( ) ( ) Circuit (R,L,C)en série en régime sinusoïdal forcé. i t I t I = u t U t. I m 2. Allal mahdade Page 1.

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "( ) ( ) Circuit (R,L,C)en série en régime sinusoïdal forcé. i t I t I = u t U t. I m 2. Allal mahdade Page 1."

Transcript

1 الدارة (,L,C) المتوالية في النظام الجيبي والقسري. Crct (,L,C)en sére en rége snsoïdal forcé رأينا سابقا أن الدارة LC المتوالية تكون متذبذبا آهرباي يا مخمدا. عند إضافة مولد آهرباي ي مرآب على التوالي إلى الدارة ويزودها بتوتر متناوب جيبي أي أنه يفرض على المتذبذب نظام متناوب جيبي نقول أن الدارة LC توجد في نظام جيبي قسري. ( ) cos ( ω. + ϕ ) t t النظام المتناوب الجيبي شدة التيار المتناوب الجيبي الوسع أو شدة القصوى للتيار. π ω πn : ω نبض التيار T : طور التيار في اللحظة. t ( ω t + ϕ ). ϕ: الطور في أصل التاريخ cosϕوبالتالي ϕ مثال : عند أصل التواريخ t شدة التيار قصوية (t) أي أن t cosω. ( ) t الشدة الفعالة للتيار : تقاس الشدة الفعالة للتيار بواسطة جهاز الا مبيرمتر وتربطها بالشدة الفصوى للتيار العلاقة : التوتر المتناوب الجيبي التوتر اللحظي (t) التوتر المتناوب الجيبي دالة جيبية للزمن : t cos ω. t + ϕ ( ) ( ) الشدة القصوى للتوتر (t) وهي تقاس بواسطة جهاز راسم التذبذب. π ω πn (t) نبض التوتر اللحظي : ω T ϕ (t) cosϕ : طور التوتر في اللحظة. t ( ω t + ϕ ). الطور في أصل التاريخ t ϕ: مثال عند أصل التواريخ t عندنا وبالتالي أن ( t) cosω t. التوتر الفعال يقاس التوتر الفعال بواسطة جهاز الفولطمتر وتربطه بالتوتر الا قصى العلاقة : ϕ ϕ ϕ / ( ) cos ( ω. + ϕ ) : ( t) t t 3 مفهوم الطور لنعتبر المقدارين المتناوبين الجيبين : و بالنسبة للدالة ( t) cos ( ω. t + ϕ ) نسمي طور الدالة (t ) Allal ahdade Page

2 ( t) ( t) cos t ω ϕ ϕ ϕ : / ( t) ( t) ( t) وϕ وطور الدالة بالنسبة للدالة تقيس تقدم وتا خر طور الدالة بالنسبة ( t) ( t) ( t) ( ϕ / ) / ونعبر عنه بالرديان. ϕ نقول أن ϕنقول أن متقدمة في الطور على متا خرة في الطور على (t ) على تربيع في الطور. ونفس ϕ (t ) على تعاآس في الطور. ϕفتصبح ϕ العلاقة / ϕأي أن ( t) > / < / π و ( (t أن ϕنقول / π الشيء بالنسبة و t أن ϕنقول π ( ) / آيف نحدد قيمة ϕ لتبسيط الدراسة نختار و ϕ ( t) cos( ωt + ϕ ) ( t) cos ω t + cos( ω ( t + τ )) ω ϕ τ حيث. τ المدة الزمنية (t) بالنسبة للتيار (t) للتوتر ϕ ϕ يوافق الطور ω يسمى τ الفرق الزمني بين منحنيي (t) و (t). يمك ن قياس τ على شاشة راسم التذبذب من تحديد القيمة المطلقة للطور. ϕ دراسة دارة LC متوالية في نظام جيبي قسري. النشاط التجريبي : معاينة التوتر (t) بين مربطي الدارة LC و (t) بدلالة الزمن. ننجز الترآيب الكهرباي ي جانبه حيث نضبط مولد التردد المنخفض على توتر متناوب جيبي قيمته القصوى V وعلى التردد. NHz نعاين بواسطة راسم التذبذب التوتر (t) بين مربطي الموصل الا ومي والتوتر (t) بين مربطي الدارة. LC نقيس بواسطة أمبير متر الشدة الفعالة للتيار المار في الدارة ونقيس بواسطة فولطمتر التوتر الفعال بين مربطي الدارة. LC استثمار : يزود المولد GBF الدارة LC المتوالية بتوتر متناوب جيبي : ( t) cos t ( ) cos ( ω. + ϕ ) t t ω يمثل التيار (t) استجابة الدارة فيظهر في الدارة LC المتوالية تيار آهرباي ي شدته LC المتوالية للا ثارة التي يفرضها المولد ذي تردد منخفض. نسمي الدارة LC المتوالية الرنان والمولد المثير يمكن المدخلان Y و Y لراسم التذبذب من معاينة التوتر (t) بين مربطي الموصل الا ومي والتوتر (t) المطبق بين مربطي الدارة. LC فسر لماذا تمكن معاينة التوتر (t) من معاينة تغيرات شدة التيار اللحظية (t). Allal ahdade Page

3 مما يدل على أن المنحنى المعين على حسب قانون أوم لدينا ) t ( t ) ( t ) ( t ) (. (t) المدخل يتناسب اطرادا مع Y. أحسب شدة التيار القصوى 3 عين القيمة القصوى ثم تحقق من العلاقة للتوتر (t) ثم تحقق من العلاقة : 4 هل لمنحنيي الرسم التذبذبي : نفس الوسع نفس التردد نفس الطور نقول أن الدارة توجد في نظام قسري فسر ذلك 5 نرمز للفرق الزمني بين منحنيي التوتر (t) و (t) بالحرف τ. 5 بين أن تعبير الطور ϕ للتوتر (t) بالنسبة لشدة التيار τ ϕ π (t) يكتب آالتالي : T حيث T هو دور آل من المقدارين الجيبيين (t) و (t). 5 تحقق تجريبيا من أن المقادير : معامل التحريض الذاتي L للوشيعة وسعة المكثف C والتردد N للمولد GBF تو ثر في الفرق الزمني. τ مفهوم الممانعة. تجربة : في الترآيب الكهرباي ي السابق نحتفظ بالتردد ثابتا ونغير التوتر الفعال بدلالة الشدة الفعالة فنحصل على الجدول التالي : (V),5,5,5 (A),6,,85,5 3,5 نستنتج من خلال الجدول أن و يتناسبان اطرادا. Z تسمى الثابتة Z بممانعة الدارة ويعبر عنها في النظام العالمي للوحدات بالا وم Ω تا ثير التردد على الدارة LC نغير التردد في التجربة السابقة N 5Hz ماذا نلاحظ عندما نغير التردد نلاحظ أن الطور يتغير وآذلك الممانعة. Z الدراسة النظرية لدارة (,L,C) في النظام الجيبي والقسري. المعادلة التفاضلية للدارة : ( t) cosωt نختار أصل التواريخ حيث يكون تعبير الشدة اللحظية آالتالي : و () t cos( ωt. طور التوتر بالنسبة للشدة ϕ نطبق قانون إضافية التوترات : بتطبيق قانون أوم : * على الموصل الا ومي : AB + + AE AB BD * بالنسبة للوشيعة مقامتها الداخلية مهملة ومعامل تحريضها : L DE Allal ahdade Page 3

4 DE d L dt * بالنسبة للمكثف سعته : C dq q BD وبما أن فا ن دالة أصلية لشدة التيار التي تنعدم dt C عند t : + d L dt لهما نفس النبض. t q( t) dt DE c Allal ahdade Page 4 t dt t نستنتج المعادلة التفاضلية للدارة (,L,C) dt : + c و فا ن ωπn وبما أن N عندهما نفس التردد و cosωt cos( ωt d d(cosωt) ω snωt dt dt t t dt cosωtdt snωt ω في المعادلة التفاضلية المحصل عليها سابقا : π π cosωt + Lω cos( ωt + ) + cos( ωt ) حل المعادلة التفاضلية إنشاء فرينل أ تمثيل فرينل لمقدار جيبي نعتبر المقدار الجيبي التالي : ) ϕ x( t) acos( ω t + ( ( O j ) x( t) بالدالة بحيث في معلم,, عندنا a و, ) ω t + ϕ نقرن المتجهة x( t) acos( ω t + ϕ ) على المتجهة تدور حول النقطة O بسرعة زاوية.ωt عند إسقاط : Ox نلاحظ أن المقدار الجيبي x يطابق القياس الجبري لا سقاط المتجهة على المحور. Ox.ω بمتجهة تدور بسرعة زاوية x t acos إذن يمكن إقران آل مقدار جيبي أو دالة جيبية ω t + ϕ ( ) ( ) آما أن العكس صحيح آذلك : يمكن أن نقرن آل متجهة دوارة بمقدار جيبي نبضه مساو للسرعة الزاوية للدوران. المتجهة المقرونة بالدالة الجيبية تسمى بمتجهة فرينل. ب مجوع دالتين جيبيتين لهما نفس النبض. نعتبر الدالتين الجيبيتين التاليتين : cos t a و π ϕ ( ) t x ω a a π a بحيث أن x a cos ωt + x x باستعمال متجهة فرينل. + x و طورها عند اللحظة t a وطورها في اللحظة t هو a بحيث أن بحيث أن أوجد المجموع x نقرن هو بمتجهة ϕ x ونقرن بمتجهة +

5 π ϕ 4 x a المتجهة منظمها وطورها عند اللحظة t هو tan ϕ π ( t) a cos ωt + 4 لا ن إذن ج إنشاء فرينل للحصول على مجموع الدالات الثلاث. اعتمادا على الا نشاء الهندسي والعلاقات في المثلث فاي م الزاوية يمكن الحصول على : Z من هنا نستنتج الممانعة أي أن + ( Lω ) Z + ( Lω ) cosϕ Z tgϕ Lω نحسب أو آذلك الطور ϕ N(Hz) 4Ω,(A) Ω,(A ظاهرة الرنين الكهرباي ي. الدراسة التجريبية : ننجز الترآيب التجريبي الممثل جانبه حيث يعطي مولد التوتر المنخفض GBF توترا متناوبا قيمته الفعالة وتردده N قابلان للضبط. الوشيعة معامل تحريضها الذاتي L,95H ومقاومتها r صغيرة. مكثف سعته C,5µF نثبت التوتر الفعال على القيمة V والمقاومة الكلية r+r على القيمة. 4Ω نغير التردد N للمولد وفي آل مرة نقيس الشدة الفعالة للتيار. نضبط المقاومة الكلية للدارة على القيمة Ω وذلك بتغيير المقاومة r للموصل الا ومي ونعيد التجربة السابقة. ندون النتاي ج في الجدول التالي : نغير المقاومة للدارة بتغيير المقاومة r للموصل الا ومي فنحصل على النتاي ج التالية : 3, 3,75 3 4,37 4,37 4 6,5 6,5 5,5 55 6,6,5 58,5 4, , ,75 4, , 4,5 7 6, 5 8 9,37 8,5 53,7 4,75 Allal ahdade Page 5

6 استثمار النتاي ج : مثل في نفس المعلم المنحنيين بدلالة N بالنسبة للمقاومتين الكليتين و للدارة. يطلق اسم الرنان على المتذبذب LC واسم المثير على مولد التردد المنخفض. GBF عندما يا خذ التردد N للمثير قيمة مساوية للتردد الخاص N للرنان تصبح الشدة الفعالة للتيار المار في الدارة قصوى نقول في هذه الحالة إن الدارة LC النتوالية في حالة رنين. حدد بالنسبة لكل منحنى : التردد N عند الرنين. الشدة الفعالة عند الرنين. أحسب Z ممانعة الدارة عند الرنين ثم قارنها بالمقاومة الكلية للدارة. آيف تتصرف الدارة LC عند الرنين 3 المنطقة الممر رة ذات 3dB 3décbel لدارة LC متوالية هي مجال الترددات ] [ N N, للمولد حيث تحقق الشدة الفعالة للتيار العلاقة :. 3 عين آلا من N و N بالنسبة للمنحنى الموافق ل. 3 أحسب العرض N N N للمنطقة الممررة ثم قارنه مع القيمة النظرية N ماذا π L تستنتج 3 3 ما تا ثير المقاومة الكلية للدارة على عرض المنطقة الممررة 4 نضبط تردد المثير على القيمة. N 4 آيف يجب ربط آاشف التذبذب لمعاينة التوترين (t) و (t) 4 هل التوتران (t) و (t) على توافق في الطور علل إجابتك. دراسة منحنيات رنين الشدة أ قيمة تردد الرنين حسب المنحنيات نلاحظ: أنها تتوفر على قيمة قصوية توافق نفس القيمة والتي تساوي N6Hz بالنسبة للدارة آيفما آانت. حساب التردد الخاص N للدارة : N π LC N 64Hz نستنتج أن NN نقول أن هناك رنينا. تحدث ظاهرة الرنين عندما يكون التردد N للتوتر المطبق مساويا للتردد الخاص N للدارة NN ب دور مقاومة الكلية للدارة يلاحظ من خلال المنحنيات الاستجابة : مهما آانت المقاومة للدارة صغيرة تكون شدة التيار الفعالة القصوية عند الرنين آبيرة ويكون الرنين حادا. عندما تكون آبيرة يزول الرنين نقول أن الرنين أصبح ضبابيا. 3 الدراسة النظرية لظاهرة الرنين : قيم المقادير المميزة أ التردد عند الرنين Allal ahdade Page 6

7 ω πn f( ω) Z f(n) + ( Lω ) Lω L ω ω LC N N π LC تكون قصوية عندما تكون الممانعة Z دنوية أي قصوية بالنسبة NN وهذا يتطابق مع النتاي ج التجريبية. ب ممانعة الدارة عند الرنين عند الرنين L ω Z أي تكون ممانعة الدارة دنوية وتساوي المقاومة الكلية للدارة. C ω وتكون القيمة القصوية للشدة الفعالة Z : Z ج عند الرنين تكون (t) و (t) على توافق في الطور :ϕ المنطقة الممر رة. " ذات 3db " Allal ahdade Page 7

8 ] N [ للمولد حيث تكون, N * تعريف: المنطقة الممررة. " ذات 3db "لدارة (,L,C) في مجال الترددات ) الاستجابة أآبر أو على الا قل تساوي تمثل الشدة الفعالة للتيار عند الرنين ( N عرض المنطقة الممررة N N تحديد المنطقة الممررة: لنبحث عن القيمتين و اللتين تحدان المنطقة الممررة ω ω حيث تكون الاستجابة ويكون عرضها ω ω وω N N N ω ω N π π π N ω يعبر عن عرض المنطقة الممررة بالراديان على الثانية rad/s أو بالهرتز. حساب عرض المنطقة الممررة: + ( Lω ) قيمتها عند الرنين نبحث عن قيمتين ω ı و ω اللتين تحددان المنطقة الممررة أي المجال الذي تتحقق فيه + ( Lω ) + ( Lω ) + ( Lω ) L LCو ω + LC( ω LC( ω ω ) C ω ω ω N ω ) C( ω + ω ) ω π πl ويتناسب اطرادا مع. L Lω ± عرض المنطقة الممررة لا يتعلق إلا ب و L في الحالة التي تكون فيها صغيرة جدا يكون الرنين حادا أي أن N آذلك صغيرة. 3 معامل الجودة يعرف معامل الجودة بالعلاقة التالية : Allal ahdade Page 8

9 و تميز حدة الرنين. N ω Q N ω L Lω ω Q Q معامل الجودة يتناسب عكسيا مع عرض المنطقة الممررة نعبر عنه بدون وحدة آلما آان الرنين حادا آلما آانت قيمة Q آبيرة. آلما آانت Q صغيرة آلما آانت الدارة مخمدة. Q Lω L C Lω عند الرنين أي إنشاء فرينل عند الرنين نسمي معامل الجودة آذلك معامل فرط التوتر. تعبيري التوتر بين مربطي المكثف والوشيعة عند الرنين : L Lω و c C ω L c L ω C ω. C L Lω Q Q C L Q Lω Q.. A مما يدل على أنه L > و C يلاحظ أنه عندما يكون الرنين حادا تكون Q آبيرة. وهذا يعني أن > عند الرنين يظهر فرط التوتر. وهي ظاهرة تشكل بعض المخاطر قد تو دي إلى إتلاف عناصر الدارة. V القدرة في النظام المتناوب الجيبي. القدرة اللحظية حالة التيار المستمر خلال المدة t تكون الطاقة المكتسبة من طرف ثناي ي القطب X هي t: W والقدرة الكهرباي ية P B في النظام المتناوب الجيبي V A -V B cosωt cos( ωt في هذه الحالة تكون القدرة اللحظية p p cosωt.cos( ωt cosωt.cos( ωt (cos(ωt + cosϕ) p [ cos(ωt + cosϕ] هذه القدرة لا تمكن من تقييم حصيلة الطاقة المكتسبة من طرف ثناي ي القطب فهي تبين فقط في لحظة معينة ما إذا آان ثناي ي القطب يكتسب طاقة <p أو يفقدها >p لذا فمن الضروري تعريف القدرة المتوسطة. Allal ahdade Page 9

10 de p dt p E القدرة المتوسطة الطاقة الكهرباي ية المكتسبة من طرف ثناي ي القطب خلال الدور : T [ cos(ωt + cosϕ] [ cos(ωt + cosϕ] dt cosϕ dt + E T cosϕ + T cosϕ P E T t T T P cosϕ cos(ωt dt Cosϕ معامل القدرة القدرة الظاهرية S cosϕ P cosϕ P cosϕ S معامل القدرة Z P cosϕ Z Z P في الدارة LC المتوالية لا تستهلك القدرة الكهرباي ية المتوسطة إلا من طرف المقاومة بمفعول جول وتساوي هذه القدرة P ملحوظة : أهمية معامل القدرة عند استهلاك طاقة آهرباي ية من طرف مستهلك فا ن المو سسة الموزعة تضمن للمستهلك توترا ثابتا أي أن هذا الاستهلاك يقابله مرور تيار آهرباي ي (t) في خطوط الشبكة الموصلة وتقدمه أو تا خره في الطور ϕ يتعلق بنوع الا جهزة الكهرباي ية المستعملة. P من العلاقة P cosϕ نستخرج cosϕ بالنسبة لقدرة P محددة يكون cosϕ محدد آذلك وبالتالي يكبر آلما صغر معامل القدرة. cosϕ وبما أن مفعول جول في خطوط الشبكة يتناسب اطرادا مع فهذا يمثل ضياعا للطاقة على حساب المو سسة الموزعة لذا فا ن هذه الا خيرة تحدد معامل القدرة وتفرضه على المستهلك وهو عموما لايقل عن.8 Z Allal ahdade Page

du R d uc L dt إذن: u L duc d u dt dt d q q o O 2 tc

du R d uc L dt إذن: u L duc d u dt dt d q q o O 2 tc ة I) التذبذبات الحرة في دارة RCعلى التوالي: ) تعريف: الدارةRCعلى التوالي هي دارة تتكون من موصل أومي مقاومته R ومكثف سعته C ووشيعة مقاومتها r ومعامل تحريضها. تكون التذبذبات حرة في دار RC عندما لا يتوفر

Διαβάστε περισσότερα

ثناي ي القطبRL (V ) I (A) 0,1 0,2 0,3 0,4 0,5 0,6

ثناي ي القطبRL (V ) I (A) 0,1 0,2 0,3 0,4 0,5 0,6 ثناي ي القطب التوجيهات: I التوتر بين مربطي الوشيعة : 1) تعريف الوشيعة : الوشيعة ثناي ي قطب يتكون من أسلاك النحاس ملفوفة بانتظام حول اسطوانة عازلة ( واللفات غير متصلة فيما بينها لا ن الا سلاك مطلية بمادة

Διαβάστε περισσότερα

: : 03 التطورات . ( u BD. 5 τ u ( V ) t ( s ) t ( s ) C ) 0.2. t ( ms )

: : 03 التطورات . ( u BD. 5 τ u ( V ) t ( s ) t ( s ) C ) 0.2. t ( ms ) التطورات : المجال الرتيبة : 3 الوحدة الآهرباي ية الظواهر ر ت ت ر ع المستوى: 3 3 : رقم اللللسلسلة u V 5 t s نشحن بواسطة مولد مثالي = r, مآثفة مربوطة على التسلسل =. يمثل البيان التالي تغيرات التوتر الآهرباي

Διαβάστε περισσότερα

Dipôle RL. u L (V) Allal mahdade Page 1

Dipôle RL. u L (V) Allal mahdade   Page 1 ثنائي القطب ثنائي القطب Dipôle la bobine : الوشيعة I 1 التعريف الوشيعة ثنائي قطب يتكون من لفات من سلك من النحاس غير متصلة فيما بينھا لكونھا مطلية ببرنيق عازل كھربائي. رمز الوشيعة : (V) I(A) لتمثيل لوشيعة

Διαβάστε περισσότερα

الكتاب الثاني الوحدة 07. q q (t) dq R dq q الدرس الثاني : الاهتزازات الكهرباي ية الدرس حالة تفريغ المكث فة. (2) عند. t = 0 اللحظة.

الكتاب الثاني الوحدة 07. q q (t) dq R dq q الدرس الثاني : الاهتزازات الكهرباي ية الدرس حالة تفريغ المكث فة. (2) عند. t = 0 اللحظة. GUZOUR Aek Maraval Oran الكتاب الثاني الوحدة 7 التطورات غير الرتيبة التطو رات الا هتزازية الدرس الثاني الاهتزازات الكهرباي ية أفريل 5 ما يجب أن أعرفه حتى أقول إني استوعبت هذا الدرس وعدم دورية يجب أن أعرف

Διαβάστε περισσότερα

الوحدة المستوى: 3 المجال : 03 التطورات + ر+ رقم ملخص 2 : : : RC U AC U AB U BC + U U EF U CD. u AC I 1. u AB I 2 I = I1 + I R 2 R 1 B + A

الوحدة المستوى: 3 المجال : 03 التطورات + ر+ رقم ملخص 2 : : : RC U AC U AB U BC + U U EF U CD. u AC I 1. u AB I 2 I = I1 + I R 2 R 1 B + A التطورات المجال الرتيبة 3 الوحدة الكهرباي ية الظواهر ر ت ر ت ع المستوى 3 3 رقم ملخص مآتسبات قبلية التيار الآهرباي ي المستمر التيار الآهرباي ي المتناوبببب قانون التواترات 3 حالة الدارة المتسلسلة أ هو آل

Διαβάστε περισσότερα

المادة المستوى رياضية علوم والكيمياء الفيزياء = 1+ x f. V ph .10 COOH. C V x C. V

المادة المستوى رياضية علوم والكيمياء الفيزياء = 1+ x f. V ph .10 COOH. C V x C. V 8 n א الجزء ( تفاعل حمض آربوآسيلي مع الماء ثم مع الا مونياك - تحديد الصيغة الا جمالية لحمض آربوآسيلي - معادلة تفاعل المعايرة O H OO H n Hn OOH( HO n n ( l BB, - * حساب الترآيز المولي عند التكافو نحصل على

Διαβάστε περισσότερα

- سلسلة -2. f ( x)= 2+ln x ثم اعط تأويل هندسيا لهاتين النتيجتين. ) 2 ثم استنتج تغيرات الدالة مع محور الفاصيل. ) 0,5

- سلسلة -2. f ( x)= 2+ln x ثم اعط تأويل هندسيا لهاتين النتيجتين. ) 2 ثم استنتج تغيرات الدالة مع محور الفاصيل. ) 0,5 تارين حلل ف دراسة الدال اللغاريتمية السية - سلسلة - ترين ]0,+ [ لتكن f الدالة العددية للمتغير الحقيقي المعرفة على المجال بما يلي f ( )= +ln. (O, i, j) منحنى الدالة f في معلم متعامد ممنظم + f ( ) f ( )

Διαβάστε περισσότερα

( ) ( ) ( ) - I أنشطة تمرين 4. و لتكن f تمرين 2 لتكن 1- زوجية دالة لكل تمرين 3 لتكن. g g. = x+ x مصغورة بالعدد 2 على I تذآير و اضافات دالة زوجية

( ) ( ) ( ) - I أنشطة تمرين 4. و لتكن f تمرين 2 لتكن 1- زوجية دالة لكل تمرين 3 لتكن. g g. = x+ x مصغورة بالعدد 2 على I تذآير و اضافات دالة زوجية أ عمميات حل الدال العددية = [ 1; [ I أنشطة تمرين 1 لتكن دالة عددية لمتغير حقيقي حيث أدرس زجية أدرس رتابة على آل من[ ;1 [ استنتج جدل تغيرات دالة زجية على حيز تعريفها ( Oi ; ; j 1 استنتج مطاريف الدالة إن

Διαβάστε περισσότερα

تمرين 1. f و. 2 f x الجواب. ليكن x إذن. 2 2x + 1 لدينا 4 = 1 2 أ - نتمم الجدول. g( x) ليكن إذن

تمرين 1. f و. 2 f x الجواب. ليكن x إذن. 2 2x + 1 لدينا 4 = 1 2 أ - نتمم الجدول. g( x) ليكن إذن تمرين تمارين حلل = ; دالتين عدديتين لمتغير حقيقي حيث = + - حدد مجمعة تعريف الدالة - أعط جدل تغيرات لكل دالة من الدالتين - أ) أنقل الجدل التالي أتممه - D ب) حدد تقاطع C محر الافاصيل ( Oi ج ( المنحنيين C

Διαβάστε περισσότερα

التتبع الزمني لتحول آيمياي ي سرعة التفاعل تمارين مرفقة بالحلول فيزياء تارودانت التمرين الا ول: يتفاعل أيون ثيوآبريتات ثناي ي أوآسيد الكبريت مع أيونات الا وآسونيوم وفق المعادلة الكيمياي ية التالية: H S

Διαβάστε περισσότερα

تصحيح موضوع العلوم الفيزياي ية : شعبة العلوم التجريبية والعلوم والتكنولوجيات الكيمياء : المحلول الماي ي لحمض الميثامويك العمود قصدير فضة

تصحيح موضوع العلوم الفيزياي ية : شعبة العلوم التجريبية والعلوم والتكنولوجيات الكيمياء : المحلول الماي ي لحمض الميثامويك العمود قصدير فضة تصحيح موضوع العلوم الفيزياي ية : شعبة العلوم التجريبية والعلوم والتكنولوجيات الكيمياء : المحلول الماي ي لحمض الميثامويك العمود قصدير فضة المحلول الماي ي لحمض المیثانويك تعريف حمض حسب برونشتد : كل نوع كيمياي

Διαβάστε περισσότερα

( ) / ( ) ( ) على. لتكن F دالة أصلية للدالة f على. I الدالة الا صلية للدالة f على I والتي تنعدم في I a حيث و G دالة أصلية للدالة حيث F ملاحظات ملاحظات

( ) / ( ) ( ) على. لتكن F دالة أصلية للدالة f على. I الدالة الا صلية للدالة f على I والتي تنعدم في I a حيث و G دالة أصلية للدالة حيث F ملاحظات ملاحظات الا ستاذ محمد الرقبة مراآش حساب التكامل Clcul ntégrl الدال الا صلية (تذآير آل دالة متصلة على مجال تقبل دالة أصلية على. الدالة F هي الدالة الا صلية للدالة على تعني أن F قابلة للا شتقاق على لكل من. F لتكن

Διαβάστε περισσότερα

( ) ( ) ( ) = ( 1)( 2)( 3)( 4) ( ) C f. f x = x+ A الا نشطة تمرين 1 تمرين تمرين = f x x x د - تمرين 4. نعتبر f x x x x x تعريف.

( ) ( ) ( ) = ( 1)( 2)( 3)( 4) ( ) C f. f x = x+ A الا نشطة تمرين 1 تمرين تمرين = f x x x د - تمرين 4. نعتبر f x x x x x تعريف. الثانية سلك بكالوريا علوم تجريبية دراسة الدوال ( A الا نشطة تمرين - حدد رتابة الدالة أ- ب- و مطاريفها النسبية أو المطلقة إن وجدت في الحالات التالية. = ج- ( ) = arctan 7 = 0 = ( ) - حدد عدد جذور المعادلة

Διαβάστε περισσότερα

المستوى المادة مسلك والكيمياء الفيزياء المو سسة تمارة + + éq 3 éq= xéq. x m. m = CV x. Q r [ RCOOH] RCOOH

المستوى المادة مسلك والكيمياء الفيزياء المو سسة تمارة + + éq 3 éq= xéq. x m. m = CV x. Q r [ RCOOH] RCOOH 8 ا ستاذ ( éq wwwphysiquelyceecl א الجزء I تحديد ثابتة التوازن لتفاعل حمض الا يبوبروفين مع الماء حساب الترآيز ( ( i i ومنه و نعلم أن M ( M (, 9,7 ol L 6, تع تفاعل الا یبوبروفين مع الماء تفاعل محدود * الجدول

Διαβάστε περισσότερα

() 1. ( t) ( ) U du RC RC dt. t A Be E Ee E e U = E = 12V ن ن = + =A ن 1 RC. τ = RC = ن

() 1. ( t) ( ) U du RC RC dt. t A Be E Ee E e U = E = 12V ن ن = + =A ن 1 RC. τ = RC = ن تصحیح الموضوع الثاني U V 5 ن B التمرین الا ول( ن): - دراسة عملیة الشحن: - - التوتر الكھرباي ي بین طرفي المكثفة عند نھایة الشحن : -- المعادلة التفاضلیة: بتطبيق قانون جمع التوترات في حالة الربط على التسلسل

Διαβάστε περισσότερα

( ) ( ) ( ) ( ) تمرين 03 : أ- أنشيء. ب- أحسب ) x f ( بدلالة. ب- أحسب ) x g ( تعريف : 1 = x. 1 = x = + x 2 = + من x بحيث : لتكن لكل. لكل x من.

( ) ( ) ( ) ( ) تمرين 03 : أ- أنشيء. ب- أحسب ) x f ( بدلالة. ب- أحسب ) x g ( تعريف : 1 = x. 1 = x = + x 2 = + من x بحيث : لتكن لكل. لكل x من. عمميات حل الدال العددية السنة الا لى علم تجريبية علم رياضية تذآير : إشارة دالة تا لفية ثلاثية الحدد طريقة المميز المختصر ( 4 ): ( ) I- زجية دالة عددية : -( أنشطة : تمرين 0 : أدرس زجية الدالة العددية في

Διαβάστε περισσότερα

( ) ( ) ( ) ( ) ( )( ) z : = 4 = 1+ و C. z z a z b z c B ; A و و B ; A B', A' z B ' i 3

( ) ( ) ( ) ( ) ( )( ) z : = 4 = 1+ و C. z z a z b z c B ; A و و B ; A B', A' z B ' i 3 ) الحدة هي ( cm ( 4)( + + ) P a b c 4 : (, i, j ) المستي المرآب منسب إلى المعلم المتعامد المتجانس + 4 حل في مجمعة الا عداد المرآبة المعادلة : 0 6 + من أجل آل عدد مرآب نصع : 64 P b, a أ أحسب (4 ( P ب عين

Διαβάστε περισσότερα

المادة المستوى المو سسة والكيمياء الفيزياء تمارة = C ت.ع : éq éq ] éq ph

المادة المستوى المو سسة والكيمياء الفيزياء تمارة = C ت.ع : éq éq ] éq ph 8 א א ن א ع א א ن א ع א تحديد خارج تفاعل حمض الا سكوربيك مع الماء بقياس ph O.. آتابة معادلة التفاعل H8O( q + H ( 7 ( q + l + ( q.. الجدول الوصفي H8O( q + HO ( H7O ( q HO+ l + ( q معادلة التفاعل آميات mol

Διαβάστε περισσότερα

( ) ( ) [ [ ( ) ( ) ( ) =sin2xcosx ( ) lim. lim. α; ] x حيث. = x. x x نشاط 3 أ- تعريف لتكن. x نهاية l في x 0 ونرمز لها ب ب- خاصية نهاية على اليمين في

( ) ( ) [ [ ( ) ( ) ( ) =sin2xcosx ( ) lim. lim. α; ] x حيث. = x. x x نشاط 3 أ- تعريف لتكن. x نهاية l في x 0 ونرمز لها ب ب- خاصية نهاية على اليمين في الاشتقاق تطبيقاته دراسة الدال www.woloj.com - الاشتقاق في نقطة- الدالة المشتقة ( A أنشطة نشاط باستعمال التعريف ادرس اشتقاق الدالة في حدد العدد المشتق في إن جد ثم حدد معادلة المماس أ نصف المماس لمنحنى الدالة

Διαβάστε περισσότερα

المستوى المادة المو سسة علوم رياضية الكيمياء والكيمياء الفيزياء تمارة RCOO RCOOH - ت.ع : RCOOH. x=x éq. x éq x m ] = 10 RCOOH.

المستوى المادة المو سسة علوم رياضية الكيمياء والكيمياء الفيزياء تمارة RCOO RCOOH - ت.ع : RCOOH. x=x éq. x éq x m ] = 10 RCOOH. الدورة العادية ROOH HlO ROOH ( aq HO( l ROO ( aq HO( aq 4( aq H O( l lo4 ( aq HO( aq ( aq HO( aq ROO ( aq HO( l wwwphysiqulyccla الكيمياء الجزء الا ول التعرف على محلولين حمضيين تصنيع إستر معادلة تفاعل

Διαβάστε περισσότερα

( D) .( ) ( ) ( ) ( ) ( ) ( ) الا سقاط M ( ) ( ) M على ( D) النقطة تعريف مع المستقيم الموازي للمستقيم على M ملاحظة: إذا آانت على أ- تعريف المستقيم ) (

( D) .( ) ( ) ( ) ( ) ( ) ( ) الا سقاط M ( ) ( ) M على ( D) النقطة تعريف مع المستقيم الموازي للمستقيم على M ملاحظة: إذا آانت على أ- تعريف المستقيم ) ( الا سقاط القدرات المنتظرة *- الترجمة المتجهية لمبرهنة طاليس 1- مسقط نقطة مستقيم D مستقيمين متقاطعين يجد مستقيم حيد مار من هذا المستقيم يقطع النقطة يازي في نقطة حيدة ' ' تسمى مسقط نقطة من المستى تعريف )

Διαβάστε περισσότερα

: : RCOO RCOOH - ت.ع : RCOOH. x=x éq. x éq x m ] = 10 RCOOH. éq= éq éq

: : RCOO RCOOH - ت.ع : RCOOH. x=x éq. x éq x m ] = 10 RCOOH. éq= éq éq تصحيح موضوع الامتحان الوطني الموحد للبكالوريا - الدورة العادية ROOH HlO ROOH ( HO( l ROO ( HO( 4( H O( l lo4 ( HO( ( aq HO( ROO ( HO( l الكيمياء الجزء الا ول التعرف على محلولين حمضيين تصنيع إستر معادلة

Διαβάστε περισσότερα

OH H O CH 3 CH 2 O C 2 H a = - 2 m/s 2. 2 gr(1 cos θ) max 1/5

OH H O CH 3 CH 2 O C 2 H a = - 2 m/s 2. 2 gr(1 cos θ) max 1/5 الكيمياء (6 نقط) - سم المرآبات الكيمياي ية التالية مع تحديد المجموعة الكيمياي ية التي ينتمي إليها آل مرآب: المرآب A المرآب B المرآب الثانوية التا هيلية الفقيه الكانوني فرض محروس رقم. 4 الدورة الثانية المستوى:

Διαβάστε περισσότερα

فرض محروس رقم 1 الدورة 2

فرض محروس رقم 1 الدورة 2 ن 0 فرض محرس رقم 1 الدرة 2 الفيزياء 13 نقطة الجزء 1 )دراسة الدارة ) RLC 8 نقط لتحديد L معامل تحريض شيعة مقامتها الداخلية r مستعملة في مكبر الصت ننجز تجربة على مرحلتين باستعمال التركيب التجريبي الممثل في

Διαβάστε περισσότερα

الترانزستور 1 تعريف الترانزستور مرآبة إلكترونية تتكون من بلور خالص شبه موصل (Gi) أو (Si) يتم تنشيطه با ضافة آمية صغيرة جدا من ذرات دخيلة حيث نحصل على ثلاثة مناطق مختلفة. 2 أنواع الترانزستور هناك نوعان

Διαβάστε περισσότερα

حركة دوران جسم صلب حول محور ثابت

حركة دوران جسم صلب حول محور ثابت حركة دوران جسم صلب حول محور ثابت I تعريف حركة الدوران لجسم صلب حول محور ثابت 1 مثال الجسم (S) في حركة دوران حول محور ثابت : النقطتين A و B تتحركان وفق داي رتين ممركزتين على المحور النقطتين M و N المنتميتين

Διαβάστε περισσότερα

- سلسلة -3 ترين : 1 حل التمرين : 1 [ 0,+ [ f ( x)=ln( x+1+ x 2 +2 x) بما يلي : وليكن (C) منحناها في معلم متعامد ممنظم

- سلسلة -3 ترين : 1 حل التمرين : 1 [ 0,+ [ f ( x)=ln( x+1+ x 2 +2 x) بما يلي : وليكن (C) منحناها في معلم متعامد ممنظم تارين وحلول ف دراسة الدوال اللوغاريتمية والسية - سلسلة -3 ترين [ 0,+ [ نعتبر الدالة العددية f للمتغير الحقيقي المعرفة f ( )=ln( ++ 2 +2 ) بما يلي. (O, i, j) وليكن منحناها في معلم متعامد ممنظم ) ln يرمز

Διαβάστε περισσότερα

Le travail et l'énergie potentielle.

Le travail et l'énergie potentielle. الشغل و الطاقة الوضع التقالية Le travail et l'énergie potentielle. الا ستاذ: الدلاحي محمد ) السنة الا ولى علوم تجريبية (.I مفهوم الطاقة الوضع الثقالية: نشاط : 1 السقوط الحر نحرر جسما صلبا كتلتھ m من نقطة

Διαβάστε περισσότερα

jamil-rachid.jimdo.com

jamil-rachid.jimdo.com تصحیح الامتحان الوطني الموحد للبكالوریا مسلك علوم فیزیاي یة 8 الدورة العادیة jilrchidjidoco الكیمیاء الجزء : I تحديد ثابتة التوازن لتفاعل حمض الا يبوبروفين مع الماء: حساب الترآيز : ( ( i ROOH ROOH i ومنه:

Διαβάστε περισσότερα

[ ] [ ] ( ) ( ) ( ) ( ) ( ) I و O B بالنسبة ل AC) ( IO) ( بالنسبة C و S M M 1 -أنشطة: ليكن ABCD معين مرآزه O و I و J منتصفي

[ ] [ ] ( ) ( ) ( ) ( ) ( ) I و O B بالنسبة ل AC) ( IO) ( بالنسبة C و S M M 1 -أنشطة: ليكن ABCD معين مرآزه O و I و J منتصفي O ( AB) تحيلات في المستى القدرات المنتظرة - التعرف على تقايس تشابه الا شكال استعمال الا زاحة التحاآي التماثل. - استعمال الا زاحة التحاآي التماثل في حل مساي ل هندسية. [ AD] التماثل المحري التماثل المرآزي

Διαβάστε περισσότερα

امتحان الثلاثي الثاني لمادة العلوم الفيزياي ية

امتحان الثلاثي الثاني لمادة العلوم الفيزياي ية ثانویة عین معبد المستوى : ثالثة ) تقني ریاضي علوم ( التاریخ: 014/03/06 المدة : 3 ساعا ت التمرين الا ول: (06 ن) امتحان الثلاثي الثاني لمادة العلوم الفيزياي ية في الدارة الكهرباي ية التالية مولد توتره ثابت

Διαβάστε περισσότερα

( ) [ ] الدوران. M يحول r B و A ABC. 0 2 α فان C ABC ABC. r O α دورانا أو بالرمز. بالدوران r نكتب -* النقطة ' M إلى مثال لتكن أنشي 'A الجواب و 'B

( ) [ ] الدوران. M يحول r B و A ABC. 0 2 α فان C ABC ABC. r O α دورانا أو بالرمز. بالدوران r نكتب -* النقطة ' M إلى مثال لتكن أنشي 'A الجواب و 'B الدران I- تعريف الدران 1- تعريف لتكن O نقطة من المستى المجه P α عددا حقيقيا الدران الذي مرآزه O زايته من P نح P الذي يربط آل نقطة M بنقطة ' M ب: M = O اذا آانت M ' = O - OM = OM ' M O اذا آان - OM ; OM

Διαβάστε περισσότερα

Tronc CS Calcul trigonométrique Cours complet : Cr1A Page : 1/6

Tronc CS Calcul trigonométrique Cours complet : Cr1A Page : 1/6 1/ وحدات قياس زاوية الدرجة الراديان : (1 العلقة بين الدرجة والراديان: I الوحدة الكأثر استعمال لقياس الزوايا في المستويات السابقة هي الدرجة ونعلم أن قياس الزاوية المستقيمية هو 18 rd هناك وحدة لقياس الزوايا

Διαβάστε περισσότερα

مادة الرياضيات 3AC أهم فقرات الدرس (1 تعريف : نعتبر لدينا. x y إذن

مادة الرياضيات 3AC أهم فقرات الدرس (1 تعريف : نعتبر لدينا. x y إذن أهم فقرات الدرس معادلة مستقيم مادة الرياضيات _ I المعادلة المختصرة لمستقيم غير مواز لمحور الا راتيب ( تعريف ; M ( التي تحقق المتساوية m + هي مستقيم. مجموعة النقط ( المتساوية m + تسمى المعادلة المختصرة

Διαβάστε περισσότερα

( ) ( ) ( ) ( ) v n ( ) ( ) ( ) = 2. 1 فان p. + r بحيث r = 2 M بحيث. n n u M. m بحيث. n n u = u q. 1 un A- تذآير. حسابية خاصية r

( ) ( ) ( ) ( ) v n ( ) ( ) ( ) = 2. 1 فان p. + r بحيث r = 2 M بحيث. n n u M. m بحيث. n n u = u q. 1 un A- تذآير. حسابية خاصية r نهايات المتتاليات - صيغة الحد العام - حسابية مجمع متتابعة لمتتالية ) ( متتالية حسابية أساسها + ( ) ملاحظة - متتالية حسابية + أساسها ( ) متتالية حسابية S +... + + ه الحد الا ل S S ( )( + ) S ه عدد المجمع

Διαβάστε περισσότερα

2,9 3,5 اختبار الثلاثي الثاني في مادة مدینة علي منجلي - قسنطینة I- دراسة عملیة الشحن :

2,9 3,5 اختبار الثلاثي الثاني في مادة مدینة علي منجلي - قسنطینة I- دراسة عملیة الشحن : اختبار الثلاثي الثاني في مادة المستوى: نھاي ي علوم تجریبیة المدة : ساعتان التاریخ : /... فیفري/ 0 مدینة علي منجلي - قسنطینة تمرین( 0 ): أ- قیمة ال : ph لمحلول لحمض النمل HOOH تركیزه المولي. ph,9 - أكتب

Διαβάστε περισσότερα

( ) تعريف. الزوج α أنشطة. لتكن ) α ملاحظة خاصية 4 -الصمود ليكن خاصية. تمرين حدد α و β حيث G مرجح

( ) تعريف. الزوج α أنشطة. لتكن ) α ملاحظة خاصية 4 -الصمود ليكن خاصية. تمرين حدد α و β حيث G مرجح . المرجح القدرات المنتظرة استعمال المرجح في تبسيط تعبير متجهي إنشاء مرجح n نقطة 4) n 2 ( استعمال المرجح لا ثبات استقامية ثلاث نقط من المستى استعمال المرجح في إثبات تقاطع المستقيمات استعمال المرجح في حل

Διαβάστε περισσότερα

تصحيح الامتحان الوطني الموحد للبكالوريا الدورة العادية مادة : الفيزياء والكيمياء شعبة العلوم التجريبية مسلك العلوم الفيزياي ية

تصحيح الامتحان الوطني الموحد للبكالوريا الدورة العادية مادة : الفيزياء والكيمياء شعبة العلوم التجريبية مسلك العلوم الفيزياي ية مادة : الفيزياء والكيمياء شعبة العلوم التجريبية مسلك العلوم الفيزياي ية الكيمياء : الجزء الا ول والثاني مستقلين الجزء الا ول : التحليل لكهرباي ي لمحلول كلورور القصدير II 1 تبيانة التركيب التجريبي للتحليل

Διαβάστε περισσότερα

بحيث = x k إذن : a إذن : أي : أي :

بحيث = x k إذن : a إذن : أي : أي : I شبكة الحيود: ) تعريف شبكة الحيود: حيود الضوء بواسطة شبكة شبكة الحيود عبارة عن صفيحة تحتوي على عدة شقوق غير شفافة متوازيةومتساوية المسافة فيما بينها. الفاصلة بين شقين متتاليين تسمى خطوة الشبكة ويرمز إليها

Διαβάστε περισσότερα

استثمار تسجيلات لحساب السرعة اللحظية. التعبير عن الحركة المستقيمية المنتظمة بمعادلة زمنية في شروط بدي ية مختلفة.

استثمار تسجيلات لحساب السرعة اللحظية. التعبير عن الحركة المستقيمية المنتظمة بمعادلة زمنية في شروط بدي ية مختلفة. فيزياء درس 3 الجدع المشترك الكفايات المستهدفة معرفة مفهوم معلم الفضاء ومعلم الزمن تعيين مسار نقطة من متحرك في معلم محدد حساب السرعة المتوسطة استعمال العلاقة التقريبية لحساب السرعة اللحظية - ms والعكس إلى

Διαβάστε περισσότερα

-1 المعادلة x. cosx. x = 2 M. و π. π π. π π. π π. حيث π. cos x = إذن حيث. 5π π π 5π. ] [ 0;π حيث { } { }

-1 المعادلة x. cosx. x = 2 M. و π. π π. π π. π π. حيث π. cos x = إذن حيث. 5π π π 5π. ] [ 0;π حيث { } { } الحساب المثلثي الجزء - الدرس الا ول القدرات المنتظرة التمكن من تمثيل وقراءة حلول معادلة أو متراجحة مثلثية على عدد الساعات: 5 الداي رة المثلثية الدورة الثانية k k I- المعادلات المثلثية cos x = a - المعادلة

Διαβάστε περισσότερα

1/7

1/7 I الحركة 1 نسبیة الحركة الحركة النشاط التجريبي : 1 في التبيانة جانبه حافلة النقل المدرسي يجلس بداخلها أحمد بينما ليلى ما زالت تنتظر حافلة نقل أخرى وتشاهد حافلة صديقها تبتعد عنها الجسم R مرتبط بالا رض و

Διαβάστε περισσότερα

ا و. ر ا آ!ار نذإ.ى أ م ( ) * +,إ ك., م (ا يأ ) 1 آ ا. 4 ا + 9 ;). 9 : 8 8 و ء ر ) ا : * 2 3 ك 4 ا

ا و. ر ا آ!ار نذإ.ى أ م ( ) * +,إ ك., م (ا يأ ) 1 آ ا. 4 ا + 9 ;). 9 : 8 8 و ء ر ) ا : * 2 3 ك 4 ا الميكاني ك La mécanque قوانين نيوتن I متجهة السرعة ومتجهة التسارع: ) تذآير: : الحرآة نسبية أي الا جسام لا تتحرك إلا بالنسبة لا جسام أخرى.إذن لدراسة حرآة جسم يجب اختيار جسم مرجعي. ولتحديد موضع الجسم المتحرك

Διαβάστε περισσότερα

يط... األعداد المركبة هذه التمارين مقترحة من دورات البكالوريا من 8002 إلى التمرين 0: دورة جوان 8009 الموضوع األول التمرين 8: دورة جوان

يط... األعداد المركبة هذه التمارين مقترحة من دورات البكالوريا من 8002 إلى التمرين 0: دورة جوان 8009 الموضوع األول التمرين 8: دورة جوان األعداد المركبة 800 هذه التمارين مقترحة من درات البكالريا من 800 إلى 800 المضع األل التمرين 0: حل في مجمعة األعداد المركبة المعادلة: = 0 i ( + i) + نرمز للحلين ب حيث: < ( عدد حقيقي ) 008 - بين أن ( المستي

Διαβάστε περισσότερα

dθ dt ds dt θ θ v a N dv a T dv dt v = rθ ɺ

dθ dt ds dt θ θ v a N dv a T dv dt v = rθ ɺ حرآة دوران جسم صلب حول السرعة الزاوية-التسارع الزاوي: 1) تذآير: محور ثابت I الا فصول الزاوي يكون جسم صلب غير قابل للتشويه في حرآة دوران حول محور ثابت إذا آانت جميع نقطه لهاحرآة داي رية ممرآزة على هذا المحور

Διαβάστε περισσότερα

التمرين الثاني )3 2-( نعتبر في المستوى المنسوب إلى معلم متعامد ممنظم التي معادلتها : 3-( بين أن المستوى مماس للفلكة في النقطة.

التمرين الثاني )3 2-( نعتبر في المستوى المنسوب إلى معلم متعامد ممنظم التي معادلتها : 3-( بين أن المستوى مماس للفلكة في النقطة. التمرين األل) 3 نقط ) نعتبر في الفضاء المنسب إلى معلم متعامد ممنظم مباشر التي معادلتها : النقطتين الفلكة الفلكة هي النقطة أن شعاعها ه تحقق من أن تنتمي إلى 1-( بين أن مركز 2-( حددمثلث إحداثيات المتجهة بين

Διαβάστε περισσότερα

األستاذ: بنموسى محمد ثانوية: عمر بن عبد العزيز المستوى: 1 علوم رياضية

األستاذ: بنموسى محمد ثانوية: عمر بن عبد العزيز المستوى: 1 علوم رياضية http://benmoussamathjimdocom/ 55:31 5342-3-41 يم السبت : األستاذ: بنمسى محمد ثانية: عمر بن عبد العزيز المستى: 1 علم رياضية إحداثيات نقطة بالنسبة لمعلم - إحداثيات متجهة بالنسبة ألساس: األساس المعلم في الفضاء:

Διαβάστε περισσότερα

تصحيح تمارين تطبيقات توازن جسم صلب خاضع لقوتين

تصحيح تمارين تطبيقات توازن جسم صلب خاضع لقوتين تصحيح تمارين تطبيقات توازن جسم صلب خاضع لقوتين www.svt-assilah.com تصحيح تمرين 1: F1 F2 F 2 فإن : F 1 و 1- شرط توازن جسم صلب تحت تأثير قوتين : عندما يكون جسم صلب في توازن تحت تأثير قوتين 0 2 F 1 + F المجموع

Διαβάστε περισσότερα

بحيث ان فانه عندما x x 0 < δ لدينا فان

بحيث ان فانه عندما x x 0 < δ لدينا فان أمثلة. كل تطبيق ثابت بين فضائين متريين يكون مستمرا. التطبيق الذاتي من أي فضاء متري الى نفسه يكون مستمرا..1.2 3.اذا كان f: R R البرهان. لتكن x 0 R و > 0 ε. f(x) = x 2 فان التطبيق f مستمرا. فانه عندما x

Διαβάστε περισσότερα

ءﺎﺼﺣﻹا ﻒﻳرﺎﻌﺗ و تﺎﺤﻠﻄﺼﻣ - I

ءﺎﺼﺣﻹا ﻒﻳرﺎﻌﺗ و تﺎﺤﻠﻄﺼﻣ - I الا حصاء I - I مصطلحات و تعاريف - الساآنة الا حصاي ية: الساآنة الا حصاي ية هي المجموعة التي تخضع لدراسة إحصاي ية وآل عنصر من هذه المجموعة يسمى فردا أو وحدة إحصاي ية. ميزة إحصاي ية أو المتغير الا حصاي ي:

Διαβάστε περισσότερα

( ) ( ) ( OPMQ) ( ) المستقيم في المستوى 1- معلم إحداثيتا نقطة و و ( ) أفصول و. y أآتب الشكل مسقط M على ) OI (

( ) ( ) ( OPMQ) ( ) المستقيم في المستوى 1- معلم إحداثيتا نقطة و و ( ) أفصول و. y أآتب الشكل مسقط M على ) OI ( المستقيم في المستى القدرات المنتظرة *- ترجمة مفاهيم خاصيات الهندسة التالفية الهندسة المتجهية باسطة الاحداثيات *- استعمال الا داة التحليلية في حل مساي ل هندسية. I- معلم مستى احداثيتا نقطة تساي متجهتين شرط

Διαβάστε περισσότερα

( ) ( ) 27,5.10 1,35.10 = 5, = 0,3. n C V mol ( ) M NaHCO max. n( CO ) n CO. 2 exp 2. Page 1

( ) ( ) 27,5.10 1,35.10 = 5, = 0,3. n C V mol ( ) M NaHCO max. n( CO ) n CO. 2 exp 2. Page 1 الكيمياء صحيح الفرض المنزلي 01 السنة الثانية علوم فيزياي ية 1 نوع التفاعل : تفاعل حمض قاعدة. التعليل : لا ن حمض الا يثانويك آحمض برونشتد قادر على إعطاء بروتون + H و أيون هيدروجينو آربونات آقاعدة برونشتد

Διαβάστε περισσότερα

الا شتقاق و تطبيقاته

الا شتقاق و تطبيقاته الا شتقاق و تطبيقاته سيدي محمد لخضر الفهرس قابلية ا شتقاقدالةعددية.............................................. قابلية ا شتقاق دالة في نقطة................................. المماس لمنحنى دالة في نقطة..............................

Διαβάστε περισσότερα

التطورات الرتيبة الوحدة 05 التمرين 27 : النظام الانتقالي : النظام الداي م. 10 m/s. من البيان τ = 1 s. t (s) التمرين 28 P= = 44, , 445 Π= ρ = =

التطورات الرتيبة الوحدة 05 التمرين 27 : النظام الانتقالي : النظام الداي م. 10 m/s. من البيان τ = 1 s. t (s) التمرين 28 P= = 44, , 445 Π= ρ = = -i الكتاب الا ول التطورات الرتيبة الوحدة 5 تطور جملة ميكانيكية تمارين الكتاب GUEZOURI Aek lycée Maraal - Oran ( / ) التمرين 7 حسب الطبعة الشكل المعطى في الكتاب يوافق دافعة أرخميدس مهملة وقوة الاحتكاك للكتاب

Διαβάστε περισσότερα

تمارين توازن جسم خاضع لقوتين الحل

تمارين توازن جسم خاضع لقوتين الحل تمارين توازن جسم خاضع لقوتين التمرين الأول : نربط كرية حديدية B كتلتها m = 0, 2 kg بالطرف السفلي لخيط بينما طرفه العلوي مثبت بحامل ( أنظر الشكل جانبه(. 1- ما نوع التأثير الميكانيكية بين المغنطيس والكرية

Διαβάστε περισσότερα

وزارة التربية الوطنية موضوع تجريبي لامتحان شهادة البكالوريا اختبار في مادة الفيزياء والكيمياء

وزارة التربية الوطنية موضوع تجريبي لامتحان شهادة البكالوريا اختبار في مادة الفيزياء والكيمياء الشعبة : علوم تجريبية ساعات 4 ) : الا ول ا الجزاي رية الديمقراطية الشعبية الجمهورية وزارة التربية الوطنية موضوع تجريبي لامتحان شهادة البكالوريا نقاط) اختبار في مادة الفيزياء والكيمياء المدة : حمض الميثانويك

Διαβάστε περισσότερα

سلسلة التمارين حول التا ثیر البینیة المیكانیكیة

سلسلة التمارين حول التا ثیر البینیة المیكانیكیة سلسلة التمارين حول التا ثیر البینیة المیكانیكیة I سلم المسافات تمرين : 1 مقارنة رتب قدر بعض الا بعاد باستعمال سلم المسافات البعد قيمته القيمة بالمتر الكتابة العلمية رتبة القدر قطر فيروس 72nm المسافة بين

Διαβάστε περισσότερα

الوحدة 04 الدرس الشكل - 2. E pp. E : Energie, p : potentielle, p : (de) pesanteur. P r. F r. r P. z A إلى. z B. cb ca AB AB

الوحدة 04 الدرس الشكل - 2. E pp. E : Energie, p : potentielle, p : (de) pesanteur. P r. F r. r P. z A إلى. z B. cb ca AB AB المستوى : السنة الثانية ثانوي الطاقة الكامنة الوحدة 4 حسب الطبعة 3 / للكتاب المدرسي GUZOURI Lycée aaal Oan ماذا يجب أن أعرف حتى أقول : إني استوعبت هذا الدرس - يجب أن أعرف مدلول الطاقة الكامنة الثقالية

Διαβάστε περισσότερα

X 1, X 2, X 3 0 ½ -1/4 55 X 3 S 3. PDF created with pdffactory Pro trial version

X 1, X 2, X 3 0 ½ -1/4 55 X 3 S 3. PDF created with pdffactory Pro trial version محاضرات د. حمودي حاج صحراوي كلية العلوم الاقتصادية والتجارية وعلوم التسيير جامعة فرحات عباس سطيف تحليل الحساسية في البرمجة الخطية غالبا ما ا ن الوصول ا لى الحل الا مثل لا يعتبر نهاية العملية التي استعملت

Διαβάστε περισσότερα

منتديات علوم الحياة و الأرض بأصيلة

منتديات علوم الحياة و الأرض بأصيلة www.svt-assilah.com الفيزياء تمرين : 1 نحدث عند الطرف S لحبل مرن موجة مستعرضة تنتشر بسرعة 1 s. v = 10 m. عند اللحظة t = 0s يوجد مطلع الإشارة عند المنبع. S يمثل المنحنى أسفله تغيرات استطالة المنبع بدلالة

Διαβάστε περισσότερα

الوحدة 02. GUEZOURI A. Lycée Maraval - Oran الدرس 2 الطاقة الحرآي ة. F r ( ) W F = F ABcosθ عمل. F r محر ك عمل مقاوم

الوحدة 02. GUEZOURI A. Lycée Maraval - Oran الدرس 2 الطاقة الحرآي ة. F r ( ) W F = F ABcosθ عمل. F r محر ك عمل مقاوم المستى : السنة الثانية ثاني الحدة 0 العمل الطاقة الحرآية (حالة الحرآة الا نسحابية) GUEZOURI Lycée Maaal Oan ماذا يجب أن أعرف حتى أقل : إني استعبت هذا الدرس يجب أن أفر ق بين انسحاب جسم درانه يجب أن أعرف

Διαβάστε περισσότερα

الموافقة : v = 100m v(t)

الموافقة : v = 100m v(t) مراجعة القوة والحركة تصميم الدرس 1- السرعة المتوسطة 2- السرعة اللحظية 3- النموذج الرياضي : شعاع السرعة 4- شعاع السرعة والحركة المستقيمة 5- الحالة الخاصة 1 1 السرعة المتوسطة سيارة تقطع مسافة L بين مدينة

Διαβάστε περισσότερα

C 12 *** . λ. dn A = dt. 6 هو ans

C 12 *** . λ. dn A = dt. 6 هو ans الجمهورية الجزاي رية الديمقراطية الشعبية. وزارة التربية الوطنية. ثانوية عمر بن عبد العزيز/ندرومة. مديرية التربية لولاية تلمسان. الامتحان التجريبي في العلوم الفيزياي ية. التمرين الا ول: () شعبة :العلوم

Διαβάστε περισσότερα

7 ﻞ : ﻣﺎﻌﻤﻟا RS28 ﺀﺎﻴﻤﻴﻜﻟﺍﻭ ﺀ ﺎﻳﺰﻴﻔﻟﺍ ةد : ﺎـ ــ ــ ـــ ـ ﻤﻟا

7 ﻞ : ﻣﺎﻌﻤﻟا RS28 ﺀﺎﻴﻤﻴﻜﻟﺍﻭ ﺀ ﺎﻳﺰﻴﻔﻟﺍ ةد : ﺎـ ــ ــ ـــ ـ ﻤﻟا 1 7 المادة: الفيزياء والكيمياء RS8 المعامل: الشعب(ة) أو المسلك : شعبة العلوم التجريبية مدة الا نجاز: يسمح باستعمال الا لة الحاسبة العلمية غير القابلة للبرمجة يتضمن الموضوع ا ربعة تمارين : تمرين في الكيمياء

Διαβάστε περισσότερα

prf : SBIRO Abdelkrim ( ) ( ) ( ) . v B ( )

prf : SBIRO Abdelkrim ( ) ( ) ( ) . v B ( ) الثانوية الفلاحية باولادتايمة فرض رقم الدورة الثانية يوم - 010/5/19 مدة الا نجاز: ساعتين- التمرين الا ول فيزياء : 9 نقط يمكن لجسم صلب ) S ( آتلته = 1Kg نعتبره نقطيا أن ينزلق فوق سكة ABC مكونة من : prf

Διαβάστε περισσότερα

مثال: إذا كان لديك الجدول التالي والذي يوضح ثلاث منحنيات سواء مختلفة من سلعتين X و Yوالتي تعطي المستهلك نفس القدر من الا شباع

مثال: إذا كان لديك الجدول التالي والذي يوضح ثلاث منحنيات سواء مختلفة من سلعتين X و Yوالتي تعطي المستهلك نفس القدر من الا شباع - هذا الا سلوبعلى أنه لا يمكن قياس المنفعة بشكل كمي بل يمكن قياسها بشكل ترتيبي حسب تفضيلات المستهلك. يو كد و يقوم هذا الا سلوب على عدد من الافتراضات و هي:. قدرة المستهلك على التفضيل. -العقلانية و المنطقية.

Διαβάστε περισσότερα

دورة : : . ( Pu E. ( Mev n. [ H O + ], [ Al + ], [Cl : 25 C. 25 C Al. 27 mg. 0,012 mol / L. ( t ) 0, 1. t (min) v ( t ) H O Al Cl.

دورة : : . ( Pu E. ( Mev n. [ H O + ], [ Al + ], [Cl : 25 C. 25 C Al. 27 mg. 0,012 mol / L. ( t ) 0, 1. t (min) v ( t ) H O Al Cl. الجزاي رية الديمقراطية الشعبية الجهرية الطني للامتحانات المسابقات الديان التربية الطنية زارة ما ياي م درة البآالريا التجريبية للتعليم الثاني امتحان سطيف بن عليي صالح ثانية تجريبية علم الشعبة نصف ساعات

Διαβάστε περισσότερα

**********************************************************

********************************************************** اجب بصحيح أو خطا : أيكون محلول قاعديا إذا آان : سلسلة تمارين حول المعايرة تمرين ص 99 p > log k e / على الشكل : pk للمزدوجة بثابتة الحمضية محلول حمض p pk p log [ éq éq ب ( تكتب العلاقة التي تربط p هو 8

Διαβάστε περισσότερα

التا ثیر البینیة المیكانیكیة

التا ثیر البینیة المیكانیكیة التا ثیر البینیة المیكانیكیة I التجاذب الكوني 1 1 مبدأ التا ثیرات البینیة نص المبدأ : عندما يتم تا ثير بيني سواء بالتماس أو عن بعد بين جسمين و فا ن القوة F / التي يطبقها الجسم على الجسم والقوة F / التي

Διαβάστε περισσότερα

الوحدة 05. uuur dog dt. r v= uuur r r r الدرس الا ول. uuur. uuur. r j. G (t) المسار. GUEZOURI Aek lycée Maraval - Oran

الوحدة 05. uuur dog dt. r v= uuur r r r الدرس الا ول. uuur. uuur. r j. G (t) المسار. GUEZOURI Aek lycée Maraval - Oran GUEZOURI Aek lcée Ml - O الكتاب الا ول الوحدة 05 التطورات الرتيبة تطور جملة ميكانيكية الدرس الا ول ما يجب أن أعرفه حتى أقول : إني استوعبت هذا الدرس يجب أن أعرف آيفية تحديد جملة ميكانيكية حسب ما ي طل ب

Διαβάστε περισσότερα

1/ الزوايا: المتت امة المتكاملة المتجاورة

1/ الزوايا: المتت امة المتكاملة المتجاورة الحصة األولى الز وايا القدرات المستوجبة:* تعر ف زاويتين متكاملتين أو زاويتين متتام تين. * تعر ف زاويتين متجاورتين. المكتسبات السابقة:تعريف الزاوية كيف نستعمل المنقلة لقيس زاوية كيف نرمز للزاوية 1/ الزوايا:

Διαβάστε περισσότερα

المجاالت المغناطيسية Magnetic fields

المجاالت المغناطيسية Magnetic fields The powder spread on the surface is coated with an organic material that adheres to the greasy residue in a fingerprint. A magnetic brush removes the excess powder and makes the fingerprint visible. (James

Διαβάστε περισσότερα

المحاضرة السادسة. Electric Current فى هذا المحاضرة سوف نناقش : - ٥ قوانين آيرشوف. dq dt. q I = = t ووحدته هى امبير = آولوم/ثانية S) (1 A = 1 C/ 1

المحاضرة السادسة. Electric Current فى هذا المحاضرة سوف نناقش : - ٥ قوانين آيرشوف. dq dt. q I = = t ووحدته هى امبير = آولوم/ثانية S) (1 A = 1 C/ 1 المحاضرة السادسة التيار الكهربى Electric Current فى هذا المحاضرة سوف نناقش : ١- التيار الكهربى ٢ المقاومة الكهربية ٣- قانون أوم - ٤ توصيل المقاومات : توالى توازى - ٥ قوانين آيرشوف أولا - التيار الكهربى

Διαβάστε περισσότερα

الفصل الثالث عناصر تخزين الطاقة الكهربائية

الفصل الثالث عناصر تخزين الطاقة الكهربائية قانون كولون الفصل الثالث عناصر تخزين الطاقة الكهربائية - - مقدمة : من المعروف أن ذرة أي عنصر تتكون من البروتونات واإللكترونات والنيترونات وتتعلق الشحنة الكهربائية ببنية الذرة فالشحنة الموجبة أو السالبة

Διαβάστε περισσότερα

الكيمياء. allal Mahdade 1

الكيمياء.  allal Mahdade  1 الكيمياء الا ستاذ : علال محداد http://sciencephysique.ifrance.com allal Mahdade http://sciencephysique.ifrance.com 1 I الجسم الصلب الا يوني أمثلة لا جسام صلبة أيونية : بلورات آلورور الصوديوم وفليورور الكالسيوم

Διαβάστε περισσότερα

الامتحان التجريبي لمادة الفيزياء و الكيمياء شعبة العلوم التجريبية مسلك علوم الحياة و الا رض

الامتحان التجريبي لمادة الفيزياء و الكيمياء شعبة العلوم التجريبية مسلك علوم الحياة و الا رض س. التنقيط ا كاديمية جهة سوس ماسة درعة نيابة تارودانت ثانوية عبد االله الشفشاوني التا هيلية ا ولاد تايمة الكيمياء: الامتحان التجريبي لمادة الفيزياء و الكيمياء شعبة العلوم التجريبية مسلك علوم الحياة و الا

Διαβάστε περισσότερα

المجال الرتيبة المستوى: 3 التطورات الوحدة + ر+ : 01 ) ) MnO. / réd) ) ( mol. mol Ca 2

المجال الرتيبة المستوى: 3 التطورات الوحدة + ر+ : 01 ) ) MnO. / réd) ) ( mol. mol Ca 2 التطورات المجال الرتيبة الزمنية المتابعة الوحدة كيمياي ي في وسط ماي ي لتحول ر ت ر ت ع المستوى رقم سلسلة وآمية من غاز ثناي ي الهيدروجين H آتلتها g بواسطة L في مفاعل صناعي نضع حجما من غاز ثناي ي الازوت N

Διαβάστε περισσότερα

+ n e = Red. Ox /Red بالشكل : الوحدة 01 الدرس الا ول GUEZOURI Aek lycée Maraval Oran أمثلة : I 2 (aq) 1 نكتب : MnO 4. Cr 2 O 7.

+ n e = Red. Ox /Red بالشكل : الوحدة 01 الدرس الا ول GUEZOURI Aek lycée Maraval Oran أمثلة : I 2 (aq) 1 نكتب : MnO 4. Cr 2 O 7. الكتاب الا ول الوحدة 01 التطورات الرتيبة تطور آميات مادة المتفاعلات والنواتج خلال تحول آيمياي ي في محلول ماي ي الدرس الا ول GUEZOURI Aek lycée Maraval Oran - Ι مراجعة - Ι الا آسدة والا رجاع المو آسد :

Διαβάστε περισσότερα

********************************************************************************** A B

**********************************************************************************   A B 1 : 013/03/ : - - - 04 و تحولاتها المادة الشعبة : جذع مشترك علوم و تكنولوجيا ********************************************************************************** www.sites.google.com/site/faresfergani 1

Διαβάστε περισσότερα

. C 0 = 10 3 mol /l. N A = 6, mol 1

. C 0 = 10 3 mol /l. N A = 6, mol 1 مديرية التربية لولاية الشلف الشعبة : رياضيات تقني رياضي ملاحظة : يعالج المترشح ا حد الموضوعين على الخيار الجمهورية الجزاي رية الديمقراطية الشعبية متقن مرسلي عبد االله سيدي عكاشة - امتحان البكالوريا التجريبي

Διαβάστε περισσότερα

التفسير الهندسي للمشتقة

التفسير الهندسي للمشتقة 8 5 األدبي الفندقي والياحي المنير في الرياضيات الأتاذ منير أبوبكر 55505050 التفير الهندي للمشتقة من الشكل نلاحظ أنه عندما تتحرك النقطة ب من باتجاه أ حتى تنطبق عليها فإن القاطع أب ينطبق على مما المنحنى

Διαβάστε περισσότερα

Ακαδημαϊκός Λόγος Εισαγωγή

Ακαδημαϊκός Λόγος Εισαγωγή - سا قوم في هذه المقالة \ الورقة \ الا طروحة بدراسة \ فحص \ تقييم \ تحليل Γενική εισαγωγή για μια εργασία/διατριβή سا قوم في هذه المقالة \ الورقة \ الا طروحة بدراسة \ فحص \ تقييم \ تحليل للا جابة عن هذا

Διαβάστε περισσότερα

التطورات : : 05. m m .(1 14.( V( m / s ) 0,25 0, t ( s ) t ( s ) z v. V z ( mm / s )

التطورات : : 05. m m .(1 14.( V( m / s ) 0,25 0, t ( s ) t ( s ) z v. V z ( mm / s ) التطورات : المجال الرتيبة : 5 الوحدة جملة ميآانيآية تطور ر ت ت ر ع المستوى: 5 : رقم السلسلة V z mm / s. t s تم تصوير السقوط الشاقولي لآرية داخل زيت. و بعد معالجة المعطيات بالا علام الا لي تم الحصول على

Διαβάστε περισσότερα

**********************************************************************************

********************************************************************************** 1 : 013/03/ : - - - 04 و تحولاتها المادة الشعبة : جذع مشترك علوم و تكنولوجيا ********************************************************************************** www.sites.google.com/site/faresfergani تاريخ

Διαβάστε περισσότερα

Ay wm w d T d` T`ylq - tf Tyly t T w A An A : ÐAtF± : TyF Cd Tns

Ay wm w d T d` T`ylq - tf Tyly t T w A An A : ÐAtF± : TyF Cd Tns - : 05 06 : عموميات حول الدوال العددية من إنجاز : الأستاذ عادل بناجي تقديم تمتد البدايات الأولى لفكرة الدالة إلى العهد البابلي حيث ظهرت في الجداول العددية التي كانوا ينجزونها لمقابلة العدد بمربعه أو بمقلوبه

Διαβάστε περισσότερα

الوحدة الثانية : الكهرباء والمغناطيسية الفصل الا ول : الحث الكهرومغناطيسي الدرس ) 1-1 ( الحث الكهرومغناطيسي

الوحدة الثانية : الكهرباء والمغناطيسية الفصل الا ول : الحث الكهرومغناطيسي الدرس ) 1-1 ( الحث الكهرومغناطيسي 1 الوحدة الثانية : الكهرباء والمغناطيسية الفصل الا ول : الحث الكهرومغناطيسي الدرس ) 1-1 ( الحث الكهرومغناطيسي 1- التدفق المغناطيسي وجه المقارنة شدة المجال المغناطيسي عند نقطة ) ( B التعريف التدفق المغناطيسي

Διαβάστε περισσότερα

الدورة العادية NS 03 الفيزياء والكيمياء شعبة العلوم الرياضية )أ( و)ب( دراسة محلول األمونياك و الهيدروكسيالمين 5

الدورة العادية NS 03 الفيزياء والكيمياء شعبة العلوم الرياضية )أ( و)ب( دراسة محلول األمونياك و الهيدروكسيالمين 5 4 المركز الوطني للتقويم واالمتحانات والتوجيه المادة الفيزياء والكيمياء االمتحان الوطني الموحد للبكالوريا مدة اإلنجاز 8 الدورة العادية 4 NS 3 wwwtawjihproco 7 الشعبة أو المسلك شعبة العلوم الرياضية )أ( و)ب(

Διαβάστε περισσότερα

١٤ أغسطس ٢٠١٧ العمليات الحسابية الا ساسية مع الا شع ة ٢ ٥

١٤ أغسطس ٢٠١٧ العمليات الحسابية الا ساسية مع الا شع ة ٢ ٥ ح اب الا شع ة (ال هات) ١٤ أغسطس ٢٠١٧ ال ات ٢ الا شع ة ١ ٣ العمليات الحسابية الا ساسية مع الا شع ة ٢ ٥ هندسة الا شع ة ٣ ٩ الضرب التقاطعي - Product) (eng. Cross ٤ ١ ١ الا شع ة يمكننا تخي ل الا عداد الحقيقية

Διαβάστε περισσότερα

تصميم الدرس الدرس الخلاصة.

تصميم الدرس الدرس الخلاصة. مو شرات الكفاءة:- يحدد مجال المرا ة المستوية. الدروس التي ينبغي مراجعتها: المتوسط). - الانتشار المستقيم للضوء(من دروس الا رسال الثالث للسنة الا ولى من التعليم - قانونا الانعكاس (الدرس الثالث من ا الا رسال

Διαβάστε περισσότερα

قوانين التشكيل 9 الةي ر السام ظزري 11/12/2016 د. أسمهان خضور سنستعمل الرمز (T,E) عوضا عن قولنا إن T قانون تشكيل داخلي يعرف على المجموعة E

قوانين التشكيل 9 الةي ر السام ظزري 11/12/2016 د. أسمهان خضور سنستعمل الرمز (T,E) عوضا عن قولنا إن T قانون تشكيل داخلي يعرف على المجموعة E ظزري 45 قوانين التشكيل 9 11/12/2016 8 الةي ر السام د. أسمهان خضور صاظعن الاحضغض الثاخطغ operation) (the Internal binary تعريف: ا ن قانون التشكيل الداخلي على المجموعة غير الخالية ( E) E يعر ف على ا نه التطبيق.

Διαβάστε περισσότερα

متارين حتضري للبكالوريا

متارين حتضري للبكالوريا متارين حتضري للبكالريا بكالريا فرنسية بكالريا اجلزائر نظام قدمي مرتمجة ترمجة إعداد : الطالب بلناس عبد املؤمن ثانية عبد الرمحن بن خلدن عني جاسر باتنة جيلية 2102 أمتىن أن تكن هذه التمارين مفيدة للتحضري للبكالريا

Διαβάστε περισσότερα

أسئلة استرشادية لنهاية الفصل الدراسي الثاني في مادة الميكانيكا للصف الثاني الثانوي العلمي للعام الدراسي

أسئلة استرشادية لنهاية الفصل الدراسي الثاني في مادة الميكانيكا للصف الثاني الثانوي العلمي للعام الدراسي أسئلة استرشادية لنهاية الفصل الدراسي الثاني في مادة الميكانيكا للصف الثاني الثانوي العلمي للعام الدراسي 4102 4102 تذكر أن :1- قانون نيوتن الثاني : 2- في حال كان الجسم متزن أو يتحرك بسرعة ثابتة أوساكن فإن

Διαβάστε περισσότερα

التطورات : : 05 : : : : W AB. .cos. P = m g. mgh. mgh E PP. mgh. mgh. s A K mol cd E PP = 0 : ( الطول. B m

التطورات : : 05 : : : : W AB. .cos. P = m g. mgh. mgh E PP. mgh. mgh. s A K mol cd E PP = 0 : ( الطول. B m التطورات المجال الرتيبة 5 الوحدة جملة ميآانيآية تطور ر ت ت + ر+ ع المستوى 5 رقم الملخص مآتسبات قبلية مبدأ انحفاظ الطاقة مبدأ انحفاظ الطاقة نص الطاقة لا تستحدث و لا تزولإذا اآتسبت جملة ما طاقة أو فقدتها

Διαβάστε περισσότερα

الميكانيك. d t. v m = **********************************************************************************

الميكانيك. d t. v m =  ********************************************************************************** 1 : 013/03/ : - - - : 01 الميكانيك الشعبة : جذع مشترك علوم و تكنولوجيا ********************************************************************************** www.sites.google.com/site/faresfergani :א ن מ 1

Διαβάστε περισσότερα

التاسعة أساسي رياضيات

التاسعة أساسي رياضيات الرياضيات المهدي بوليفة الدرس الت اسع www.monmaths.com التاسعة أساسي رياضيات التعيين في المستوي جذاذة التلميذ محتوى الدرس 1 1. أنشطة إستحضاري ة... 4 8 مسقط نقطة على مستقيم وفقا لمنحى معطى... تعيين نقطة

Διαβάστε περισσότερα

قانون فارداي والمجال الكهربائي الحثي Faraday's Law and Induced - Electric Field

قانون فارداي والمجال الكهربائي الحثي Faraday's Law and Induced - Electric Field قانون فارداي والمجال الكهربائي الحثي Faraday's Law and Induced - Electric Field 3-3 الحظنا ان تغيير الفيض المغناطيسي يولد قوة دافعة كهربائية حثية وتيار حثي في الدائرة وهذا يؤكد على وجود مجال كهربائي حثي

Διαβάστε περισσότερα

{ } . (* 25 a (* (* . a b (a ... b a. . b a 1... r 1. q 2. q 1 ...

{ } . (* 25 a (* (* . a b (a ... b a. . b a 1... r 1. q 2. q 1 ... مبادئ في الحسابيات ( c c 5--9-5-4-- ( ( α r α α α α {,,,,4,5,,7,8,9 } αrαr α α α ( : α α α α {,,4,,8} / α + α + α + + αr 4 /αα { } r r 4 α,5 5 9 / α + α + α + + αr 9 / (α + α + α + ( α + α + α + αα {,

Διαβάστε περισσότερα

Available online at UofKEJ Vol.3 Issue 2 pp ( (August -2013) محمد علي حمد عباس المقدمة

Available online at  UofKEJ Vol.3 Issue 2 pp ( (August -2013) محمد علي حمد عباس المقدمة Available online at www.ejournals.uofk.edu UofKEJ Vol.3 Issue 2 pp. 69-76( (August -2013) آمية الطاقة الشمسية الساقطة على سطح محمد علي حمد عباس قسم الهندسه الكهرباي ية والالكترونية آلية الهندسه, جامعة

Διαβάστε περισσότερα