SIMULTANEOUS HYPOTHESIS TESTING OF SPLINE TRUNCATED MODEL IN NONLINEAR STRUCTURAL EQUATION MODELING (SEM)
|
|
- Θεοφάνης Ταρσούλη
- 7 χρόνια πριν
- Προβολές:
Transcript
1 3 st July 06. Vol.89. No JATIT & LLS. All rights reserved. ISSN: E-ISSN: SIMULTANEOUS HYPOTHESIS TESTING OF SPLINE TRUNCATED MODEL IN NONLINEAR STRUCTURAL EQUATION MODELING (SEM RULIANA, I.N. BUDIANTARA, B.W.OTOK, W.WIBOWO Departmet of Statistics, Faculty of Mathematics ad Natural Scieces Sepuluh Nopember Istitute of Techology (ITS, Surabaya, Idoesia ad Departmet of Mathematics, Faculty ad Natural Scieces State Uiversity of Makassar (UNM, Makassar, Idoesia Departmet of Statistics, Faculty of Mathematics ad Natural Scieces Sepuluh Nopember Istitute of Techology (ITS, Surabaya, Idoesia ABSTRACT Model of splie trucated i structural equatio modelig (SEM is a oliear structural model of SEM that measures a oliear relatioship betwee the latet variables. This report was developed a hypothesis testig for the parameter of splie trucated model i oliear SEM usig likelihood ratio test (LRT. To test hypothesis H 0: Cγ = τ versus H 0: Cγ τ i splie trucated model of oliear SEM for matrix C, vector parameter γ ad a costat vector τ, is discovered that a statistical testig is i form of / d W = Q which has a distributio F( d, d, ad rejects H i which 0 W values are quite large. Q / d Keywords: Noliear SEM, Splie Trucated, Hypothesis Testig, Likelihood Ratio Test. INTRODUCTION Noliear SEM is developed from liear SEM studies, which have bee previously reported by Joreskog [], Betler [] ad Bolle [3]. Several authors have worked about oliear SEM i a form of quadratic ad iteractio such as, Lee ad Zhu [4], Lee ad Sog [5], Lee, Sog ad Lee [6], Lee, Sog ad Poo [7], Bolle ad Curret [8], Lee ad Tag [9], Wall ad Amemiya [0], Klei ad Muthe [], Mooijaart ad Satorra []. The oliear SEM employig a model of polyomial was ivestigated by Wall ad Amemiya [3], while, model of Griffiths-Miller betwee latet variable was itroduced by Harrig [4]. The Bayesia approach i SEM was ivestigated by Otok, Purami ad Adari [5]. Meawhile, the curret oliear structural model SEM usig splie trucated was reported by Ruliaa, Budiatara, Otok, ad Wibowo [6]. Splie trucated model i oliear SEM cotais kot, which is able to obtai iformatio i the patters of relatioship betwee latet variable that keeps chagig i particular iterval. Some researchers who have especially ivestigated splie trucated ad have published their works are Ferades, Budiatara, Otok ad Suhartoo [7], Budiatara [8], Lestari, Budiatara, Suaryo ad Mashuri [9]. I the preset study is coducted of hypothesis testig for splie trucated model i oliear SEM by applyig the likelihood ratio test (LRT.. SPLINE TRUNCATED MODEL IN NONLINEAR STRUCTURAL MODEL SEM The path diagram of splie trucated i oliear SEM is i Figure, The measuremet model of exogeous latet variable ad edogeous latet variable, also a estimatio of factor score ca be foud i [6]. Mathematical formulatio for structural model i Figure, ca be writte as 37
2 3 st July 06. Vol.89. No JATIT & LLS. All rights reserved. ISSN: E-ISSN: m K r i r i s i s r= 0 s= m + = α + β ( κ + m K t m αtξi βu( ξ i κu + ζi t= 0 u= ( I matrix form ca be formulated as = [ T(,, κ] γ + ζ ( T is the base of fuctioality that icludes exogeous latet variables ad kots, which follows previous study [6]. Because of the error ζ~ N( 0, I, the N( T(,, κ γ, I (3 also γˆ N( γ,[ T (,, κ T(,, κ] (4 therefore ( Cγ ˆ N( Cγ τ, C [ T (,, κ, κ T (,, κ, κ ] C] ξ ξ ξ ξ to determie whether parameters γ = [ α, α, K, α, β, K, β, 0 m K, α, α, K, α, β, K, β ] 0 m K (5 ifluece model i Eq.(, we will coduct hypothesis testig for H 0: Cγ = τ versus H : Cγ τ. 3. PARAMETER ESTIMATION UNDER SPACE AND SPACE OF SPLINE TRUNCATED IN NONLINEAR STRUCTURAL MODEL SEM Parameter hypothetical test for model ( as expressed below H 0: Cγ = τ versus H : Cγ τ (6 C is matrix s d, d = m + m + k + k +, γ is d vector parameter ad τ is vector s that the elemets are costat. Parameters set uder populatio, or uder the parameter space is as follows: = { γ = ( α0, α, K, αm, β, K, βk, (7, α0, α, K, α, β, K, β, } m K η The set of parameters uder H 0 or parameter space are formulated as follows: = { γ = ( α, α, K, α, β, K, β, 0 m K 0 K m K K η α, α,, α, β,, β, C γ = τ} (8 with < α r < ; r = 0,,..., m < α t < ; t = 0,,..., m < β s < ; s =,,..., K < β u < ; u =,,..., K ad 0 < < ; 0 < < η η To obtai the parameter estimatio of γ i the parameter space ad parameter space for model (, are available i the followig lemma: Lemma If γ ˆ ad γ ˆ are estimators of γ uder space ad for model (, respectively, the: γˆ = γˆ [ T (,, κ, κ T(,, κ, κ ] C [ C [ T (,, κ, κ T(,, κ, κ ] C] ( C γˆ ξ ξ ξ ξ ξ ξ ξ ξ Proof To prove Lemma as described above ca be used Lagrage multipliers s method. The Lagrage fuctio is assumed the followig: F( γ, θ = V( γ + θ ( C γ τ (9 V( γ = [( T(,, κ γ ( η T( ξ,, ] ξ κ γ (0 ad θ is Lagrage multipliers vector. Estimatio of γ is γ ˆ which miimizes a equatio i form of: V( γˆ = [( T(,, κ γˆ ( (,, ˆ η T ξ ] ξ κ γ ( with costrai of Cγ ˆ = τ. Estimator of γ ˆ is obtaied by describig the Eq.(0 to be V( γ = γ T (,, κ, κ + η η ξ ξ η + γ T (,, κ, κ T(,, κ, κ γ ξ ξ ξ ξ ( By substitutig Eq.( ito Eq.(9, it geerates a equatio F( γ, θ = γ T (,, κ, κ + η η ξ ξ η + γ T (,, κ, κ T (,, κ, κ γ + ξ ξ ξ ξ + θ ( Cγ (3 Whe the Eq.(3 is derived with respect to γ ad it results a equatio: 373
3 3 st July 06. Vol.89. No JATIT & LLS. All rights reserved. ISSN: E-ISSN: F( γ, θ = T ( ξ,,, + ξ κ κ η γ + T (,, κ, κ T (,, κ, κ γ + Cθ ξ ξ ξ ξ (4 For the Eq.(4 is miimized, it is equal to zero ad the by carryig out a simplificatio, it yields: T (,, κ, κ + T (,, κ, κ ξ ξ T(,, κ, κ γˆ + Cθ = 0 ξ ξ γˆ = [ T(,, κ, κ T(,, κ, κ ] [ T (,, κ, κ Cθ] ξ ξ ξ ξ ξ ξ η = γˆ [ T(,, κ, κ T (,, κ, κ ] Cθ (5 ξ ξ ξ ξ Ad by derivig the Eq.(3 with respect to θ ad treat the result equals to zero; it yields a form F( γ, θ = Cγ τ (6 θ Cγ ˆ = τ (7 By substitutig Eq.(5 ito Eq.(7, it geerates a equatio Cγ ˆ [ CT (,, κ, κ T (,, κ, κ Cθ] = τ ξ ξ ξ ξ The by addig the both sides with vector C γ ˆ geerates a compiled equatio [ C [ T (,, κ, κ T (,, κ, κ] Cθ] = ( Cγ ˆ ξ ξ ξ ξ ˆ θ= [ CT (,, κ, κ T (,, κ, κ C] ( Cγ ξ ξ ξ ξ (8 Ad by substitutig the Eq. (8 ito Eq. (5, is yielded: γˆ = γˆ [ T (,, κ, κ T (,, κ, κ ] C ξ ξ ξ ξ [ C [ T (,, κ, κ T (,, κ, κ ] C] ξ ξ ξ ξ ( Cγ ˆ (9 Based o Eq.(9 as previously described, the Lemma is proved. 4. STATISTICAL TEST OF SPLINE TRUNCATED IN NON LINEAR SEM Statistical test for hypothesis testig parameter i the Eq.(6 by usig likelihood ratio test is give ito Theorem the followig : Theorem The splie trucated model i oliear SEM is give such as the Eq.( If the hypothesis i the Eq.(6 is tested, the the statistical test for this hypothesis is: / d W = Q, Q / d d = m + m + k + k + d = ( m + m + k + k + ˆ Q = ( Cγ [ C [ T (,, κ, κ T (,, κ, κ ] C] ξ ξ ξ ξ ( Cγ ˆ Q = [ η T( ξ, ξ, κ γˆ ][ η T( ξ, ξ, κ γˆ ] Proof The Theorem ca be tested by employig a likelihood ratio test (LRT. Core method of LRT is purposed at searchig for ratio results from the likelihood fuctio which is the maximum value uder parameter space of agaist the likelihood fuctio which is the maximum value uder parameter space. By usig parameter sets of space ad space i the Eq.(7 ad (8 respectively, ca be writte likelihood fuctio for model ( uder as follows: / L( γ, ( exp{ [ η = π η + ηη γ T (,, κ + η + γ T (,, κ T(,, κ γ ]} ξ ξ η (0 If the logarithm of the Eq.(0 is derived partially with respect to η ad make the result equals to zero the it is obtaied: ( (,, ˆ ( (,, ˆ η T ξ ξ κ γ η T ξ ξ κ γ ˆ η = ( Authors, Ruliaa et al (05, showed that the estimator for γ uder the space was γˆ = [ T(,, κ T(,, κ] T (,, κ ξ ξ η ( It is discovered that by usig Eq.( ad Eq.( the maximum value of likelihood fuctio uder parameter space is yielded: ˆ / / L( = L( γ ˆ, ˆ = ( πˆ e (3 η η Subsequetly, the likelihood fuctio model ( uder the space is: / L( γ, ( exp{ ( η = π η + ηη γ T (,, κ + η + γ T (,, κ T(,, κ γ } ξ ξ η 374
4 3 st July 06. Vol.89. No JATIT & LLS. All rights reserved. ISSN: E-ISSN: (4 By partially derivig the logarithm of Eq. (4, with respect to η ad make the result equals to zero, it is resulted: ( η T ( ξ,, '( (,, ξ κ γ η Tξ ξ κ γ ˆ η = (5 ad based o Lemma, the mathematical form is obtaied the followig: γˆ = γˆ [ T (,, κ, κ T (,, κ, κ ] C ξ ξ ξ ξ [ C [ T (,, κ, κ T (,, κ, κ ] C] ξ ξ ξ ξ ( Cγ ˆ by applyig Eq.(9 ad Eq.(5, maximum value of likelihood fuctio uder parameter space is yielded ˆ / / L( = L( γ ˆ, ˆ = ( πˆ e (6 η η Subsequetly, by dividig of Eq.(6 toward Eq.(3 likelihood ratio is resulted as follows: L / / L( ˆ ( π e η ratio = = ˆ / / L( ( π e η Q = (7 A A = ( T(,, κ γˆ '( T(,, κ γ ˆ (8 Q ˆ ˆ = ( η T( ξ,, ( (,, ξ κ γ η T ξ ξ κ γ (9 By elaboratig Eq. (8 the form A ca be writte as follows: A = ( T(,, κ γˆ ( T(,, κ γˆ = [[ T (,, κ γˆ ]( T (,, κ γˆ ] + + [( T (,, κ γˆ ] T (,, κ( γˆ γˆ ] + ξ ξ + ( γˆ γˆ T (,, κ( T (,, κ γˆ + ξ ξ + ( γˆ γˆ T,, κ T (,, κ( γˆ γˆ Because of [( T(,, κ γˆ ] T(,, κ = 0 η ξ ξ ξ ξ T (,, κ[ T(,, κ γˆ ] = 0 ξ ξ (30 A = ( T(,, κ γˆ ( T(,, κ γˆ + + ( γˆ γˆ T,, κ T(,, κ( γˆ γˆ (3 Eq. (3 icludig previous Eq.(9 while the Eq.(9 ca be decomposed ito γˆ γˆ = [ T (,, κ, κ T(,, κ, κ ] C ad Theorem [ T ( ξ,, (,, ] (,, (,, = ξ κ T ξ ξ κ T ξ ξ κ T ξ ξ κif Q I ad Q, respectively, which are give i the the Eq. (30 ca be formulated to be Eq.(34 ad Eq.(9, the ξ ξ ξ ξ [ C [ T (,, κ, κ T(,, κ, κ ] C] ξ ξ ξ ξ ( Cγ ˆ (3 So, by substitutig the Eq.(3 ito Eq.(3 expressio of A becomes A = ( T(,, κ γˆ ( T(,, κ γˆ ( C γˆ [ C [ T (,, κ, κ T(,, κ, κ ] C] ( C γˆ ξ ξ ξ ξ = Q + Q (33 Q = ( C γˆ [ C [ T (,, κ, κ T(,, κ, κ ] C] ξ ξ ξ ξ ( C γˆ (34 The by substitutig the Eq.(33 ito Eq.(7 ad elaboratig the likelihood ratio, the Eq.(7 ca be writte as follows: / Q Lratio = + (35 Q Based o the Eq.(35, ad coducted a slightly elaboratio, it is obtaied that the statistical test for hypothesis H 0: Cγ = τ versus H 0: Cγ τ from model of ( is expressed i form of / d W = Q Q / d 5. DISTRIBUTION OF STATISTICAL TEST AND CRITICAL AREA OF HYPOTHESIS PARAMETER FOR SPLINE TRUNCATED MODEL IN NONLINEAR SEM The distributio from statistical test resulted by Theorem is derived ad is writte i Theorem as follows: 375
5 3 st July 06. Vol.89. No JATIT & LLS. All rights reserved. ISSN: E-ISSN: / d W = Q F( d, d Q / d Proof To prove the Theorem, should be shows Q/ χ ( d, Q/ χ ( d, also Q ad Q are idepedet, with the descriptio is stated below as follows: From Eq.(34 with ( Cγ ˆ N( Cγ τ, C [ T (,, κ, κ ξ ξ T(,, κ, κ ] C] ξ ξ ad ( AV ( AV = ( AV is a idempotet matrix [ C [ T ( ξ,,, (,,, ] ] ξ κ κ T ξ ξ κ κ C A = V = [ C [ T (,, κ, κ T (,, κ, κ ] C ] ξ ξ ξ ξ the Q χ (rak( A, D (36 with D = ( C γ [ C [ T (,, κ, κ ξ ξ ( C γ T( ξ,,, ] ] ξ κ κ C Sice A is the full rak matrix with the order d ad it is uder the hypothesis H 0, also matrix D = 0, the the form of Eq.(36 becomes Q ( χ d (37 Moreover, to show that Q/ χ ( d it was coducted a modificatio of Eq.(9 ito the form of quadratic form with the followig descriptio: Q = [ T(,, κ γ ] η ξ ˆ ξ [( T(,, κ γˆ ] [ JJ] (38 = η η J = [ I T(,, κ[ T (,, κ T(,, κ] T (,, κ] ξ ξ ξ ξ For J J = J is symmetric ad idempotet matrix, the the form of Eq.(38 ca be rewritte as follows: Q = η [ I T( ξ,, [ (,, (,, ] ξ κ T ξ ξ κ T ξ ξ κ T (,, κ] ξ ξ η (39 with N( T(,, κ γ, I ad ( A V ( A V = ( A V is idempotet matrix ξ ξ ξ ξ [ I T (,, κ[ T(,, κ T (,, κ] T(,, κ A = V = I The it is obtaied the followig Q χ (rak( A, E (40 with E = ( T(,, κ γ[ I T(,, κ [ T (,, κ T(,, κ] ( T( ξ,, ξ κ γ T ( ξ,, ξ κ sice rak( A = rak( A V = tr( AV = ( m + m + k + k + ad by elaboratig the matrix E, it is yielded that E = 0, the Eq.(40 becomes ito Q χ ( d (4 Furthermore, to show whether Q ad Q are idepedet or ot, it should be show GVF = 0, V = I is the variace of vector quadratic form Q ad Q ; G ad F, respectively, are matrix quadratic form for Qad Q. By modifyig Q i the Eq.(34 ad Q i the Eq.(9 ito vector quadratic form as radom variable distributed ormally, Q ad Q respectively are obtaied i form of: Q = [ T (,, κ CCC [ ] τ] ad T (,, κ[ T (,, κ T (,, κ] C ξ ξ [ C [ T (,, κ, κ T (,, κ, κ ] C] ξ ξ ξ ξ ξ ξ C [[ T (,, κ T (,, κ] T (,, κ [ T(,, κ C[ CC ] τ ] (4 Q = [ T (,, κ CCC [ ] τ] [ I T (,, κ[ T (,, κ T (,, κ] ξ ξ T (,, κ][ T (,, κ CCC [ ] τ] ξ ξ (43 376
6 3 st July 06. Vol.89. No JATIT & LLS. All rights reserved. ISSN: E-ISSN: From the Eq.(4 ad Eq.(43 are foud that Q ad Q are quadratic form i vector x= [ T(,, κ CCC [ ] τ ] distributed ormally, matrix quadratic form for Q is: F = T (,, κ[ T (,, κ T (,, κ] C ξ ξ [ C [ T (,, κ, κ T (,, κ, κ ] C] ξ ξ ξ ξ ξ ξ C [[ T (,, κ T (,, κ] T (,, κ ad matrix quadratic form for Q is: G= [ I T (,, κ[ T (,, κt (,, κ] T (,, κ ξ ξ ξ ξ (44 (45 By usig the results of the multiplicatio of the matrices i Eq.(45 ad Eq.(44 also variace from [ T(,, κ CCC [ ] τ ], slightly Elaboratio obtaied: GVF = G( I F = GF = 0 (46 It results that Q ad Q are idepedet. Based o the Eq.(37, Eq.(4 ad Eq.(46 the the form of distributio from statistical test of splie trucated i oliear SEM i the equatio of ( is: / d W = Q F( d, d Q / d The critical area of hypothesis of statistical test for splie trucated model i oliear SEM is described i Theorem 3 as follows: Theorem 3 If give a hypothesis such as i Eq.(6, ad statistical test as stated i Theorem as well as the distributio of the statistical test, which is give by Theorem, the the critical areas of the test are obtaied from completig the equatio: ( W Cγ τ P > k = = α α ad k are the sigificat level ad a particular costat, respectively. Proof The critical area to test hypothesis H 0: Cγ = τ versus H : Cγ τ, is the sets of all poits that satisfy the coditio L or ratio L( ˆ = < k L( ˆ (47 ( + Q < k (48 By decomposig the expressio of iequality stated i Eq.(48 is obtaied W > k (49 d k = k d The if give a sigificat level of α the k is resulted from the equatio of show below: ( k α = P W > Cγ = τ, W F( d, d 6. CONCLUSION Hypothesis testig of parameter of splie trucated model i oliear SEM for H 0: Cγ = τ versus H : Cγ τ usig Likelihood Ratio Test (LRT, ca be cocluded as follows:. Estimatio of parameter for splie trucated model i oliear SEM uder parameter space is: γˆ = [ T (,, κ T (,, κ] T (,, κ ad uder parameter space (hypothesis H 0 is: γˆ = γˆ [ T (,, κ, κ T(,, κ, κ ] ξ ξ η C[ C [ T (,, κ, κ T(,, κ, κ ] C] ( Cγ ˆ ξ ξ ξ ξ ξ ξ ξ ξ. Statistical test for hypothesis test of parameter for splie trucated model i oliear SEM is: / d W = Q Q / d d = m + m + k + k + d = ( m + m + k + k + Q = ( Cγ ˆ Q [ C [ T (,, κ, κ T (,, κ, κ ] C] ( Cγ ˆ ξ ξ ξ ξ = η T ξ ˆ ξ κ γ ( (,, ( T(,, κ γˆ 377
7 3 st July 06. Vol.89. No JATIT & LLS. All rights reserved. ISSN: E-ISSN: Distributio of statistical test for hypothesis testig of parameter for splie trucated model i oliear SEM is i form of: W F( d, d 4. Critical area for hypothesis test of parameter for splie trucated model i oliear SEM is obtaied from the solvig of equatio ( k P W > Cγ = τ = α, W F( d, d REFERENCES [] K.G. Joreskog, A Geeral Method for Estimatig a Liear Structural Equatio System, i A.S. Goldberger, O.D. Duca, (Eds., Structural Equatio Models i the Social Scieces 85-, Academic Press, New York, 973. [] P.M. Betler, Multivariate Aalysis with Latet Variables: Causal Modelig, Aual Review of Psychology, Vol. 3, 980, pp [3] K.A. Bolle, Structural Equatios with Latet Variables, Joh Wiley & Sos, New York, [4] M.M. Wall, ad Y. Amemiya, Noliear Structural Equatio Modelig as a Statistical Method, Hadbook of Computig ad Statistics With Applicatios, ISSN: Vol., 007, pp / [5] S.Y. Lee, ad H.T. Zhu, Statistical Aalysis of Noliear Structural Equatio Models with Cotiuous ad Polytomous Data, British Joural of Mathematical ad Statistical Psychology, Vol. 53, 000, pp [6] S.Y. Lee, ad X.Y. Sog, Maximum Likelihood Estimatio ad Model Compariso of Noliear Structural Equatio Models with Cotiuous ad Polytomous Variables, Computatioal Statistics & Data Aalysis, Vol. 44, 003, pp [7] S.Y. Lee, X.Y. Sog ad J.C.K. Lee, Maximum Likelihood Estimatio of Noliear Structural Equatio Models with Igorable Missig Data, Joural of Educatioal ad Behavioral Statistics, Vol. 8, 003, pp [8] S.Y. Lee, X.Y. Sog, ad W.Y. Poo, Compariso of Approaches i Estimatig Iteractio ad Quadratic Effects of Latet Variables, Multivariate Behavioral Research, Vol. 39, 004, pp _ [9] K.A. Bolle, ad P.J. Curra, No Liear Trajectories ad The Codig of Time, Latet Curve Models: a Structural Equatio Perspective, Joh Wiley & Sos, 006. [0] S.Y. Lee, ad N.S. Tag, Aalysis of Noliear Structural Equatio Models with Noigorable Missig Covariates ad Ordered Categorical Data, Statistica Siica, Vol. 6, 006, pp [] A.G. Klei, ad B.O Muthe, Quasi Maximum Likelihood Estimatio of Structural Equatio Models with Multiple Iteractio ad Quadratic Effects, Multivariate Behavioral Research, Vol. 4, 007, pp [] A. Mooijaart, ad A. Satorra, Momet Testig for Iteractio Terms i Structural Equatio Modelig, Leide Uiversity, 0. [3] M.M. Wall, ad Y. Amemiya, Estimatio for Polyomial Structural Equatio Models, Joural of the America Statistical Associatio, Vol. 9, 000, pp [4] J.R. Harrig, a Splie Model for Latet Variable, Educatioal ad Psychological Measuremet, Vol. 0, 03, pp. -7. [5] B.W. Otok, S.W. Purami, ad S. Adari, Developig Measuremet Model Usig Bayesia Cofirmatory Factor Aalysis i Suppressig Materal Mortality, Iteratioal Joural of Applied Mathematics ad Statistics, Vol. 6, 05, pp [6] Ruliaa, I.N. Budiatara, B.W. Otok ad W.Wibowo, Parameter Estimatio of Noliear Structural Model SEM Usig Splie Approach, Applied Mathematical Scieces, Vol. 9, 05, pp [7] A.A.R. Ferades, I.N. Budiatara, B.W. Otok ad Suhartoo, Splie Estimator for Biresposes Noparametric Regressio Model for Logitudial Data, Applied Mathematical Scieces, Vol.8, 04, pp [8] I.N. Budiatara, Model Splie dega Kot Optimal, Jural Ilmu Dasar, FMIPA Uiversitas Jember, Vol. 7, (006, pp
8 3 st July 06. Vol.89. No JATIT & LLS. All rights reserved. ISSN: E-ISSN: [9] B. Lestari, I.N. Budiatara, S. Suaryo, ad M. Mashury, Splie Estimator i Multiresposes Noparametric Regressio Model with Uequal Correlatio of Errors, Mathematics ad Statistics, Vol. 6, No. 3, 00, pp [0] I.N. Budiatara, Splie dalam Regresi Noparametrik da Semiparametrik (Sebuah Pemodela Statistika Masa Kii da Masa Medatag, Pidato Pegukuha utuk Jabata Guru Besar pada Jurusa Statistika ITS Surabaya,
9 3 st July 06. Vol.89. No JATIT & LLS. All rights reserved. ISSN: E-ISSN: ξ η ξ ζ Figure : Path Diagram of Splie Trucated Model i Noliear SEM for Two Exogeous Latet Variables ad Oe Edogeous Latet Variable 380
Homework for 1/27 Due 2/5
Name: ID: Homework for /7 Due /5. [ 8-3] I Example D of Sectio 8.4, the pdf of the populatio distributio is + αx x f(x α) =, α, otherwise ad the method of momets estimate was foud to be ˆα = 3X (where
α β
6. Eerg, Mometum coefficiets for differet velocit distributios Rehbock obtaied ) For Liear Velocit Distributio α + ε Vmax { } Vmax ε β +, i which ε v V o Give: α + ε > ε ( α ) Liear velocit distributio
Introduction of Numerical Analysis #03 TAGAMI, Daisuke (IMI, Kyushu University)
Itroductio of Numerical Aalysis #03 TAGAMI, Daisuke (IMI, Kyushu Uiversity) web page of the lecture: http://www2.imi.kyushu-u.ac.jp/~tagami/lec/ Strategy of Numerical Simulatios Pheomea Error modelize
Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing.
Last Lecture Biostatistics 602 - Statistical Iferece Lecture 19 Likelihood Ratio Test Hyu Mi Kag March 26th, 2013 Describe the followig cocepts i your ow words Hypothesis Null Hypothesis Alterative Hypothesis
Statistical Inference I Locally most powerful tests
Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided
Outline. Detection Theory. Background. Background (Cont.)
Outlie etectio heory Chapter7. etermiistic Sigals with Ukow Parameters afiseh S. Mazloum ov. 3th Backgroud Importace of sigal iformatio Ukow amplitude Ukow arrival time Siusoidal detectio Classical liear
p n r.01.05.10.15.20.25.30.35.40.45.50.55.60.65.70.75.80.85.90.95
r r Table 4 Biomial Probability Distributio C, r p q This table shows the probability of r successes i idepedet trials, each with probability of success p. p r.01.05.10.15.0.5.30.35.40.45.50.55.60.65.70.75.80.85.90.95
Solutions: Homework 3
Solutios: Homework 3 Suppose that the radom variables Y,, Y satisfy Y i = βx i + ε i : i,, where x,, x R are fixed values ad ε,, ε Normal0, σ ) with σ R + kow Fid ˆβ = MLEβ) IND Solutio: Observe that Y
L.K.Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 4677 + {JEE Mai 04} Sept 0 Name: Batch (Day) Phoe No. IT IS NOT ENOUGH TO HAVE A GOOD MIND, THE MAIN THING IS TO USE IT WELL Marks:
Solve the difference equation
Solve the differece equatio Solutio: y + 3 3y + + y 0 give tat y 0 4, y 0 ad y 8. Let Z{y()} F() Taig Z-trasform o both sides i (), we get y + 3 3y + + y 0 () Z y + 3 3y + + y Z 0 Z y + 3 3Z y + + Z y
n r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1)
8 Higher Derivative of the Product of Two Fuctios 8. Leibiz Rule about the Higher Order Differetiatio Theorem 8.. (Leibiz) Whe fuctios f ad g f g are times differetiable, the followig epressio holds. r
On Generating Relations of Some Triple. Hypergeometric Functions
It. Joural of Math. Aalysis, Vol. 5,, o., 5 - O Geeratig Relatios of Some Triple Hypergeometric Fuctios Fadhle B. F. Mohse ad Gamal A. Qashash Departmet of Mathematics, Faculty of Educatio Zigibar Ade
A study on generalized absolute summability factors for a triangular matrix
Proceedigs of the Estoia Acadey of Scieces, 20, 60, 2, 5 20 doi: 0.376/proc.20.2.06 Available olie at www.eap.ee/proceedigs A study o geeralized absolute suability factors for a triagular atrix Ere Savaş
Lecture 17: Minimum Variance Unbiased (MVUB) Estimators
ECE 830 Fall 2011 Statistical Sigal Processig istructor: R. Nowak, scribe: Iseok Heo Lecture 17: Miimum Variace Ubiased (MVUB Estimators Ultimately, we would like to be able to argue that a give estimator
Other Test Constructions: Likelihood Ratio & Bayes Tests
Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :
INTEGRATION OF THE NORMAL DISTRIBUTION CURVE
INTEGRATION OF THE NORMAL DISTRIBUTION CURVE By Tom Irvie Email: tomirvie@aol.com March 3, 999 Itroductio May processes have a ormal probability distributio. Broadbad radom vibratio is a example. The purpose
1. For each of the following power series, find the interval of convergence and the radius of convergence:
Math 6 Practice Problems Solutios Power Series ad Taylor Series 1. For each of the followig power series, fid the iterval of covergece ad the radius of covergece: (a ( 1 x Notice that = ( 1 +1 ( x +1.
Diane Hu LDA for Audio Music April 12, 2010
Diae Hu LDA for Audio Music April, 00 Terms Model Terms (per sog: Variatioal Terms: p( α Γ( i α i i Γ(α i p( p(, β p(c, A j Σ i α i i i ( V / ep β (i j ij (3 q( γ Γ( i γ i i Γ(γ i q( φ q( ω { } (c A T
The Heisenberg Uncertainty Principle
Chemistry 460 Sprig 015 Dr. Jea M. Stadard March, 015 The Heiseberg Ucertaity Priciple A policema pulls Werer Heiseberg over o the Autobah for speedig. Policema: Sir, do you kow how fast you were goig?
Ψηφιακή Επεξεργασία Εικόνας
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ψηφιακή Επεξεργασία Εικόνας Φιλτράρισμα στο πεδίο των συχνοτήτων Διδάσκων : Αναπληρωτής Καθηγητής Νίκου Χριστόφορος Άδειες Χρήσης Το παρόν εκπαιδευτικό
Supplementary Appendix
Supplementary Appendix Measuring crisis risk using conditional copulas: An empirical analysis of the 2008 shipping crisis Sebastian Opitz, Henry Seidel and Alexander Szimayer Model specification Table
Fractional Colorings and Zykov Products of graphs
Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is
Matrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
On Inclusion Relation of Absolute Summability
It. J. Cotemp. Math. Scieces, Vol. 5, 2010, o. 53, 2641-2646 O Iclusio Relatio of Absolute Summability Aradhaa Dutt Jauhari A/66 Suresh Sharma Nagar Bareilly UP) Idia-243006 aditya jauhari@rediffmail.com
SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6
SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES Readig: QM course packet Ch 5 up to 5. 1 ϕ (x) = E = π m( a) =1,,3,4,5 for xa (x) = πx si L L * = πx L si L.5 ϕ' -.5 z 1 (x) = L si
Bessel function for complex variable
Besse fuctio for compex variabe Kauhito Miuyama May 4, 7 Besse fuctio The Besse fuctio Z ν () is the fuctio wich satisfies + ) ( + ν Z ν () =. () Three kids of the soutios of this equatio are give by {
LAD Estimation for Time Series Models With Finite and Infinite Variance
LAD Estimatio for Time Series Moels With Fiite a Ifiite Variace Richar A. Davis Colorao State Uiversity William Dusmuir Uiversity of New South Wales 1 LAD Estimatio for ARMA Moels fiite variace ifiite
Congruence Classes of Invertible Matrices of Order 3 over F 2
International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and
CHAPTER 103 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES
CHAPTER 3 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES EXERCISE 364 Page 76. Determie the Fourier series for the fuctio defied by: f(x), x, x, x which is periodic outside of this rage of period.
Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1
Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test
6.1. Dirac Equation. Hamiltonian. Dirac Eq.
6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2
IIT JEE (2013) (Trigonomtery 1) Solutions
L.K. Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 677 (+) PAPER B IIT JEE (0) (Trigoomtery ) Solutios TOWARDS IIT JEE IS NOT A JOURNEY, IT S A BATTLE, ONLY THE TOUGHEST WILL SURVIVE
Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.
Bayesian statistics DS GA 1002 Probability and Statistics for Data Science http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall17 Carlos Fernandez-Granda Frequentist vs Bayesian statistics In frequentist
COMMON RANDOM FIXED POINT THEOREMS IN SYMMETRIC SPACES
Iteratioal Joural of Avacemets i Research & Techology, Volume, Issue, Jauary-03 ISSN 78-7763 COMMON RANDOM FIXED POINT THEOREMS IN SYMMETRIC SPACES Dr Neetu Vishwakarma a Dr M S Chauha Sagar Istitute of
The Equivalence Theorem in Optimal Design
he Equivalece heorem i Optimal Desig Raier Schwabe & homas Schmelter, Otto vo Guericke Uiversity agdeburg Bayer Scherig Pharma, Berli rschwabe@ovgu.de PODE 007 ay 4, 007 Outlie Prologue: Simple eamples.
ST5224: Advanced Statistical Theory II
ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known
w o = R 1 p. (1) R = p =. = 1
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:
Reminders: linear functions
Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U
ΔΙΕΡΕΥΝΗΣΗ ΤΗΣ ΣΕΞΟΥΑΛΙΚΗΣ ΔΡΑΣΤΗΡΙΟΤΗΤΑΣ ΤΩΝ ΓΥΝΑΙΚΩΝ ΚΑΤΑ ΤΗ ΔΙΑΡΚΕΙΑ ΤΗΣ ΕΓΚΥΜΟΣΥΝΗΣ ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ
ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ Πτυχιακή Εργασία ΔΙΕΡΕΥΝΗΣΗ ΤΗΣ ΣΕΞΟΥΑΛΙΚΗΣ ΔΡΑΣΤΗΡΙΟΤΗΤΑΣ ΤΩΝ ΓΥΝΑΙΚΩΝ ΚΑΤΑ ΤΗ ΔΙΑΡΚΕΙΑ ΤΗΣ ΕΓΚΥΜΟΣΥΝΗΣ ΑΝΔΡΕΟΥ ΣΤΕΦΑΝΙΑ Λεμεσός 2012 i ii ΤΕΧΝΟΛΟΓΙΚΟ
SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018
Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals
Binet Type Formula For The Sequence of Tetranacci Numbers by Alternate Methods
DOI: 545/mjis764 Biet Type Formula For The Sequece of Tetraacci Numbers by Alterate Methods GAUTAMS HATHIWALA AND DEVBHADRA V SHAH CK Pithawala College of Eigeerig & Techology, Surat Departmet of Mathematics,
Presentation of complex number in Cartesian and polar coordinate system
1 a + bi, aεr, bεr i = 1 z = a + bi a = Re(z), b = Im(z) give z = a + bi & w = c + di, a + bi = c + di a = c & b = d The complex cojugate of z = a + bi is z = a bi The sum of complex cojugates is real:
A Note on Intuitionistic Fuzzy. Equivalence Relation
International Mathematical Forum, 5, 2010, no. 67, 3301-3307 A Note on Intuitionistic Fuzzy Equivalence Relation D. K. Basnet Dept. of Mathematics, Assam University Silchar-788011, Assam, India dkbasnet@rediffmail.com
Variance Covariance Matrices for Linear Regression with Errors in both Variables. by J.W. Gillard and T.C. Iles
Variace Covariace Matrices for Liear Regressio with Errors i both Variables by J.W. Gillard ad T.C. Iles School of Mathematics, Segheydd Road, Cardiff Uiversity, October 2006 Cotets 1 Itroductio 2 2 The
Pro duction Technology and Technical Efficiency in ( k, y) Sp ace
15 5 Vol. 15 No. 5 006 10 OPERA TIONS RESEARCH AND MANA GEMEN T SCIENCE Oct. 006 ( 150001) : K L Y k ( L ) y ( K L Y) ( k y) ( k y) ( k y) ( K L Y) ( C R ) C R ( k y) : ; ;; : F4. 0 :A :100731 (006) 05007505
HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:
HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying
EE512: Error Control Coding
EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3
On Certain Subclass of λ-bazilevič Functions of Type α + iµ
Tamsui Oxford Joural of Mathematical Scieces 23(2 (27 141-153 Aletheia Uiversity O Certai Subclass of λ-bailevič Fuctios of Type α + iµ Zhi-Gag Wag, Chu-Yi Gao, ad Shao-Mou Yua College of Mathematics ad
derivation of the Laplacian from rectangular to spherical coordinates
derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used
Estimation for ARMA Processes with Stable Noise. Matt Calder & Richard A. Davis Colorado State University
Estimation for ARMA Processes with Stable Noise Matt Calder & Richard A. Davis Colorado State University rdavis@stat.colostate.edu 1 ARMA processes with stable noise Review of M-estimation Examples of
Ο νοσηλευτικός ρόλος στην πρόληψη του μελανώματος
ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ Πτυχιακή διατριβή Ο νοσηλευτικός ρόλος στην πρόληψη του μελανώματος Ονοματεπώνυμο: Αρτέμης Παναγιώτου Επιβλέπων καθηγητής: Δρ. Αντρέας Χαραλάμπους
Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013
Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal
Research on Economics and Management
36 5 2015 5 Research on Economics and Management Vol. 36 No. 5 May 2015 490 490 F323. 9 A DOI:10.13502/j.cnki.issn1000-7636.2015.05.007 1000-7636 2015 05-0052 - 10 2008 836 70% 1. 2 2010 1 2 3 2015-03
Tridiagonal matrices. Gérard MEURANT. October, 2008
Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,
FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revision B
FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revisio B By Tom Irvie Email: tomirvie@aol.com February, 005 Derivatio of the Equatio of Motio Cosier a sigle-egree-of-freeom system. m x k c where m
557: MATHEMATICAL STATISTICS II RESULTS FROM CLASSICAL HYPOTHESIS TESTING
Most Powerful Tests 557: MATHEMATICAL STATISTICS II RESULTS FROM CLASSICAL HYPOTHESIS TESTING To construct and assess the quality of a statistical test, we consider the power function β(θ). Consider a
ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ
ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΨΥΧΟΛΟΓΙΚΕΣ ΕΠΙΠΤΩΣΕΙΣ ΣΕ ΓΥΝΑΙΚΕΣ ΜΕΤΑ ΑΠΟ ΜΑΣΤΕΚΤΟΜΗ ΓΕΩΡΓΙΑ ΤΡΙΣΟΚΚΑ Λευκωσία 2012 ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ
Partial Differential Equations in Biology The boundary element method. March 26, 2013
The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet
2 Composition. Invertible Mappings
Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,
ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΕΡΙΒΑΛΛΟΝΤΟΣ
ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Τομέας Περιβαλλοντικής Υδραυλικής και Γεωπεριβαλλοντικής Μηχανικής (III) Εργαστήριο Γεωπεριβαλλοντικής Μηχανικής TECHNICAL UNIVERSITY OF CRETE SCHOOL of
6.3 Forecasting ARMA processes
122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear
4.6 Autoregressive Moving Average Model ARMA(1,1)
84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this
EN40: Dynamics and Vibrations
EN40: Dyamics a Vibratios School of Egieerig Brow Uiversity Solutios to Differetial Equatios of Motio for Vibratig Systems Here, we summarize the solutios to the most importat ifferetial equatios of motio
Concrete Mathematics Exercises from 30 September 2016
Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)
Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3
Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all
Degenerate Perturbation Theory
R.G. Griffi BioNMR School page 1 Degeerate Perturbatio Theory 1.1 Geeral Whe cosiderig the CROSS EFFECT it is ecessary to deal with degeerate eergy levels ad therefore degeerate perturbatio theory. The
Partial Trace and Partial Transpose
Partial Trace and Partial Transpose by José Luis Gómez-Muñoz http://homepage.cem.itesm.mx/lgomez/quantum/ jose.luis.gomez@itesm.mx This document is based on suggestions by Anirban Das Introduction This
Homomorphism in Intuitionistic Fuzzy Automata
International Journal of Fuzzy Mathematics Systems. ISSN 2248-9940 Volume 3, Number 1 (2013), pp. 39-45 Research India Publications http://www.ripublication.com/ijfms.htm Homomorphism in Intuitionistic
ΤΕΧΝΙΚΕΣ ΔΙΑΓΝΩΣΗΣ ΤΗΣ ΝΟΣΟΥ ΑΛΤΣΧΑΙΜΕΡ ΜΕ FMRI
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΥΣΤΗΜΑΤΩΝ ΜΕΤΑΔΟΣΗΣ ΠΛΗΡΟΦΟΡΙΑΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΛΙΚΩΝ ΤΕΧΝΙΚΕΣ ΔΙΑΓΝΩΣΗΣ ΤΗΣ ΝΟΣΟΥ ΑΛΤΣΧΑΙΜΕΡ ΜΕ FMRI ΔΙΠΛΩΜΑΤΙΚΗ
Homework 8 Model Solution Section
MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx
Math221: HW# 1 solutions
Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin
Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in
Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that
Biorthogonal Wavelets and Filter Banks via PFFS. Multiresolution Analysis (MRA) subspaces V j, and wavelet subspaces W j. f X n f, τ n φ τ n φ.
Chapter 3. Biorthogoal Wavelets ad Filter Baks via PFFS 3.0 PFFS applied to shift-ivariat subspaces Defiitio: X is a shift-ivariat subspace if h X h( ) τ h X. Ex: Multiresolutio Aalysis (MRA) subspaces
Math 6 SL Probability Distributions Practice Test Mark Scheme
Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry
Every set of first-order formulas is equivalent to an independent set
Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent
K. Hausdorff K K O X = SDA. symbolic data analysis SDA SDA. Vol. 16 No. 3 Mar JOURNAL OF MANAGEMENT SCIENCES IN CHINA
16 3 013 3 JOURNAL OF MANAGEMENT SCIENCES IN CHINA Vol 16 No 3 Mar 013 1 K 30007 K Hausdorff K K K O1 4 A 1007-9807 013 03-001 - 08 0 3 X = 5 36 K SDA 1 symbolic data aalysis SDA 3 5 SDA 1 011-06 - 15
Generating Set of the Complete Semigroups of Binary Relations
Applied Mathematics 06 7 98-07 Published Online January 06 in SciRes http://wwwscirporg/journal/am http://dxdoiorg/036/am067009 Generating Set of the Complete Semigroups of Binary Relations Yasha iasamidze
Solution Series 9. i=1 x i and i=1 x i.
Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x
Lecture 21: Properties and robustness of LSE
Lecture 21: Properties and robustness of LSE BLUE: Robustness of LSE against normality We now study properties of l τ β and σ 2 under assumption A2, i.e., without the normality assumption on ε. From Theorem
Section 8.3 Trigonometric Equations
99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.
Chapter 1 Introduction to Observational Studies Part 2 Cross-Sectional Selection Bias Adjustment
Contents Preface ix Part 1 Introduction Chapter 1 Introduction to Observational Studies... 3 1.1 Observational vs. Experimental Studies... 3 1.2 Issues in Observational Studies... 5 1.3 Study Design...
ΑΝΑΠΤΥΞΗ ΤΟΥ ΠΤΥΧΙΑΚΗ. Λεμεσός
ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ ΤΟ ΚΑΠΝΙΣΜΑ ΚΑΤΑ ΤΗΝ ΕΓΚΥΜΟΣΥΝΗ ΚΑΙ Η ΒΛΑΠΤΙΚΗ ΕΠΙΔΡΑ ΑΣΗ ΤΟΥ ΣΤΗΝ ΑΝΑΠΤΥΞΗ ΤΟΥ ΝΕΟΓΝΟΥ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ Ονοματεπώνυμο Αγγελική Παπαπαύλου Αριθμός Φοιτητικής
Second Order RLC Filters
ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor
J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5
Vol. 37 ( 2017 ) No. 5 J. of Math. (PRC) 1,2, 1, 1 (1., 225002) (2., 225009) :. I +AT +, T + = T + (I +AT + ) 1, T +. Banach Hilbert Moore-Penrose.. : ; ; Moore-Penrose ; ; MR(2010) : 47L05; 46A32 : O177.2
Statistics 104: Quantitative Methods for Economics Formula and Theorem Review
Harvard College Statistics 104: Quantitative Methods for Economics Formula and Theorem Review Tommy MacWilliam, 13 tmacwilliam@college.harvard.edu March 10, 2011 Contents 1 Introduction to Data 5 1.1 Sample
Commutative Monoids in Intuitionistic Fuzzy Sets
Commutative Monoids in Intuitionistic Fuzzy Sets S K Mala #1, Dr. MM Shanmugapriya *2 1 PhD Scholar in Mathematics, Karpagam University, Coimbatore, Tamilnadu- 641021 Assistant Professor of Mathematics,
: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM
2008 6 Chinese Journal of Applied Probability and Statistics Vol.24 No.3 Jun. 2008 Monte Carlo EM 1,2 ( 1,, 200241; 2,, 310018) EM, E,,. Monte Carlo EM, EM E Monte Carlo,. EM, Monte Carlo EM,,,,. Newton-Raphson.
Risk! " #$%&'() *!'+,'''## -. / # $
Risk! " #$%&'(!'+,'''## -. / 0! " # $ +/ #%&''&(+(( &'',$ #-&''&$ #(./0&'',$( ( (! #( &''/$ #$ 3 #4&'',$ #- &'',$ #5&''6(&''&7&'',$ / ( /8 9 :&' " 4; < # $ 3 " ( #$ = = #$ #$ ( 3 - > # $ 3 = = " 3 3, 6?3
Data Dependence of New Iterative Schemes
Mathematics Volume : 4 Issue : 6 Jue 4 ISSN - 49-555X Data Depedece of New Iterative Schemes KEYWORDS CR Iteratio Data Depedece New Multistep Iteratio Quasi Cotractive * Aarti Kadia Assistat Professor
Approximation of distance between locations on earth given by latitude and longitude
Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth
Abstract Storage Devices
Abstract Storage Devices Robert König Ueli Maurer Stefano Tessaro SOFSEM 2009 January 27, 2009 Outline 1. Motivation: Storage Devices 2. Abstract Storage Devices (ASD s) 3. Reducibility 4. Factoring ASD
Μηχανισμοί πρόβλεψης προσήμων σε προσημασμένα μοντέλα κοινωνικών δικτύων ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΕΠΙΚΟΙΝΩΝΙΩΝ, ΗΛΕΚΤΡΟΝΙΚΗΣ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Μηχανισμοί πρόβλεψης προσήμων σε προσημασμένα μοντέλα κοινωνικών
ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ. Πτυχιακή εργασία ΑΓΧΟΣ ΚΑΙ ΚΑΤΑΘΛΙΨΗ ΣΕ ΓΥΝΑΙΚΕΣ ΜΕ ΚΑΡΚΙΝΟΥ ΤΟΥ ΜΑΣΤΟΥ ΜΕΤΑ ΑΠΟ ΜΑΣΤΕΚΤΟΜΗ
ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ Πτυχιακή εργασία ΑΓΧΟΣ ΚΑΙ ΚΑΤΑΘΛΙΨΗ ΣΕ ΓΥΝΑΙΚΕΣ ΜΕ ΚΑΡΚΙΝΟΥ ΤΟΥ ΜΑΣΤΟΥ ΜΕΤΑ ΑΠΟ ΜΑΣΤΕΚΤΟΜΗ ΧΡΥΣΟΒΑΛΑΝΤΗΣ ΒΑΣΙΛΕΙΟΥ ΛΕΜΕΣΟΣ 2014 ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ
6. MAXIMUM LIKELIHOOD ESTIMATION
6 MAXIMUM LIKELIHOOD ESIMAION [1] Maximum Likelihood Estimator (1) Cases in which θ (unknown parameter) is scalar Notational Clarification: From now on, we denote the true value of θ as θ o hen, view θ
Second Order Partial Differential Equations
Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y
MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra
MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutios to Poblems o Matix Algeba 1 Let A be a squae diagoal matix takig the fom a 11 0 0 0 a 22 0 A 0 0 a pp The ad So, log det A t log A t log
CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS
CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =
ΣΧΕΔΙΑΣΜΟΣ ΚΑΙ ΕΝΙΣΧΥΣΗ ΤΩΝ ΚΟΜΒΩΝ ΟΠΛΙΣΜΕΝΟΥ ΣΚΥΡΟΔΕΜΑΤΟΣ ΜΕ ΒΑΣΗ ΤΟΥΣ ΕΥΡΩΚΩΔΙΚΕΣ
Σχολή Μηχανικής και Τεχνολογίας Πτυχιακή εργασία ΣΧΕΔΙΑΣΜΟΣ ΚΑΙ ΕΝΙΣΧΥΣΗ ΤΩΝ ΚΟΜΒΩΝ ΟΠΛΙΣΜΕΝΟΥ ΣΚΥΡΟΔΕΜΑΤΟΣ ΜΕ ΒΑΣΗ ΤΟΥΣ ΕΥΡΩΚΩΔΙΚΕΣ Σωτήρης Παύλου Λεμεσός, Μάιος 2018 i ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ
Μεταπτυχιακή διατριβή. Ανδρέας Παπαευσταθίου
Σχολή Γεωτεχνικών Επιστημών και Διαχείρισης Περιβάλλοντος Μεταπτυχιακή διατριβή Κτίρια σχεδόν μηδενικής ενεργειακής κατανάλωσης :Αξιολόγηση συστημάτων θέρμανσης -ψύξης και ΑΠΕ σε οικιστικά κτίρια στην