µ+ν; ix) 1 F 1 µ;µ+ν; ix) { sinλx ) cos λx ) })= i 1±1)/2 2Γν+1) x )ν [ ] 1F 1 1;ν+1; iλx )) 1 F 1 1;ν+1; iλx )) ], ],
34 14 3. MITTAG-LEFFLER FUNCTIONS AND FRACTIONAL CALCULUS Prove the following results: [ { Ix ν x ) 1 }]) 2 cosλ x sinλ x = λ ) 1 2 ν π x ) 2ν 1)/4 2 J ν 1 2 λ x ) I ν 1 2 λ x ) Prove tht [ ]) Ix ν x α 1 2F 1, b; c; wx) = Bα,ν) x α+ν 1 3F 2, b,α; c,α+ν; wx), Γν) where x,rα),rν)>, rg 1+wy) <π Prove tht [ Ix ν x α 1 2F 1, b; c; 1 wx) ])= xα,ν 1) Γν) 3 F 2, b,α; +b c+1,α+ν;wx) [ + wc b c, +b c, c b+α ] Γ Γν) xc b+α+ν 1, b, c b+α+ν [ c, c b,α,ν ] Γ c, c b, α+ν 3 F 2 c, c b, c b+α; c b+1; c b+α+ν;wx) [ b c ] where x,rα),rν),rc b+α)>, rgw <π ndγ stnds for the rtio of product of gmm functions Γ)Γb)Γc) Γd)Γe)Γ f ) Prove tht d e f. [ ]) Ix ν x c 1 1 xz) ρ 2F 1, b; c;wx) = Γc) Γν+c) xc+ν 1 1 xz) ρ F 3 ρ,,ν, b, c+ν; where x,rc),rν)>; rg 1 wx) <π nd rg 1 z) <π; F 3 hypergeometric function of two vribles, defined by F 3, ; b, b ; c;y, z)= ) k ) l b) k b ) l y k z l. c) k+l k!l! k,l= xz xz 1,wx), is the Appell s
35 Prove tht 3.4. FRACTIONAL INTEGRALS 15 [ x ) Ix ν α 1] = x )α+ν 1 Γα) x y x y)γα+ν) 2 F 1 1,ν;α+ν; x ) x y whererα),rβ)>;y<< x Prove tht ]) Ix [x ν α 1 1 ux) ρ 1 νx) λ = xα+ν 1 Γα) F 1 α,ρ,λ,α+ν; ux,νx), Γα+ν) x u <1, rg u <π; rg ν <π, x ν <1; where x,rα),rν)>. F 1 defined by Prove tht [ ]) Ix ν x α 1 ln n cx+d) is the Appell s hypergeometric function of the two vribles F 1, b, b ; c;y, z)= = xα+ν 1 Γα) Γα+ν) ) k+l b) l b ) l y k z l. c) k+l k!l! k,l= n [ ρ n where x,rα),rβ)>; rg cx+d) <π nd t x Prove tht d ρ 2F 1 ρ,α;α+ν; xc )] d ρ=, where Rν) >. [ ]) Ix ν lncx+d) = 1 Γν) t ν 1 lncx+d ct)dx Prove tht [ ]) Ix ν x α 1 lncx+d) = xα+ν 1 Γα) ln d Γα+ν) + cd 1 x α+ν Γα+1) Γα+ν+1) 3 F 2 α+1, 1, 1; 2,α+ν+1; cx d ), where x,rα),rν)>; rg cx+d) <π nd t x.
36 16 3. MITTAG-LEFFLER FUNCTIONS AND FRACTIONAL CALCULUS Prove tht ]) Ix [e ν λx = x ν E 1,ν+1 λx), Rα)>) Prove tht [ sinh λx Ix ν ])= x ν+1 E 2,ν+2 λx 2 ), Rα)>). λx Prove tht [ ]) Ix ν λ, E ν λx ν ) = E ν λx ν ) 1,Rν)> Prove tht ]) Ix [x ν ρ 1 x+) σ = σ x ρ+ν 1 Γρ) Γρ+ν) 2 F 1 σ,ρ;ν+ρ; x ), whererν)>;rρ)>, rg x ) <π Prove tht ]) Ix [x ν ρ 1 x k + k ) σ = kσ x ν+ρ 1 Γρ) Γρ+ν) ) k+1 F k σ, k;λ); k;ρ+ν); xk k, where k,rν)>;rρ)>, rg x ) < π k, nd k; ) represents the sequence of prmeters k, +1 k, +k 1 k Prove tht [ ]) Ix ν x ρ 1 expx k ) = Γρ) Γρ+ν) xρ+ν 1 kf k k;ρ); k;ρ+ν); x ), k whererν)>;rρ)>, k=2, 3, 4,.
37 FRACTIONAL INTEGRALS 17 [ ]) Ix ν x ρ 1 pf q 1,, p ;ρ, b 2,, b q ; x) = xρ+ν 1 Γρ) Γν+ρ) p F q 1,, p ;ρ+ν, b 2,, b q ; x) where p q+1,rν)>;rρ)>, x <1 if p=q [ Ix ν x ρ 1 G m,n p,q x )]) 1,, p = x ρ+ν 1 G m,n+1 b 1,,b q p+1,q+1 x ) 1 ρ, 1,, p b 1,,b q ;1 ρ ν where G m,n p,q.) is Meiger s G-Function; m+n> 1 2 p+q), rg < m+n p 2 q 2 Rρ+b j )>, j=1,, m,rν)>. ) π Prove tht [ Ix α x ρ 1 H m,n p,q x p,a p ) b q,b q ) )]) [ = x ρ+α 1 H m,n+1 p+1,q+1 x ] 1 ρ,1), p,a p ) b q,b q ), 1 ρ α,1) [ b whererρ+min j 1 j m B j )]>,Rα)>, rg < 1 2 πc ; c = n A j j=1 p j=n+1 A j + m B j j=1 q j=m+1 ndµ = p j=1 A j q j=1 B j< orµ = nd < x <β 1 ; p β= A j ) A q j B j ) B j Prove tht [ Ix α x ρ 1 H m,n p,q j=1 x λ p,a p ) b q,b q ) )]) j=1 B j > [ = x ρ+α 1 H m,n+1 p+1,q+1 x λ ] 1 ρ,λ), p,a p ) b q,b q ),1 ρ α,λ) where R [ ρ+λmin 1 j m b j B j )]>,Rα)>,λ> rg < 1 2 πc ; c is defined in Exercise bove, c > ;µ < orµ = nd < x λ <β 1 ;
38 18 3. MITTAG-LEFFLER FUNCTIONS AND FRACTIONAL CALCULUS Prove tht β= p A j ) A j j=1 q B j ) B j ;µ is given in Exercise j=1 ]) xi [x ν α 1 x u) ρ x v) λ = xα+ν λ ρ 1 Γ1+λ+ρ α ν) Γ1+λ+ρ α) F 1 1+λ+ρ α ν,ρ,λ, 1+λ+ρ α; u/x,v/x), where x>; rg u <π nd u < x; rgv <π nd v < x; <Rν)<Rλ+ρ α) Prove tht [ ]) xi ν x α 1 lncx+d) = x α+ν 1Γ1 α ν) Γ1 α) [ ] lncx)+ψ1 α) ψ1 α ν) + dc 1 x α+ν 2Γ2 α ν) 3F 2 2 α ν, 1, 1; 2, 2 α; d Γ2 α) cx ) where x,rβ)>,rα+ν)<1; rg cx+d) <π nd x t< Prove tht ]) xw [x ν λ x+) µ = xµ+ν λ Γλ µ ν) 2 F 1 µ,λ µ ν;λ µ; /x) Γλ µ) where <Rν)<Rλ µ); rg /x) <πor /x) <1,Rν)> Prove tht whererν)>,rx)> Prove tht xw [x ν ν 1 e ])=π x 2 1 x/) ν 1 2 e 1 1 ) 2 x K ν 12 2 x ]) xw [x ν λ e x = B 2 1 x B 1 2 e 1 2 x W A,B x) where 2A=1 λ ν, 2B=λ ν;rx)>,rν)>.
39 3.4. FRACTIONAL INTEGRALS Prove tht where Rν) >. [ ]) xw ν x 2ν e π ) ) ) x = ν 2 exp I x 2x ν 1, 2 2x Prove tht where <Rν)<Rλ). [ xw ν x λ exp x)]) = Γλ ν) x ν λ 1F 1 λ ν;λ; Γλ) x ), Prove tht [ ) xw ν exp x 1 2 )])=2 ν+ 2 1 π ν 2 x 1 2 ν+ 4 1 Kν+ x 1 2, 12 whererx 1 2 )>,Rν)> Prove tht xw +ν whererx 1 2 )>,Rν)> Prove tht [x 2 1 exp x 1 2 [ ]) xw ν x λ log x = Γλ ν) Γλ) where <Rν)<Rλ) Prove tht, x>; <Rν)< 1 2 Rµ) Prove tht ) )])=2 ν+ 1 2 π x ν 2 x 1 2 ν 1 4 Kν x 1 2, 12 x ν λ [log x+ψλ) ψλ ν)], ) xw [x ν µ 2 Jµ x 1 2 )])=2 ν ν x 1 2 ν 1 2 µ J µ ν x 1 2, )]) xw [x ν λ J µ x 1 2 where >, x>, <Rν)< 1 4 Rλ). = 2 2λ 2λ x ν G 2, 1,3 2 x 4 ) ν,λ+ 1 2 µ,λ 1 2 µ,
40 11 3. MITTAG-LEFFLER FUNCTIONS AND FRACTIONAL CALCULUS Prove tht [ xw α x λ 1 2F 1, b; c; 1 wx) ])= w Γα) xλ+α 1 Γ [ c, b,α, λ α+1 b, c, λ+1 3 F 2, c b, λ α+1; λ+1, b+1; + w b Γα) xλ+α b 1 Γ [ c, b,α, b α+1, c b, b λ+1 3 F 2 b, c, b α+1; b +1, b λ+1; where x,rα)>,rλ+α )>1,Rλ+α b)<1; rgw <π Prove tht ] 1 wx ) 1 wx ) [ ]) xw ν x λ 1 2F 1, b; c; wx) = 1 Γν) xα+ν 1 Bν, 1 λ ν) [ 3 F 2, b,λ; c,λ+ν; wx)+ w1 λ ν c, λ ν+1, b λ ν+1,λ+ν 1 ] Γ Γν), b, c λ ν+1 3 F 2 1 ν, λ ν+1, b λ ν+1; 2 λ ν, c λ ν+1; wx), ] where x,rν)>;rλ+ν ),Rν b)<1; rgw <π Prove tht [ xw ν x α 1 G m,n p,q x 1,, p b 1,,bq )]) [ = x α+ν 1 G m+1,n p+1,q+1 x ] 1,, p,1 α 1 α ν,b 1,,b q whererν)>,r[α+ν+mx 1 j n j )]<2 Exercise rg < 1 2 πc, c >. c is defined in Prove tht [ xi ν x α 1 H m,n p,q x λ p,a p ) b q,b q ) )]) [ = x α+ν 1 H m+1,n p+1,q+1 x λ ] p,a p ),1 α,λ) 1 α ν,λ),b q,b q ) whereλ>, Rν)>, rg < 1 2 πc, c >, c is defined in Exercise ; R[α+ν+mx 1 j n j 1) A j ]<1.
41 3.5. DERIVATIVES OF FRACTIONAL ORDER Derivtives of Frctionl Order In this section, we study vrious frctionl order derivtives which occur in certin rection relxtion) nd diffusion problems Riemnn - Liouville frctionl derivtives of rbitrry order Nottion {α} mens the frctionl prt of number α, {α} < 1. Nottion [α] mens the integrl prt of number α. Note We note tht α={α}+[α] ) Nottion D α +, D α xφx), Riemnn - Liouville derivtive of the function φx) of order α, left - hnd). Nottion D α b, bd α xφx), Riemnn - Liouville derivtive of the function φx) of order α, right-hnd). Definition The left-hnd Riemnn - Liouville derivtive of order α > is defined by D α +φx)= D α xφx)= 1 d ) n Γn α) dx φt)dt n=[α]+1) ) x t) α n+1 Exmple Prove tht D α x x γ = Γγ+1) Γγ+1 α) xγ α,α,γ> 1, x> ) Solution: We hve
42 MITTAG-LEFFLER FUNCTIONS AND FRACTIONAL CALCULUS D α 1 d n x xγ )= t γ x t) n α 1 dt Γn α) dx n Γγ+ 1) = Γγ+1+n α) γ α+1) nx γ α forγ+1>,γ+1+n α> Γγ+ 1) = Γγ+1 α) xγ α, forγ+1>, γ α+1) n. Note It is interesting to observe tht forγ=, We obtin D α x 1)= x α, α 1, 2, ) Γ1 α) which is remrkble result nd indictes tht frctionl derivtive of constnt is not zero. Definition The right - hnd Riemnn - Liouville frctionl derivtive of order α, of the function φx) is defined by D α b φx)= xd α 1)n d ) n b bφx)= Γn α) dx x In short, we cn express 3.5.2) in the form φt)dt n=[α]+1) ) t x) α n+1 nd 3.5.3) s D α xφx)= dn dx n I n α x φx) 3.5.6) xd α dn bφx)= dx n x Ib n α φx) ) We shll lso employ the nottions Similrly, we hve 1 D α xφ= Ix α φ= Ix) α φ,α ) xd α b φ= bi α x φ= bi α x) 1φ,α )
43 3.5. DERIVATIVES OF FRACTIONAL ORDER 113 Exmple Prove tht I ν x ln x= x ν [ln x γ ψν+1)]. Γν+1) Solution: We hve Ix ν ln x= 1 x t) ν 1 ln t dt Γν) If we mke the chnge of vrible t= xu, then We know tht Ix ν ln x= 1 1 x ν 1 u) ν 1 ln x+ln u)du Γν) = xν lnx) 1 Γν+1) + xν 1 u) ν 1 ln u du. Γν) 1 t α 1 1 t) β 1 ln t dt=bα,β)[ψα) ψα+β)], whererα)>,rβ)>. Applying the bove formul forα=1, nd noting tht ψ1)= γ, we see tht I ν x ln x= x ν [ln x γ ψν+1)]. Γν+1) Similrly we cn estblish the result in the next exercise. Exmple Prove tht D α x ln x)= x ν [ln x γ ψ ν+1)] Γ1 ν) Exmple Prove tht D α x ex )= x α Γ1 α) 1 F 1 1; 1 α; x) Solution: We hve
44 MITTAG-LEFFLER FUNCTIONS AND FRACTIONAL CALCULUS D α x ex )= r= = = r r! D α x xr ) r Γr+ 1) r! Γr α+1) xr α r= x α Γ1 α) 1 F 1 1; 1 α; x). Exmple Prove tht D α x x+)p = p x α Γ1 α) 2 F 1 1, p; 1 α; x ). Solution: We hve D α x x+)p = p 1) r r= = p r= r! p) r D α x xr ) r 1) r p) r Γr+ 1) x r α r! r Γr α+1) = p x α Γ1 α) 2 F 1 1, p; 1 α; x ). In bove expression, the following result hs been used: D α x xp )= Γp+1)xp α Γp α+1) Prove tht ) D α x [sin x] = Exercises 3.5. x α [ ] 1F 1 1; 1 α; ix) 1 F 1 1; 1 α; ix). 2iΓ1 α)
45 3.5. DERIVATIVES OF FRACTIONAL ORDER Prove tht ) D α x [cos x] = x α [ ] 1F 1 1; 1 α; ix)+ 1 F 1 1; 1 α; ix). 2Γ1 α) Prove tht ) D α x [xp ln x] = Γp+1) Γp+1 α) xp α [ln x+ψp+1) ψp α+1)] whereψ.) is the digmm function Prove tht D α x [xp + x) q ] )= Γp+1)xp α q 2F 1 q, p+1; p α+1; x Γp α+1) ), for p α+1) n, p 1, 2, 3,, x < Prove tht D α x [xp e x ] )= Γp+1)xp α Γp α+1) 1 F 1 p+1; p α+1; x) for p α+1+k) n, k=, 1,, p 1, 2, 3,, Specil functions cn be expressed s frctionl derivtives. This cn be seen from the following exercises Prove tht forrc b)>,rb)> Prove tht forr c)>,rc)>. 2F 1, b; c; x)= Γc) Γb) x1 c D b c x [x b 1 1 x) ] 1F 1 ; c; x)=φ, c; x)= Γc) Γ) x1 c D c x e x x 1 )
46 MITTAG-LEFFLER FUNCTIONS AND FRACTIONAL CALCULUS Prove tht forrc d)>,rd)> Prove tht [ 1,, p ] p+1f q+1 ; x = Γd) { [ 1 b 1,,b q Γc) x1 d D c d x x c 1,, p ]} PF q ; x b 1,,b q Prove tht Prove tht J ν x)=π ν x ν D ν+ 2 1 x sin x). ψx)= γ+ln z Γx)z 1 x Dz 1 x ln z). γ, z)=γ)e z D z e z ) whereγ, z) is incomplete gmm function Prove tht ]) D ν x [x µ 2 Jµ x 1 2 ) = 2 ν x 1 2 µ ν) J µ ν x 1 2 ), where Rµ) > Prove tht [ ]) D ν x sin x 1 2 = 1 2 π x 2 ) ν 2 J 1 2 ν x 1 2 ) Prove tht ]) D ν x [x cos x 2 = π 2x 1 2 ) ν 2 1 J ν 1 x 1 2 ) Prove tht ]) D ν x [x µ 2 Iµ x 1 2 ) = 2 ν x 1 2 µ ν) I µ ν x 1 2 ).
47 3.5. DERIVATIVES OF FRACTIONAL ORDER Show tht nd [ ]) D ν x sinh x 1 2 = π 2x 2 ) ν 2 I 1 1 νx 2 ) 2 [ ]) D ν x cosh x 1 2 = π 2x 1 2 ) 1 2 ν I 1 2 ν x 1 2 ) Prove tht [ ]) D ν x x λ 1F α; ; x) = Γλ+1) Γλ ν+1) xλ ν 2 F 1 λ+1,α,λ ν+1; x) Estblish the result D ν x [ ] x λ 2F 1, b; c; x) = Γλ+1) Γλ ν+1) xλ ν 3 F 2 λ+1,, b, c;λ ν+1; x) whererλ)> 1,Rλ+1 ν)>, nd c, 1, 2, nd x < Prove tht D ν x whererλ)> 1,Rλ ν+1)> Prove tht [ ] x λ pf q 1, p ; b 1, b q ; x) = Γλ+1) Γλ ν+1) xλ ν p+1 F q+1 λ+1, 1, p ; b 1, b q,λ ν+1; x) [ ]) D ν x x λ pf q 1, p ; b 1, b q ; x 2 ) = Γλ+1) Γλ ν+1) xλ ν p+2 F q+2 [ 1 2 λ+1), 1 2 λ+2), 1,, p ; b 1,, b q, 1 2 λ ν+1), 1 2 λ ν+2); x2 ] whererλ)> 1,Rλ ν+1)> nd x 2 <1; b j, 1, 2, j=1,, p).
48 MITTAG-LEFFLER FUNCTIONS AND FRACTIONAL CALCULUS Show tht Show tht Prove tht ) D ν x J µ [x] = D ν x [ex2 ] )= x ν Γ2n+1)x 2 ) n Γ2n ν+1)n!. n= x µ ν 2µΓµ ν+1) 2 F 3 [ 1 2 µ+1), 1 2 µ+2);µ+1, 1 2 µ ν+1), 1 1 ) 2 ] 2 µ ν+2); 2 x. [ n,α1,,α p ;x] p+1f q = Γβ 1) Γβ q ) β 1,,β q Γα 1 ) Γα p ) x1 β q ) x α p β q 1 D α p β q x D α p 1 β q 1 x x α 3 β 2 D α 2 β 2 x x α 2 β 1 D α 1 β 1 x ) x α p 1 β q 2 ] [x α1 1 1 x) n Prove tht Ixe ν λ x)= x ν E 1,ν+1 λx) whererα)>. ) Prove tht Ix ν[cosh λ x] = x ν E 2,ν+1 λx 2 ), whererα)> Prove tht [ Ix ν sinh λ x ])= x ν+1 E λ x 2,ν+2 λx 2 ). References Abrmowitz, M nd Stegun, I.A. 1965). Hndbook of Mthemticl Functions, Dover, New York. Agrwl, R.P. 1953). A propos d une note de M.Pierre Humbert, C.R.Acd.Sci.Pris 236, Anh, V.V nd Leonenko, N.N. 21). Spectrl nlysis of frctionl kinetic equtions with rndom dt, J. Sttist. Phys. 14,
49 3.5. DERIVATIVES OF FRACTIONAL ORDER 119 Dzherbshyn, M.M. 1966). Integrl Trnsforms nd Representtion of Functions in Complex Domin in Russin ), Nuk, Moscow. Erdélyi, A. 194). On some functionl trnsformtion, univ. politec. Torino, Rend. Sem. Mt. 1, Erdélyi, A., Mgnus,W., Oberhettinger, F. nd Tricomi, F.G. 1953). Higher Trnscendentl Functions, Vol. 1, McGrw - Hill, New York. Erdélyi, A., Mgnus, W., Oberhettinger, F. nd Tricomi,F.G. 1955). Higher Trnscendentl Functions, Vol. 3, McGrw - Hill, New York. Erdélyi, A., Mgnus, W., Oberhettinger, F. nd Tricomi, F.G. 1954). Tbles of Integrl Trnsforms, Vol. 1,2, McGrw - Hill, New York. Fox, C. 1963). Integrl trnsforms bsed upon frctionl integrtion, Proc. Cmbridge Philosophicl Society. 59, Glockle, G nd Nonnenmcher, T.F. 1993). Fox function representtion of non-debye relxtion processes, J. Sttist. Phys., 71, Hubold, H.J. nd Mthi, A.M. 2). The frctionl kinetic eqution nd thermonucler functions, Astrophysics nd Spce Science, 273, Hilfer R. Ed.), 2). Applictions of Frctionl Clculus in Physics, World Scientific, Singpore. Kober, H. 194). On frctionl integrls nd derivtives, Qurt. J. Mth. Oxford Ser., 11, Kilbs, A.A., Sigo, M. nd Sxen, R.K. 22). Solution of Volterr integro-differentil equtions with generlized Mittg-Leffler function in the kernels, J. Integrl Equtions nd Applictions, 14, Kilbs, A.A., Sigo,M. nd Sxen,R.K. 24). Generlized Mittg-Leffler function nd generlizd frctionl clculus opertors, Integrl Trnsforms nd Specil Functions, 15, Miller, K.S. nd Ross, B. 1993). An Introduction to the Frctionl Clculus nd Frctionl Differentil equtions, Wiley, New York. Mitttg-Leffler, G.M. 193). Sur l nouvelle fonction Ex), C. R. Acd. Sci., Pris ser. II), 137,
50 12 3. MITTAG-LEFFLER FUNCTIONS AND FRACTIONAL CALCULUS Oldhm, K.B. nd Spnier, J. 1974). The Frctionl Clculus : Theory nd Applictions of Differentition nd Integrtion of Arbitrry Order, Acdemic Press, New York. Podlubny, I. 1999). Frctionl Differentil Equtions, Acdemic Press, Sn Diego. Podlubny, I. 22). Geometric nd physicl interprettions of frctionl integrtion nd frctionl differentition, Frc. Clc. Appl. Anl., 54) Prbhkr, T.R. 1971). A singulr integrl eqution with generlized Mittg- Leffler function in the kernel, Yokohm Mth. J., 19, Sigo, M. 1981) A generliztion of frctionl clculus nd its pplictions in Euler- Drboux eqution. In, Proc. Symp. on Frctionl Clculus nd Its Applictions, Kyoto Univ. Res. Inst. Mth. Sci., Smko, S.G., Kilbs, A.A. nd Mrichev, O.I. 1993). Frctionl Integrls nd Derivtives, Theory nd Applictions, Gordon nd Brech, Reding. Sxen, R.K., Mthi, A.M. nd Hubold, H.J. 22). On frctionl kinetic equtions, Astrophysics nd Spce Science, 282, Sxen, R.K., Mthi, A.M. nd Hubold, H.J. 24). On generlized frctionl kinetic equtions, Physic A 344, Sxen, R.K., Mthi, A.M. nd Hubold, H.J. 24). Unified frctionl kinetic equtions nd frctionl diffusion eqution, Astrophysics nd Spce Science, 29, Srivstv, H.M. nd Sxen, R.K. 21). Opertors of frctionl integrtion nd their pplictions, Appl. Mth. Comput. 118, Stein, E.M. 197). Singulr Integrls nd Differentil Properties of Functions, Princeton University Press, New Jersey. Wimn, A. 195). Ueber den Fundmentlstz im der Theorie de Funktionen Ex), Act Mth., 29, Weyl, H. 1917). Bemerkungen zum Begriff des Differentilquotienten Gebrochener Ordnung, Vierteljhrsschr. Nturforch. Gen. Zurich, 62,
Mittag-Leffler Functions and Fractional Calculus
Chpter 2 Mittg-Leffler Functions nd Frctionl Clculus [This chpter is bsed on the lectures of Professor R.K. Sxen of Ji Nrin Vys University, Jodhpur, Rjsthn, Indi.] 2. Introduction This section dels with
Oscillatory integrals
Oscilltory integrls Jordn Bell jordn.bell@gmil.com Deprtment of Mthemtics, University of Toronto August, 0 Oscilltory integrls Suppose tht Φ C R d ), ψ DR d ), nd tht Φ is rel-vlued. I : 0, ) C by Iλ)
AMS 212B Perturbation Methods Lecture 14 Copyright by Hongyun Wang, UCSC. Example: Eigenvalue problem with a turning point inside the interval
AMS B Perturbtion Methods Lecture 4 Copyright by Hongyun Wng, UCSC Emple: Eigenvlue problem with turning point inside the intervl y + λ y y = =, y( ) = The ODE for y() hs the form y () + λ f() y() = with
A GENERALIZATION OF MITTAG-LEFFLER FUNCTION AND INTEGRAL OPERATOR ASSOCIATED WITH FRACTIONAL CALCULUS
Journl of Frctionl Clculus nd Applictions, Vol. 3. July 212, No. 5, pp. 1-13. ISSN: 29-5858. http://www.fcj.webs.com/ A GENERALIZATION OF MITTAG-LEFFLER FUNCTION AND INTEGRAL OPERATOR ASSOCIATED WITH FRACTIONAL
Solutions 3. February 2, Apply composite Simpson s rule with m = 1, 2, 4 panels to approximate the integrals:
s Februry 2, 216 1 Exercise 5.2. Apply composite Simpson s rule with m = 1, 2, 4 pnels to pproximte the integrls: () x 2 dx = 1 π/2, (b) cos(x) dx = 1, (c) e x dx = e 1, nd report the errors. () f(x) =
2 Composition. Invertible Mappings
Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,
Solutions_3. 1 Exercise Exercise January 26, 2017
s_3 Jnury 26, 217 1 Exercise 5.2.3 Apply composite Simpson s rule with m = 1, 2, 4 pnels to pproximte the integrls: () x 2 dx = 1 π/2 3, (b) cos(x) dx = 1, (c) e x dx = e 1, nd report the errors. () f(x)
The k-α-exponential Function
Int Journal of Math Analysis, Vol 7, 213, no 11, 535-542 The --Exponential Function Luciano L Luque and Rubén A Cerutti Faculty of Exact Sciences National University of Nordeste Av Libertad 554 34 Corrientes,
Example Sheet 3 Solutions
Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note
Bessel functions. ν + 1 ; 1 = 0 for k = 0, 1, 2,..., n 1. Γ( n + k + 1) = ( 1) n J n (z). Γ(n + k + 1) k!
Bessel functions The Bessel function J ν (z of the first kind of order ν is defined by J ν (z ( (z/ν ν Γ(ν + F ν + ; z 4 ( k k ( Γ(ν + k + k! For ν this is a solution of the Bessel differential equation
Some definite integrals connected with Gauss s sums
Some definite integrls connected with Guss s sums Messenger of Mthemtics XLIV 95 75 85. If n is rel nd positive nd I(t where I(t is the imginry prt of t is less thn either n or we hve cos πtx coshπx e
On the k-bessel Functions
International Mathematical Forum, Vol. 7, 01, no. 38, 1851-1857 On the k-bessel Functions Ruben Alejandro Cerutti Faculty of Exact Sciences National University of Nordeste. Avda. Libertad 5540 (3400) Corrientes,
LAPLACE TYPE PROBLEMS FOR A DELONE LATTICE AND NON-UNIFORM DISTRIBUTIONS
Dedicted to Professor Octv Onicescu, founder of the Buchrest School of Probbility LAPLACE TYPE PROBLEMS FOR A DELONE LATTICE AND NON-UNIFORM DISTRIBUTIONS G CARISTI nd M STOKA Communicted by Mrius Iosifescu
On the generalized fractional derivatives and their Caputo modification
Aville online t www.isr-pulictions.com/jns J. Nonliner Sci. Appl., 0 207), 2607 269 Reserch Article Journl Homepge: www.tjns.com - www.isr-pulictions.com/jns On the generlized frctionl derivtives nd their
Section 8.3 Trigonometric Equations
99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.
Matrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
INTEGRAL INEQUALITY REGARDING r-convex AND
J Koren Mth Soc 47, No, pp 373 383 DOI 434/JKMS47373 INTEGRAL INEQUALITY REGARDING r-convex AND r-concave FUNCTIONS WdAllh T Sulimn Astrct New integrl inequlities concerning r-conve nd r-concve functions
CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS
CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =
SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018
Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals
ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ
ΗΜΥ ΔΙΑΚΡΙΤΗ ΑΝΑΛΥΣΗ ΚΑΙ ΔΟΜΕΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΗΜΥ Διακριτή Ανάλυση και Δομές Χειμερινό Εξάμηνο 6 Σειρά Ασκήσεων Ακέραιοι και Διαίρεση, Πρώτοι Αριθμοί, GCD/LC, Συστήματα
Section 7.6 Double and Half Angle Formulas
09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)
SPECIAL FUNCTIONS and POLYNOMIALS
SPECIAL FUNCTIONS and POLYNOMIALS Gerard t Hooft Stefan Nobbenhuis Institute for Theoretical Physics Utrecht University, Leuvenlaan 4 3584 CC Utrecht, the Netherlands and Spinoza Institute Postbox 8.195
ST5224: Advanced Statistical Theory II
ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known
Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics
Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)
Second Order Partial Differential Equations
Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y
Math221: HW# 1 solutions
Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin
Homework 8 Model Solution Section
MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx
The k-bessel Function of the First Kind
International Mathematical Forum, Vol. 7, 01, no. 38, 1859-186 The k-bessel Function of the First Kin Luis Guillermo Romero, Gustavo Abel Dorrego an Ruben Alejanro Cerutti Faculty of Exact Sciences National
Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------
Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin
CRASH COURSE IN PRECALCULUS
CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter
k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +
Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b
Evaluation of some non-elementary integrals of sine, cosine and exponential integrals type
Noname manuscript No. will be inserted by the editor Evaluation of some non-elementary integrals of sine, cosine and exponential integrals type Victor Nijimbere Received: date / Accepted: date Abstract
Solutions to Exercise Sheet 5
Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X
3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β
3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle
Oscillation of Nonlinear Delay Partial Difference Equations. LIU Guanghui [a],*
Studies in Mthemtil Sienes Vol. 5, No.,, pp. [9 97] DOI:.3968/j.sms.938455.58 ISSN 93-8444 [Print] ISSN 93-845 [Online] www.snd.net www.snd.org Osilltion of Nonliner Dely Prtil Differene Equtions LIU Gunghui
C.S. 430 Assignment 6, Sample Solutions
C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order
The k-fractional Hilfer Derivative
Int. Journal of Math. Analysis, Vol. 7, 213, no. 11, 543-55 The -Fractional Hilfer Derivative Gustavo Abel Dorrego and Rubén A. Cerutti Faculty of Exact Sciences National University of Nordeste. Av. Libertad
HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:
HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying
Uniform Convergence of Fourier Series Michael Taylor
Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula
2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.
EAMCET-. THEORY OF EQUATIONS PREVIOUS EAMCET Bits. Each of the roots of the equation x 6x + 6x 5= are increased by k so that the new transformed equation does not contain term. Then k =... - 4. - Sol.
ON NEGATIVE MOMENTS OF CERTAIN DISCRETE DISTRIBUTIONS
Pa J Statist 2009 Vol 25(2), 135-140 ON NEGTIVE MOMENTS OF CERTIN DISCRETE DISTRIBUTIONS Masood nwar 1 and Munir hmad 2 1 Department of Maematics, COMSTS Institute of Information Technology, Islamabad,
6.3 Forecasting ARMA processes
122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear
Review-2 and Practice problems. sin 2 (x) cos 2 (x)(sin(x)dx) (1 cos 2 (x)) cos 2 (x)(sin(x)dx) let u = cos(x), du = sin(x)dx. = (1 u 2 )u 2 ( du)
. Trigonometric Integrls. ( sin m (x cos n (x Cse-: m is odd let u cos(x Exmple: sin 3 (x cos (x Review- nd Prctice problems sin 3 (x cos (x Cse-: n is odd let u sin(x Exmple: cos 5 (x cos 5 (x sin (x
Differentiation exercise show differential equation
Differentiation exercise show differential equation 1. If y x sin 2x, prove that x d2 y 2 2 + 2y x + 4xy 0 y x sin 2x sin 2x + 2x cos 2x 2 2cos 2x + (2 cos 2x 4x sin 2x) x d2 y 2 2 + 2y x + 4xy (2x cos
w o = R 1 p. (1) R = p =. = 1
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:
To find the relationships between the coefficients in the original equation and the roots, we have to use a different technique.
Further Conepts for Avne Mthemtis - FP1 Unit Ientities n Roots of Equtions Cui, Qurti n Quinti Equtions Cui Equtions The three roots of the ui eqution x + x + x + 0 re lle α, β n γ (lph, et n gmm). The
4.6 Autoregressive Moving Average Model ARMA(1,1)
84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this
M a t h e m a t i c a B a l k a n i c a. On Some Generalizations of Classical Integral Transforms. Nina Virchenko
M a t h e m a t i c a B a l k a n i c a New Series Vol. 26, 212, Fasc. 1-2 On Some Generalizations of Classical Integral Transforms Nina Virchenko Presented at 6 th International Conference TMSF 211 Using
If ABC is any oblique triangle with sides a, b, and c, the following equations are valid. 2bc. (a) a 2 b 2 c 2 2bc cos A or cos A b2 c 2 a 2.
etion 6. Lw of osines 59 etion 6. Lw of osines If is ny oblique tringle with sides, b, nd, the following equtions re vlid. () b b os or os b b (b) b os or os b () b b os or os b b You should be ble to
Solution Series 9. i=1 x i and i=1 x i.
Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x
Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1
Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the
Geodesic Equations for the Wormhole Metric
Geodesic Equations for the Wormhole Metric Dr R Herman Physics & Physical Oceanography, UNCW February 14, 2018 The Wormhole Metric Morris and Thorne wormhole metric: [M S Morris, K S Thorne, Wormholes
EE512: Error Control Coding
EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3
Second Order RLC Filters
ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max
Problem Set 3: Solutions
CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C
Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.
Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +
On the fractional derivatives of radial basis functions
On the frctionl derivtives of rdil bsis functions Mrym Mohmmdi Robert Schbck b Deprtment of Mthemticl Sciences Isfhn University of Technology Isfhn 84156-83111 Irn b Institut für Numerische und Angewndte
CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD
CHAPTER FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD EXERCISE 36 Page 66. Determine the Fourier series for the periodic function: f(x), when x +, when x which is periodic outside this rge of period.
Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013
Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering
D Alembert s Solution to the Wave Equation
D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique
Lecture 5: Numerical Integration
Lecture notes on Vritionl nd Approximte Metods in Applied Mtemtics - A Peirce UBC 1 Lecture 5: Numericl Integrtion Compiled 15 September 1 In tis lecture we introduce tecniques for numericl integrtion,
( y) Partial Differential Equations
Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate
Reminders: linear functions
Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U
Homomorphism in Intuitionistic Fuzzy Automata
International Journal of Fuzzy Mathematics Systems. ISSN 2248-9940 Volume 3, Number 1 (2013), pp. 39-45 Research India Publications http://www.ripublication.com/ijfms.htm Homomorphism in Intuitionistic
Commutative Monoids in Intuitionistic Fuzzy Sets
Commutative Monoids in Intuitionistic Fuzzy Sets S K Mala #1, Dr. MM Shanmugapriya *2 1 PhD Scholar in Mathematics, Karpagam University, Coimbatore, Tamilnadu- 641021 Assistant Professor of Mathematics,
Approximation of distance between locations on earth given by latitude and longitude
Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth
Research Article The Study of Triple Integral Equations with Generalized Legendre Functions
Hindwi Pulishing Corportion Astrct nd Applied Anlysis Volume 28, Article ID 395257, 2 pges doi:.55/28/395257 Reserch Article The Study of Triple Integrl Equtions with Generlized Legendre Functions B. M.
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal
ON CONVERGENCE THEOREMS FOR FUZZY HENSTOCK INTEGRALS
Irnin Journl of Fuzzy Systems Vol. 14, No. 6, 2017 pp. 87-102 87 ON CONVERGENCE THEOREMS FOR FUZZY HENSTOCK INTEGRALS B. M. UZZAL AFSAN Abstrct. The min purpose of this pper is to estblish different types
Additional Results for the Pareto/NBD Model
Additional Results for the Pareto/NBD Model Peter S. Fader www.petefader.com Bruce G. S. Hardie www.brucehardie.com January 24 Abstract This note derives expressions for i) the raw moments of the posterior
Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών. Εθνικό Μετσόβιο Πολυτεχνείο. Thales Workshop, 1-3 July 2015.
Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εθνικό Μετσόβιο Πολυτεχνείο Thles Worksho, 1-3 July 015 The isomorhism function from S3(L(,1)) to the free module Boštjn Gbrovšek Άδεια Χρήσης Το παρόν
MA 342N Assignment 1 Due 24 February 2016
M 342N ssignment Due 24 February 206 Id: 342N-s206-.m4,v. 206/02/5 2:25:36 john Exp john. Suppose that q, in addition to satisfying the assumptions from lecture, is an even function. Prove that η(λ = 0,
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
Generalized fractional calculus of the multiindex Bessel function
Available online at www.isr-publications.com/mns Math. Nat. Sci., 1 2017, 26 32 Research Article Journal Homepage:www.isr-publications.com/mns Generalized ractional calculus o the multiindex Bessel unction.
A General Note on δ-quasi Monotone and Increasing Sequence
International Mathematical Forum, 4, 2009, no. 3, 143-149 A General Note on δ-quasi Monotone and Increasing Sequence Santosh Kr. Saxena H. N. 419, Jawaharpuri, Badaun, U.P., India Presently working in
ECE Spring Prof. David R. Jackson ECE Dept. Notes 2
ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =
Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1
Arithmetical applications of lagrangian interpolation Tanguy Rivoal Institut Fourier CNRS and Université de Grenoble Conference Diophantine and Analytic Problems in Number Theory, The 00th anniversary
Congruence Classes of Invertible Matrices of Order 3 over F 2
International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and
DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation
DiracDelta Notations Traditional name Dirac delta function Traditional notation x Mathematica StandardForm notation DiracDeltax Primary definition 4.03.02.000.0 x Π lim ε ; x ε0 x 2 2 ε Specific values
Electromagnetic Waves I
Electromgnetic Wves I Jnury, 03. Derivtion of wve eqution of string. Derivtion of EM wve Eqution in time domin 3. Derivtion of the EM wve Eqution in phsor domin 4. The complex propgtion constnt 5. The
Foundations of fractional calculus
Foundations of fractional calculus Sanja Konjik Department of Mathematics and Informatics, University of Novi Sad, Serbia Winter School on Non-Standard Forms of Teaching Mathematics and Physics: Experimental
ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?
Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least
Chapter 6: Systems of Linear Differential. be continuous functions on the interval
Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations
Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.
Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
φ(u)du. The following is essentially due to T. T. Cheng (1949, Theorem I): Theorem 1 (T. T. Cheng). We have for any 0 < λ < and k = 0, 1, 2,...
EXPOSITION OF T. T. CHENG S EDGEWORTH APPROXIMATION OF THE POISSON DISTRIBUTION, IMPROVED DRAFT, August 5, by R. M. Dudley For < λ < + and k =,,..., let P(k,λ) := k j= e λ λ j /j! and let x := x(k,λ) :=
Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3
Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all
Statistical Inference I Locally most powerful tests
Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided
DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C
DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C By Tom Irvine Email: tomirvine@aol.com August 6, 8 Introduction The obective is to derive a Miles equation which gives the overall response
CHAPTER (2) Electric Charges, Electric Charge Densities and Electric Field Intensity
CHAPTE () Electric Chrges, Electric Chrge Densities nd Electric Field Intensity Chrge Configurtion ) Point Chrge: The concept of the point chrge is used when the dimensions of n electric chrge distriution
Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee
Appendi to On the stability of a compressible aisymmetric rotating flow in a pipe By Z. Rusak & J. H. Lee Journal of Fluid Mechanics, vol. 5 4, pp. 5 4 This material has not been copy-edited or typeset
Integrals in cylindrical, spherical coordinates (Sect. 15.7)
Integrals in clindrical, spherical coordinates (Sect. 5.7 Integration in spherical coordinates. Review: Clindrical coordinates. Spherical coordinates in space. Triple integral in spherical coordinates.
Parametrized Surfaces
Parametrized Surfaces Recall from our unit on vector-valued functions at the beginning of the semester that an R 3 -valued function c(t) in one parameter is a mapping of the form c : I R 3 where I is some
derivation of the Laplacian from rectangular to spherical coordinates
derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used
Trigonometry 1.TRIGONOMETRIC RATIOS
Trigonometry.TRIGONOMETRIC RATIOS. If a ray OP makes an angle with the positive direction of X-axis then y x i) Sin ii) cos r r iii) tan x y (x 0) iv) cot y x (y 0) y P v) sec x r (x 0) vi) cosec y r (y
Answer sheet: Third Midterm for Math 2339
Answer sheet: Third Midterm for Math 339 November 3, Problem. Calculate the iterated integrals (Simplify as much as possible) (a) e sin(x) dydx y e sin(x) dydx y sin(x) ln y ( cos(x)) ye y dx sin(x)(lne
Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions
International Journal of Computational Science and Mathematics. ISSN 0974-89 Volume, Number (00), pp. 67--75 International Research Publication House http://www.irphouse.com Coefficient Inequalities for
Finite Field Problems: Solutions
Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The
Concrete Mathematics Exercises from 30 September 2016
Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)