A GENERALIZATION OF MITTAG-LEFFLER FUNCTION AND INTEGRAL OPERATOR ASSOCIATED WITH FRACTIONAL CALCULUS
|
|
- Ζαχαρίας Ανδρέου
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Journl of Frctionl Clculus nd Applictions, Vol. 3. July 212, No. 5, pp ISSN: A GENERALIZATION OF MITTAG-LEFFLER FUNCTION AND INTEGRAL OPERATOR ASSOCIATED WITH FRACTIONAL CALCULUS TARIQ O. SALIM, AHMAD W. FARAJ Abstrct. This pper is devoted for the study of new generlized function of Mittg-Leffler type. Its vrious properties including differentition, Lplce trnsform, Bet trnsform, Mellin trnsform, Whittker trnsform, generlized hypergeometric series form, Mellin-Brnes integrl representtion nd its reltionship with Fox s H-function nd Wright hypergeometric function re investigted nd estblished. Further properties of generlized Mittg- Leffler function ssocited with frctionl differentil nd integrl opertors re considered. Also n integrl opertor ssocited with frctionl clculus opertors is studied 1. Introduction The Swedish mthemticin Mittg-Leffler 5 introduced the function E α z defined s E α z Γαn + 1 where z C nd Γs is the Gmm function; α. The Mittg-Leffler function is direct generliztion of expz in which α 1. Mittg - Leffler function nturlly occurs s the solution of frctionl order differentil eqution or frctionl order integrl equtions. A generliztion of E α z ws studied by Wimn 14 where he defined the function E α,β z s E α,β z Γαn + β α, β C; Rα >, Rβ > which is lso known s Mittg-Leffler function or Wimn s function. Prbhkr 6 introduced the function E γ α,β z in the formsee lso Kilbs et l Mthemtics Subject Clssifiction. 33E12, 65R1, 26A33. Key words nd phrses. Generlized Mittg-Leffler function; frctionl clculus opertors; integrl trnsforms; integrl opertors. Submitted Jn. 3, 211. Published July 1,
2 2 TARIQ O. SALIM, AHMAD W. FARAJ JFCA-212/3 E γ α,β z γ n Γαn + β n! α, β, γ C; Rα >, Rβ >, Rγ > Shukl nd Prjpti 1 see lso Srivstv nd Tomovski 13 defined nd investigted the function E γ,q α,β z s E γ,q α,β z γ qn Γαn + β n! where α, β, γ C; Rα >, Rβ >, Rγ >, q, 1 N nd γ qn Γγ+qn Γγ denotes the generlized Pochhmmer symbol which in prticulr reduces to q qn q γ+r 1 r1 q if q N n A new generliztion of Mittg-Leffler function ws defined by Slim 8 s E γ,δ α,β z γ n Γαn + β δ n where α, β, γ, δ C; Rα >, Rβ >, Rγ >, Rδ > In this pper, we introduce new generliztion of Mittg-Leffler function defined s z γ qn 6 Γαn + β δ pn where α, β, γ, δ C; min{rα, Rβ, Rγ, Rδ} > ; p, q > nd q Rα + p 7 Eqution 6 is generliztion of equtions 1-5. Setting p q 1, it reduces to Eq. 5 defined by Slim 8. Setting δ p 1, it reduces to Eq. 4 defined by Shukl nd Prjpti 1, in ddition of tht if q 1, then we get Eq. 3 defined by Prbhkr 6. On putting γ δ p q 1 in 6 it reduces to Wimn s function, moreover if β 1, Mittg-Leffler function E α z will be the result. Some recurrence reltions, derivtion formuls, Lplce trnsform, Bet trnsform, Mellin-Brnes integrl of z will be estblished, lso its reltionship to Fox s H-function nd Wright hypergeometric function will be estblished. The integrl opertor defined by,w, + x x x t β 1 wx tα φtdt 8 which contins the generlized Mittg-Leffler function 6 in its kernel is investigted nd its boundedness is proved under certin conditions. Theorems of composition of frctionl clculus opertors I λ φ x 1 Γλ x x t λ 1 φtdt λ C, Rλ > 9
3 JFCA-212/3 A GENERALIZATION OF MITTAG-LEFFLER FUNCTION 3 nd D λ φ n d x I n λ φx n Rλ with integrl opertors defined in 8 re given nd proved. As mtter of fct if w, q 1 nd p 1, then the integrl opertor corresponds essentilly to the Riemnn-Liouville frctionl integrl opertor defined in 9. The generlized frctionl derivtive opertor D u,v φ known s Hilfer s frctionl derivtive see Hilfer 2 is written s D u,v φ x I v1 u d I 1 v1 u φ x 11 D u,v yields the clssicl Riemnn-Liouville frctionl derivtive D u when v ; lso if v 1 it reduces to Cputo frctionl derivtive. Throughout this pper, we need the following well-known fcts nd rules. Bet trnsform Sneddon 11 B{fz;, b} 1 Lplce trnsform Sneddon 11 z 1 1 z b 1 fzdz, R >, Rb > 12 L{fz; s} e sz fzdz, Rs > 13 Convolution theorem of Lplce trnsform Finney et l. 1 t L f g s L{ Mellin trnsform Sneddon 11 ft ξfξdξ} L f sl g s; L{ tn 1 Γn ; s} 1 s n, n > 14 M{fx; s} f s nd the inverse Mellin trnsform is given by fz M 1 {f s; z} 1 2πi c+i c i Confluent hypergeometric function Rinville 7 Φ, b, z 1 F 1, b, z z s 1 fzdz 15 z s f sds, c R 16 n b n n! 17
4 4 TARIQ O. SALIM, AHMAD W. FARAJ JFCA-212/3 Wright generlized hypergeometric function Srivstv nd Mnoch 12. p 1, A 1,..., p, A p Γ i + A i n pψ q b 1, B 1,..., b q, B q ; z i1 18 q n! Γb j + B j n Fox s H-function Kilbs nd Sigo 3 Hp,q m,n z 1, α 1,..., p, α p b 1, β 1,..., b q, β q m 1 Γb j + β j s n Γ1 j α j s j1 j1 z 2πi q p s ds 19 L Γ1 b j β j s Γ j + α j s jm+1 jn+1 The generlized hypergeometric function Rinville 7 p α i n i1 pf q α 1,..., α p ; β 1,..., β q ; z q zn n! β j n j1 j1 Whittker trnsform Whittker nd Wtson 15 e t/2 t v 1 W λ,µ tdt Γ µ + vγ 1 2 µ + v Γ1 λ + v where Rµ ± v > 1/2 nd W λ,µ t is the Whittker confluent hypergeometric function. Fubini s theorem Dirichlet formul Smko et l. 9 d b x x fx, tdt hx, tdt x b b dt t 2 21 fx, t; 22 hx, tdt + hx, x. 23 x 2. Bsic properties Theorem 2.1 The series in 6 is bsolutely convergent for ll vlues of z provided tht q < p + Rα. Moreover if q p + Rα, then z converges for z < 1. Proof. Rewriting z in the form of power series Eγ,δ,q z γ qn where b n Γαn + βδ pn Γz + nd pplying Γz + b b + b 1 1 z b O 2z z 2, we get b n
5 JFCA-212/3 A GENERALIZATION OF MITTAG-LEFFLER FUNCTION 5 c n+1 c n γ qn+q δ pn Γαn + β γ qn δ pn+p Γαn + β + α nq q q2q + γ O 2qn nq 2 np p p2δ + p O 2pn np 2 αn α α2β + α O 2αn αn 2 then c n+1 s n nd q < p + Rα, c n +1 z qq p p α α n q n p+α, which mens tht the function z converges for ll z provided tht q < p + Rα. Moreover if q p + Rα, then z converges for z < 1. Theorem 2.2 If the condition 7 is stisfied, then nd Proof. z Eγ,δ 1,q z zp 1 δ z Eγ,δ 1,q z γ qn Γδ zp 1 δ d dz Eγ,δ,q z; δ 1 24 z βeγ,δ,q α,β+1,p z + z d dz Eγ,δ,q α,β+1,p z 25 Γαn + β Γδ + pn d dz Eγ,δ,q z hence 24 is proved. z γ qn Γαn + βδ pn βγ qn + αn + βγαn + βδ pn β α,β+1,p z + z d dz Eγ,δ,q α,β+1,p z which is 25. γ qn 1 1 Γαn + β δ pn δ 1 pn pn zp 1 δ 1 δ γ qn n 1 Γαn + βδ pn γ qn Γαn + βδ pn αn + β αn + βγαn + β αγ qn αn + βγαn + βδ pn Theorem 2.3 If the condition 7 is stisfied, then for m N m d dz z γ qn γ + qm qn n + 1 m δ pn δ + pm pn Γαn + αm + β zn ; 26 Proof. m d z β 1 dz wzα z β m 1 α,β m,p wzα 27 m d γ qn dz Γαn + βδ pn Γγ + qn + qm Γδn + 1 m ΓγΓδ + pn + pm Γαn + αm + β zn
6 6 TARIQ O. SALIM, AHMAD W. FARAJ JFCA-212/3 γ qn δ pn γ + qm qn δ + pm pn n + 1 m Γαn + αm + β zn ; m d z β 1 dz wzα z α β 1 γ qn w n z α n Γαn + β mδ pn γ qn w n Theorem 2.4 If the condition 7 is stisfied, then 1 Γδ x t d dz zα+β 1 Γαn + βδ pn d dz zα+β 1 z β m 1 α,β m,p wzα. x s δ 1 s t β 1 λs tα ds x t δ+β 1 α,β+δ,p λs tα Proof. Let u s t x t, then 1 x x s δ 1 s t β 1 Γδ λs tα ds t 1 x x t δ 1 1 u δ 1 x t β 1 u β 1 x t Γδ t x tδ+β 1 γ qn λx t α n Γαn + βγδ Γδ Γαn + βδ pn Γαn + β + δ x t δ+β 1 α,β+δ,p λs tα. In prticulr, setting t nd x 1 in 28, we get 1 Γδ 1 u β 1 1 u δ 1 zuα ds α,β+δ,p z. 3. z in Terms of Other Functions 28 γ qn λ n x t αn u αn du Γαn + βδ pn In this section we write z in terms of Wright generlized function, generlized hypergeometric function, Mellin-Brnes integrl nd Fox s H-function. z γ qn Γαn + βδ pn Γγ + qn Γγ Γδ Γn + 1 Γδ + pn Γαn + β hence, we cn write z in terms of the Wright generlized function s Γδ z Γγ Γγ + qn Γδ + pn Γn + 1 Γαn + β n! n! Γδ γ, q, 1, 1 Γγ 2 Ψ 2 δ, p, β, α ; z Theorem 3.1 Let 7 be stisfied with α k N, then z cn be written in terms of the generlized hypergeometric function s z 1 Γβ. q+1f p+k 1, q, γ k, β, p, δ ; zq q p p k k 29, 3
7 JFCA-212/3 A GENERALIZATION OF MITTAG-LEFFLER FUNCTION 7 where k, n is k tuple n k, n + 1 k,..., n + k 1. k Proof. Let α k N, then z γ qn 1 γ qn Γαn + βδ pn Γβ β αn δ pn 1 q qn q γ + i 1 1 n i1 q n Γβ p δ + j 1 p pn k j1 p kn k β + r 1 n! n r1 k n 1 Γβ. 1, q, γ q+1f p+k k, β, p, δ ; zq q p p k k. Now in order to write z s Mellin-Brnes type integrl z in terms of Fox s H-function, we first express Theorem 3.2 Let 7 be stisfied, then z is represented in the Mellin- Brnes type integrl s z 1 2πi L ΓsΓ1 sγγ qs z s ds, 31 Γβ αsγδ ps where rgz < π; the contour of integrtion begins t i nd ending t i, nd intended to seprte the poles of the integrnd t s n for ll n N to the left from those t s n + 1 nd t s γ + n for ll n N {} to the right. q Proof. Simply, by writing the Wright generlized function in 29 in terms of Mellin-Brnes integrl, we get Γδ z Γγ Γγ + qn Γδ + pn 1 Γδ 2πi Γγ Γδ Γγ H1,2 2,3 L z Γn + 1 Γαn + β n! Γδ γ, q, 1, 1 Γγ 2 Ψ 2 δ, p, β, α ; z ΓsΓ1 sγγ qs z s ds Γβ αsγδ ps, 1, 1 γ, q, 1, 1 β, α, 1 δ, p. 32 The lst eqution is just representtion of z in terms of Fox s H-function. 4. Integrl Trnsforms of z In this section, the imge of z under Bet, Lplce, Mellin nd Whittker trnsforms with some specil cses re proved in the following theorems Theorem 4.1 Bet Trnsform { } B xzσ ;, b ΓbΓδ. 3 Ψ 3 Γγ where 7 is stisfied nd R >, Rb >. Proof. γ, q,, σ, 1, 1 β, α, δ, p, + b, σ ; z, 33
8 8 TARIQ O. SALIM, AHMAD W. FARAJ JFCA-212/3 { } B xzσ ;, b ΓbΓδ Γγ 1 z 1 1 z b 1 xzσ dz γ qn x n B + σn, b Γαn + βδ pn. 3 Ψ 3 γ, q,, σ, 1, 1 β, α, δ, p, + b, σ ; x γ qn x n Γ + σnγb Γαn + βδ pn Γ + σn + b. Theorem 4.2 Lplce Trnsform { } L z 1 xzσ ; s Γδs γ, q,, σ, 1, 1. 3 Ψ 2 Γγ β, α, δ, p ; x s σ 34 Proof. { } L z 1 xzσ ; s z 1 e sz xzσ dz γ qn x n z +σn 1 e sz dz Γαn + βδ pn γ qn x n { } Γ + σn z +σn 1 L Γαn + βδ pn Γ + σn ; s Γδs γ, q,, σ, 1, 1. 3 Ψ 2 Γγ β, α, δ, p Theorem 4.3 Mellin Trnsform { } M wz; s Γδ ΓsΓ1 sγγ qs Γγ Γβ αsγδ ps w s 35 ; x s σ. Proof. According to Theorem 3.2 nd using 31, wz cn be written s wz 1 Γδ ΓsΓ1 sγγ qs 2πi Γγ Γβ αsγδ ps wz s ds 1 Γδ f sz s ds 2πi Γγ L where f ΓsΓ1 sγγ qs s Γβ αsγδ psw s begins t c i nd ends t c i ; c R. Hence Γδ wz Γγ M 1 {f s; z} Now pplying Mellin trnsform to both sides, we obtin M which proves 35. nd L is the contour of integrtion tht { } wz; s Γδ ΓsΓ1 sγγ qs Γγ Γβ αsγδ ps w s Theorem 4.4 Whittker Trnsform L e 1 2 ϕt t ζ 1 W λ,µ ϕt wtσ dt Γδϕ ζ Γγ γ, q, 1, 1, 1. 4 Ψ 2 + µ + ζ, σ, 1 2 µ + ζ, σ 3 β, α, δ, p, 1 λ + ζ, σ where 7 is stisfied nd Rζ >, Rϕ >. Proof. Setting v ϕt, then we get ; w ϕ σ 36
9 JFCA-212/3 A GENERALIZATION OF MITTAG-LEFFLER FUNCTION 9 e 1 2 ϕt t ζ 1 W λ,µ ϕt wtσ dt e v 2 Γδϕ ζ Γγ Γδϕ ζ Γγ Γδϕ ζ Γγ σn v ζ 1 v W γ qn w n ϕ 1 λ,µv ϕ Γαn + βδ pn ϕ dv n Γqn + γ w Γαn + βγpn + δ ϕ σ e v 2 v ζ+σn 1 W λ,µ vdv n Γqn + γγn + 1 w Γ µ + ζ + σnγ 1 2 µ + ζ + σn Γαn + βγpn + δn! ϕ σ Γ1 λ + ζ + σn which directly yields 36. Γqn + γγn + 1Γ µ + ζ + σnγ 1 2 µ + ζ + σn Γαn + βγpn + δγ1 λ + ζ + σn w ϕ σ 5. Integrl Opertors with Generlized Mittg-Leffler Function in the Kernel In this section, we consider composition of the Riemnn-Liouville frctionl integrl nd derivtive nd Hilfer s frctionl derivtive 9-11 with Mittg-Leffler function defined by 7. Theorem 5.1 Let R +, α, β, γ, δ, λ, w C, min {Rα, Rβ, Rγ, Rδ, Rλ} > nd p, q >, then for x > we hve D+ λ t β 1 wt α x x β λ 1 α,β λ,p wx α 37 Proof. Beginning with I + λ t β 1 x Γβ I λ + t β 1 wt α x I+ λ n! n Γβ + λ x β+λ 1, then γ qn w n t αn+β 1 x Γαn + βδ pn γ qn w n t αn+β 1 Γαn + βδ pn Γαn + β Γαn + β + λ x αn+β+λ 1 38 x β+λ 1 α,β+λ,p wx α Now mking use of 9, 27 nd 38 yields D+ λ t β 1 wt α x d m I+ m λ t β 1 wt α x m d x β+m λ 1 wx α x β λ 1 α,β λ,p wx α. Now, mking use of the formuls in 27 nd 38, we cn get the following result contined in
10 1 TARIQ O. SALIM, AHMAD W. FARAJ JFCA-212/3 Theorem 5.2 Let R +, α, β, γ, δ, w C, min {Rα, Rβ, Rγ, Rδ} >, < u < 1, v, Rβ > u + v uv nd p, q >, then for x > we hve D u,v + t β 1 wt α x x β u 1 α,β u,p wx α. 39 Consider the integrl opertor defined in 8 contining the Mittg-Leffler function γ,δ,q z in the kernel. First of ll we will prove tht the opertor E,w, + is bounded on L, b. Theorem 5.3 Let α, β, γ, δ, w C, min {Rα, Rβ, Rγ, Rδ} >, b > nd p, q >, then the opertor,w, is bounded on L, b nd +,w,+ φ 1 B φ 1 4 where B b Rβ γ qn wb Rα n Γαn + β δ pn Rαn + Rβ Proof. First of ll, let C n denote the n th term of 41, then c n+1 c n γ qn+q Γαn + β δ pn Rαn + Rβ γ qn Γαn + β + α δ pn+p Rαn + Rα + Rβ wb Rα wb Rα qn q s n, provided tht q < p + Rα. Hence α n Rα pn p c n+1 c n s n, which mens tht the right hnd side of 41 is convergent nd finite under the given condition. Now ccording to 8 nd 22,w,+ φ 1 b b x t β 1 wx tα φtdt b b x t β 1 wx b b t tα φt dt u Rβ 1 wuα du φt dt b b u Rβ 1 wuα du φt dt. But we hve b u Rβ 1 γ qn w n wuα du Γαn + β δ pn so tht B b Rβ Hence,w,+ φ 1 b b γ qn wb Rα n Γαn + β δ pn Rαn + Rβ B φt dt B φ u Rαn+Rβ 1 du B
11 JFCA-212/3 A GENERALIZATION OF MITTAG-LEFFLER FUNCTION 11 Equlity 28 cn simply be written by mens of the opertor,w, s + Corollry 5.4 Let α, β, γ, δ, ζ, w C, min {Rα, Rβ, Rγ, Rδ, Rλ} > nd p, q >, then,w,+ t ζ 1 x Γζx β+ζ 1 α,β+ζ,p wx α Composition of Frctionl Clculus Opertors nd Integrl Opertor with Generlized Mittg-Leffler Function in the Kernel We consider now composition of the Riemnn-Liouville frctionl integrtion opertor I λ with the opertor +,w,+ Theorem 6.1 Let α, β, γ, δ, λ, w C, min {Rα, Rβ, Rγ, Rδ, Rλ} > nd p, q >, then I λ γ,δ,q +E,w,+ φ α,β+λ,p,w,+ φ,w,+ Iλ +φ 43 holds for ny summble function φ L, b. Proof. I λ +,w,+ φ x 1 x u x u λ 1 u t β 1 Γλ wu tα φtdt du x 1 x x u λ 1 u t β 1 Γλ wu tα du φtdt letting τ u t implies t I λ +,w,+ φ x x I λ x τ β 1 wτ α x 1 x t Γλ x tφtdt x t β+λ 1 α,β+λ,p wx tα Similrly, we cn prove the other side. x t τ λ 1 τ β 1 wτ α dτ φtdt x τ β+λ 1 α,β+λ,p wτ α φtdt φtdt α,β+λ,p,w,+ φ x Theorem 6.2 If the conditions of Theorem 6.1 is stisfied, then D λ γ,δ,q +E,w,+ φ x α,β λ,p,w,+ φ x. 44 Proof. Let n Rλ + 1 nd using 9, we get n D λ d +,w,+ φ x I n λ +,w,+ φ x n d α,β+n λ,p,w,+ φ x n d x x t β+n λ 1 α,β+n λ,p wx tα φtdt Since the integrl is continuous, 23 yields
12 12 TARIQ O. SALIM, AHMAD W. FARAJ JFCA-212/3 n 1 D λ d x +,w,+ φ x +limx t β+n λ 1 t x α,β+n λ,p wx tα n 1 d x x t β+n λ 2 γ qn wx t α n Γαn + β + n λ 1δ pn n 1 d x x t β+n λ 2 α,β+n λ 1,p wx tα φtdt Repeting this process n 1 times, then we get D λ +,w,+ φ x x x t β+n λ 1 α,β+n λ,p x wx tα φtdt φtdt x t β λ 1 α,β λ,p wx tα φtdt α,β λ,p,w,+ φ x. Theorem 6.3 Let α, β, γ, δ, w C, min {Rα, Rβ, Rγ, Rδ} > < u < 1, v 1, Rβ > u + v uv nd p, q >, then D u,v +,w,+ φ x α,β u,p,w,+ φ x. 45 Acknowledgement: The uthors wish to thnk the nonymous referee for vluble comments nd suggestions. References 1 R. Finney, D. Ostberg, R. Kuller, Elementry Differentil Equtions with Liner Algebr, Addison-Weley Publishing Compny; R. HilferEd., Applictions of Frctionl Clculus in Physics, Singpore, New Jersey, London nd Hong Kong : World Scientific Publishing Compny; 2. 3 A.A. Kilbs, M. Sigo, H Trnsforms: Theory nd Applictions., London, NewYork: Chpmn nd Hll/CRC; A.A. Kilbs, M. Sigo, R.K. Sxen, Generlized Mittg Leffler function nd generlized frctionl clculus opertors, Integrl Trnsforms Spec. Funct., Vol. 15,24,pp G.M. Mittg-Leffler, Sur l nouvelle fonction. C.R. Acd. Sci. Pris, Vol. 137, 193, pp T.R. Prbhkr, A Singulr integrl eqution with generlized Mittg-Leffler function in the kernel. Yokohm Mth. J., Vol. 19,1971, pp E.D. Rinville, Specil Functions. New York : Chelse Publ. Co.; T.O. Slim, Some properties relting to the generlized Mittge-Leffler function, Adv. Appl. Mth. Anl., Vol. 4, 29, pp S.G. Smko, A.A. Kilbs, O.I. Mrichev, Frctionl Integrls nd Derivtives: Theory nd Applictions, Yverdon Switzerlnd: Gordon nd Brech Science Publishers; A.K. Shukl, J.C. Prjpti, On generliztion of Mittg Leffler function nd its properties, J. Mth. Anl. Appl., Vol. 336, 27, pp I.N. Sneddon, The Use of Integrl Trnsforms. New Delhi: Tt McGrw Hill; H.M. Srivstv, H.L. Mnoch, A Tretise on Generting Functions. New York: John Wiley nd Sons; H.M. Srivstv, Z. Tomovski, Frctionl clculus with n integrl opertor contining generlized Mittg-Leffler function in the kernel, Appl. Mth. Comput.,Vol. 211,29, pp A. Wimn, Uber den fundmentl stz in der theori der functionen, Act Mth., Vol. 29, 195, pp E.T. Wittker, G.N. Wtson, A Course of Modern Anlysis. Cmbridge: Cmbridge Univ. Press; 1962.
13 JFCA-212/3 A GENERALIZATION OF MITTAG-LEFFLER FUNCTION 13 Triq O. Slim, Deprtment of Mthemtics, Al-Azhr University-Gz, P.O.Box 1277, Gz, Plestine E-mil ddress: trslim@yhoo.com, t.slim@lzhr.edu.ps Ahmd W. Frj, Deprtment of Mthemtics, Al-Azhr University-Gz, P.O.Box 1277, Gz, Plestine
Oscillatory integrals
Oscilltory integrls Jordn Bell jordn.bell@gmil.com Deprtment of Mthemtics, University of Toronto August, 0 Oscilltory integrls Suppose tht Φ C R d ), ψ DR d ), nd tht Φ is rel-vlued. I : 0, ) C by Iλ)
CHAPTER 3 MITTAG-LEFFLER FUNCTIONS AND FRACTIONAL CALCULUS
CHAPTER 3 MITTAG-LEFFLER FUNCTIONS AND FRACTIONAL CALCULUS [ThischpterisbsedonthelecturesofProfessorR.K.SxenofJiNrinVysUniversity, Jodhpur, R jsthn.] 3.. Introduction This section dels with Mittg-Leffler
Mittag-Leffler Functions and Fractional Calculus
Chpter 2 Mittg-Leffler Functions nd Frctionl Clculus [This chpter is bsed on the lectures of Professor R.K. Sxen of Ji Nrin Vys University, Jodhpur, Rjsthn, Indi.] 2. Introduction This section dels with
INTEGRAL INEQUALITY REGARDING r-convex AND
J Koren Mth Soc 47, No, pp 373 383 DOI 434/JKMS47373 INTEGRAL INEQUALITY REGARDING r-convex AND r-concave FUNCTIONS WdAllh T Sulimn Astrct New integrl inequlities concerning r-conve nd r-concve functions
Reccurence Relation of Generalized Mittag Lefer Function
Palestine Journal of Mathematics Vol. 6(2)(217), 562 568 Palestine Polytechnic University-PPU 217 Reccurence Relation of Generalized Mittag Lefer Function Vana Agarwal Monika Malhotra Communicated by Ayman
The k-α-exponential Function
Int Journal of Math Analysis, Vol 7, 213, no 11, 535-542 The --Exponential Function Luciano L Luque and Rubén A Cerutti Faculty of Exact Sciences National University of Nordeste Av Libertad 554 34 Corrientes,
On the generalized fractional derivatives and their Caputo modification
Aville online t www.isr-pulictions.com/jns J. Nonliner Sci. Appl., 0 207), 2607 269 Reserch Article Journl Homepge: www.tjns.com - www.isr-pulictions.com/jns On the generlized frctionl derivtives nd their
2 Composition. Invertible Mappings
Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,
On the k-bessel Functions
International Mathematical Forum, Vol. 7, 01, no. 38, 1851-1857 On the k-bessel Functions Ruben Alejandro Cerutti Faculty of Exact Sciences National University of Nordeste. Avda. Libertad 5540 (3400) Corrientes,
AMS 212B Perturbation Methods Lecture 14 Copyright by Hongyun Wang, UCSC. Example: Eigenvalue problem with a turning point inside the interval
AMS B Perturbtion Methods Lecture 4 Copyright by Hongyun Wng, UCSC Emple: Eigenvlue problem with turning point inside the intervl y + λ y y = =, y( ) = The ODE for y() hs the form y () + λ f() y() = with
The k-fractional Hilfer Derivative
Int. Journal of Math. Analysis, Vol. 7, 213, no. 11, 543-55 The -Fractional Hilfer Derivative Gustavo Abel Dorrego and Rubén A. Cerutti Faculty of Exact Sciences National University of Nordeste. Av. Libertad
A summation formula ramified with hypergeometric function and involving recurrence relation
South Asian Journal of Mathematics 017, Vol. 7 ( 1): 1 4 www.sajm-online.com ISSN 51-151 RESEARCH ARTICLE A summation formula ramified with hypergeometric function and involving recurrence relation Salahuddin
SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018
Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals
Solutions_3. 1 Exercise Exercise January 26, 2017
s_3 Jnury 26, 217 1 Exercise 5.2.3 Apply composite Simpson s rule with m = 1, 2, 4 pnels to pproximte the integrls: () x 2 dx = 1 π/2 3, (b) cos(x) dx = 1, (c) e x dx = e 1, nd report the errors. () f(x)
Solutions 3. February 2, Apply composite Simpson s rule with m = 1, 2, 4 panels to approximate the integrals:
s Februry 2, 216 1 Exercise 5.2. Apply composite Simpson s rule with m = 1, 2, 4 pnels to pproximte the integrls: () x 2 dx = 1 π/2, (b) cos(x) dx = 1, (c) e x dx = e 1, nd report the errors. () f(x) =
Oscillation of Nonlinear Delay Partial Difference Equations. LIU Guanghui [a],*
Studies in Mthemtil Sienes Vol. 5, No.,, pp. [9 97] DOI:.3968/j.sms.938455.58 ISSN 93-8444 [Print] ISSN 93-845 [Online] www.snd.net www.snd.org Osilltion of Nonliner Dely Prtil Differene Equtions LIU Gunghui
4.6 Autoregressive Moving Average Model ARMA(1,1)
84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this
Homomorphism in Intuitionistic Fuzzy Automata
International Journal of Fuzzy Mathematics Systems. ISSN 2248-9940 Volume 3, Number 1 (2013), pp. 39-45 Research India Publications http://www.ripublication.com/ijfms.htm Homomorphism in Intuitionistic
ON NEGATIVE MOMENTS OF CERTAIN DISCRETE DISTRIBUTIONS
Pa J Statist 2009 Vol 25(2), 135-140 ON NEGTIVE MOMENTS OF CERTIN DISCRETE DISTRIBUTIONS Masood nwar 1 and Munir hmad 2 1 Department of Maematics, COMSTS Institute of Information Technology, Islamabad,
Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics
Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)
Example Sheet 3 Solutions
Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note
To find the relationships between the coefficients in the original equation and the roots, we have to use a different technique.
Further Conepts for Avne Mthemtis - FP1 Unit Ientities n Roots of Equtions Cui, Qurti n Quinti Equtions Cui Equtions The three roots of the ui eqution x + x + x + 0 re lle α, β n γ (lph, et n gmm). The
Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών. Εθνικό Μετσόβιο Πολυτεχνείο. Thales Workshop, 1-3 July 2015.
Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εθνικό Μετσόβιο Πολυτεχνείο Thles Worksho, 1-3 July 015 The isomorhism function from S3(L(,1)) to the free module Boštjn Gbrovšek Άδεια Χρήσης Το παρόν
Normalization of the generalized K Mittag-Leffler function and ratio to its sequence of partial sums
Normalization of the generalized K Mittag-Leffler function ratio to its sequence of partial sums H. Rehman, M. Darus J. Salah Abstract. In this article we introduce an operator L k,α (β, δ)(f)(z) associated
3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β
3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle
Uniform Convergence of Fourier Series Michael Taylor
Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula
A General Note on δ-quasi Monotone and Increasing Sequence
International Mathematical Forum, 4, 2009, no. 3, 143-149 A General Note on δ-quasi Monotone and Increasing Sequence Santosh Kr. Saxena H. N. 419, Jawaharpuri, Badaun, U.P., India Presently working in
C.S. 430 Assignment 6, Sample Solutions
C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order
EXTENDED WRIGHT-BESSEL FUNCTION AND ITS PROPERTIES
Commun. Korean Math. Soc. (, No., pp. 1 https://doi.org/1.4134/ckms.c1739 pissn: 1225-1763 / eissn: 2234-324 EXTENDED WRIGHT-BESSEL FUNCTION AND ITS PROPERTIES Muhammad Arshad, Shahid Mubeen, Kottakkaran
Math221: HW# 1 solutions
Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin
k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +
Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b
Research Article The Study of Triple Integral Equations with Generalized Legendre Functions
Hindwi Pulishing Corportion Astrct nd Applied Anlysis Volume 28, Article ID 395257, 2 pges doi:.55/28/395257 Reserch Article The Study of Triple Integrl Equtions with Generlized Legendre Functions B. M.
Section 8.3 Trigonometric Equations
99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.
Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013
Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering
Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions
International Journal of Computational Science and Mathematics. ISSN 0974-89 Volume, Number (00), pp. 67--75 International Research Publication House http://www.irphouse.com Coefficient Inequalities for
Concrete Mathematics Exercises from 30 September 2016
Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)
ST5224: Advanced Statistical Theory II
ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal
Matrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
On Generating Relations of Some Triple. Hypergeometric Functions
It. Joural of Math. Aalysis, Vol. 5,, o., 5 - O Geeratig Relatios of Some Triple Hypergeometric Fuctios Fadhle B. F. Mohse ad Gamal A. Qashash Departmet of Mathematics, Faculty of Educatio Zigibar Ade
LAPLACE TYPE PROBLEMS FOR A DELONE LATTICE AND NON-UNIFORM DISTRIBUTIONS
Dedicted to Professor Octv Onicescu, founder of the Buchrest School of Probbility LAPLACE TYPE PROBLEMS FOR A DELONE LATTICE AND NON-UNIFORM DISTRIBUTIONS G CARISTI nd M STOKA Communicted by Mrius Iosifescu
Generalized fractional calculus of the multiindex Bessel function
Available online at www.isr-publications.com/mns Math. Nat. Sci., 1 2017, 26 32 Research Article Journal Homepage:www.isr-publications.com/mns Generalized ractional calculus o the multiindex Bessel unction.
Every set of first-order formulas is equivalent to an independent set
Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent
Bessel functions. ν + 1 ; 1 = 0 for k = 0, 1, 2,..., n 1. Γ( n + k + 1) = ( 1) n J n (z). Γ(n + k + 1) k!
Bessel functions The Bessel function J ν (z of the first kind of order ν is defined by J ν (z ( (z/ν ν Γ(ν + F ν + ; z 4 ( k k ( Γ(ν + k + k! For ν this is a solution of the Bessel differential equation
( y) Partial Differential Equations
Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate
ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ
ΗΜΥ ΔΙΑΚΡΙΤΗ ΑΝΑΛΥΣΗ ΚΑΙ ΔΟΜΕΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΗΜΥ Διακριτή Ανάλυση και Δομές Χειμερινό Εξάμηνο 6 Σειρά Ασκήσεων Ακέραιοι και Διαίρεση, Πρώτοι Αριθμοί, GCD/LC, Συστήματα
EE512: Error Control Coding
EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3
Finite Field Problems: Solutions
Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The
Some definite integrals connected with Gauss s sums
Some definite integrls connected with Guss s sums Messenger of Mthemtics XLIV 95 75 85. If n is rel nd positive nd I(t where I(t is the imginry prt of t is less thn either n or we hve cos πtx coshπx e
ON CONVERGENCE THEOREMS FOR FUZZY HENSTOCK INTEGRALS
Irnin Journl of Fuzzy Systems Vol. 14, No. 6, 2017 pp. 87-102 87 ON CONVERGENCE THEOREMS FOR FUZZY HENSTOCK INTEGRALS B. M. UZZAL AFSAN Abstrct. The min purpose of this pper is to estblish different types
CRASH COURSE IN PRECALCULUS
CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter
The k-bessel Function of the First Kind
International Mathematical Forum, Vol. 7, 01, no. 38, 1859-186 The k-bessel Function of the First Kin Luis Guillermo Romero, Gustavo Abel Dorrego an Ruben Alejanro Cerutti Faculty of Exact Sciences National
PROPERTIES OF CERTAIN INTEGRAL OPERATORS. a n z n (1.1)
GEORGIAN MATHEMATICAL JOURNAL: Vol. 2, No. 5, 995, 535-545 PROPERTIES OF CERTAIN INTEGRAL OPERATORS SHIGEYOSHI OWA Abstract. Two integral operators P α and Q α for analytic functions in the open unit disk
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max
ORDINAL ARITHMETIC JULIAN J. SCHLÖDER
ORDINAL ARITHMETIC JULIAN J. SCHLÖDER Abstract. We define ordinal arithmetic and show laws of Left- Monotonicity, Associativity, Distributivity, some minor related properties and the Cantor Normal Form.
Congruence Classes of Invertible Matrices of Order 3 over F 2
International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and
Fractional Calculus of a Class of Univalent Functions With Negative Coefficients Defined By Hadamard Product With Rafid -Operator
EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS Vol. 4, No. 2, 2, 62-73 ISSN 37-5543 www.ejpam.com Fractional Calculus of a Class of Univalent Functions With Negative Coefficients Defined By Hadamard
Exercises to Statistics of Material Fatigue No. 5
Prof. Dr. Christine Müller Dipl.-Math. Christoph Kustosz Eercises to Statistics of Material Fatigue No. 5 E. 9 (5 a Show, that a Fisher information matri for a two dimensional parameter θ (θ,θ 2 R 2, can
w o = R 1 p. (1) R = p =. = 1
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:
ON INTEGRAL MEANS FOR FRACTIONAL CALCULUS OPERATORS OF MULTIVALENT FUNCTIONS. S. Sümer Eker 1, H. Özlem Güney 2, Shigeyoshi Owa 3
ON INTEGRAL MEANS FOR FRACTIONAL CALCULUS OPERATORS OF MULTIVALENT FUNCTIONS S. Sümer Eker 1, H. Özlem Güney 2, Shigeyoshi Owa 3 Dedicated to Professor Megumi Saigo, on the occasion of his 7th birthday
Section 7.6 Double and Half Angle Formulas
09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)
M a t h e m a t i c a B a l k a n i c a. On Some Generalizations of Classical Integral Transforms. Nina Virchenko
M a t h e m a t i c a B a l k a n i c a New Series Vol. 26, 212, Fasc. 1-2 On Some Generalizations of Classical Integral Transforms Nina Virchenko Presented at 6 th International Conference TMSF 211 Using
Other Test Constructions: Likelihood Ratio & Bayes Tests
Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :
The Simply Typed Lambda Calculus
Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and
On a Subclass of k-uniformly Convex Functions with Negative Coefficients
International Mathematical Forum, 1, 2006, no. 34, 1677-1689 On a Subclass of k-uniformly Convex Functions with Negative Coefficients T. N. SHANMUGAM Department of Mathematics Anna University, Chennai-600
J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5
Vol. 37 ( 2017 ) No. 5 J. of Math. (PRC) 1,2, 1, 1 (1., 225002) (2., 225009) :. I +AT +, T + = T + (I +AT + ) 1, T +. Banach Hilbert Moore-Penrose.. : ; ; Moore-Penrose ; ; MR(2010) : 47L05; 46A32 : O177.2
If ABC is any oblique triangle with sides a, b, and c, the following equations are valid. 2bc. (a) a 2 b 2 c 2 2bc cos A or cos A b2 c 2 a 2.
etion 6. Lw of osines 59 etion 6. Lw of osines If is ny oblique tringle with sides, b, nd, the following equtions re vlid. () b b os or os b b (b) b os or os b () b b os or os b b You should be ble to
HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:
HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying
Characterization of non-differentiable points in a function by Fractional derivative of Jumarrie type
Chrcteriztion of non-differentible points in function by Frctionl derivtive of Jumrrie type Uttm Ghosh (), Srijn Sengupt(), Susmit Srkr (), Shntnu Ds (3) (): Deprtment of Mthemtics, Nbdwip Vidysgr College,
Lecture 5: Numerical Integration
Lecture notes on Vritionl nd Approximte Metods in Applied Mtemtics - A Peirce UBC 1 Lecture 5: Numericl Integrtion Compiled 15 September 1 In tis lecture we introduce tecniques for numericl integrtion,
Problem Set 3: Solutions
CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C
derivation of the Laplacian from rectangular to spherical coordinates
derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used
SPECIAL FUNCTIONS and POLYNOMIALS
SPECIAL FUNCTIONS and POLYNOMIALS Gerard t Hooft Stefan Nobbenhuis Institute for Theoretical Physics Utrecht University, Leuvenlaan 4 3584 CC Utrecht, the Netherlands and Spinoza Institute Postbox 8.195
Commutative Monoids in Intuitionistic Fuzzy Sets
Commutative Monoids in Intuitionistic Fuzzy Sets S K Mala #1, Dr. MM Shanmugapriya *2 1 PhD Scholar in Mathematics, Karpagam University, Coimbatore, Tamilnadu- 641021 Assistant Professor of Mathematics,
Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.
Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action
6.1. Dirac Equation. Hamiltonian. Dirac Eq.
6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2
Solutions to Exercise Sheet 5
Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X
Overview. Transition Semantics. Configurations and the transition relation. Executions and computation
Overview Transition Semantics Configurations and the transition relation Executions and computation Inference rules for small-step structural operational semantics for the simple imperative language Transition
The Negative Neumann Eigenvalues of Second Order Differential Equation with Two Turning Points
Applied Mathematical Sciences, Vol. 3, 009, no., 6-66 The Negative Neumann Eigenvalues of Second Order Differential Equation with Two Turning Points A. Neamaty and E. A. Sazgar Department of Mathematics,
Integrals in cylindrical, spherical coordinates (Sect. 15.7)
Integrals in clindrical, spherical coordinates (Sect. 5.7 Integration in spherical coordinates. Review: Clindrical coordinates. Spherical coordinates in space. Triple integral in spherical coordinates.
Geodesic Equations for the Wormhole Metric
Geodesic Equations for the Wormhole Metric Dr R Herman Physics & Physical Oceanography, UNCW February 14, 2018 The Wormhole Metric Morris and Thorne wormhole metric: [M S Morris, K S Thorne, Wormholes
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
CERTAIN SUBCLASSES OF UNIFORMLY STARLIKE AND CONVEX FUNCTIONS DEFINED BY CONVOLUTION WITH NEGATIVE COEFFICIENTS
MATEMATIQKI VESNIK 65, 1 (2013), 14 28 March 2013 originalni nauqni rad research paper CERTAIN SUBCLASSES OF UNIFORMLY STARLIKE AND CONVEX FUNCTIONS DEFINED BY CONVOLUTION WITH NEGATIVE COEFFICIENTS M.K.
Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X.
Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequalit for metrics: Let (X, d) be a metric space and let x,, z X. Prove that d(x, z) d(, z) d(x, ). (ii): Reverse triangle inequalit for norms:
Fractional Colorings and Zykov Products of graphs
Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is
Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------
Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS
CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =
DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation
DiracDelta Notations Traditional name Dirac delta function Traditional notation x Mathematica StandardForm notation DiracDeltax Primary definition 4.03.02.000.0 x Π lim ε ; x ε0 x 2 2 ε Specific values
Solution Series 9. i=1 x i and i=1 x i.
Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x
P AND P. P : actual probability. P : risk neutral probability. Realtionship: mutual absolute continuity P P. For example:
(B t, S (t) t P AND P,..., S (p) t ): securities P : actual probability P : risk neutral probability Realtionship: mutual absolute continuity P P For example: P : ds t = µ t S t dt + σ t S t dw t P : ds
The k-mittag-leffler Function
Int. J. Contemp. Math. Sciences, Vol. 7, 212, no. 15, 75-716 The -Mittag-Leffler Function Gustavo Abel Dorrego and Ruben Alejandro Cerutti Faculty of Exact Sciences National University of Nordeste. Avda.
Tridiagonal matrices. Gérard MEURANT. October, 2008
Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,
Takeaki Yamazaki (Toyo Univ.) 山崎丈明 ( 東洋大学 ) Oct. 24, RIMS
Takeaki Yamazaki (Toyo Univ.) 山崎丈明 ( 東洋大学 ) Oct. 24, 2017 @ RIMS Contents Introduction Generalized Karcher equation Ando-Hiai inequalities Problem Introduction PP: The set of all positive definite operators
Evaluation of some non-elementary integrals of sine, cosine and exponential integrals type
Noname manuscript No. will be inserted by the editor Evaluation of some non-elementary integrals of sine, cosine and exponential integrals type Victor Nijimbere Received: date / Accepted: date Abstract
Risk! " #$%&'() *!'+,'''## -. / # $
Risk! " #$%&'(!'+,'''## -. / 0! " # $ +/ #%&''&(+(( &'',$ #-&''&$ #(./0&'',$( ( (! #( &''/$ #$ 3 #4&'',$ #- &'',$ #5&''6(&''&7&'',$ / ( /8 9 :&' " 4; < # $ 3 " ( #$ = = #$ #$ ( 3 - > # $ 3 = = " 3 3, 6?3
Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3
Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all
Sequent Calculi for the Modal µ-calculus over S5. Luca Alberucci, University of Berne. Logic Colloquium Berne, July 4th 2008
Sequent Calculi for the Modal µ-calculus over S5 Luca Alberucci, University of Berne Logic Colloquium Berne, July 4th 2008 Introduction Koz: Axiomatisation for the modal µ-calculus over K Axioms: All classical
CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD
CHAPTER FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD EXERCISE 36 Page 66. Determine the Fourier series for the periodic function: f(x), when x +, when x which is periodic outside this rge of period.
From the finite to the transfinite: Λµ-terms and streams
From the finite to the transfinite: Λµ-terms and streams WIR 2014 Fanny He f.he@bath.ac.uk Alexis Saurin alexis.saurin@pps.univ-paris-diderot.fr 12 July 2014 The Λµ-calculus Syntax of Λµ t ::= x λx.t (t)u