prf : SBIRO Abdelkrim ( ) ( ) ( ) . v B ( )
|
|
- Ζένα Δημητρακόπουλος
- 7 χρόνια πριν
- Προβολές:
Transcript
1 الثانوية الفلاحية باولادتايمة فرض رقم الدورة الثانية يوم - 010/5/19 مدة الا نجاز: ساعتين- التمرين الا ول فيزياء : 9 نقط يمكن لجسم صلب ) S ( آتلته = 1Kg نعتبره نقطيا أن ينزلق فوق سكة ABC مكونة من : prf : SBIR Abdelkri 0 - جزء مستقيمي AB ماي ل بالنسبة للمستوى الا فقي بزاوية = 30 α وطوله. AB = 1 - جزء BC مستقيمي أفقي. θ = CI - جزء C داي ري شعاعه r = 1 ومرآزه I حيث الزاوية = 40 ˆ ينطلق الجسم S عند لحظة تاريخها t = بدون سرعة بدي ية من نقطة A تبعد عن أصل المعلم,. v B = / s بسرعة B ليصل إلى النقطة d = A = 10c ) i ( المبين على الشكل بمسافة نعتبر الاحتكاآات على الجزي ين AB و BC مكافي ة لقوة f شدتها ثابتة. ( بين أن حرآة الجسم S على الجزء AB حرآة مستقيمية متغيرة بانتظام ثم احسب التسارع a لحرآة الجسم. S ن 1, i - 1- أوجد المعادلة الزمنية (t) x لحرآة الجسم S على الجزء AB في المعلم ) (. ن 1 ) (. ثم احسب قيمتها ) ن ( -3-1 احسب شدة القوة. f ن 1 ( يصل الجسم S إلى النقطة C بسرعة منعدمة. احسب بتطبيق القانون الثاني لنيوتن على الجسم S التسارع a لحرآته. BC ثم استنتج طبيعة الحرآة.. v 3) ينطلق الجسم S بدون سرعة بدي ية من النقطة C لينزلق بدون احتكاك على الجزء الداي ري C فيصل إلى النقطة بسرعة 1-3- أوجد بتطبيق مبرهنة الطاقة الحرآية تعبير السرعة v واحسب قيمتها -3- أوجد تعبير شدة القوة R المقرونة بتا ثير الجزء Cعلى الجسم S في النقطة بدلالة g و. θ v يسقط بالنقطة. الموجودة 4) بعد مغادرة الجسم S للسكة ABC عند النقطة في لحظة نعتبرها أصلا للتواريخ = 0 t بسرعة على المستوى الا فقي المار من المرآز. I (انظر الشكل )., S ( التعبير الحرفي لمعادلة مسار الجسم بعد مغادرته للسكة., y 1-4) أوجد في المعلم ). g = ) أوجد إحداثيتي النقطة نعطي. s التمرين الثاني فيزياء : 4 نقط. = 00g S وجسم صلب آتلته K = 0N نعتبر نواسا مرنا رأسيا مكونا من نابض صلابته / نزيح الجسم S رأسيا نحو الا سفل عن موضع توازنه ب 4 c ثم نحرره بدن سرعة بدي ية. G عند التوازن S رأسيا موجها نحو الا سفل أصله 0 منطبق مع مرآز قصور الجسم (, i تعتبر معلما ) عند اللحظة = 0 t يمر الجسم من موضع توازنه المستقر.. g = 10N في المنحى الموجب.نعطي / Kg : G l عند التوازن. 1) أوجد إطالة النابض ) أوجد المعادلة التفاضلية للحرآة. ( 3 أوجد المعادلة الزمنية للحرآة. ( 4 احسب الدور الخاص لحرآة المتذبذب. ن 1 1
2 موضوع الكيمياء 7 نقط CH 3 إلى تكون مرآب عضوي E والماء. H مع الميثانول CH 3 CH CH يو دي يتفاعل حمض البوتانويك CH 1) بما يسمى هذا التفاعل أعط اسم المرآب. E )أعط صيغة البروبان -أول. آيف سوف يتغير مردود التفاعل السابق باستعماله عوض الميثانول علل جوابك.( ن 1 ( 3-) لتحسين مردود تفاعل الا سترة نستبدل حمض البوتانويك با ندريد البوتانويك اآتب معادلة تفاعله مع الميثانول.( ن 1 ( ( 4 نصب في حوجلة 0,1l من حمض البوتانويك و 0,1l من الميثانول وقطرات من حمض الكبريتيك المرآز فنحصل على خليط حجمه. V = 400L 1-4) حدد آتلة الحمض الكربوآسيلي وآتلة الكحول التي تم استعمالهما في هذه التجربة.( ن 1 ( -4) ما دور حمض الكبريتيك في هذه التجربة (5, ن 0 ( 5) لتتبع تطور التفاعل السابق نوزع الخليط التفاعلي بالتساوي على 10 أنابيب اختبار ونحكم إغلاقها ثم نضعها في حمام ماي ي درجة حرارته 100 ثم نشغل الميقت.وعند لحظة t C ولمعرفة ل آمية مادة الا ستر n(ester) المتكون في لحظة معينة نخرج أنبوبا من الوعاء ونغمره بسرعة في الماء البارد. C B = 1l ثم نعاير حمض البوتانويك المتبقى بواسطة محلول هيدروآسيد الصوديوم (الصودا) ذات ترآيز / L 1-5) ما دور الماء البارد (5, ن 0 ( -5) اآتب معادلة تفاعل المعايرة. V يمثل حجم الصودا المضاف BE = 0,1 x بحيث 10. C B -3) 5 بين أن التقدم x لتفاعل الا سترة عند لحظة t تحدده العلاقة.. VBE للا نبوب للحصول على التكافو. 4-5) أدت الدراسة التجريبية على خط المنحنى الذي يمثل تغيرات تقدم تفاعل الا سترة بدلالة الزمن (انظر الشكل أسفله ). احسب مردود تفاعل الا سترة. 4-6) احسب ثابتة التوازن K لتفاعل الا سترة. ( Na اآتب معادلة التفاعل الحاصل مبينا الهدف الصناعي من 7) ننجز الحلما ة القاعدية للا ستر الناتج بواسطة محلول الصودا ) H + + هذا التفاعل. (5, ن 0 ( = 16g / l ( H ) = 1g / l ( C) = 1g نعطي : l / Sbir abdelkri lycée Agricle ulad taia régin d Agadir, Ryaue du arc ail : sbiabdu@yah.fr
3 التصحيح : التمرين الا ول فيزياء : 1-1 (1 بتطبيق العلاقة المستقلة عن الزمن بينAوB : vb = = / s vb v A = a( xb x A ) v A a لان 0: = a المعادلة الزمنية للحرآة : 0,1 x = t : ( 3-1 f = ( g sinα a) = 1 (10sin30 ) = 3N... ( P + R =. a G تطبيق القانون الثاني لنيوتن على الجسم بين : Bو C. بالاسقاط على المحور x f 3 a = = = 3 الحرآة مستقيمية متغيرة بانتظام (متباطي ة.( / s f + 0 =. a (3 3
4 1. v C zc z و : 0 = = r( 1 csθ ) z = r csθ z C و : لدينا : r = v = gr(1 csθ Ec أي : ) = gr( 1 csθ ) v = gr(1 csθ ) =.10(1 cs 40) = 4,679 =,16 / s : أي v = gr(1 csθ ومنه : )... ( -3 v أي : g cs θ R = r v v = gr(1 csθ R = g csθ ومن خلال -1-3 لدينا : ) r R = 1kg.10 N / Kg(3cs 40 ) =,98N 3N تطبيق عددي :
5 - 1-4 (4 بعد مغادرته للسكة يخضع الجسم لتا ثير وزنه P فقط. Σ F =. a G بتطبيق القانون الثاني لنيوتن : 1) P =. a ( G بالاسقاط على المحور x a تسارع الجسم حسب المحور x منعدم إذن حرآته مستقيمية منتظمة تتم بسرعة = 0 0 =. ax ( 1) = ( v csθ ). t : والمعادلة الزمنية للحرآة v x = v ثابتة.csθ باسقاط 1) ( على المحور y التسارع ثابت إذن الحرآة حسب y مستقيمية متغيرة بانتظام 1. a y = g + g =. a أي y 1 y = a. t + v y. t + y : + P =. a y y 0 معادلتها الزمنية : y = gt + v (sinθ ). t v θ.sin y = v y = 0 مع : = y. a g 0 با قصاء المتغيرة t بين x و y نحصل على معادلة المسار. 1 y = g + tgθ من خلال (1 ( = t ثم بالتعويض في () نحصل على : v. cs θ v.csθ y = r cs θ = 1.cs 40 = 0, 766 عندما يصل الجسم إلى النقطة : وبالتعويض في معادلة المسار نحصل على الا فصول : 1,766 = 10 + tg40 4,679.cs 40 1,8 x + 0,84 0,766 = 0 0 = لا يمكن لا ن أفصول النقطة موجب. 0,84 4 1,8( 0,766) 6,1 0,84 6,1 = = 0, 9 (1,8) 0,84 + 6,1 = 0, 45 (1,8) التمرين الثاني فيزياء : T (1 المجموعة المدروسة } الجسم { S جرد القوى : الجسم عند التوازن يخضع للقوى التالية: : P وزن الجسم. = K l المقرونة بتوتر الخيط عند التوازن.شدتها :القوة T T أي : 0 = K l g هذه العلاقة تعبر عن شرط التوازن. = P =. من خلال شرط التوازن لدينا : g. g 0,Kg.10N / Kg l = = = 0,1 = 10c ومنه إطالة النابض عند التوازن هي : K 0N /... ) تطبيق القانون الثاني لنيوتن : 5
6 خلال حرآته يخضع الجسم S للقوى التالية : : P وزن الجسم T = K( l 0 + x) i. القوة المقرونة بتوتر الخيط خلال التذبذب : T P + T =. a G. Σ F = تكتب آما يلي : ag العلاقة : ) P K( l + x) i =. a ( G, ( موجها نحو الا سفل أصله. منطبق مع الطرف السفلي للنابض عند التوازن (انظر الشكل ( i نعتبر معلما ) + P K( l + x) =. a x g K l Kx =.ɺxɺ با سقاط العلاقة () على المحور (x (, نحصل على : وبما أنه من خلال شرط التوازن 0 = K l g فا ن العلاقة السابقة تصبح : K = 0 x ɺ xɺ + المعادلة التفاضلية للحرآة. Kx =.ɺxɺ أي :... x( t) = x cs( ω t + ϕ) 3) حل المعادلة التفاضلية السابقة يكتب آما يلي : x = 4c من خلال المعطيات لدينا : وبما انه عند π ϕ = ± cs ϕ = 0 = x csϕ ومن خلال الشروط البدي ية لدينا عند اللحظة x = t = إذن : اللحظة t = يمر الجسم من موضع توازنه في المنحى الموجب v > عند هذه اللحظة v = xɺ = x ω sin( ω. t + ϕ) t) x( فا ن : = x cs( ω t + ϕ) وبما أن : π ϕ = : إذن ϕ < 0 sin ϕ < 0 v = x ω وعند = 0 t لدينا > 0 ϕ sin x( t) = 4.10 cs( ω وبالتالي : ) t.... K 0 ω = = = 100 = 10rad 4 )النبض الخاص : s / 0, π π T = = 0,68s الدور الخاص : s = 68 ω π موضوع الكيمياء 7 نقط 1) معادلة التفاعل : اسم التفاعل : تفاعل الا سترة. اسم الا ستر الناتج : بوتانوات المثيل.... ) صيغة البروبانول- : البروبانول- آحول ثانوي بينما الميثانول آحول اولي وبالتالي سيتناقص مردود تفاعل الاسترة لا نه يتعلق بصنف الكحول.( بالنسبة للكحول الا ولي 67 وبالنسبة للكحول الثانوي.( 60 6
7 ( 3... = n. ( CH ) = 0,1 l.3g / l = 3, g 4 آتلة الكحول المستعملة : = n = 0,1l آتلة الاستر المستعملة : g.88 g / l 8,. ( C H ) = ) 1-5 -حمض الكبريتيك يلعب دور الحفار.( لزيادة سرعة التفاعل ) دور الماء البارد : توقيف التفاعل.... res tan t res tan t = 10CB VBE n = C B وفي الخليط با آمله :. VBE n. : 3-5 0,1 0, ,1 x 0,1 x x x n = 0, 1 x من خلا جدول التقدم لدينا : آمية مادة الحمض المتبقى في الخليط : (4 ومن خلال علاقة التكافو : آمية مادة الحمض المتبقى في الانبوب ومنه : 10 C B. V BE = 0, 1 لا ن الخليط تم توزيعه على 10 أنابيب اختبار إذن : x x = 0,1 10C B. V BE ) من خلال المنحنى لدينا آمية مادة الاستر الناتج عند نهاية التفاعل : l x =.6,7 نتيجة التجربة. exp 10 xexp 6,7.10 مردود التفاعل : r = = = 0,67 = 67 x 0,1 ax x eq تقدم التفاعل عند التوازن. = 6,7.10 l = 0, 067l عند نهاية التفاعل لدينا : ترآيب الخليط يصبح آما يلي : 0,1 0, ,1 0,067 = 0,033 0,1 0,067 = 0, 033 0, 067 0, 067 ومنه ثابتة التوازن : 0,067 0,067 [ ester][. eau] 0,067 K = = V V = 4,1 [ alcl][. acide] 0,033 0,033 0,033 V V... ( 7 7 الهدف من هذا التفاعل أعلى نقطة في هذا الفرض حصل عليها التلميذ ثم يليه التلميذ محمد عمارة : 0/ 18 : صناعة الصابون لا ن بوتانوات الصوديوم الناتج هو عبارة عن صابون. :محمد جبار 0 0/ Sbir abdelkri lycée Agricle ulad taia régin d Agadir, Ryaue du arc ail : sbiabdu@yah.fr لا تنسونا بصالح دعاي كم ونسا ل االله أن يرزقكم التبات والتوفيق إنه سميع مجيب الدعاء.
OH H O CH 3 CH 2 O C 2 H a = - 2 m/s 2. 2 gr(1 cos θ) max 1/5
الكيمياء (6 نقط) - سم المرآبات الكيمياي ية التالية مع تحديد المجموعة الكيمياي ية التي ينتمي إليها آل مرآب: المرآب A المرآب B المرآب الثانوية التا هيلية الفقيه الكانوني فرض محروس رقم. 4 الدورة الثانية المستوى:
المادة المستوى المو سسة والكيمياء الفيزياء تمارة = C ت.ع : éq éq ] éq ph
8 א א ن א ع א א ن א ع א تحديد خارج تفاعل حمض الا سكوربيك مع الماء بقياس ph O.. آتابة معادلة التفاعل H8O( q + H ( 7 ( q + l + ( q.. الجدول الوصفي H8O( q + HO ( H7O ( q HO+ l + ( q معادلة التفاعل آميات mol
dθ dt ds dt θ θ v a N dv a T dv dt v = rθ ɺ
حرآة دوران جسم صلب حول السرعة الزاوية-التسارع الزاوي: 1) تذآير: محور ثابت I الا فصول الزاوي يكون جسم صلب غير قابل للتشويه في حرآة دوران حول محور ثابت إذا آانت جميع نقطه لهاحرآة داي رية ممرآزة على هذا المحور
ا و. ر ا آ!ار نذإ.ى أ م ( ) * +,إ ك., م (ا يأ ) 1 آ ا. 4 ا + 9 ;). 9 : 8 8 و ء ر ) ا : * 2 3 ك 4 ا
الميكاني ك La mécanque قوانين نيوتن I متجهة السرعة ومتجهة التسارع: ) تذآير: : الحرآة نسبية أي الا جسام لا تتحرك إلا بالنسبة لا جسام أخرى.إذن لدراسة حرآة جسم يجب اختيار جسم مرجعي. ولتحديد موضع الجسم المتحرك
المادة المستوى رياضية علوم والكيمياء الفيزياء = 1+ x f. V ph .10 COOH. C V x C. V
8 n א الجزء ( تفاعل حمض آربوآسيلي مع الماء ثم مع الا مونياك - تحديد الصيغة الا جمالية لحمض آربوآسيلي - معادلة تفاعل المعايرة O H OO H n Hn OOH( HO n n ( l BB, - * حساب الترآيز المولي عند التكافو نحصل على
التتبع الزمني لتحول آيمياي ي سرعة التفاعل تمارين مرفقة بالحلول فيزياء تارودانت التمرين الا ول: يتفاعل أيون ثيوآبريتات ثناي ي أوآسيد الكبريت مع أيونات الا وآسونيوم وفق المعادلة الكيمياي ية التالية: H S
Le travail et l'énergie potentielle.
الشغل و الطاقة الوضع التقالية Le travail et l'énergie potentielle. الا ستاذ: الدلاحي محمد ) السنة الا ولى علوم تجريبية (.I مفهوم الطاقة الوضع الثقالية: نشاط : 1 السقوط الحر نحرر جسما صلبا كتلتھ m من نقطة
المستوى المادة المو سسة علوم رياضية الكيمياء والكيمياء الفيزياء تمارة RCOO RCOOH - ت.ع : RCOOH. x=x éq. x éq x m ] = 10 RCOOH.
الدورة العادية ROOH HlO ROOH ( aq HO( l ROO ( aq HO( aq 4( aq H O( l lo4 ( aq HO( aq ( aq HO( aq ROO ( aq HO( l wwwphysiqulyccla الكيمياء الجزء الا ول التعرف على محلولين حمضيين تصنيع إستر معادلة تفاعل
تمارين توازن جسم خاضع لقوتين الحل
تمارين توازن جسم خاضع لقوتين التمرين الأول : نربط كرية حديدية B كتلتها m = 0, 2 kg بالطرف السفلي لخيط بينما طرفه العلوي مثبت بحامل ( أنظر الشكل جانبه(. 1- ما نوع التأثير الميكانيكية بين المغنطيس والكرية
المستوى المادة مسلك والكيمياء الفيزياء المو سسة تمارة + + éq 3 éq= xéq. x m. m = CV x. Q r [ RCOOH] RCOOH
8 ا ستاذ ( éq wwwphysiquelyceecl א الجزء I تحديد ثابتة التوازن لتفاعل حمض الا يبوبروفين مع الماء حساب الترآيز ( ( i i ومنه و نعلم أن M ( M (, 9,7 ol L 6, تع تفاعل الا یبوبروفين مع الماء تفاعل محدود * الجدول
: : RCOO RCOOH - ت.ع : RCOOH. x=x éq. x éq x m ] = 10 RCOOH. éq= éq éq
تصحيح موضوع الامتحان الوطني الموحد للبكالوريا - الدورة العادية ROOH HlO ROOH ( HO( l ROO ( HO( 4( H O( l lo4 ( HO( ( aq HO( ROO ( HO( l الكيمياء الجزء الا ول التعرف على محلولين حمضيين تصنيع إستر معادلة
() 1. ( t) ( ) U du RC RC dt. t A Be E Ee E e U = E = 12V ن ن = + =A ن 1 RC. τ = RC = ن
تصحیح الموضوع الثاني U V 5 ن B التمرین الا ول( ن): - دراسة عملیة الشحن: - - التوتر الكھرباي ي بین طرفي المكثفة عند نھایة الشحن : -- المعادلة التفاضلیة: بتطبيق قانون جمع التوترات في حالة الربط على التسلسل
ثناي ي القطبRL (V ) I (A) 0,1 0,2 0,3 0,4 0,5 0,6
ثناي ي القطب التوجيهات: I التوتر بين مربطي الوشيعة : 1) تعريف الوشيعة : الوشيعة ثناي ي قطب يتكون من أسلاك النحاس ملفوفة بانتظام حول اسطوانة عازلة ( واللفات غير متصلة فيما بينها لا ن الا سلاك مطلية بمادة
تصحيح تمارين تطبيقات توازن جسم صلب خاضع لقوتين
تصحيح تمارين تطبيقات توازن جسم صلب خاضع لقوتين www.svt-assilah.com تصحيح تمرين 1: F1 F2 F 2 فإن : F 1 و 1- شرط توازن جسم صلب تحت تأثير قوتين : عندما يكون جسم صلب في توازن تحت تأثير قوتين 0 2 F 1 + F المجموع
التطورات الرتيبة الوحدة 05 التمرين 27 : النظام الانتقالي : النظام الداي م. 10 m/s. من البيان τ = 1 s. t (s) التمرين 28 P= = 44, , 445 Π= ρ = =
-i الكتاب الا ول التطورات الرتيبة الوحدة 5 تطور جملة ميكانيكية تمارين الكتاب GUEZOURI Aek lycée Maraal - Oran ( / ) التمرين 7 حسب الطبعة الشكل المعطى في الكتاب يوافق دافعة أرخميدس مهملة وقوة الاحتكاك للكتاب
أ- سلسلة تمارين حول التحكم في تطور مجموعة آيمياي ية 1 )التمرين رقم 1 الصفحة 167 المفيد في الكيمياء: عين من بين الجزيي ات التالية إلى أي مجموعة تنتمي وأعط أسماءها : CH 3 -CO-O-CO-CH 3 ( CH 3 -CO-O-CH 3
jamil-rachid.jimdo.com
تصحیح الامتحان الوطني الموحد للبكالوریا مسلك علوم فیزیاي یة 8 الدورة العادیة jilrchidjidoco الكیمیاء الجزء : I تحديد ثابتة التوازن لتفاعل حمض الا يبوبروفين مع الماء: حساب الترآيز : ( ( i ROOH ROOH i ومنه:
**********************************************************
اجب بصحيح أو خطا : أيكون محلول قاعديا إذا آان : سلسلة تمارين حول المعايرة تمرين ص 99 p > log k e / على الشكل : pk للمزدوجة بثابتة الحمضية محلول حمض p pk p log [ éq éq ب ( تكتب العلاقة التي تربط p هو 8
حركة دوران جسم صلب حول محور ثابت
حركة دوران جسم صلب حول محور ثابت I تعريف حركة الدوران لجسم صلب حول محور ثابت 1 مثال الجسم (S) في حركة دوران حول محور ثابت : النقطتين A و B تتحركان وفق داي رتين ممركزتين على المحور النقطتين M و N المنتميتين
du R d uc L dt إذن: u L duc d u dt dt d q q o O 2 tc
ة I) التذبذبات الحرة في دارة RCعلى التوالي: ) تعريف: الدارةRCعلى التوالي هي دارة تتكون من موصل أومي مقاومته R ومكثف سعته C ووشيعة مقاومتها r ومعامل تحريضها. تكون التذبذبات حرة في دار RC عندما لا يتوفر
( ) ( ) ( ) ( ) ( )( ) z : = 4 = 1+ و C. z z a z b z c B ; A و و B ; A B', A' z B ' i 3
) الحدة هي ( cm ( 4)( + + ) P a b c 4 : (, i, j ) المستي المرآب منسب إلى المعلم المتعامد المتجانس + 4 حل في مجمعة الا عداد المرآبة المعادلة : 0 6 + من أجل آل عدد مرآب نصع : 64 P b, a أ أحسب (4 ( P ب عين
تصحيح موضوع العلوم الفيزياي ية : شعبة العلوم التجريبية والعلوم والتكنولوجيات الكيمياء : المحلول الماي ي لحمض الميثامويك العمود قصدير فضة
تصحيح موضوع العلوم الفيزياي ية : شعبة العلوم التجريبية والعلوم والتكنولوجيات الكيمياء : المحلول الماي ي لحمض الميثامويك العمود قصدير فضة المحلول الماي ي لحمض المیثانويك تعريف حمض حسب برونشتد : كل نوع كيمياي
امتحان الثلاثي الثاني لمادة العلوم الفيزياي ية
ثانویة عین معبد المستوى : ثالثة ) تقني ریاضي علوم ( التاریخ: 014/03/06 المدة : 3 ساعا ت التمرين الا ول: (06 ن) امتحان الثلاثي الثاني لمادة العلوم الفيزياي ية في الدارة الكهرباي ية التالية مولد توتره ثابت
Site : Gmail : Page 1
الفيزياء األستاذ : رشيد جنكل القسم : السنة الثانية من سلك البكالوريا الشعبة : علوم تجريبية ع ف سلسلسة رقم 1 الدورة الثانية الميكانيك : جميع الدروس التحوالت التلقائية في األعمدة وتحصيل الطاقة / أمثلة لتحوالت
التطورات : : 05. m m .(1 14.( V( m / s ) 0,25 0, t ( s ) t ( s ) z v. V z ( mm / s )
التطورات : المجال الرتيبة : 5 الوحدة جملة ميآانيآية تطور ر ت ت ر ع المستوى: 5 : رقم السلسلة V z mm / s. t s تم تصوير السقوط الشاقولي لآرية داخل زيت. و بعد معالجة المعطيات بالا علام الا لي تم الحصول على
( D) .( ) ( ) ( ) ( ) ( ) ( ) الا سقاط M ( ) ( ) M على ( D) النقطة تعريف مع المستقيم الموازي للمستقيم على M ملاحظة: إذا آانت على أ- تعريف المستقيم ) (
الا سقاط القدرات المنتظرة *- الترجمة المتجهية لمبرهنة طاليس 1- مسقط نقطة مستقيم D مستقيمين متقاطعين يجد مستقيم حيد مار من هذا المستقيم يقطع النقطة يازي في نقطة حيدة ' ' تسمى مسقط نقطة من المستى تعريف )
الوحدة 05. uuur dog dt. r v= uuur r r r الدرس الا ول. uuur. uuur. r j. G (t) المسار. GUEZOURI Aek lycée Maraval - Oran
GUEZOURI Aek lcée Ml - O الكتاب الا ول الوحدة 05 التطورات الرتيبة تطور جملة ميكانيكية الدرس الا ول ما يجب أن أعرفه حتى أقول : إني استوعبت هذا الدرس يجب أن أعرف آيفية تحديد جملة ميكانيكية حسب ما ي طل ب
H H 2 O (l) /HO - و (l) 3 O + /H 2 O. V b. dataelouardi.jimdo.com 1/
الثانوية التا هيلية الفقيه الكانوني فرض محروس رقم 6 الدورة الثانية المستوى: الثانية باك علوم فيزياي ية ملحوظة: يو خذ بعين الاعتبار تنظيم ورقة التحرير يجب أن تعطي العلاقة الحرفية قبل التطبيق العددي استعمال
فرض محروس رقم 1 الدورة 2
ن 0 فرض محرس رقم 1 الدرة 2 الفيزياء 13 نقطة الجزء 1 )دراسة الدارة ) RLC 8 نقط لتحديد L معامل تحريض شيعة مقامتها الداخلية r مستعملة في مكبر الصت ننجز تجربة على مرحلتين باستعمال التركيب التجريبي الممثل في
( ) ( ) ( ) = ( 1)( 2)( 3)( 4) ( ) C f. f x = x+ A الا نشطة تمرين 1 تمرين تمرين = f x x x د - تمرين 4. نعتبر f x x x x x تعريف.
الثانية سلك بكالوريا علوم تجريبية دراسة الدوال ( A الا نشطة تمرين - حدد رتابة الدالة أ- ب- و مطاريفها النسبية أو المطلقة إن وجدت في الحالات التالية. = ج- ( ) = arctan 7 = 0 = ( ) - حدد عدد جذور المعادلة
مادة الرياضيات 3AC أهم فقرات الدرس (1 تعريف : نعتبر لدينا. x y إذن
أهم فقرات الدرس معادلة مستقيم مادة الرياضيات _ I المعادلة المختصرة لمستقيم غير مواز لمحور الا راتيب ( تعريف ; M ( التي تحقق المتساوية m + هي مستقيم. مجموعة النقط ( المتساوية m + تسمى المعادلة المختصرة
تصحيح الامتحان الوطني الموحد للبكالوريا الدورة العادية مادة : الفيزياء والكيمياء شعبة العلوم التجريبية مسلك العلوم الفيزياي ية
مادة : الفيزياء والكيمياء شعبة العلوم التجريبية مسلك العلوم الفيزياي ية الكيمياء : الجزء الا ول والثاني مستقلين الجزء الا ول : التحليل لكهرباي ي لمحلول كلورور القصدير II 1 تبيانة التركيب التجريبي للتحليل
-1 المعادلة x. cosx. x = 2 M. و π. π π. π π. π π. حيث π. cos x = إذن حيث. 5π π π 5π. ] [ 0;π حيث { } { }
الحساب المثلثي الجزء - الدرس الا ول القدرات المنتظرة التمكن من تمثيل وقراءة حلول معادلة أو متراجحة مثلثية على عدد الساعات: 5 الداي رة المثلثية الدورة الثانية k k I- المعادلات المثلثية cos x = a - المعادلة
استثمار تسجيلات لحساب السرعة اللحظية. التعبير عن الحركة المستقيمية المنتظمة بمعادلة زمنية في شروط بدي ية مختلفة.
فيزياء درس 3 الجدع المشترك الكفايات المستهدفة معرفة مفهوم معلم الفضاء ومعلم الزمن تعيين مسار نقطة من متحرك في معلم محدد حساب السرعة المتوسطة استعمال العلاقة التقريبية لحساب السرعة اللحظية - ms والعكس إلى
Tronc CS Calcul trigonométrique Cours complet : Cr1A Page : 1/6
1/ وحدات قياس زاوية الدرجة الراديان : (1 العلقة بين الدرجة والراديان: I الوحدة الكأثر استعمال لقياس الزوايا في المستويات السابقة هي الدرجة ونعلم أن قياس الزاوية المستقيمية هو 18 rd هناك وحدة لقياس الزوايا
وزارة التربية الوطنية موضوع تجريبي لامتحان شهادة البكالوريا اختبار في مادة الفيزياء والكيمياء
الشعبة : علوم تجريبية ساعات 4 ) : الا ول ا الجزاي رية الديمقراطية الشعبية الجمهورية وزارة التربية الوطنية موضوع تجريبي لامتحان شهادة البكالوريا نقاط) اختبار في مادة الفيزياء والكيمياء المدة : حمض الميثانويك
2,9 3,5 اختبار الثلاثي الثاني في مادة مدینة علي منجلي - قسنطینة I- دراسة عملیة الشحن :
اختبار الثلاثي الثاني في مادة المستوى: نھاي ي علوم تجریبیة المدة : ساعتان التاریخ : /... فیفري/ 0 مدینة علي منجلي - قسنطینة تمرین( 0 ): أ- قیمة ال : ph لمحلول لحمض النمل HOOH تركیزه المولي. ph,9 - أكتب
التطورات : : 05 : : : : W AB. .cos. P = m g. mgh. mgh E PP. mgh. mgh. s A K mol cd E PP = 0 : ( الطول. B m
التطورات المجال الرتيبة 5 الوحدة جملة ميآانيآية تطور ر ت ت + ر+ ع المستوى 5 رقم الملخص مآتسبات قبلية مبدأ انحفاظ الطاقة مبدأ انحفاظ الطاقة نص الطاقة لا تستحدث و لا تزولإذا اآتسبت جملة ما طاقة أو فقدتها
( ) ( ) ( OPMQ) ( ) المستقيم في المستوى 1- معلم إحداثيتا نقطة و و ( ) أفصول و. y أآتب الشكل مسقط M على ) OI (
المستقيم في المستى القدرات المنتظرة *- ترجمة مفاهيم خاصيات الهندسة التالفية الهندسة المتجهية باسطة الاحداثيات *- استعمال الا داة التحليلية في حل مساي ل هندسية. I- معلم مستى احداثيتا نقطة تساي متجهتين شرط
المجال الرتيبة المستوى: 3 التطورات الوحدة + ر+ : 01 ) ) MnO. / réd) ) ( mol. mol Ca 2
التطورات المجال الرتيبة الزمنية المتابعة الوحدة كيمياي ي في وسط ماي ي لتحول ر ت ر ت ع المستوى رقم سلسلة وآمية من غاز ثناي ي الهيدروجين H آتلتها g بواسطة L في مفاعل صناعي نضع حجما من غاز ثناي ي الازوت N
- سلسلة -2. f ( x)= 2+ln x ثم اعط تأويل هندسيا لهاتين النتيجتين. ) 2 ثم استنتج تغيرات الدالة مع محور الفاصيل. ) 0,5
تارين حلل ف دراسة الدال اللغاريتمية السية - سلسلة - ترين ]0,+ [ لتكن f الدالة العددية للمتغير الحقيقي المعرفة على المجال بما يلي f ( )= +ln. (O, i, j) منحنى الدالة f في معلم متعامد ممنظم + f ( ) f ( )
الدورة العادية NS 03 الفيزياء والكيمياء شعبة العلوم الرياضية )أ( و)ب( دراسة محلول األمونياك و الهيدروكسيالمين 5
4 المركز الوطني للتقويم واالمتحانات والتوجيه المادة الفيزياء والكيمياء االمتحان الوطني الموحد للبكالوريا مدة اإلنجاز 8 الدورة العادية 4 NS 3 wwwtawjihproco 7 الشعبة أو المسلك شعبة العلوم الرياضية )أ( و)ب(
( ) [ ] الدوران. M يحول r B و A ABC. 0 2 α فان C ABC ABC. r O α دورانا أو بالرمز. بالدوران r نكتب -* النقطة ' M إلى مثال لتكن أنشي 'A الجواب و 'B
الدران I- تعريف الدران 1- تعريف لتكن O نقطة من المستى المجه P α عددا حقيقيا الدران الذي مرآزه O زايته من P نح P الذي يربط آل نقطة M بنقطة ' M ب: M = O اذا آانت M ' = O - OM = OM ' M O اذا آان - OM ; OM
التمرين الثاني )3 2-( نعتبر في المستوى المنسوب إلى معلم متعامد ممنظم التي معادلتها : 3-( بين أن المستوى مماس للفلكة في النقطة.
التمرين األل) 3 نقط ) نعتبر في الفضاء المنسب إلى معلم متعامد ممنظم مباشر التي معادلتها : النقطتين الفلكة الفلكة هي النقطة أن شعاعها ه تحقق من أن تنتمي إلى 1-( بين أن مركز 2-( حددمثلث إحداثيات المتجهة بين
دورة : 2 3 ب : = 1, 8 10 mol. Cr : 2 dt : mol / L. t ( s ) .Cr + .Cr. 7 ( aq ) vol
الجزاي رية الديمقراطية الشعبية الجهرية الطني للامتحانات المسابقات الديان التربية الطنية زارة 5 ما ياي م درة البآالريا التجريبية للتعليم الثاني امتحان سطيف عليي صالح بن ثانية تجريبية علم الشعبة الا ل التمرين
1 +. [I 2 ]mmol/l. t(min) t (min) V H2 (ml) x (mol)
S, mol V = ml S : t = c = / L ( K (aq ) SO8 ) (aq ). c ( K (aq ) I (aq ) ) V = ml. [ I (aq ) ] 6. [I ]mmol/l - 4 3 3 4 6 7 8 9 - (Ox / Red) -.. -3. -4. -. -6 x -7. I ] f (t) [ (aq ) =. t = mn -8 [ I (aq
( ) تعريف. الزوج α أنشطة. لتكن ) α ملاحظة خاصية 4 -الصمود ليكن خاصية. تمرين حدد α و β حيث G مرجح
. المرجح القدرات المنتظرة استعمال المرجح في تبسيط تعبير متجهي إنشاء مرجح n نقطة 4) n 2 ( استعمال المرجح لا ثبات استقامية ثلاث نقط من المستى استعمال المرجح في إثبات تقاطع المستقيمات استعمال المرجح في حل
[ ] [ ] ( ) ( ) ( ) ( ) ( ) I و O B بالنسبة ل AC) ( IO) ( بالنسبة C و S M M 1 -أنشطة: ليكن ABCD معين مرآزه O و I و J منتصفي
O ( AB) تحيلات في المستى القدرات المنتظرة - التعرف على تقايس تشابه الا شكال استعمال الا زاحة التحاآي التماثل. - استعمال الا زاحة التحاآي التماثل في حل مساي ل هندسية. [ AD] التماثل المحري التماثل المرآزي
. C 0 = 10 3 mol /l. N A = 6, mol 1
مديرية التربية لولاية الشلف الشعبة : رياضيات تقني رياضي ملاحظة : يعالج المترشح ا حد الموضوعين على الخيار الجمهورية الجزاي رية الديمقراطية الشعبية متقن مرسلي عبد االله سيدي عكاشة - امتحان البكالوريا التجريبي
1/7
I الحركة 1 نسبیة الحركة الحركة النشاط التجريبي : 1 في التبيانة جانبه حافلة النقل المدرسي يجلس بداخلها أحمد بينما ليلى ما زالت تنتظر حافلة نقل أخرى وتشاهد حافلة صديقها تبتعد عنها الجسم R مرتبط بالا رض و
الميكانيك. d t. v m = **********************************************************************************
1 : 013/03/ : - - - : 01 الميكانيك الشعبة : جذع مشترك علوم و تكنولوجيا ********************************************************************************** www.sites.google.com/site/faresfergani :א ن מ 1
- سلسلة -3 ترين : 1 حل التمرين : 1 [ 0,+ [ f ( x)=ln( x+1+ x 2 +2 x) بما يلي : وليكن (C) منحناها في معلم متعامد ممنظم
تارين وحلول ف دراسة الدوال اللوغاريتمية والسية - سلسلة -3 ترين [ 0,+ [ نعتبر الدالة العددية f للمتغير الحقيقي المعرفة f ( )=ln( ++ 2 +2 ) بما يلي. (O, i, j) وليكن منحناها في معلم متعامد ممنظم ) ln يرمز
الموافقة : v = 100m v(t)
مراجعة القوة والحركة تصميم الدرس 1- السرعة المتوسطة 2- السرعة اللحظية 3- النموذج الرياضي : شعاع السرعة 4- شعاع السرعة والحركة المستقيمة 5- الحالة الخاصة 1 1 السرعة المتوسطة سيارة تقطع مسافة L بين مدينة
3as.ency-education.com
الجمهورية الجزائرية الديمقراطية الشعبية مديرية التربية لوالية معسكر وزارة التربية الوطنية دورة : ماي 2018 امتحان بكالوريا تجريبي ثانوية الشيخ فرحاوي عبد القادر تغنيف - الشعبة : علوم تجريبية اختبار في مادة
تقين رياوي الصيغة المجممة لأللسان A الصيغة المجممة هي 6 3 صيغته نصف المفصمة : 2 CH 3 -CH=CH
اإلجابة النموذجية ملووو اتحاا اخحبار تادة الحكنولوجيا (هندسة الطرائق ( البكالوريا دورة 6 الشعبة املدة 44 سا و 34 د,5 M n = M polymère monomère ; 5 نقاط ) التمرين األول ( إيجاد الصيغة المجممة لأللسان A
الوحدة 02. GUEZOURI A. Lycée Maraval - Oran الدرس 2 الطاقة الحرآي ة. F r ( ) W F = F ABcosθ عمل. F r محر ك عمل مقاوم
المستى : السنة الثانية ثاني الحدة 0 العمل الطاقة الحرآية (حالة الحرآة الا نسحابية) GUEZOURI Lycée Maaal Oan ماذا يجب أن أعرف حتى أقل : إني استعبت هذا الدرس يجب أن أفر ق بين انسحاب جسم درانه يجب أن أعرف
( ) ( ) ( ) ( ) v n ( ) ( ) ( ) = 2. 1 فان p. + r بحيث r = 2 M بحيث. n n u M. m بحيث. n n u = u q. 1 un A- تذآير. حسابية خاصية r
نهايات المتتاليات - صيغة الحد العام - حسابية مجمع متتابعة لمتتالية ) ( متتالية حسابية أساسها + ( ) ملاحظة - متتالية حسابية + أساسها ( ) متتالية حسابية S +... + + ه الحد الا ل S S ( )( + ) S ه عدد المجمع
( ) ( ) ( ) - I أنشطة تمرين 4. و لتكن f تمرين 2 لتكن 1- زوجية دالة لكل تمرين 3 لتكن. g g. = x+ x مصغورة بالعدد 2 على I تذآير و اضافات دالة زوجية
أ عمميات حل الدال العددية = [ 1; [ I أنشطة تمرين 1 لتكن دالة عددية لمتغير حقيقي حيث أدرس زجية أدرس رتابة على آل من[ ;1 [ استنتج جدل تغيرات دالة زجية على حيز تعريفها ( Oi ; ; j 1 استنتج مطاريف الدالة إن
الكيمياء. allal Mahdade 1
الكيمياء الا ستاذ : علال محداد http://sciencephysique.ifrance.com allal Mahdade http://sciencephysique.ifrance.com 1 I الجسم الصلب الا يوني أمثلة لا جسام صلبة أيونية : بلورات آلورور الصوديوم وفليورور الكالسيوم
تمرين 1. f و. 2 f x الجواب. ليكن x إذن. 2 2x + 1 لدينا 4 = 1 2 أ - نتمم الجدول. g( x) ليكن إذن
تمرين تمارين حلل = ; دالتين عدديتين لمتغير حقيقي حيث = + - حدد مجمعة تعريف الدالة - أعط جدل تغيرات لكل دالة من الدالتين - أ) أنقل الجدل التالي أتممه - D ب) حدد تقاطع C محر الافاصيل ( Oi ج ( المنحنيين C
: : 03 التطورات . ( u BD. 5 τ u ( V ) t ( s ) t ( s ) C ) 0.2. t ( ms )
التطورات : المجال الرتيبة : 3 الوحدة الآهرباي ية الظواهر ر ت ت ر ع المستوى: 3 3 : رقم اللللسلسلة u V 5 t s نشحن بواسطة مولد مثالي = r, مآثفة مربوطة على التسلسل =. يمثل البيان التالي تغيرات التوتر الآهرباي
دورة : : . ( Pu E. ( Mev n. [ H O + ], [ Al + ], [Cl : 25 C. 25 C Al. 27 mg. 0,012 mol / L. ( t ) 0, 1. t (min) v ( t ) H O Al Cl.
الجزاي رية الديمقراطية الشعبية الجهرية الطني للامتحانات المسابقات الديان التربية الطنية زارة ما ياي م درة البآالريا التجريبية للتعليم الثاني امتحان سطيف بن عليي صالح ثانية تجريبية علم الشعبة نصف ساعات
1 =86400 ; 1 =1,6.10 ; 1 =931.5 ; 1 = ( )
ثانوية صاالح الدين األيوبي امتحان البكالوريا التجريبي دورة 2014 العلوم الفيزيائية المادة : المدة : أربع ساعات ونصف (4 سا 30 د) الشعبة : رياضيات و تقني رياضي لإلجابة عليه على المترشح أن يختار أحد الموضوعين
أسئلة استرشادية لنهاية الفصل الدراسي الثاني في مادة الميكانيكا للصف الثاني الثانوي العلمي للعام الدراسي
أسئلة استرشادية لنهاية الفصل الدراسي الثاني في مادة الميكانيكا للصف الثاني الثانوي العلمي للعام الدراسي 4102 4102 تذكر أن :1- قانون نيوتن الثاني : 2- في حال كان الجسم متزن أو يتحرك بسرعة ثابتة أوساكن فإن
( ) / ( ) ( ) على. لتكن F دالة أصلية للدالة f على. I الدالة الا صلية للدالة f على I والتي تنعدم في I a حيث و G دالة أصلية للدالة حيث F ملاحظات ملاحظات
الا ستاذ محمد الرقبة مراآش حساب التكامل Clcul ntégrl الدال الا صلية (تذآير آل دالة متصلة على مجال تقبل دالة أصلية على. الدالة F هي الدالة الا صلية للدالة على تعني أن F قابلة للا شتقاق على لكل من. F لتكن
ﺔﻴﻭﻀﻌﻟﺍ ﺕﺎﺒﻜﺭﻤﻟﺍ ﻥﻴﺒ ﺕﻼﻴﻭﺤﺘﻟﺍ لﻭﺤ ﺔﻴﺯﻴﺯﻌﺘ ﺔﻗﺎﻁﺒ
بطاقة تعزيزية حول التحويلات بين المركبات العضوية مبتدي ا من الاسيتلين ) الا يثاين ( وضح بالمعادلات الكيمياي ية مع ذكر شروط التفاعل كيف يمكنك س ١ : الحصول على : ( ٣ اسيتات الفينيل ) ( ) الفينول ٢ ميثيل
( ) ( ) 27,5.10 1,35.10 = 5, = 0,3. n C V mol ( ) M NaHCO max. n( CO ) n CO. 2 exp 2. Page 1
الكيمياء صحيح الفرض المنزلي 01 السنة الثانية علوم فيزياي ية 1 نوع التفاعل : تفاعل حمض قاعدة. التعليل : لا ن حمض الا يثانويك آحمض برونشتد قادر على إعطاء بروتون + H و أيون هيدروجينو آربونات آقاعدة برونشتد
وزارة التربية الوطنية ثانوية الشهيد العربي بن ذهيبة قلتة سيدي سعد املوضوع األول
وزارة التربية الوطنية ثانوية الشهيد العربي بن ذهيبة قلتة سيدي سعد 15/5/1 التاريخ : قسم : السنة الثالثة علوم تجريبية االمتحان التجرييب لشهادة البكالوريا يف مادة العلوم الفيزيائية 3 المدة : 15/14 السنة الدراسية
االختبار الثاني في العلوم الفيزيائية
ر 3 ثانوية عبان رمضان االختبار الثاني في العلوم الفيزيائية مارس 6102 المدة 6 ساعة األقسام :3 ع 2 - التمرين األول: ي عطى عند : 25 C pka(ch3cooh/ch3coo - )=4.8 وجدنا في المخبر قارورة تحتوي على محلول (S0)
( ) ( ) ( ) ( ) تمرين 03 : أ- أنشيء. ب- أحسب ) x f ( بدلالة. ب- أحسب ) x g ( تعريف : 1 = x. 1 = x = + x 2 = + من x بحيث : لتكن لكل. لكل x من.
عمميات حل الدال العددية السنة الا لى علم تجريبية علم رياضية تذآير : إشارة دالة تا لفية ثلاثية الحدد طريقة المميز المختصر ( 4 ): ( ) I- زجية دالة عددية : -( أنشطة : تمرين 0 : أدرس زجية الدالة العددية في
يط... األعداد المركبة هذه التمارين مقترحة من دورات البكالوريا من 8002 إلى التمرين 0: دورة جوان 8009 الموضوع األول التمرين 8: دورة جوان
األعداد المركبة 800 هذه التمارين مقترحة من درات البكالريا من 800 إلى 800 المضع األل التمرين 0: حل في مجمعة األعداد المركبة المعادلة: = 0 i ( + i) + نرمز للحلين ب حيث: < ( عدد حقيقي ) 008 - بين أن ( المستي
الكتاب الثاني الوحدة 07. q q (t) dq R dq q الدرس الثاني : الاهتزازات الكهرباي ية الدرس حالة تفريغ المكث فة. (2) عند. t = 0 اللحظة.
GUZOUR Aek Maraval Oran الكتاب الثاني الوحدة 7 التطورات غير الرتيبة التطو رات الا هتزازية الدرس الثاني الاهتزازات الكهرباي ية أفريل 5 ما يجب أن أعرفه حتى أقول إني استوعبت هذا الدرس وعدم دورية يجب أن أعرف
یسمح باستعمال الحاسبة غیر القابلة للبرمجة تعطى الصیغ الحرفیة قبل إنجاز التطبیقات العددیة مكونات الموضوع
س 3 المركز الوطني للتقویم والامتحانات المادة : الشعب (ة): -الدورة العادیة 2008-1 المعامل : 7 یسمح باستعمال الحاسبة غیر القابلة للبرمجة تعطى الصیغ الحرفیة قبل إنجاز التطبیقات العددیة مدة الا نجاز: مكونات
الوحدة 08. GUEZOURI A. Lycée Maraval - Oran الدرس H + بروتونا... . CH 3 NH 3 HSO 4 NH 4
المستوى : السنة الثانية ثانوي الوحدة 08 تعيين آمية المادة بواسطة المعايرة GUEZOURI Lycée Maraval - Oran ماذا يجب أن أعرف حتى أقول : إني استوعبت هذا الدرس - 1 يجب أن أفر ق بين حمض وأساس حسب تعريف برونشتد
األستاذ: بنموسى محمد ثانوية: عمر بن عبد العزيز المستوى: 1 علوم رياضية
http://benmoussamathjimdocom/ 55:31 5342-3-41 يم السبت : األستاذ: بنمسى محمد ثانية: عمر بن عبد العزيز المستى: 1 علم رياضية إحداثيات نقطة بالنسبة لمعلم - إحداثيات متجهة بالنسبة ألساس: األساس المعلم في الفضاء:
الوحدة 04 الدرس الشكل - 2. E pp. E : Energie, p : potentielle, p : (de) pesanteur. P r. F r. r P. z A إلى. z B. cb ca AB AB
المستوى : السنة الثانية ثانوي الطاقة الكامنة الوحدة 4 حسب الطبعة 3 / للكتاب المدرسي GUZOURI Lycée aaal Oan ماذا يجب أن أعرف حتى أقول : إني استوعبت هذا الدرس - يجب أن أعرف مدلول الطاقة الكامنة الثقالية
منتديات علوم الحياة و الأرض بأصيلة
www.svt-assilah.com الفيزياء تمرين : 1 نحدث عند الطرف S لحبل مرن موجة مستعرضة تنتشر بسرعة 1 s. v = 10 m. عند اللحظة t = 0s يوجد مطلع الإشارة عند المنبع. S يمثل المنحنى أسفله تغيرات استطالة المنبع بدلالة
سلسلة التمارين حول التا ثیر البینیة المیكانیكیة
سلسلة التمارين حول التا ثیر البینیة المیكانیكیة I سلم المسافات تمرين : 1 مقارنة رتب قدر بعض الا بعاد باستعمال سلم المسافات البعد قيمته القيمة بالمتر الكتابة العلمية رتبة القدر قطر فيروس 72nm المسافة بين
Dipôle RL. u L (V) Allal mahdade Page 1
ثنائي القطب ثنائي القطب Dipôle la bobine : الوشيعة I 1 التعريف الوشيعة ثنائي قطب يتكون من لفات من سلك من النحاس غير متصلة فيما بينھا لكونھا مطلية ببرنيق عازل كھربائي. رمز الوشيعة : (V) I(A) لتمثيل لوشيعة
الامتحان التجريبي لمادة الفيزياء و الكيمياء شعبة العلوم التجريبية مسلك علوم الحياة و الا رض
س. التنقيط ا كاديمية جهة سوس ماسة درعة نيابة تارودانت ثانوية عبد االله الشفشاوني التا هيلية ا ولاد تايمة الكيمياء: الامتحان التجريبي لمادة الفيزياء و الكيمياء شعبة العلوم التجريبية مسلك علوم الحياة و الا
تصميم الدرس الدرس الخلاصة.
مو شرات الكفاءة:- يحدد مجال المرا ة المستوية. الدروس التي ينبغي مراجعتها: المتوسط). - الانتشار المستقيم للضوء(من دروس الا رسال الثالث للسنة الا ولى من التعليم - قانونا الانعكاس (الدرس الثالث من ا الا رسال
+ n e = Red. Ox /Red بالشكل : الوحدة 01 الدرس الا ول GUEZOURI Aek lycée Maraval Oran أمثلة : I 2 (aq) 1 نكتب : MnO 4. Cr 2 O 7.
الكتاب الا ول الوحدة 01 التطورات الرتيبة تطور آميات مادة المتفاعلات والنواتج خلال تحول آيمياي ي في محلول ماي ي الدرس الا ول GUEZOURI Aek lycée Maraval Oran - Ι مراجعة - Ι الا آسدة والا رجاع المو آسد :
(Tapis roulant)
الميآانيك المجال القى الحرآات الحدة الحرآات المنحنية القة م ع ت ج المستى رقم السلسلة الفراغات الاتية آمل فانه إذا تحرك جسم فق مسار مد حس خاضعا يآن حتما للمسار الحرآة خلال يآن شعاع المسار نح 9 8 يتجهان
بحيث = x k إذن : a إذن : أي : أي :
I شبكة الحيود: ) تعريف شبكة الحيود: حيود الضوء بواسطة شبكة شبكة الحيود عبارة عن صفيحة تحتوي على عدة شقوق غير شفافة متوازيةومتساوية المسافة فيما بينها. الفاصلة بين شقين متتاليين تسمى خطوة الشبكة ويرمز إليها
التا ثیر البینیة المیكانیكیة
التا ثیر البینیة المیكانیكیة I التجاذب الكوني 1 1 مبدأ التا ثیرات البینیة نص المبدأ : عندما يتم تا ثير بيني سواء بالتماس أو عن بعد بين جسمين و فا ن القوة F / التي يطبقها الجسم على الجسم والقوة F / التي
Allal mahdade Page 16
حركة الكواكب واألقمار االصطناعية Keple القوانين الثالثة لكيبلر I 1 المرجع المركزي الشمسي المرجع الغاليلي المالئم لدراسة حركة الكواكب حول الشمس ھو المرجع المركزي الشمسي. لدراسة حركة الكواكب حول الشمس نربط
( ) ( ) [ [ ( ) ( ) ( ) =sin2xcosx ( ) lim. lim. α; ] x حيث. = x. x x نشاط 3 أ- تعريف لتكن. x نهاية l في x 0 ونرمز لها ب ب- خاصية نهاية على اليمين في
الاشتقاق تطبيقاته دراسة الدال www.woloj.com - الاشتقاق في نقطة- الدالة المشتقة ( A أنشطة نشاط باستعمال التعريف ادرس اشتقاق الدالة في حدد العدد المشتق في إن جد ثم حدد معادلة المماس أ نصف المماس لمنحنى الدالة
الوحدة المستوى: 3 المجال : 03 التطورات + ر+ رقم ملخص 2 : : : RC U AC U AB U BC + U U EF U CD. u AC I 1. u AB I 2 I = I1 + I R 2 R 1 B + A
التطورات المجال الرتيبة 3 الوحدة الكهرباي ية الظواهر ر ت ر ت ع المستوى 3 3 رقم ملخص مآتسبات قبلية التيار الآهرباي ي المستمر التيار الآهرباي ي المتناوبببب قانون التواترات 3 حالة الدارة المتسلسلة أ هو آل
C 12 *** . λ. dn A = dt. 6 هو ans
الجمهورية الجزاي رية الديمقراطية الشعبية. وزارة التربية الوطنية. ثانوية عمر بن عبد العزيز/ندرومة. مديرية التربية لولاية تلمسان. الامتحان التجريبي في العلوم الفيزياي ية. التمرين الا ول: () شعبة :العلوم
3as.ency-education.com
اإلجابة النموذجية ملوضوع اختبار مادة : التكنولوجيا (هندسة الطرائق) / الشعبة : تقين رايضي / بكالوراي / 712 : موضوع العالمة مجموع مجزأة عناصر اإلجابة (الموضوع األول) التمرين األول 8( : نقاط) ) 1 -I 2,25
بحيث ان فانه عندما x x 0 < δ لدينا فان
أمثلة. كل تطبيق ثابت بين فضائين متريين يكون مستمرا. التطبيق الذاتي من أي فضاء متري الى نفسه يكون مستمرا..1.2 3.اذا كان f: R R البرهان. لتكن x 0 R و > 0 ε. f(x) = x 2 فان التطبيق f مستمرا. فانه عندما x
قراوي. V NaOH (ml) ج/- إذا علمت أن نسبة التقدم النهائي = 0,039 f بين أن قيمة التركيز المولي للمحلول هي C = mol/l
دروس الدعم مستوى السنة الثالثة : عت+تر+ريا السلسلة رقم 05 تطور جملة كيميائية نحو حالة التوازن ثانوية بريكة الجديدة االستاذ : عادل التمرين األول: نحضر محلوال (S) لحمض اإليثانويك COOH) (CH 3 لهذا الغرض نذيب
x Log x = Log mol [ H 3O + ] = ] = [OH ) ph ( mole ) n 0 - x f n 0 x x x f x f x f x max : ( τ max τf 1 : ( - 2 -
التطورات المجال الرتيبة جملة كيمياي ية تطور 0 الوحدة حالة التوازن نحو ر ت ر ت ع المستوى 0 رقم ملخص O الا سس حسب تعريف برونشتد و الا حماض الا حماض الحمض تعريف أو أآثر. هو آل فرد آيمياي ي شاردة جزئ بامآانه
التطورات الوحدة المجال يبة المستوى: 3 + ر+ رقم : 01 الدرس الرت PV = nrt. n = C = C m C 2 F = = atm 082 mole. mole 273 === ( g.mol.
التطورات المجال يبة الرت الزمنية المتابعة الوحدة كيمياي ي في وسط ماي ي لتحول ر ت ر ت ع المستوى رقم الدرس لية قب سبات مآت ترآيز محلول ماي ي و آمية المادة علاقة آمية المادة بالآتلة صلب أو ساي ل أو غاز حالة
الا شتقاق و تطبيقاته
الا شتقاق و تطبيقاته سيدي محمد لخضر الفهرس قابلية ا شتقاقدالةعددية.............................................. قابلية ا شتقاق دالة في نقطة................................. المماس لمنحنى دالة في نقطة..............................
منتديات علوم الحياة و الأرض بأصيلة
الطاقة الحرارية -الإنتقال الحراري Energie thermique--transfert thermique I -الإنتقال الحراري 1 -تعريف الإنتقال الحراي هو انتقال الطاقة بالحرارة من جسم ساخن )أو مجموعة ساخنة( الى جسم بارد )أو مجموعة باردة
7 ﻞ : ﻣﺎﻌﻤﻟا RS28 ﺀﺎﻴﻤﻴﻜﻟﺍﻭ ﺀ ﺎﻳﺰﻴﻔﻟﺍ ةد : ﺎـ ــ ــ ـــ ـ ﻤﻟا
1 7 المادة: الفيزياء والكيمياء RS8 المعامل: الشعب(ة) أو المسلك : شعبة العلوم التجريبية مدة الا نجاز: يسمح باستعمال الا لة الحاسبة العلمية غير القابلة للبرمجة يتضمن الموضوع ا ربعة تمارين : تمرين في الكيمياء
( ) ( ) Circuit (R,L,C)en série en régime sinusoïdal forcé. i t I t I = u t U t. I m 2. Allal mahdade Page 1.
الدارة (,L,C) المتوالية في النظام الجيبي والقسري. Crct (,L,C)en sére en rége snsoïdal forcé رأينا سابقا أن الدارة LC المتوالية تكون متذبذبا آهرباي يا مخمدا. عند إضافة مولد آهرباي ي مرآب على التوالي إلى
2O RS28 المادة
ا 1 لصفحة الامتحان الوطني الموحد للبكالوريا O16 - - RS8 3 المادة الفيزياء والكيمياء مدة الا نجاز الشعبة أو المسلك شعبة العلوم التجريبية مسلك العلوم الفيزياي ية المعامل سمح باستعمال لة ا اسبة العلمية غ
3as.ency-education.com
الجمهورية الجزائرية الديمقراطية الشعبية - ثانوية المجاهد رابحي محمد - البويرة - - ثانوية دحمان خالف - عين ولمان - - ثانوية تومي عبد القادر - غليزان - - ثانوية عمار مرناش - سطيف - دورة : مــــــــــــاي