ΚΡΥΠΤΟΓΡΑΦΙΑ. Η κρυπτογραφία παρέχει 4 βασικές λειτουργίες (αντικειμενικοί σκοποί):

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΚΡΥΠΤΟΓΡΑΦΙΑ. Η κρυπτογραφία παρέχει 4 βασικές λειτουργίες (αντικειμενικοί σκοποί):"

Transcript

1 ΚΡΥΠΤΟΓΡΑΦΙΑ Η λέξη κρυπτογραφία προέρχεται από τα συνθετικά "κρυπτός" + "γράφω" και είναι ένας επιστημονικός κλάδος που ασχολείται με την μελέτη, την ανάπτυξη και την χρήση τεχνικών κρυπτογράφησης και αποκρυπτογράφησης με σκοπό την απόκρυψη του περιεχομένου των μηνυμάτων. Η κρυπτογραφία είναι ένας κλάδος της επιστήμης της κρυπτολογίας, η οποία ασχολείται με την μελέτη της ασφαλούς επικοινωνίας. Ο κύριος στόχος της είναι να παρέχει μηχανισμούς για 2 ή περισσότερα μέλη να επικοινωνήσουν χωρίς κάποιος άλλος να είναι ικανός να διαβάζει την πληροφορία εκτός από τα μέλη. Η λέξη κρυπτολογία αποτελείται από την ελληνική λέξη "κρυπτός" και την λέξη "λόγος" και χωρίζεται σε δύο κλάδους: την Κρυπτογραφία και την Κρυπτανάλυση. Ιστορικά η κρυπτογραφία χρησιμοποιήθηκε για την κρυπτογράφηση μηνυμάτων δηλαδή μετατροπή της πληροφορίας από μια κανονική κατανοητή μορφή σε έναν γρίφο, που χωρίς την γνώση του κρυφού μετασχηματισμού θα παρέμενε ακατανόητος. Κύριο χαρακτηριστικό των παλαιότερων μορφών κρυπτογράφησης ήταν ότι η επεξεργασία γινόταν πάνω στην γλωσσική δομή. Στις νεότερες μορφές η κρυπτογραφία κάνει χρήση του αριθμητικού ισοδύναμου, η έμφαση έχει μεταφερθεί σε διάφορα πεδία των μαθηματικών, όπως διακριτά μαθηματικά, θεωρία αριθμών, θεωρία πληροφορίας, υπολογιστική πολυπλοκότητα, στατιστική και συνδυαστική ανάλυση. Η κρυπτογραφία παρέχει 4 βασικές λειτουργίες (αντικειμενικοί σκοποί): Εμπιστευτικότητα: Η πληροφορία προς μετάδοση είναι προσβάσιμη μόνο στα εξουσιοδοτημένα μέλη. Η πληροφορία είναι ακατανόητη σε κάποιον τρίτο. Ακεραιότητα: Η πληροφορία μπορεί να αλλοιωθεί μόνο από τα εξουσιοδοτημένα μέλη και δεν μπορεί να αλλοιώνεται χωρίς την ανίχνευση της αλλοίωσης. Μη απάρνηση: Ο αποστολέας ή ο παραλήπτης της πληροφορίας δεν μπορεί να αρνηθεί την αυθεντικότητα της μετάδοσης ή της δημιουργίας της.

2 Πιστοποίηση: Οι αποστολέας και παραλήπτης μπορούν να εξακριβώνουν τις ταυτότητές τους καθώς και την πηγή και τον προορισμό της πληροφορίας με διαβεβαίωση ότι οι ταυτότητές τους δεν είναι πλαστές. Ορολογία Κρυπτογράφηση (encryption) ονομάζεται η διαδικασία μετασχηματισμού ενός μηνύματος σε μία ακατανόητη μορφή με την χρήση κάποιου κρυπτογραφικού αλγορίθμου ούτως ώστε να μην μπορεί να διαβαστεί από κανέναν εκτός του νόμιμου παραλήπτη. Η αντίστροφη διαδικασία όπου από το κρυπτογραφημένο κείμενο παράγεται το αρχικό μήνυμα ονομάζεται αποκρυπτογράφηση (decryption). Κρυπτογραφικός αλγόριθμος (cipher) είναι η μέθοδος μετασχηματισμού δεδομένων σε μία μορφή που να μην επιτρέπει την αποκάλυψη των περιεχομένων τους από μη εξουσιοδοτημένα μέρη. Κατά κανόνα ο κρυπτογραφικός αλγόριθμος είναι μία πολύπλοκη μαθηματική συνάρτηση. Αρχικό κείμενο (plaintext) είναι το μήνυμα το οποίο αποτελεί την είσοδο σε μία διεργασία κρυπτογράφησης. Κλειδί (key) είναι ένας αριθμός αρκετών bit που χρησιμοποιείται ως είσοδος στην συνάρτηση κρυπτογράφησης. Κρυπτογραφημένο κείμενο (ciphertext) είναι το αποτέλεσμα της εφαρμογής ενός κρυπτογραφικού αλγόριθμου πάνω στο αρχικό κείμενο. Κρυπτανάλυση (cryptanalysis) είναι μία επιστήμη που ασχολείται με το "σπάσιμο" κάποιας κρυπτογραφικής τεχνικής ούτως ώστε χωρίς να είναι γνωστό το κλειδί της κρυπτογράφησης, το αρχικό κείμενο να μπορεί να αποκωδικοποιηθεί. Η διαδικασία της κρυπτογράφησης και της αποκρυπτογράφησης φαίνεται στο παρακάτω σχήμα.

3 Ένα τυπικό σύστημα κρυπτογράφησης - αποκρυπτογράφησης. Η κρυπτογράφηση και αποκρυπτογράφηση ενός μηνύματος γίνεται με τη βοήθεια ενός αλγόριθμου κρυπτογράφησης (cipher) και ενός κλειδιού κρυπτογράφησης (key). Συνήθως ο αλγόριθμος κρυπτογράφησης είναι γνωστός, οπότε η εμπιστευτικότητα του κρυπτογραφημένου μηνύματος που μεταδίδεται βασίζεται ως επί το πλείστον στην μυστικότητα του κλειδιού κρυπτογράφησης. Το μέγεθος του κλειδιού κρυπτογράφησης μετριέται σε αριθμό bits. Γενικά ισχύει ο εξής κανόνας: όσο μεγαλύτερο είναι το κλειδί κρυπτογράφησης, τόσο δυσκολότερα μπορεί να αποκρυπτογραφηθεί το κρυπτογραφημένο μήνυμα από επίδοξους εισβολείς. Διαφορετικοί αλγόριθμοι κρυπτογράφησης απαιτούν διαφορετικά μήκη κλειδιών για να πετύχουν το ίδιο επίπεδο ανθεκτικότητας κρυπτογράφησης. Σχήμα 1.1 Μοντέλο Τυπικού Κρυπτοσυστήματος Βασικές έννοιες Ο αντικειμενικός στόχος της κρυπτογραφίας είναι να δώσει την δυνατότητα σε 2 πρόσωπα, έστω τον Κώστα και την Βασιλική, να επικοινωνήσουν μέσα από ένα μη

4 ασφαλές κανάλι με τέτοιο τρόπο ώστε ένα τρίτο πρόσωπο, μη εξουσιοδοτημένο (ένας αντίπαλος), να μην μπορεί να παρεμβληθεί στην επικοινωνία ή να κατανοήσει το περιεχόμενο των μηνυμάτων. Ένα κρυπτοσύστημα (σύνολο διαδικασιών κρυπτογράφησης - αποκρυπτογράφησης) αποτελείται από μία πεντάδα (P,C,k,E,D): Το P είναι ο χώρος όλων των δυνατών μηνυμάτων ή αλλιώς ανοικτών κειμένων Το C είναι ο χώρος όλων των δυνατών κρυπτογραφημένων μηνυμάτων ή αλλιώς κρυπτοκειμένων Το k είναι ο χώρος όλων των δυνατών κλειδιών ή αλλιώς κλειδοχώρος Η Ε είναι ο κρυπτογραφικός μετασχηματισμός ή κρυπτογραφική συνάρτηση Η D είναι η αντίστροφη συνάρτηση ή μετασχηματισμός αποκρυπτογράφησης Η συνάρτηση κρυπτογράφησης Ε δέχεται δύο παραμέτρους, μέσα από τον χώρο P και τον χώρο k και παράγει μία ακολουθία που ανήκει στον χώρο C. Η συνάρτηση αποκρυπτογράφησης D δέχεται 2 παραμέτρους, τον χώρο C και τον χώρο k και παράγει μια ακολουθία που ανήκει στον χώρο P. Το Σύστημα του Σχήματος λειτουργεί με τον ακόλουθο τρόπο : 1. Ο αποστολέας επιλέγει ένα κλειδί μήκους n από τον χώρο κλειδιών με τυχαίο τρόπο, όπου τα n στοιχεία του Κ είναι στοιχεία από ένα πεπερασμένο αλφάβητο. 2. Αποστέλλει το κλειδί στον παραλήπτη μέσα από ένα ασφαλές κανάλι. 3. Ο αποστολέας δημιουργεί ένα μήνυμα από τον χώρο μηνυμάτων. 4. Η συνάρτηση κρυπτογράφησης παίρνει τις δυο εισόδους (κλειδί και μήνυμα) και παράγει μια κρυπτοακολουθία συμβόλων (έναν γρίφο) και η ακολουθία αυτή αποστέλλεται διαμέσου ενός μη ασφαλούς καναλιού. 5. Η συνάρτηση αποκρυπτογράφησης παίρνει ως όρισμα τις 2 τιμές (κλειδί και γρίφο) και παράγει την ισοδύναμη ακολουθία μηνύματος.

5 Ο αντίπαλος παρακολουθεί την επικοινωνία, ενημερώνεται για την κρυπτοακολουθία αλλά δεν έχει γνώση για την κλείδα που χρησιμοποιήθηκε και δεν μπορεί να αναδημιουργήσει το μήνυμα. Αν ο αντίπαλος επιλέξει να παρακολουθεί όλα τα μηνύματα θα προσανατολιστεί στην εξεύρεση του κλειδιού. Αν ο αντίπαλος ενδιαφέρεται μόνο για το υπάρχον μήνυμα θα παράγει μια εκτίμηση για την πληροφορία του μηνύματος. Είδη Κρυπτοσυστημάτων Τα κρυπτοσυστήματα χωρίζονται σε 2 μεγάλες κατηγορίες τα Κλασσικά Κρυπτοσυστήματα και τα Μοντέρνα Κρυπτοσυστήματα. Επιπροσθέτως, οι κρυπτογραφικοί αλγόριθμοι μπορούν να χωριστούν σε δύο διαφορετικές κατηγορίες με βάση τον τρόπο κρυπτογράφησης των μηνυμάτων: Δέσμης (Block Ciphers), οι οποίοι χωρίζουν το μήνυμα σε κομμάτια και κρυπτογραφούν κάθε ένα από τα κομμάτια αυτά χωριστά. Ροής (Stream Ciphers), οι οποίοι κρυπτογραφούν μία ροή μηνύματος (stream) χωρίς να την διαχωρίζουν σε τμήματα.

6 Κλασσικά Κρυπτοσυστήματα Μοντέρνα Κρυπτοσυστήματα Συμμετρικά Κρυπτοσυστήματα Σχήμα 1.3 Μοντέλο Συμμετρικού Κρυπτοσυστήματος Συμμετρικό κρυπτοσύστημα είναι το σύστημα εκείνο το οποίο χρησιμοποιεί κατά την διαδικασία της κρυπτογράφησης αποκρυπτογράφησης ένα κοινό κλειδί (Σχ 1.3). Η ασφάλεια αυτών των αλγορίθμων βασίζεται στην μυστικότητα του κλειδιού. Τα συμμετρικά κρυπτοσυστήματα προϋποθέτουν την ανταλλαγή του κλειδιού μέσα από ένα ασφαλές κανάλι επικοινωνίας ή μέσα από την φυσική παρουσία των προσώπων. Αυτό το χαρακτηριστικό καθιστά δύσκολη την επικοινωνία μεταξύ απομακρυσμένων ατόμων. Τα στάδια της επικοινωνίας του σχήματος 1.3 είναι τα ακόλουθα: 1. Ο Κώστας ή η Βασιλική αποφασίζει για ένα κλειδί το οποίο το επιλέγει τυχαία μέσα από τον κλειδοχώρο. 2. Η Βασιλική αποστέλει το κλειδί στον Κώστα μέσα από ένα ασφαλές κανάλι. 3. Ο Κώστας δημιουργεί ένα μήνυμα όπου τα σύμβολα m ανήκουν στον χώρο των μηνυμάτων.

7 4. Κρυπτογραφεί το μήνυμα με το κλειδί που έλαβε από την Βασιλική και η παραγόμενη κρυπτοσυμβολοσειρά αποστέλεται. 5. Η Βασιλική λαμβάνει την κρυπτοσυμβολοσειρά και στην συνέχεια με το ίδιο κλειδί την αποκρυπτογραφεί και η έξοδος που παράγεται είναι το μήνυμα. Παράδειγμα κρυπτογράφησης Έχουμε το αρχικό μήνυμα, (ένα σύνολο δυαδικών ψηφίων (bits) {μ i, όπου i = 1, 2,, n}), και το κλειδί γνωστό σε αποστολέα και παραλήπτη, (ένα άλλο σύνολο δυαδικών ψηφίων {κ i, όπου i = 1, 2,, n}). Αν δημιουργήσουμε τον γρίφο που θα αποσταλεί, (ένα σύνολο δυαδικών ψηφίων γ i, που να ικανοποιούν την σχέση {γ i = μ i κ i, όπου i = 1, 2,, n}), τότε θα ισχύει επίσης ότι {μ i = γ i κ i, όπου i = 1, 2,, n} και ο παραλήπτης του γρίφου με χρήση του κλειδιού θα αναδημιουργήσει το μήνυμα. Μηνύματα μεγάλου μήκους μπορούν να κρυπτογραφούνται σε ομάδες των n δυαδικών ψηφίων. Το σύμβολο συμβολίζει την πράξη αποκλειστικό Ή (XOR) που περιγράφεται στο άρθρο Λογικές συναρτήσεις. Ασύμμετρα κρυπτοσυστήματα Το ασύμμετρο κρυπτοσύστημα ή κρυπτοσύστημα δημοσίου κλειδιού δημιουργήθηκε για να καλύψει την αδυναμία μεταφοράς κλειδιών που παρουσίαζαν τα συμμετρικά συστήματα. Χαρακτηριστικό του είναι ότι έχει δυο είδη κλειδιών ένα ιδιωτικό και ένα δημόσιο. Το δημόσιο είναι διαθέσιμο σε όλους ενώ το ιδιωτικό είναι μυστικό. Η βασική σχέση μεταξύ τους είναι : ό,τι κρυπτογραφεί το ένα, μπορεί να το αποκρυπτογραφήσει μόνο το άλλο (Σχ 1.4). Τα στάδια της επικοινωνίας του σχήματος 1.4 είναι τα ακόλουθα: 1. Η γεννήτρια κλειδιών του Μένιου παράγει 2 ζεύγη κλειδιών, 2. Η γεννήτρια κλειδιών της Ελένης παράγει 2 ζεύγη κλειδιών 3. Η Ελένη και ο Μένιος ανταλλάσσουν τα δημόσια ζεύγη 4. Ο Μένιος δημιουργεί ένα μήνυμα όπου τα σύμβολα m ανήκουν στον χώρο των μηνυμάτων.

8 5. Κρυπτογραφεί το μήνυμα με το δημόσιο κλειδί της Ελένης και η παραγόμενη κρυπτοσυμβολοσειρά αποστέλεται 6. Η Ελένη λαμβάνει την κρυπτοσυμβολοσειρά και στην συνέχεια με το ιδιωτικό της κλειδί την αποκρυπτογραφεί και η έξοδος που παράγεται είναι το μήνυμα. Σχήμα 1.4 Μοντέλο Ασύμμετρου Κρυπτοσυστήματος Εφαρμογές κρυπτογραφίας Η εξέλιξη της χρησιμοποίησης της κρυπτογραφίας ολοένα αυξάνεται καθιστώντας πλέον αξιόπιστη την μεταφορά της πληροφορίας για διάφορους λειτουργικούς σκοπούς 1. Ασφάλεια συναλλαγών σε τράπεζες δίκτυα - ΑΤΜ 2. Κινητή τηλεφωνία (ΤΕΤΡΑ-ΤΕΤΡΑΠΟΛ-GSM) 3. Σταθερή τηλεφωνία (cryptophones) 4. Διασφάλιση Εταιρικών πληροφοριών 5. Στρατιωτικά δίκτυα (Τακτικά συστήματα επικοινωνιών μάχης) 6. Διπλωματικά δίκτυα (Τηλεγραφήματα) 7. Ηλεκτρονικές επιχειρήσεις (πιστωτικές κάρτες, πληρωμές) 8. Ηλεκτρονική ψηφοφορία

9 9. Ηλεκτρονική δημοπρασία 10. Ηλεκτρονικό γραμματοκιβώτιο 11. Συστήματα συναγερμών 12. Συστήματα βιομετρικής αναγνώρισης 13. Έξυπνες κάρτες 14. Ιδιωτικά δίκτυα (VPN) 15. Word Wide Web 16. Δορυφορικές εφαρμογές (δορυφορική τηλεόραση) 17. Ασύρματα δίκτυα (Hipperlan, bluetooth, x) 18. Συστήματα ιατρικών δεδομένων και άλλων βάσεων δεδομένων 19. Τηλεσυνδιάσκεψη - Τηλεφωνία μέσω διαδικτύου (VOIP) Κρυπτανάλυση Η κρυπτανάλυση είναι η μελέτη για την ανεύρεση μεθόδων που εξασφαλίζουν την κατανόηση του νοήματος της κρυπτογραφημένης πληροφορίας έχοντας άγνωστη ποσότητα τον κρυφό μετασχηματισμό το κλειδί και το μήνυμα. Βασικός στόχος της είναι ανάλογα με της απαιτήσεις του αναλυτή κρυπτοσυστημάτων ή αλλιώς κρυπταναλυτή είναι να βρει το κλειδί ή το μήνυμα ή ένα ισοδύναμο αλγόριθμο που θα τον βοηθάει να προσδιορίζει το μήνυμα. Ένας κρυπταλγόριθμος λέγεται ότι έχει σπαστεί αν βρεθεί μια μέθοδος (πιθανοκρατική ή ντετερμινιστική) που μπορεί να βρει το μήνυμα ή το κλειδί με πολυπλοκότητα μικρότερη από την πολυπλοκότητα της επίθεσης ωμής βίας. Είδη Επιθέσεων Κρυπταναλυτικές επιθέσεις σε αλγορίθμους Υπάρχουν 6 βασικές κρυπταναλυτικές επιθέσεις κατηγορηοποιημένες ανάλογα με την ικανότητα του αντιπάλου (πόρους-[υπολογιστική ισχύ]) και το επίπεδο πρόσβασης που έχει

10 1. Επίθεση βασισμένη στο κρυπτοκείμενο: Ο κρυπταναλυτής έχει στην διάθεση του Ν κρυπτομυνήματα δεδομένου τής γνώσης του αλγορίθμου. Σκοπός είναι να ανακαλύψει τα μηνύματα που περικλείουν τα κρυπτοκείμενα ή να εξάγει το κλειδί που χρησιμοποιήθηκε. 2. Επίθεση βασισμένη στην γνώση μυνημάτων,κρυπτοκειμένων: Ο κρυπταναλυτής μερικά ζευγάρια (μυνηματων, κρυπτοκειμένων).ο στόχος είναι η εξαγωγή κλειδιού ή ένα αλγόριθμό για την αποκρυπτογράφηση νέων μηνυμάτων (προσεγγιστικός αλγόριθμος) με το ίδιο κλειδί. 3. Επίθεση βασισμένη στην επιλογή μηνυμάτων: Ο κρυπταναλυτής έχει καταφέρει να αποκτήσει πρόσβαση στη επιλογή του μηνύματος που θα κρυπτογραφηθεί.στόχος είναι η εξαγωγή του κλειδιού ή ενός προσεγγιστικού αλγορίθμου. 4. Προσαρμοσμή επίθεση βασισμένη στην επιλογή μηνυμάτων: Ο κρυπταναλυτής μπορεί να επιλέξει όχι μόνο μία συστάδα μηνυμάτων αλλά μπορεί να επιλέξει πιο επόμενο μήνυμα θα κρυπτογραφηθεί(κατάλληλη επιλογή ζευγαριών προσδίδει περισσότερη πιθανότητα για την τιμή του κλειδιού). Στόχος είναι η εξαγωγή του κλειδιού ή ενός προσεγγιστικού αλγορίθμου. 5. Επίθεση βασισμένη στην επιλογή κρυπτοκειμένων: Ο κρυπταναλυτής μπορεί να επιλέξει κρυπτοκείμενα για αποκρυπτογράφηση(μελετάει πως συμπεριφέρεται ο αλγόριθμος στην αποκρυπτογράφηση) και έχει πρόσβαση στα αποκρυπτογραφημένα κείμενα. 6. Προσαρμοσμή επίθεση βασισμένη στην επιλογή μηνυμάτων - κλειδιών: Ο κρυπταναλυτής επιλέγει μια σχέση μεταξύ του άγνωστου κλειδιού και του δικό του κλειδιού και βάση των συμπερασμάτων που βγάζει από την ανάλυση (Είσοδος/έξοδος) στο σύστημά στόχου και στο δικό του αντίγραφο (Κρυπταλγόριθμος) προσσεγκίζει μετά από κάποιες δοκιμές το σωστό κλειδί.

11 Επιθέσεις στο κανάλι επικοινωνίας Υπάρχουν 4 βασικές απειλές στο κανάλι επικοινωνίας κατηγοροποιημένες με κριτήριο την ενεργή ή παθητική συμπεριφορά του αντιπάλου. 1. Διακοπή γραμμής : Ο αντίπαλος έχει διακόψει την ροή της πληροφορίας από τον αποστολέα στον παραλήπτη(ενεργή συμπεριφορά)

12 2. Υποκλοπή πληροφορίας από το κανάλι : Ο αντίπαλος αντιγράφει τις πληροφορίες που διαβιβάζονται στο κανάλι επικοινωνίας (παθητική συμπεριφορά μη ανιχνεύσιμη) 3. Τροποποίηση πληροφορίας στο κανάλι : Ο αντίπαλος τροποποιεί τις πληροφορίες που διαβιβάζονται στο κανάλι με τέτοιο τρόπο ώστε να αλλάξει το περιεχόμενο ή να αναγεννά δική του πληροφορία. (ενεργή συμπεριφορά) 4. Πλαστογράφηση πηγής : Ο Αντίπαλος προσποιείται ότι είναι ένα από τα μέλη. Ταξινόμηση Μοντέλων αξιολόγησης ασφάλειας Υπάρχουν 4 βασικά μοντέλα για την αξιολόγηση των αλγορίθμων: 1) Ασφάλεια άνευ όρων, 2) υπολογιστική ασφάλεια, 3) θεωρία πολυπλοκότητας και 4) αποδείξιμη ασφάλεια. Ασφάλεια άνευ όρων (Τέλεια Ασφάλεια) Αυτή η μέτρηση εστιάζεται στην διάκριση αν ένα κρυπτοσύστημα έχει ασφάλεια άνευ όρων. Η βασική υπόθεση είναι ότι όσο και αν κρυπτοκείμενο και αν κατέχει ο αντίπαλος δεν υπάρχει αρκετή πληροφορία για να ανακτήσει το ανοικτό κείμενο(μοναδική λύση) όσο υπολογιστική ισχύ (άπειρη) και αν έχει στην διάθεση του. Χαρακτηριστικό παράδειγμα το σημειωματάριο μίας χρήσης (one time pad). Υπολογιστική ασφάλεια (Πρακτική Ασφάλεια) Αυτή η μέτρηση εστιάζεται στην υπολογιστική προσπάθεια [παράγοντας εργασίας] που χρειάζεται για να διασπαστεί ένα κρυπτοσύστημα. Στόχος των συγχρόνων συστημάτων να έχουν μεγάλο παράγοντα δυσκολίας ώστε να μην είναι χρονικά δυνατό να διασπαστούν με τα διαθέσιμα ή τα <μελλοντικά> μέσα.

13 Ασφάλεια θεωρία πολυπλοκότητας Αυτή η μέτρηση εστιάζει στην ταξινόμηση της υπολογιστικής ικανότητας του αντιπάλου υπολογιστικών προβλημάτων ανάλογα με τους πόρους που απαιτούνται για την επίλυση τους. Οι πόροι αναφέρονται Το μέγεθος δεδομένων που χρειάζονται σαν είσοδο στην επίθεση Τον υπολογιστικό χρόνο που χρειάζεται για να εκτελεστεί η επίθεση Το μέγεθος του χώρου αποθήκευσης που χρειάζεται για την επίθεση Το πλήθος των επεξεργαστών Αποδείξιμη ασφάλεια Αυτή η μέτρηση εστιάζεται στην απόδειξη ισοδυναμίας του μαθηματικού μοντέλου του κρυπτοσυστήματος με κάποιο πολύ γνωστό δύσκολο στην επίλυση του πρόβλημα (θεωρίας αριθμών). Χαρακτηριστικό παράδειγμα η παραγοντοποιήση μεγάλων ακεραίων. Κρυπτανάλυση Κλασσικών Κρυπτοσυστημάτων Υπάρχουν διάφοροι τύποί κρυπταναλυτικών επιθέσεων(σχ 3.1) για τα κλασσικά κρυπτοσυστήματα ή περισσότερες βασίστηκαν πάνω στην γλωσσική δομή του μηνύματος. Στις νεότερες μορφές Κρυπτανάλυσης Κλασσικών Κρυπτοσυστημάτων παρατηρείται ή είσοδος της στατιστικής στην ανάλυση.

14 Μέθοδος Ωμής Βίας Ανάλυση Συχνότητας Γλώσσας Μέθοδος Κασισκι Μέθοδος Δείκτης Σύμπτωσης Μέθοδος Αμοιβαίου Δείκτη Σύμπτωσης Κρυπτανάλυση Μοντέρνων Κρυπτοσυστημάτων Διαφορική Κρυπτανάλυση (Differential Cryptanalysis) Γραμμική Κρυπτανάλυση (Linear Cryptanalysis) Κρυπτανάλυση στο Επίπεδο Υλικού (Side-channel cryptanalysis) Κλειδοσχεσιακή Κρυπτανάλυση (Releted Key Cryptanalysis) Κρυπτανάλυση Ισοτίμων (Cryptanalysis mod n) Κρυπτανάλυση τετραγώνου (Square Cryptanalysis) Στατιστική κρυπτανάλυση (Statistical Cryptanalysis) Κώδικες Αντικατάστασης

15 Σ' έναν κώδικα αντικατάστασης (substitution cipher) κάθε γράμμα ή κάθε ομάδα γραμμάτων αντικαθίσταται από ένα άλλο γράμμα ή μία άλλη ομάδα γραμμάτων ώστε να μεταμφιεστεί. Ένας από τους παλιότερους γνωστούς κώδικες είναι ο κώδικας του Καίσαρα (Caesar cipher) που αποδίδεται στον Ιούλιο Καίσαρα. Στη μέθοδο αυτή, το a γίνεται D, το b γίνεται Ε, το c γίνεται F,..., και το z γίνεται C Για παράδειγμα, η λέξη attack γίνεται DWWDFΝ. Στα παραδείγματα, το κείμενο θα γράφεται με μικρά γράμματα και το κρυπτογράφημα θα γράφεται με κεφαλαία. Μια απλή γενίκευση του κώδικα του Καίσαρα επιτρέπει στο αλφάβητο του κρυπτογραφήματος να ολισθήσει κατά k γράμματα, αντί να ολισθαίνει πάντα 3. Στην περίπτωση αυτή το k γίνεται το κλειδί της γενικής μεθόδου των κυκλικά ολισθαινόντων αλφαβήτων. Ο κώδικας του Καίσαρα μπορεί να κορόιδεψε τους Καρχηδόνιους, αλλά δεν κορόιδεψε κανέναν άλλον από τότε. Η επόμενη βελτίωση είναι η αντιστοίχηση κάθε συμβόλου του κειμένου, ας πούμε των 26 γραμμάτων για απλότητα, σε κάποιο άλλο γράμμα. Για παράδειγμα κείμενο: a b c d e f g h ί j k l m n o p q r s t u v w x y z κρυπτογράφημα: Q W E R T Y U I O P A S D F G H J K L Z X C V B N Μ Αυτό το γενικό σύστημα αποκαλείται μοναλφαβητική αντικατάσταση (monalphabetic substitution), με το κλειδί να είναι ο συρμός των 26 γραμμάτων που αντιστοιχεί στο πλήρες αλφάβητο. Για το παραπάνω κλειδί, το κείμενο attack θα μεταμορφωνόταν στο κρυπτογράφημα QZZQEA. Σε πρώτη ματιά, το σύστημα φαίνεται να είναι ασφαλές, επειδή, αν και ο κρυπταναλυτής γνωρίζει το γενικό σύστημα (αντικατάσταση γράμμα προς γράμμα), δεν γνωρίζει ποιο από τα 26! 4 x πιθανά κλειδιά χρησιμοποιείται. Σε αντίθεση προς τον κώδικα του Καίσαρα, το να τα προσπαθήσει κανείς όλα δεν φαίνεται να είναι ελπιδοφόρο. Ακόμη και αν χρειαζόταν 1 μsec για κάθε λύση, ένας υπολογιστής θα χρειαζόταν χρόνια για να δοκιμάσει όλα τα κλειδιά. Εν τούτοις, ο κώδικας μπορεί εύκολα να σπάσει, αν είναι διαθέσιμη μια απρόσμενα μικρή ποσότητα κρυπτογραφήματος. Η βασική επίθεση εκμεταλλεύεται τις στατιστικές ιδιότητες που διέπουν τις φυσικές γλώσσες. Στα Αγγλικά για παράδειγμα, το e είναι το πιο συνηθισμένο γράμμα, ακολουθούμενο από τα t, ο, a, n, i, κλπ. Ο πιο συνηθισμένος συνδυασμός δύο γραμμάτων, ή διγραμμάτων (digrams), είναι τα th, ίn,

16 er, re και an. Ο πιο συνηθισμένος συνδυασμός τριών γραμμάτων, ή τριγραμμάτων (trigrams), είναι τα the, ing, and και ion. Ο κρυπταναλυτής που προσπαθεί να σπάσει έναν μοναλφαβητικό κώδικα θα ξεκινούσε μετρώντας τις σχετικές συχνότητες όλων των γραμμάτων του κρυπτογραφήματος. Μετά, θα αντιστοιχίσει δοκιμαστικά το πιο συνηθισμένο στο e και το δεύτερο πιο συνηθισμένο στο t. Θα κοιτάξει κατόπιν τα τριγράμματα για να βρει ένα συνηθισμένο της μορφής txe, στο οποίο είναι πολύ πιθανό το Χ να είναι το h. Παρομοίως, αν η μορφή thyt συμβαίνει συχνά, το Υ πιθανότατα είναι το a. Με τις πληροφορίες αυτές, μπορεί να ψάξει ένα συχνά εμφανιζόμενο τρίγραμμα της μορφής azw, το οποίο είναι πιθανότατα το and. Με το να μαντεύει τα πιο πιθανά γράμματα, διγράμματα και τριγράμματα, και γνωρίζοντας τους πιο πιθανούς συνδυασμούς φωνηέντων και συμφώνων, ο κρυπταναλυτής δημιουργεί ένα δοκιμαστικό κείμενο, γράμμα προς γράμμα. Μια άλλη προσέγγιση είναι να μαντέψεις μια πιθανή λέξη ή φράση. Για παράδειγμα σκεφθείτε το ακόλουθο κρυπτογράφημα από ένα λογιστικό γραφείο (χωρισμένο σε ομάδες των πέντε χαρακτήρων): CTBMN BYCTC BTJDS QXBNS GSTJC BTSWX CTQTZ CQVUJ QJSGS TJQZZ MNQJS VLNSX VSZJU JDSTS JQUUS JUBXJ DSKSU JSNTK BGAQJ ZBGYQ TLCTZ ΒΝΥΒΝ QJSW Μια πιθανή λέξη σε μήνυμα από λογιστικό γραφείο είναι η financial. Εκμεταλλευόμενοι το ότι γνωρίζουμε το ότι η λέξη financial έχει ένα επαναλαμβανόμενο γράμμα (ί), με τέσσερα άλλα γράμματα μεταξύ των δύο εμφανίσεών του, ψάχνουμε στο κρυπτογράφημα για επαναλαμβανόμενα γράμματα με την απόσταση αυτή. Βρίσκουμε 12 περιπτώσεις, στις θέσεις 6, 15, 27, 31, 42, 48, 56, 70 71, 76 και 82. Ωστόσο, μόνο δύο από αυτές, οι 31 και 42, έχουν το επόμενο γράμμα (που αντιστοιχεί στο n στο κείμενο) επαναλαμβανόμενο στη σωστή θέση. Από αυτές τις δύο, μόνο το 31 έχει και το a σωστά τοποθετημένο, και ξέρουμε ότι η λέξη financial αρχίζει στη θέση 30. Από το σημείο αυτό και μετά είναι εύκολη η αναπαραγωγή τον κλειδιού, με τη βοήθεια της στατιστικής συχνοτήτων τον Αγγλικού κειμένου. Μονοαλφαβητική μετάθεση

17 Πρόκειται για μια κρυπτογραφική μέθοδο στην οποία κάθε γράμμα ή σύμβολο γενικότερα του αρχικού κειμένου αντικαθίσταται με ένα διαφορετικό γράμμα ή σύμβολο του κρυπτογραφικού αλφαβήτου. Το κρυπτογραφικό αλφάβητο για την παραπάνω περίπτωση μπορεί να προκύψει με πολλούς τρόπους: α)εντελώς τυχαία, δηλαδή με αντιστοίχηση των γραμμάτων του αλφαβήτου ή των αριθμών σε άλλα χωρίς κάποια συγκεκριμένη λογική π.χ αρχικό κείμενο: ABCDEFGHIJKLMNOPQRSTUVWXYZ κρυπτογρ.κείμενο: UFLPWDRASJMCONQYBVTEXHZKGI β)αρχική εισαγωγή μιας λέξης κλειδί και κατόπιν αντιστοίχηση όπως απο πάνω. Η λέξη κλειδί είναι κοινή και τοποθετείται πάντοτε στην αρχή κάθε κρυπτογραφημένου μηνύματος. π.χ αρχικό κείμενο: ABCDEFGHIJKLMNOPQRSTUVWXYZ κρυπτογρ.κείμενο: ΤΟΥRYNEBFGJKLOPQSTUVWXIZBCA γ) με άξονα αλλαγής κάποιο από τα γράμματα της αλφαβήτου, οπότε το αρχικό και το κρυπτογραφημένο κείμενο έχουν σχέση καθρέφτη-ειδώλου. Η πιο απλή μορφή είναι με βάση το τελευταίο γράμμα της αλφαβήτου. Σε αυτό βασίζεται ο εβραϊκός κώδικας Atbasch. Στον κώδικα αυτό υπολογίζουμε τις θέσεις που απέχει από την αρχή του αλφαβήτου κάθε γράμμα και το αντικαθιστούμε με εκείνο που απέχει ίση απόσταση από το τέλος του αλφαβήτου. π.χ αρχικό κείμενο: ABCDEFGHIJKLMNOPQRSTUVWXYZ κρυπτογρ.κείμενο: ZYXWVUTSRQPONMLKJIHGFEDCBA δ) με μετατόπιση του πρώτου γράμματος αντιστοίχησης αρχικού κειμένουκρυπτογραφικού κειμένου κατά ορισμένες θέσεις. Ακολούθως η αντικατάσταση των υπόλοιπων γραμμάτων γίνεται κυκλικά. π.χ αρχικό κείμενο: ABCDEFGHIJKLMNOPQRSTUVWXYZ κρυπτογρ.κείμενο: GHIJKLMNOPQRSTUVWXYZABCDEF Για την αποκρυπτογράφηση των μηνυμάτων ή και ολόκληρων κειμένων από τον παραλήπτη ακολουθείται η αντίθετη πορεία, δηλαδή αντιστοιχίζεται σε κάθε γράμμα του κρυπτογραφημένου κειμένου το αντίστοιχο γράμμα από το αρχικό κείμενο. Το πλεονέκτημα της μονοαλφαβητικής μετάθεσης είναι σε σχέση με τον παλαιότατο Κώδικα του Καίσαρα για παράδειγμα ότι παρέχει 26! δυνατούς συνδυασμούς για το λατινικό αλφάβητο, ενώ η συνδυασμοί είναι πολύ περισσότεροι για αλφάβητα άλλων γλωσσών με περισσότερα γράμματα. Αυτό έχει σαν αποτέλεσμα η αποκρυπτογράφηση

18 με απλές δοκιμές και τυχαίες εισαγωγές γραμμάτων να είναι αδύνατη. Το μειονέκτημα ωστόσο του τρόπου αυτού κρυπτογράφησης ήταν ότι με πολλά δείγματα κειμένων και με βάση την ανάλυση των πιθανοτήτων για κάθε γράμμα ήταν δυνατό να σπάσει ο κώδικας. Η ανάλυση των πιθανοτήτων εμφάνισης κάθε γράμματος για την αποκρυπτογράφησησπάσιμο άγνωστων κειμένων χρησιμοποιείται ήδη από τον 7 Ο αιώνα μ.χ, οπότε και εφευρέθει από έναν Άραβα λόγιο. Χαρακτηριστικό παράδειγμα μονοαλφαβητικής μετάθεσης είναι ο κώδικας του Καίσαρα. Αναπτύχθηκε από τον Ιούλιο Καίσαρα ( π.χ) και βασίζεται στην αντικατάσταση κάθε γράμματος του αρχικού κειμένου από ένα του κρυπτογραφικού αλφαβήτου. Συγκεκριμένα χρησιμοποιείται η μετατόπιση κατά k θέσεις της αρχής του κρυπτογραφικού αλφαβήτου και ακολουθεί κυκλική αλλαγή των γραμμάτων. Η γνώση του αριθμού k αποτελεί το κλειδί της κρυπτογραφικής και αποκρυπτογραφικής διαδικασίας. Στον κώδικα αυτό δεν λαμβάνονται καθόλου υπόψη τα κενά μεταξύ των λέξεων και τα σημεία στίξεως. Ωστόσο η αδυναμία αυτού του συστήματος ήταν ότι με τη μέθοδο ανάλυσης των πιθανοτήτων εμφάνισης των γραμμάτων ο κώδικας είναι εύκολο να αποκρυπτογραφηθεί. Και αυτό γιατί η κατανομή των πιθανοτήτων στα γράμματα του κρυπτογραφικού αλφαβήτου είναι ίδια με αυτή του αρχικού κειμένου. Η αδυναμία του κώδικα αυτή οδήγησε στην εξέλιξή του στον κώδικα του Vigenere. Παρόλα αυτά μια μορφή του χρησιμοποιείται ακόμη και σήμερα. Πρόκειται για το λεγόμενο ROT13, όνομα που παραπέμπει στο γεγονός ότι για να προκύψει το κρυπτογραφικό αλφάβητο είναι ανάγκη να υπάρξει μετατόπιση κατά 13 γράμματα. Οπότε το γράμμα κλειδί είναι για το λατινικό αλφάβητο το Ν. Σκοπός του απλού αυτού κώδικα είναι να εμποδίζει την άμεση και χωρίς κόπο ανάγνωση κειμένων και προς αυτή την κατεύθυνση χρησιμοποιείται από διάφορα Newsgroups. ΣΥΣΤΗΜΑ ΚΡΥΠΤΑΝΑΛΥΣΗΣ ΜΟΝΑΛΦΑΒΗΤΙΚΗΣ ΑΝΤΙΚΑΤΑΣΤΑΣΗΣ Εστω οτι έχουμε το παρακάτω άγνωστο κυπτόγραμμα CKPKH GVGCK UGZQA GCKUG CLGPQ FJZIG PQQAF QQLHG

19 FJZEF QGKEF CCQAG LOULJ QFRGM OGPQA FUGZO SJBQA GLOTS MFOKS JZKOQ VKIGE KOGFJ ZKJGI XKJGT OGMQP LCGJQ CXQKO GPQYD Το αρχικό βήμα είναι να εντοπίσουμε στατιστικές πληροφορίες που αφορούν αυτό το κρυπτόγραμμα. Φτιάχνουμε 2 πίνακες που μετρούν την συχνότητα εμφάνισης των γραμμάτων και τη συχνότητα εμφάνισης διγραμμάτων και τριγραμμάτων. Ακολουθούν 7 βήματα ανάλυσης Βήμα 1 Η κρυπτανάλυση αρχίζει με τον προσδιορισμό των πιο συχνά συναντόμενων γραμμάτων. Το G επαναλαμβάνεται και θεωρούμε οτι αντιστοιχεί στο Ε Το THE είναι το συχνότερο τρίγραμμα στα Αγγλικά, γι αυτό κοιτάζουμε για τριγράμματα που λήγουν σε G. Π.χ. QAG, KOG, KUG, και KJG Το T είναι ένα γράμμα με μεγάλη συχνότητα εμφάνισης και το H το επόμενο με σε συχνότητα εμφάνισης. Το QAG θεωρείται πιθανότερο από το KUG μ αυτή τη λογική και ταιριάζει το γεγονός οτι το δίγραμμα TH συναντάται συχνότερα. Βήμα 2 Εχοντάς αντιστοιχίσει τα γράμματα T, H, και E, σαν τα Q, A, και G αντίστοιχα, κοιτάζουμε το κρυπτόγραμμα πάλι, αντικαθιστώντας τα γράμματα. Ε Ε Ε ΤΗ Ε Ε Ε Τ Ε ΤΤΗ ΤΤ Ε CKPKH GVGCK UGZQA GCKUG CLGPQ FJZIG PQQAF QQLHG ΤΕ ΤΗΕ Τ Ε Ε ΤΗ Ε ΤΗ FJZEF QGKEF CCQAG LOULJ QFRGM OGPQA FUGZO SJBQA Ε Τ Ε Ε Ε Ε Ε Τ GLOTS MFOKS JZKOQ VKIGE KOGFJ ZKJGI XKJGT OGMQP Ε Ε Τ Τ Τ LCGJQ CXQKO GPQYD Το F πρέπει να είναι φωνήεν και μάλιστα υψηλής συχνότητας όπως το A ή το O. To THA είναι τρίγραμμα υψηλής συχνότητας και το QAF είναι στην προς αντικατάσταση λίστα, γι αυτο αντιστοιχούμε το A στο F

20 Το AN είναι δίγραμμα και το AND ένα τρίγραμμα μεγάλης συχνότητας. Τα FJ και FJZ δείχνουν να ταιριάζουν στην υπόθεσή μας και αντιστοιχούμε το J σε N και το Z σε D Μέτρηση συχνότητας γραμμάτων Μέτρηση συχνότητας διγραμμάτων, τριγραμμάτων Βήμα 3 E Ε ΕDTH E E E T AND E TTHA TT E CKPKH GVGCK UGZQA GCKUG CLGPQ FJZIG PQQAF QQLHG AND A TE A THE N TA E E TH A ED N TH FJZEF QGKEF CCQAG LOULJ QFRGM OGPQA FUGZO SJBQA E A ND T E EAN D NE NE E T GLOTS MFOKS JZKOQ VKIGE KOGFJ ZKJGI XKJGT OGMQP ENT T E T LCGJQ CXQKO GPQYD Οι μέχρι τώρα αντιστοιχίες είναι: ABCDEFGHIJKLMNOPQRTSUVWXYZ F..ZG..A...J...Q... Τα E,T,A,O,N είναι τα συχνότερα γράμματα και έχουν βρεθεί τα 4. Αυτό που στο κρυπτογράφημα εμφανίζεται πολύ συχνά ώς K και ακόμα δεν έχει βρεθεί το αντιστοιχούμε στο O. Επίσης τα διγράμματα HE και RE εμφανίζονται αρκετά συχνά. Απ αυτά θεωρούμε οτι το R έχει μεγαλύτερη συχνότητα εμφάνισης και έτσι αντιστοιχούμε το Ο με το R Μέτρηση συχνότητας γραμμάτων Μέτρηση συχνότητας διγραμμάτων, τριγραμμάτων Βήμα 4 O O E E O EDTH E O E E T AND E TTHA TT E CKPKH GVGCK UGZQA GCKUG CLGPQ FJZIG PQQAF QQLHG AND A TEO A THE R N TA E RE TH A EDR N TH FJZEF QGKEF CCQAG LOULJ QFRGM OGPQA FUGZO SJBQA E R ARO NDORT O E OREAN DONE ONE RE T GLOTS MFOKS JZKOQ VKIGE KOGFJ ZKJGI XKJGT OGMQP ENT TOR E T LCGJQ CXQKO GPQYD Οι μέχρι τώρα αντιστοιχίες είναι:

21 ABCDEFGHIJKLMNOPQRTSUVWXYZ F..ZG..A...JK..O.Q... Εξετάζοντας τα OREAN DONE ONE (στα μπλοκ 21 και 22) μπορούμε να αναγνωρίσουμε τη φράση AND ONE.. ONE δίνοντας παράλληλα ερμηνεία στο IX με τη λέξη BY. Εξετάζοντας την λίστα αντικατάστασης παραπάνω και την εμφανιση των γραμμάτων στο τέλος του αλφάβητου, μπορούμε να αντιστοιχίσουμε το P με το S και το Y με το Z. To Q θα μπορούσε να πάρει τις τιμές M ή Ν, αλλά λόγω της όχι τόσο συχνής εμφάνισής του, το αντιστοιχούμεν με το N Μέτρηση συχνότητας γραμμάτων Μέτρηση συχνότητας διγραμμάτων, τριγραμμάτων Βήμα 5 OSO E E O EDTH E O E EST ANDBE STTHA TT E CKPKH GVGCK UGZQA GCKUG CLGPQ FJZIG PQQAF QQLHG AND A TEO A THE R N TA E RESTH A EDR N TH FJZEF QGKEF CCQAG LOULJ QFRGM OGPQA FUGZO SJBQA E R ARO NDORT OBE OREAN DONEB YONE RE TS GLOTS MFOKS JZKOQ VKIGE KOGFJ ZKJGI XKJGT OGMQP ENT YTOR ESTZ LCGJQ CXQKO GPQYD Οι μέχρι τώρα αντιστοιχίες είναι: ABCDEFGHIJKLMNOPQRTSUVWXYZ FI.ZG..A...JK.NOPQ...XY Τα αμέσως επόμενα σε συχνότητα εμφάνισης είναι τα C και L, ενώ ένα υποψήφιο γράμμα για αντιστοιχία είναι το Ι. Η εμφάνιση όμως του συνεχόμενου CC δίνει την αντιστοιχία του I στο L. Τα διπλά γράμματα στις αγγλικές είναι τα SS, EE, TT, MM, LL, FF, και OO. To C θα μπορούσε να είναι το F, L, ή M αλλά εξετάζοντας το κρυπτογράφημα το L ταιριάζει περισσότερο στο C. Μέτρηση συχνότητας γραμμάτων Μέτρηση συχνότητας διγραμμάτων, τριγραμμάτων Βήμα 6 LOSO E ELO EDTH ELO E LIEST ANDBE STTHA TTI E CKPKH GVGCK UGZQA GCKUG CLGPQ FJZIG PQQAF QQLHG AND A TEO A LLTHE IR IN TA E RESTH A EDR N TH

22 FJZEF QGKEF CCQAG LOULJ QFRGM OGPQA FUGZO SJBQA EIR ARO NDORT OBE OREAN DONEB YONE RE TS GLOTS MFOKS JZKOQ VKIGE KOGFJ ZKJGI XKJGT OGMQP ILENT LYTOR ESTZ LCGJQ CXQKO GPQYD Οι μέχρι τώρα αντιστοιχίες είναι: ABCDEFGHIJKLMNOPQRTSUVWXYZ FI.ZG..AL..C.JK.NOPQ...XY Από την λίστα αντιστοιχίας βλέπουμε οτι το P μπορεί να αντιστοιχεί στο Μ. Τα υπόλοιπα γράμματα δοκιμάζονται και απορρίπτονται (ή ταιριάζουν) o Στα μπλοκ 4 και 5 το U μπορεί να ταιριάζει με το V δίνοντας τη λέξη LOVLIEST o Στο μπλοκ 8 το H με το M, δίνοντας τη λέξη TIME o Στα μπλοκ 10 και 11 to E με το F δίνοντας το OF ALL o Στα μπλοκ 12 και 13 το R με το G δίνοντας το VINTAGE o Στο μπλοκ 24 το Τ με το C δίνοντας το CREPT Μέτρηση συχνότητας γραμμάτων Μέτρηση συχνότητας διγραμμάτων, τριγραμμάτων Βήμα 7 LOSOM E ELO VEDTH ELOVE LIEST ANDBE STTHA TTIME CKPKH GVGCK UGZQA GCKUG CLGPQ FJZIG PQQAF QQLHG ANDFA TEOFA LLTHE IRVIN TAGEP RESTH AVEDR N TH FJZEF QGKEF CCQAG LOULJ QFRGM OGPQA FUGZO SJBQA EIRC PARO NDORT OBEF OREAN DONEB YONEC REPTS GLOTS MFOKS JZKOQ VKIGE KOGFJ ZKJGI XKJGT OGMQP ILENT LYTOR ESTZ LCGJQ CXQKO GPQYD Οι μέχρι τώρα αντιστοιχίες είναι: ABCDEFGHIJKLMNOPQRTSUVWXYZ FITZGERAL..CHJKMNOPQ.U..XY Μια τελευταία ματιά στην λίστα αντιστοιχίας μας δίνει τις ακόλουθες πιθανές αντιστοιχίες: o J D o K B o U S o W V o X W

Εισ. Στην ΠΛΗΡΟΦΟΡΙΚΗ. Διάλεξη 8 η. Βασίλης Στεφανής

Εισ. Στην ΠΛΗΡΟΦΟΡΙΚΗ. Διάλεξη 8 η. Βασίλης Στεφανής Εισ. Στην ΠΛΗΡΟΦΟΡΙΚΗ Διάλεξη 8 η Βασίλης Στεφανής Περιεχόμενα Τι είναι κρυπτογραφία Ιστορική αναδρομή Αλγόριθμοι: Καίσαρα Μονοαλφαβιτικοί Vigenere Vernam Κρυπτογραφία σήμερα Κρυπτογραφία Σκοπός Αποστολέας

Διαβάστε περισσότερα

ΕΠΛ 674: Εργαστήριο 1 Ασφάλεια Επικοινωνιακών Συστημάτων - Κρυπτογραφία

ΕΠΛ 674: Εργαστήριο 1 Ασφάλεια Επικοινωνιακών Συστημάτων - Κρυπτογραφία ΕΠΛ 674: Εργαστήριο 1 Ασφάλεια Επικοινωνιακών Συστημάτων - Κρυπτογραφία Παύλος Αντωνίου Γραφείο: ΘΕΕ 02 B176 Εαρινό Εξάμηνο 2011 Department of Computer Science Ασφάλεια - Απειλές Ασφάλεια Γενικά (Ι) Τα

Διαβάστε περισσότερα

Κρυπτογραφία. Εργαστηριακό μάθημα 1

Κρυπτογραφία. Εργαστηριακό μάθημα 1 Κρυπτογραφία Εργαστηριακό μάθημα 1 Βασικοί όροι Με τον όρο κρυπτογραφία εννοούμε τη μελέτη μαθηματικών τεχνικών που στοχεύουν στην εξασφάλιση θεμάτων που άπτονται της ασφάλειας μετάδοσης της πληροφορίας,

Διαβάστε περισσότερα

Κρυπτογραφία. Κεφάλαιο 1 Γενική επισκόπηση

Κρυπτογραφία. Κεφάλαιο 1 Γενική επισκόπηση Κρυπτογραφία Κεφάλαιο 1 Γενική επισκόπηση Ανασκόπηση ύλης Στόχοι της κρυπτογραφίας Ιστορικό Γενικά χαρακτηριστικά Κλασσική κρυπτογραφία Συμμετρικού κλειδιού (block ciphers stream ciphers) Δημοσίου κλειδιού

Διαβάστε περισσότερα

Κρυπ Κρ το υπ γραφία Κρυπ Κρ το υπ λογίας

Κρυπ Κρ το υπ γραφία Κρυπ Κρ το υπ λογίας Διαχείριση και Ασφάλεια Τηλεπικοινωνιακών Συστημάτων Κρυπτογραφία Κρυπτογραφία Η Κρυπτογραφία (cryptography) είναι ένας κλάδος της επιστήμης της Κρυπτολογίας (cryptology), η οποία ασχολείται με την μελέτη

Διαβάστε περισσότερα

Κρυπτογράφηση Αποκρυπτογράφηση Ερευνητική εργασία Β'1 1 ο Γενικό Λύκειο Ευόσμου

Κρυπτογράφηση Αποκρυπτογράφηση Ερευνητική εργασία Β'1 1 ο Γενικό Λύκειο Ευόσμου Κρυπτογράφηση Αποκρυπτογράφηση Ερευνητική εργασία Β'1 1 ο Γενικό Λύκειο Ευόσμου 2013-2014 Project Ορισμοί Ιστορία Η αποκρυπτογράφηση στις μέρες μας Κρυπτογράφηση Αποκρυπτογράφηση Αποκρυπτογραφημένο-Κρυπτογραφημένο

Διαβάστε περισσότερα

Κρυπτογραφία. Κεφάλαιο 4 Αλγόριθμοι Δημοσίου Κλειδιού (ή ασύμμετροι αλγόριθμοι)

Κρυπτογραφία. Κεφάλαιο 4 Αλγόριθμοι Δημοσίου Κλειδιού (ή ασύμμετροι αλγόριθμοι) Κρυπτογραφία Κεφάλαιο 4 Αλγόριθμοι Δημοσίου Κλειδιού (ή ασύμμετροι αλγόριθμοι) Κρυπτοσυστήματα Δημοσίου κλειδιού Αποστολέας P Encryption C Decryption P Παραλήπτης Προτάθηκαν το 1976 Κάθε συμμετέχων στο

Διαβάστε περισσότερα

Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων. Κρυπτογραφία. Κρυπτοαλγόριθμοι. Χρήστος Ξενάκης

Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων. Κρυπτογραφία. Κρυπτοαλγόριθμοι. Χρήστος Ξενάκης Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων Κρυπτογραφία Κρυπτοαλγόριθμοι Χρήστος Ξενάκης Θεωρία Πληροφορίας Η Θεωρία πληροφορίας (Shannon 1948 1949) σχετίζεται με τις επικοινωνίες και την ασφάλεια

Διαβάστε περισσότερα

Ασφάλεια Πληροφοριακών Συστημάτων

Ασφάλεια Πληροφοριακών Συστημάτων Εργαστήριο Ασφάλεια Πληροφοριακών Συστημάτων Θεοδωρακοπούλου Ανδριάνα atheodorak@outlook.com Βαθμολόγηση Ασκήσεις Εργαστηρίου: 40% Τελική Εξέταση: 60% Ρήτρα: Βαθμός τελικής εξέτασης > 3.5 ΠΡΟΣΟΧΗ στις

Διαβάστε περισσότερα

ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ. Δ Εξάμηνο

ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ. Δ Εξάμηνο ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ Δ Εξάμηνο Εισαγωγή- Βασικές Έννοιες Διδάσκων : Δρ. Παρασκευάς Κίτσος diceslab.cied.teiwest.gr Επίκουρος Καθηγητής Εργαστήριο Σχεδίασης Ψηφιακών Ολοκληρωμένων Κυκλωμάτων

Διαβάστε περισσότερα

ΤΙΤΛΟΣ ΕΡΕΥΝΗΤΙΚΗΣ ΕΚΘΕΣΗΣ ΚΩΔΙΚΕΣ. Υπόθεμα: «ΚΡΥΠΤΟΓΡΑΦΙΑ»

ΤΙΤΛΟΣ ΕΡΕΥΝΗΤΙΚΗΣ ΕΚΘΕΣΗΣ ΚΩΔΙΚΕΣ. Υπόθεμα: «ΚΡΥΠΤΟΓΡΑΦΙΑ» ΤΙΤΛΟΣ ΕΡΕΥΝΗΤΙΚΗΣ ΕΚΘΕΣΗΣ ΚΩΔΙΚΕΣ Υπόθεμα: «ΚΡΥΠΤΟΓΡΑΦΙΑ» ΤΑ ΜΕΛΗ ΤΗΣ ΟΜΑΔΑΣ ΦΩΤΕΙΝΟΥ ΑΝΔΡΙΑΝΑ ΣΟΦΟΛΟΓΗ ΑΡΕΤΗ ΣΠΑΡΤΑΛΗΣ ΝΙΚΟΣ ΜΕΜΟΣ ΝΙΚΟΣ Επιβλέπουσα καθηγήτρια: Καλλιόπη Μαγδαληνού, ΠΕ19 1 ΛΙΓΑ ΛΟΓΙΑ

Διαβάστε περισσότερα

Ασφάλεια Πληροφοριακών Συστημάτων

Ασφάλεια Πληροφοριακών Συστημάτων Εργαστήριο Ασφάλεια Πληροφοριακών Συστημάτων Lab 1 Κλασική Κρυπτογραφία ΤΕΙ ΚΡΗΤΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Fysarakis Konstantinos, PhD kfysarakis@staff.teicrete.gr Γενικές Πληροφορίες Βαθμολόγηση

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 131: ΑΡΧΕΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ I ΕΡΓΑΣΙΑ 2

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 131: ΑΡΧΕΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ I ΕΡΓΑΣΙΑ 2 ΕΡΓΑΣΙΑ Διδάσκων: Γιώργος Χρυσάνθου Υπεύθυνος Άσκησης: Πύρρος Μπράτσκας Ημερομηνία Ανάθεσης: 3/10/015 Ημερομηνία Παράδοσης: 09/11/015 09:00 π.μ. I.Στόχος Στόχος αυτής της εργασίας είναι η χρησιμοποίηση

Διαβάστε περισσότερα

Πληροφορική Ι. Μάθημα 10 ο Ασφάλεια. Τμήμα Χρηματοοικονομικής & Ελεγκτικής ΤΕΙ Ηπείρου Παράρτημα Πρέβεζας. Δρ. Γκόγκος Χρήστος

Πληροφορική Ι. Μάθημα 10 ο Ασφάλεια. Τμήμα Χρηματοοικονομικής & Ελεγκτικής ΤΕΙ Ηπείρου Παράρτημα Πρέβεζας. Δρ. Γκόγκος Χρήστος Οι διαφάνειες έχουν βασιστεί στο βιβλίο «Εισαγωγή στην επιστήμη των υπολογιστών» του B. Forouzanκαι Firoyz Mosharraf(2 η έκδοση-2010) Εκδόσεις Κλειδάριθμος Τμήμα Χρηματοοικονομικής & Ελεγκτικής ΤΕΙ Ηπείρου

Διαβάστε περισσότερα

κρυπτογραϕία Ψηφιακή ασφάλεια και ιδιωτικότητα Γεώργιος Σπαθούλας Msc Πληροφορική και υπολογιστική βιοιατρική Πανεπιστήμιο Θεσσαλίας

κρυπτογραϕία Ψηφιακή ασφάλεια και ιδιωτικότητα Γεώργιος Σπαθούλας Msc Πληροφορική και υπολογιστική βιοιατρική Πανεπιστήμιο Θεσσαλίας κρυπτογραϕία Ψηφιακή ασφάλεια και ιδιωτικότητα Γεώργιος Σπαθούλας Msc Πληροφορική και υπολογιστική βιοιατρική Πανεπιστήμιο Θεσσαλίας ιδιότητες ασϕάλειας ιδιότητες ασϕάλειας αγαθών Εμπιστευτικότητα (Confidentiality)

Διαβάστε περισσότερα

ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ. Δ Εξάμηνο

ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ. Δ Εξάμηνο ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ Δ Εξάμηνο Εισαγωγή- Βασικές Έννοιες Διδάσκων : Δρ. Παρασκευάς Κίτσος Επίκουρος Καθηγητής e-mail: pkitsos@teimes.gr, pkitsos@ieee.org Αντίρριο 2015 1 ΤΙ ΕΙΝΑΙ Η ΚΡΥΠΤΟΛΟΓΙΑ?

Διαβάστε περισσότερα

Εισαγωγή στην επιστήμη της Πληροφορικής και των Τηλεπικοινωνιών. Aσφάλεια

Εισαγωγή στην επιστήμη της Πληροφορικής και των Τηλεπικοινωνιών. Aσφάλεια Εισαγωγή στην επιστήμη της Πληροφορικής και των Τηλεπικοινωνιών Aσφάλεια ΣΤΟΧΟΙ ΚΕΦΑΛΑΙΟΥ Ορισµός τριών στόχων ασφάλειας - Εµπιστευτικότητα, ακεραιότητα και διαθεσιµότητα Επιθέσεις Υπηρεσίες και Τεχνικές

Διαβάστε περισσότερα

Εισαγωγή στην επιστήμη της Πληροφορικής και των Τηλεπικοινωνιών. Aσφάλεια

Εισαγωγή στην επιστήμη της Πληροφορικής και των Τηλεπικοινωνιών. Aσφάλεια Εισαγωγή στην επιστήμη της Πληροφορικής και των Τηλεπικοινωνιών Aσφάλεια Περιεχόμενα Πλευρές Ασφάλειας Ιδιωτικό Απόρρητο Μέθοδος Μυστικού Κλειδιού (Συμμετρική Κρυπτογράφηση) Μέθοδος Δημόσιου Κλειδιού (Ασύμμετρη

Διαβάστε περισσότερα

8.3.4 Τεχνικές Ασφάλειας Συμμετρική Κρυπτογράφηση Ασυμμετρική Κρυπτογράφηση Ψηφιακές Υπογραφές

8.3.4 Τεχνικές Ασφάλειας Συμμετρική Κρυπτογράφηση Ασυμμετρική Κρυπτογράφηση Ψηφιακές Υπογραφές Κεφάλαιο 8 8.3.4 Τεχνικές Ασφάλειας Συμμετρική Κρυπτογράφηση Ασυμμετρική Κρυπτογράφηση Ψηφιακές Υπογραφές Σελ. 320-325 Γεώργιος Γιαννόπουλος ΠΕ19, ggiannop (at) sch.gr http://diktya-epal-g.ggia.info/ Creative

Διαβάστε περισσότερα

ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ. Δ Εξάμηνο

ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ. Δ Εξάμηνο ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ Δ Εξάμηνο Ασύμμετρη Κρυπτογράφηση (Κρυπτογραφία Δημόσιου Κλειδιού) Διδάσκων : Δρ. Παρασκευάς Κίτσος Επίκουρος Καθηγητής e-mail: pkitsos@teimes.gr, pkitsos@ieee.org

Διαβάστε περισσότερα

Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων. Κρυπτογραφία. Εισαγωγή. Χρήστος Ξενάκης

Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων. Κρυπτογραφία. Εισαγωγή. Χρήστος Ξενάκης Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων Κρυπτογραφία Εισαγωγή Χρήστος Ξενάκης Στόχος του μαθήματος Η παρουσίαση και ανάλυση των βασικών θεμάτων της θεωρίας κρυπτογραφίας. Οι εφαρμογές της κρυπτογραφίας

Διαβάστε περισσότερα

ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ. Δ Εξάμηνο

ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ. Δ Εξάμηνο ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ Δ Εξάμηνο Οι Αλγόριθμοι Κρυπτογραφίας και οι Ιδιότητές τους Διδάσκων : Δρ. Παρασκευάς Κίτσος Επίκουρος Καθηγητής e-mail: pkitsos@teimes.gr, pkitsos@ieee.org Αντίρριο

Διαβάστε περισσότερα

ΑΣΦΑΛΕΙΑ & ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ(Θ)

ΑΣΦΑΛΕΙΑ & ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ(Θ) ΑΣΦΑΛΕΙΑ & ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ(Θ) Ενότητα 2: ΑΣΦΑΛΕΙΑ & ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ ΔΙΔΑΣΚΩΝ: ΚΩΝΣΤΑΝΤΙΝΟΣ ΧΕΙΛΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Εφαρμοσμένη Κρυπτογραφία Ι

Εφαρμοσμένη Κρυπτογραφία Ι Εφαρμοσμένη Κρυπτογραφία Ι Κωνσταντίνου Ελισάβετ ekonstantinou@aegean.gr http://www.icsd.aegean.gr/ekonstantinou Συνολικό Πλαίσιο Ασφάλεια ΠΕΣ Εμπιστευτικότητα Ακεραιότητα Πιστοποίηση Μη-αποποίηση Κρυπτογράφηση

Διαβάστε περισσότερα

ΑΣΥΜΜΕΤΡΗ ΚΡΥΠΤΟΓΡΑΦΙΑ Lab 3

ΑΣΥΜΜΕΤΡΗ ΚΡΥΠΤΟΓΡΑΦΙΑ Lab 3 ΑΣΥΜΜΕΤΡΗ ΚΡΥΠΤΟΓΡΑΦΙΑ Lab 3 Η Aσύμμετρη Kρυπτογραφία ή Κρυπτογραφία Δημοσίου Κλειδιού χρησιμοποιεί δύο διαφορετικά κλειδιά για την κρυπτογράφηση και αποκρυπτογράφηση. Eπινοήθηκε στο τέλος της δεκαετίας

Διαβάστε περισσότερα

Εισαγωγή στην επιστήμη της Πληροφορικής και των. Aσφάλεια

Εισαγωγή στην επιστήμη της Πληροφορικής και των. Aσφάλεια Εισαγωγή στην επιστήμη της Πληροφορικής και των Τηλεπικοινωνιών Aσφάλεια Περιεχόμενα Πλευρές Ασφάλειας Ιδιωτικό Απόρρητο Μέθοδος Μυστικού Κλειδιού (Συμμετρική Κρυπτογράφηση) Μέθοδος Δημόσιου Κλειδιού (Ασύμμετρη

Διαβάστε περισσότερα

ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ. Δ Εξάμηνο

ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ. Δ Εξάμηνο ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ Δ Εξάμηνο Οι Αλγόριθμοι Κρυπτογραφίας και οι Ιδιότητές τους Διδάσκων : Δρ. Παρασκευάς Κίτσος Επίκουρος Καθηγητής e-mail: pkitsos@teimes.gr, pkitsos@ieee.org Αντίρριο

Διαβάστε περισσότερα

Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Πληροφορική Ι. Ενότητα 10 : Ασφάλεια. Δρ. Γκόγκος Χρήστος

Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Πληροφορική Ι. Ενότητα 10 : Ασφάλεια. Δρ. Γκόγκος Χρήστος 1 Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Πληροφορική Ι Ενότητα 10 : Ασφάλεια Δρ. Γκόγκος Χρήστος 2 Ανοιχτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ηπείρου Τμήμα Χρηματοοικονομικής & Ελεγκτικής

Διαβάστε περισσότερα

Ασφάλεια Τηλεπικοινωνιακών Συστημάτων ΣΤΑΥΡΟΣ Ν ΝΙΚΟΛΟΠΟΥΛΟΣ 03 ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΚΡΥΠΤΟΛΟΓΙΑ

Ασφάλεια Τηλεπικοινωνιακών Συστημάτων ΣΤΑΥΡΟΣ Ν ΝΙΚΟΛΟΠΟΥΛΟΣ 03 ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΚΡΥΠΤΟΛΟΓΙΑ Ασφάλεια Τηλεπικοινωνιακών Συστημάτων ΣΤΑΥΡΟΣ Ν ΝΙΚΟΛΟΠΟΥΛΟΣ 03 ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΚΡΥΠΤΟΛΟΓΙΑ Περιγραφή μαθήματος Η Κρυπτολογία είναι κλάδος των Μαθηματικών, που ασχολείται με: Ανάλυση Λογικών Μαθηματικών

Διαβάστε περισσότερα

Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία

Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Σημειώσεις Διαλέξεων Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία Επιμέλεια σημειώσεων: Ελένη Μπακάλη Άρης Παγουρτζής

Διαβάστε περισσότερα

Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών Ασφάλεια Δεδομένων.

Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών Ασφάλεια Δεδομένων. Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής στην Επιστήμη των Υπολογιστών 2015-16 Ασφάλεια Δεδομένων http://www.ionio.gr/~mistral/tp/csintro/ Μ.Στεφανιδάκης Οι απειλές Ένας κακόβουλος χρήστης Καταγράφει μηνύματα

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ Δ.Π.Μ.Σ. στα Πληροφοριακά Συστήματα ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΜΕ ΘΕΜΑ: «Ασφάλεια στο Διαδίκτυο με τη βοήθεια ζεύγους δημόσιου και ιδιωτικού κλειδιού: Εφαρμογή σε πρόγραμμα ψηφιακής υπογραφής

Διαβάστε περισσότερα

El Gamal Αλγόριθμος. Κώστας Λιμνιώτης Κρυπτογραφία - Εργαστηριακό μάθημα 7 2

El Gamal Αλγόριθμος. Κώστας Λιμνιώτης Κρυπτογραφία - Εργαστηριακό μάθημα 7 2 Κρυπτογραφία Εργαστηριακό μάθημα 7 (Αλγόριθμοι Δημοσίου Κλειδιού) α) El Gamal β) Diffie-Hellman αλγόριθμος για την ανταλλαγή συμμετρικού κλειδιού κρυπτογράφησης El Gamal Αλγόριθμος Παράμετροι συστήματος:

Διαβάστε περισσότερα

Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων. Κρυπτογραφία. Ασύμμετρη Κρυπτογραφία. Χρήστος Ξενάκης

Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων. Κρυπτογραφία. Ασύμμετρη Κρυπτογραφία. Χρήστος Ξενάκης Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων Κρυπτογραφία Ασύμμετρη Κρυπτογραφία Χρήστος Ξενάκης Ασύμμετρη κρυπτογραφία Μονόδρομες συναρτήσεις με μυστική πόρτα Μια συνάρτηση f είναι μονόδρομη, όταν δοθέντος

Διαβάστε περισσότερα

Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία

Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Σημειώσεις Διαλέξεων Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία Επιμέλεια σημειώσεων: Ελένη Μπακάλη Άρης Παγουρτζής

Διαβάστε περισσότερα

Ηλεκτρονικό εμπόριο. HE 7 Τεχνολογίες ασφάλειας

Ηλεκτρονικό εμπόριο. HE 7 Τεχνολογίες ασφάλειας Ηλεκτρονικό εμπόριο HE 7 Τεχνολογίες ασφάλειας Πρόκληση ανάπτυξης ασφαλών συστημάτων Η υποδομή του διαδικτύου παρουσίαζε έλλειψη υπηρεσιών ασφάλειας καθώς η οικογένεια πρωτοκόλλων TCP/IP στην οποία στηρίζεται

Διαβάστε περισσότερα

Οι απειλές. Απόρρητο επικοινωνίας. Αρχές ασφάλειας δεδομένων. Απόρρητο (privacy) Μέσω κρυπτογράφησης

Οι απειλές. Απόρρητο επικοινωνίας. Αρχές ασφάλειας δεδομένων. Απόρρητο (privacy) Μέσω κρυπτογράφησης Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής στην Επιστήμη των Υπολογιστών 2014-015 Ασφάλεια Δεδομένων http://www.ionio.gr/~mistral/tp/csintro/ Οι απειλές Ένας κακόβουλος χρήστης Καταγράφει μηνύματα που ανταλλάσσονται

Διαβάστε περισσότερα

Συμμετρικά κρυπτοσυστήματα

Συμμετρικά κρυπτοσυστήματα Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία Συμμετρικά κρυπτοσυστήματα Άρης Παγουρτζής Στάθης Ζάχος Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών - Μηχανικών Υπολογιστών Δίκτυα Feistel Σημαντικές

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ 1. Εισαγωγή 2. Θεωρία αριθμών Αλγεβρικές δομές 3. Οι κρυπταλγόριθμοι και οι ιδιότητές τους

ΠΕΡΙΕΧΟΜΕΝΑ 1. Εισαγωγή 2. Θεωρία αριθμών Αλγεβρικές δομές  3. Οι κρυπταλγόριθμοι και οι ιδιότητές τους ΠΕΡΙΕΧΟΜΕΝΑ 1. Εισαγωγή... 1 1.1. Ορισμοί και ορολογία... 2 1.1.1. Συμμετρικά και ασύμμετρα κρυπτοσυστήματα... 4 1.1.2. Κρυπτογραφικές υπηρεσίες και πρωτόκολλα... 9 1.1.3. Αρχές μέτρησης κρυπτογραφικής

Διαβάστε περισσότερα

Κεφάλαιο 2. Κρυπτογραφικά εργαλεία

Κεφάλαιο 2. Κρυπτογραφικά εργαλεία Κεφάλαιο 2 Κρυπτογραφικά εργαλεία Συμμετρική κρυπτογράφηση Καθολικά αποδεκτή τεχνική που χρησιμοποιείται για τη διαφύλαξη της εμπιστευτικότητας δεδομένων τα οποία μεταδίδονται ή αποθηκεύονται Γνωστή και

Διαβάστε περισσότερα

Κρυπτογραφία και Ηλεκτρονικοί Υπολογιστές. ΣΥΝΤΕΛΕΣΤΕΣ: Κραβαρίτης Αλέξανδρος Μαργώνη Αγγελική Χαλιμούρδα Κων/να

Κρυπτογραφία και Ηλεκτρονικοί Υπολογιστές. ΣΥΝΤΕΛΕΣΤΕΣ: Κραβαρίτης Αλέξανδρος Μαργώνη Αγγελική Χαλιμούρδα Κων/να Κρυπτογραφία και Ηλεκτρονικοί Υπολογιστές ΣΥΝΤΕΛΕΣΤΕΣ: Κραβαρίτης Αλέξανδρος Μαργώνη Αγγελική Χαλιμούρδα Κων/να Ορισμός κρυπτογραφίας Με τον όρο κρυπτογραφία, αναφερόμαστε στη μελέτη μαθηματικών τεχνικών

Διαβάστε περισσότερα

Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία

Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία Συμμετρικά κρυπτοσυστήματα Άρης Παγουρτζής Στάθης Ζάχος Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Σχολή ΗΜΜΥ ΕΜΠ 1

Διαβάστε περισσότερα

ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ

ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ Δ Εξάμηνο Συναρτήσεις Κατακερματισμού και Πιστοποίηση Μηνύματος Διδάσκων : Δρ. Παρασκευάς Κίτσος Επίκουρος Καθηγητής e-mail: pkitsos@teimes.gr, pkitsos@ieee.org Αντίρριο

Διαβάστε περισσότερα

Ασφάλεια Πληροφοριακών Συστημάτων

Ασφάλεια Πληροφοριακών Συστημάτων Ασφάλεια Πληροφοριακών Συστημάτων Κρυπτογραφία/Ψηφιακές Υπογραφές Διάλεξη 2η Δρ. Β. Βασιλειάδης Τμ. Διοίκησης Επιχειρήσεων, ΤΕΙ Δυτ. Ελλάδας Kρυπτανάλυση Προσπαθούμε να σπάσουμε τον κώδικα. Ξέρουμε το

Διαβάστε περισσότερα

3 ΟΙ ΚΡΥΠΤΑΛΓΟΡΙΘΜΟΙ ΚΑΙ ΟΙ ΙΔΙΟΤΗΤΕΣ ΤΟΥΣ

3 ΟΙ ΚΡΥΠΤΑΛΓΟΡΙΘΜΟΙ ΚΑΙ ΟΙ ΙΔΙΟΤΗΤΕΣ ΤΟΥΣ 3 ΟΙ ΚΡΥΠΤΑΛΓΟΡΙΘΜΟΙ ΚΑΙ ΟΙ ΙΔΙΟΤΗΤΕΣ ΤΟΥΣ 3.. Θεωρία της πληροφορίας Το 948 και το 949 ο Shannon παρουσίασε δύο εργασίες ορόσημα στις επικοινωνίες και στην ασφάλεια της πληροφορίας. Στο σημείο αυτό θα

Διαβάστε περισσότερα

1.1. Ορισμοί και ορολογία

1.1. Ορισμοί και ορολογία 1 ΕΙΣΑΓΩΓΗ Προτού ξεκινήσουμε την περιήγησή μας στον κόσμο της κρυπτογραφίας, ας δούμε ορισμένα πρακτικά προβλήματα που κατά καιρούς έχουμε συναντήσει ή έχουμε φανταστεί. Το πρόβλημα του «μυστικού υπολογισμού».

Διαβάστε περισσότερα

1. Τι είναι ακεραιότητα δεδομένων, με ποιους μηχανισμούς επιτυγχάνετε κ πότε θα χρησιμοποιούσατε τον καθένα εξ αυτών;

1. Τι είναι ακεραιότητα δεδομένων, με ποιους μηχανισμούς επιτυγχάνετε κ πότε θα χρησιμοποιούσατε τον καθένα εξ αυτών; 1. Τι είναι ακεραιότητα δεδομένων, με ποιους μηχανισμούς επιτυγχάνετε κ πότε θα χρησιμοποιούσατε τον καθένα εξ αυτών; Η ακεραιότητα δεδομένων(data integrity) Είναι η ιδιότητα που μας εξασφαλίζει ότι δεδομένα

Διαβάστε περισσότερα

ΑΣΦΑΛΕΙΑ & ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ(Θ)

ΑΣΦΑΛΕΙΑ & ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ(Θ) ΑΣΦΑΛΕΙΑ & ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ(Θ) Ενότητα 4: ΑΣΦΑΛΕΙΑ & ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ ΔΙΔΑΣΚΩΝ: ΚΩΝΣΤΑΝΤΙΝΟΣ ΧΕΙΛΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

KΕΦΑΛΑΙΟ 5 ΨΗΦΙΑΚΕΣ ΥΠΟΓΡΑΦΕΣ

KΕΦΑΛΑΙΟ 5 ΨΗΦΙΑΚΕΣ ΥΠΟΓΡΑΦΕΣ KΕΦΑΛΑΙΟ 5 ΨΗΦΙΑΚΕΣ ΥΠΟΓΡΑΦΕΣ 1 Γενικά Η ψηφιακή υπογραφή είναι µια µέθοδος ηλεκτρονικής υπογραφής όπου ο παραλήπτης ενός υπογεγραµµένου ηλεκτρονικού µηνύµατος µπορεί να διαπιστώσει τη γνησιότητα του,

Διαβάστε περισσότερα

Κρυπτογραφία. Κωνσταντίνου Ελισάβετ

Κρυπτογραφία. Κωνσταντίνου Ελισάβετ Κρυπτογραφία Κωνσταντίνου Ελισάβετ ekonstantinou@aegean.gr http://www.icsd.aegean.gr/ekonstantinou Συμμετρικά Κρυπτοσυστήματα κλειδί k Αρχικό κείμενο (m) Αλγόριθμος Κρυπτογράφησης Ε c = E k (m) Κρυπτογραφημένο

Διαβάστε περισσότερα

Κρυπτογραφία. Εργαστηριακό μάθημα 2-3-4

Κρυπτογραφία. Εργαστηριακό μάθημα 2-3-4 Κρυπτογραφία Εργαστηριακό μάθημα 2-3-4 Ασκήσεις επανάληψης Αλγόριθμοι μετατόπισης Προσπαθήστε, χωρίς να γνωρίζετε το κλειδί, να αποκρυπτογραφήσετε το ακόλουθο κρυπτόγραμμα που έχει προκύψει από κάποιον

Διαβάστε περισσότερα

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΕΦΑΡΜΟΓΕΣ ΤΗΣ ΚΡΥΠΤΟΓΡΑΦΙΑΣ

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΕΦΑΡΜΟΓΕΣ ΤΗΣ ΚΡΥΠΤΟΓΡΑΦΙΑΣ ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΠΜΣ ΕΠΙΧΕΙΡΗΜΑΤΙΚΗΣ ΠΛΗΡΟΦΟΡΙΚΗ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΕΦΑΡΜΟΓΕΣ ΤΗΣ ΚΡΥΠΤΟΓΡΑΦΙΑΣ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΑΠΟΣΤΟΛΙΔΟΥ ΚΥΡΙΑΚΗ ΕΠΙΒΛΕΠΩΝ: ΜΠΙΣΜΠΑΣ ΑΝΤΩΝΙΟΣ, Καθηγητής

Διαβάστε περισσότερα

Πρώτοι αριθμοί και κρυπτογραφικός αλγόριθμος RSA. Άριστος Χαραλάμπους, Δημήτρης Χαραλάμπους, Νικόλας Παρασκευάς

Πρώτοι αριθμοί και κρυπτογραφικός αλγόριθμος RSA. Άριστος Χαραλάμπους, Δημήτρης Χαραλάμπους, Νικόλας Παρασκευάς Πρώτοι αριθμοί και κρυπτογραφικός αλγόριθμος RSA Άριστος Χαραλάμπους, Δημήτρης Χαραλάμπους, Νικόλας Παρασκευάς Πρώτοι Αριθμοί Πρώτος αριθμός ονομάζεται ένας φυσικός αριθμός (δηλ. θετικός ακέραιος) μεγαλύτερος

Διαβάστε περισσότερα

ΤΕΙ Κρήτης Τμήμα Μηχανικών Πληροφορικής. Συμμετρική Κρυπτογραφία

ΤΕΙ Κρήτης Τμήμα Μηχανικών Πληροφορικής. Συμμετρική Κρυπτογραφία ΤΕΙ Κρήτης Τμήμα Μηχανικών Πληροφορικής Συμμετρική Κρυπτογραφία Εισαγωγή Στην συνηθισμένη κρυπτογραφία, ο αποστολέας και ο παραλήπτης ενός μηνύματος γνωρίζουν και χρησιμοποιούν το ίδιο μυστικό κλειδί.

Διαβάστε περισσότερα

Τετάρτη 20 Ιουνίου, Κρυπτογράφηση Ανωνυμοποίηση Ψευδωνυμοποίηση

Τετάρτη 20 Ιουνίου, Κρυπτογράφηση Ανωνυμοποίηση Ψευδωνυμοποίηση Τετάρτη 20 Ιουνίου, 2018 Κρυπτογράφηση Ανωνυμοποίηση Ψευδωνυμοποίηση ΚΡΥΠΤΟΓΡΑΦΗΣΗ Τι είναι: Κρυπτογράφηση είναι ο μετασχηματισμός δεδομένων σε μορφή που να είναι αδύνατον να διαβαστεί χωρίς τη γνώση της

Διαβάστε περισσότερα

Δραστηριότητες σχετικά με κρυπτογραφία και ελέγχους ισοτιμίας

Δραστηριότητες σχετικά με κρυπτογραφία και ελέγχους ισοτιμίας Δραστηριότητες σχετικά με κρυπτογραφία και ελέγχους ισοτιμίας Δραστηριότητα 6: Κωδικοί και κρυπτογραφία Το αντικείμενο της δραστηριότητας αυτής είναι η κατανόηση από την πλευρά των μαθητών μερικών στοιχειωδών

Διαβάστε περισσότερα

ΑΣΥΜΜΕΤΡΗ ΚΡΥΠΤΟΓΡΑΦΙΑ

ΑΣΥΜΜΕΤΡΗ ΚΡΥΠΤΟΓΡΑΦΙΑ ΤΕΙ Κρήτης ΕΠΠ Εργαστήριο Ασφάλεια Πληροφοριακών Συστηµάτων ΑΣΥΜΜΕΤΡΗ ΚΡΥΠΤΟΓΡΑΦΙΑ ΤΕΙ Κρητης Τµηµα Εφαρµοσµενης Πληροφορικης Και Πολυµεσων Fysarakis Konstantinos, PhD kfysarakis@staff.teicrete.gr Εισαγωγή

Διαβάστε περισσότερα

ΚΡΥΠΤΟΓΡΑΦΙΑ. Σκοπός: η δημιουργία ασφαλούς επικοινωνίας. «κρυπτός» + «γράφω» τρόπος απόκρυψης περιεχομένου των μηνυμάτων

ΚΡΥΠΤΟΓΡΑΦΙΑ. Σκοπός: η δημιουργία ασφαλούς επικοινωνίας. «κρυπτός» + «γράφω» τρόπος απόκρυψης περιεχομένου των μηνυμάτων ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΡΥΠΤΟΓΡΑΦΙΑ «κρυπτός» + «γράφω» τρόπος απόκρυψης περιεχομένου των μηνυμάτων Σκοπός: η δημιουργία ασφαλούς επικοινωνίας Click to edit Master subtitle style ΔΙΑΔΙΚΑΣΙΑ ΚΡΥΠΤΟΓΡΑΦΗΣΗΣ - ΑΠΟΚΡΥΠΤΟΓΡΑΦΗΣΗΣ

Διαβάστε περισσότερα

Οικονομικό Πανεπιστήμιο Αθηνών Τμήμα Πληροφορικής ΠΜΣ Κρυπτογραφία και Εφαρμογές

Οικονομικό Πανεπιστήμιο Αθηνών Τμήμα Πληροφορικής ΠΜΣ Κρυπτογραφία και Εφαρμογές Οικονομικό Πανεπιστήμιο Αθηνών Τμήμα Πληροφορικής ΠΜΣ Κρυπτογραφία και Εφαρμογές Μαριάς Ιωάννης Μαρκάκης Ευάγγελος marias@aueb.gr markakis@gmail.com Περίληψη Shannon theory Εντροπία Μελέτη κρυπτοσυστηµάτων

Διαβάστε περισσότερα

Ασφάλεια ικτύων. Ασφάλεια δικτύων

Ασφάλεια ικτύων. Ασφάλεια δικτύων Ασφάλεια ικτύων Ασφάλεια δικτύων Στα χαµηλά επίπεδα: να φτάσουν τα πακέτα στον παραλήπτη χωρίς σφάλµατα Σε ανώτερο επίπεδο: να προστατευθεί η διακινούµενη πληροφορία έτσι ώστε: Να µην µπορεί να διαβαστεί

Διαβάστε περισσότερα

Ασφάλεια Πληροφοριακών Συστημάτων

Ασφάλεια Πληροφοριακών Συστημάτων Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Ασφάλεια Πληροφοριακών Συστημάτων Ενότητα 5: Διαχείριση κλειδιών Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται

Διαβάστε περισσότερα

Εφαρμοσμένη Κρυπτογραφία Ι

Εφαρμοσμένη Κρυπτογραφία Ι Εφαρμοσμένη Κρυπτογραφία Ι Κωνσταντίνου Ελισάβετ ekonstantinou@aegean.gr http://www.icsd.aegean.gr/ekonstantinou Ιστορία Ασύμμετρης Κρυπτογραφίας Η αρχή έγινε το 1976 με την εργασία των Diffie-Hellman

Διαβάστε περισσότερα

Κρυπτογραφία. Εργαστηριακό μάθημα 5 Stream ciphers Κρυπτανάλυση με τον αλγόριθμο Berlekamp-Massey

Κρυπτογραφία. Εργαστηριακό μάθημα 5 Stream ciphers Κρυπτανάλυση με τον αλγόριθμο Berlekamp-Massey Κρυπτογραφία Εργαστηριακό μάθημα 5 Stream ciphers Κρυπτανάλυση με τον αλγόριθμο Berlekamp-Massey Γενικά χαρακτηριστικά των stream ciphers Keystream Generator K i P i C i Δουλεύουν πάνω σε ένα ρεύμα από

Διαβάστε περισσότερα

Ασφάλεια Υπολογιστικών Συστηµάτων

Ασφάλεια Υπολογιστικών Συστηµάτων Ορισµοί Κρυπτογράφηση: η διεργασία µετασχηµατισµού ενός µηνύµατος µεταξύ ενός αποστολέα και ενός παραλήπτη σε µια ακατανόητη µορφή ώστε αυτό να µην είναι αναγνώσιµο από τρίτους Αποκρυπτογράφηση: η διεργασία

Διαβάστε περισσότερα

Κρυπτογραφία. Εργαστηριακό μάθημα 10 (Επαναληπτικές ασκήσεις)

Κρυπτογραφία. Εργαστηριακό μάθημα 10 (Επαναληπτικές ασκήσεις) Κρυπτογραφία Εργαστηριακό μάθημα 10 (Επαναληπτικές ασκήσεις) Εύρεση αντίστροφου αριθμού Mod n Έχουμε ήδη δει ότι πολύ συχνά συναντάμε την ανάγκη να βρούμε τον αντίστροφο ενός αριθμού a modulo n, δηλαδή

Διαβάστε περισσότερα

Threshold Cryptography Algorithms. Εργασία στα πλαίσια του μαθήματος Τεχνολογίες Υπολογιστικού Νέφους

Threshold Cryptography Algorithms. Εργασία στα πλαίσια του μαθήματος Τεχνολογίες Υπολογιστικού Νέφους Threshold Cryptography Algorithms Εργασία στα πλαίσια του μαθήματος Τεχνολογίες Υπολογιστικού Νέφους Ορισμός Το σύστημα το οποίο τεμαχίζει ένα κλειδί k σε n τεμάχια έτσι ώστε οποιοσδήποτε συνδυασμός πλήθους

Διαβάστε περισσότερα

Ασφάλεια στο Ηλεκτρονικό Επιχειρείν. ΤΕΙ Δυτικής Ελλάδας Τμήμα Διοίκησης Επιχειρήσεων - Πάτρα Κουτσονίκος Γιάννης

Ασφάλεια στο Ηλεκτρονικό Επιχειρείν. ΤΕΙ Δυτικής Ελλάδας Τμήμα Διοίκησης Επιχειρήσεων - Πάτρα Κουτσονίκος Γιάννης Ασφάλεια στο Ηλεκτρονικό Επιχειρείν ΤΕΙ Δυτικής Ελλάδας Τμήμα Διοίκησης Επιχειρήσεων - Πάτρα Κουτσονίκος Γιάννης 1 Κίνδυνοι Η-Ε Μερικοί από τους κινδύνους ενός δικτυακού τόπου Ε-εμπορίου περιλαμβάνουν:

Διαβάστε περισσότερα

Κρυπτογραφία. Κρυπτοσυστήματα τμήματος (Block ciphers) Άρης Παγουρτζής Στάθης Ζάχος Πέτρος Ποτίκας

Κρυπτογραφία. Κρυπτοσυστήματα τμήματος (Block ciphers) Άρης Παγουρτζής Στάθης Ζάχος Πέτρος Ποτίκας Κρυπτογραφία Κρυπτοσυστήματα τμήματος (Block ciphers) Άρης Παγουρτζής Στάθης Ζάχος Πέτρος Ποτίκας Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Block ciphers και ψευδοτυχαίες

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ & ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΣ ΠΛΗΡΟΦΟΡΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΕΝΣΥΡΜΑΤΗΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΣ ΔΗΜΙΟΥΡΓΙΑ ΕΦΑΡΜΟΓΗΣ

Διαβάστε περισσότερα

Ασφάλεια Πληροφοριακών Συστημάτων

Ασφάλεια Πληροφοριακών Συστημάτων Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Ασφάλεια Πληροφοριακών Συστημάτων Ενότητα 6: Κρυπτογραφία Ι Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά

Διαβάστε περισσότερα

ΠΡΟΣΤΑΣΙΑ ΠΡΟΣΩΠΙΚΩΝ ΔΕΔΟΜΕΝΩΝ ΣΤΙΣ ΤΕΧΝΟΛΟΓΙΕΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΩΝ ΚΑΘΩΣ ΚΑΙ ΣΤΟ ΔΙΑΔΙΚΤΥΟ

ΠΡΟΣΤΑΣΙΑ ΠΡΟΣΩΠΙΚΩΝ ΔΕΔΟΜΕΝΩΝ ΣΤΙΣ ΤΕΧΝΟΛΟΓΙΕΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΩΝ ΚΑΘΩΣ ΚΑΙ ΣΤΟ ΔΙΑΔΙΚΤΥΟ ΠΡΟΣΤΑΣΙΑ ΠΡΟΣΩΠΙΚΩΝ ΔΕΔΟΜΕΝΩΝ ΣΤΙΣ ΤΕΧΝΟΛΟΓΙΕΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΩΝ ΚΑΘΩΣ ΚΑΙ ΣΤΟ ΔΙΑΔΙΚΤΥΟ ΔΙΑΔΙΚΤΥΟ Το διαδίκτυο προσφέρει: Μετατροπή των δεδομένων σε ψηφιακή - ηλεκτρονική μορφή. Πρόσβαση

Διαβάστε περισσότερα

Freedom of Speech. Κρυπτογραφία και ασφαλής ανταλλαγή πληροφοριών στο Internet

Freedom of Speech. Κρυπτογραφία και ασφαλής ανταλλαγή πληροφοριών στο Internet Freedom of Speech Κρυπτογραφία και ασφαλής ανταλλαγή πληροφοριών στο Internet Freedom of Speech Ποιός ; & Γιατί ; Τι είναι Ιστορικά Στόχοι Είδη Μοντέρνων Αλγορίθμων Μοντέλα Εμπιστοσύνης 14/03/2012 Freedom

Διαβάστε περισσότερα

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων

Διαβάστε περισσότερα

ΑΣΦΑΛΕΙΑ & ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ(Θ)

ΑΣΦΑΛΕΙΑ & ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ(Θ) ΑΣΦΑΛΕΙΑ & ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ(Θ) Ενότητα 5: ΑΣΦΑΛΕΙΑ & ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ ΔΙΔΑΣΚΩΝ: ΚΩΝΣΤΑΝΤΙΝΟΣ ΧΕΙΛΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Κεφάλαιο 21. Κρυπτογραφία δημόσιου κλειδιού και πιστοποίηση ταυτότητας μηνυμάτων

Κεφάλαιο 21. Κρυπτογραφία δημόσιου κλειδιού και πιστοποίηση ταυτότητας μηνυμάτων Κεφάλαιο 21 Κρυπτογραφία δημόσιου κλειδιού και πιστοποίηση ταυτότητας μηνυμάτων Κρυπτογράφηση δημόσιου κλειδιού RSA Αναπτύχθηκε το 1977 από τους Rivest, Shamir και Adleman στο MIT Ο πιο γνωστός και ευρέως

Διαβάστε περισσότερα

ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ Δ Εξάμηνο. Ψηφιακή Υπογραφή και Αυθεντικοποίηση Μηνύματος

ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ Δ Εξάμηνο. Ψηφιακή Υπογραφή και Αυθεντικοποίηση Μηνύματος ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ Δ Εξάμηνο Ψηφιακή Υπογραφή και Αυθεντικοποίηση Μηνύματος 1 ΠΕΡΙΕΧΟΜΕΝΑ Ψηφιακές Υπογραφές Ασύμμετρης Κρυπτογραφίας Συστήματα ψηφιακής υπογραφής με αυτοανάκτηση Συστήματα

Διαβάστε περισσότερα

Δ4. Θεωρία Πληροφορίας, Εντροπία και Πολυπλοκότητα. Κρυπτογραφία

Δ4. Θεωρία Πληροφορίας, Εντροπία και Πολυπλοκότητα. Κρυπτογραφία ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ στα ΠΟΛΥΠΛΟΚΑ ΣΥΣΤΗΜΑΤΑ και ΔΙΚΤΥΑ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΤΜΗΜΑ ΒΙΟΛΟΓΙΑΣ ΤΜΗΜΑ ΓΕΩΛΟΓΙΑΣ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ

Διαβάστε περισσότερα

Δ Εξάμηνο. Κρυπτογραφία: Συμμετρική Κρυπτογράφηση

Δ Εξάμηνο. Κρυπτογραφία: Συμμετρική Κρυπτογράφηση ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ Δ Εξάμηνο Κρυπτογραφία: Συμμετρική Κρυπτογράφηση Διδάσκων : Δρ. Παρασκευάς Κίτσος http://www.diceslab.cied.teiwest.gr Επίκουρος Καθηγητής Εργαστήριο Σχεδίασης Ψηφιακών

Διαβάστε περισσότερα

Κρυπτογραφία. Κρυπτοσυστήματα τμήματος (Block ciphers) Άρης Παγουρτζής Στάθης Ζάχος Πέτρος Ποτίκας

Κρυπτογραφία. Κρυπτοσυστήματα τμήματος (Block ciphers) Άρης Παγουρτζής Στάθης Ζάχος Πέτρος Ποτίκας Κρυπτογραφία Κρυπτοσυστήματα τμήματος (Block ciphers) Άρης Παγουρτζής Στάθης Ζάχος Πέτρος Ποτίκας Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία

Διαβάστε περισσότερα

Cryptography and Network Security Chapter 2. Fifth Edition by William Stallings

Cryptography and Network Security Chapter 2. Fifth Edition by William Stallings Cryptography and Network Security Chapter 2 Fifth Edition by William Stallings Κεφαλαιο 2 Κλασσικες Τεχνικες Κρυπτογράφησης "I am fairly familiar with all the forms of secret writings, and am myself the

Διαβάστε περισσότερα

Εισαγωγή στην Κρυπτογραφία και τις Ψηφιακές Υπογραφές

Εισαγωγή στην Κρυπτογραφία και τις Ψηφιακές Υπογραφές Εισαγωγή στην Κρυπτογραφία και τις Ψηφιακές Υπογραφές Βαγγέλης Φλώρος, BSc, MSc Τµήµα Πληροφορικής και Τηλεπικοινωνιών Εθνικό και Καποδιστριακό Πανεπιστήµιο Αθηνών Εν αρχή είναι... Η Πληροφορία - Αρχείο

Διαβάστε περισσότερα

Εργαστήριο Ασφάλεια Πληροφοριακών Συστημάτων. PGP (Pretty Good Privacy)

Εργαστήριο Ασφάλεια Πληροφοριακών Συστημάτων. PGP (Pretty Good Privacy) Εργαστήριο Ασφάλεια Πληροφοριακών Συστημάτων PGP (Pretty Good Privacy) Εισαγωγή Το λογισμικό Pretty Good Privacy (PGP), το οποίο σχεδιάστηκε από τον Phill Zimmerman, είναι ένα λογισμικό κρυπτογράφησης

Διαβάστε περισσότερα

ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ Δ Εξάμηνο

ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ Δ Εξάμηνο ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ Δ Εξάμηνο Ψηφιακή Υπογραφή και Αυθεντικοποίηση Μηνύματος Διδάσκων : Δρ. Παρασκευάς Κίτσος Επίκουρος Καθηγητής e-mail: pkitsos@teimes.gr, pkitsos@ieee.org Αντίρριο

Διαβάστε περισσότερα

Ασφάλεια Υπολογιστικών Συστημάτων

Ασφάλεια Υπολογιστικών Συστημάτων Ασφάλεια Υπολογιστικών Συστημάτων Ενότητα 2: Συμμετρική κρυπτογραφία Νικολάου Σπύρος Τμήμα Μηχανικών Πληροφορικής ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

KEΦΑΛΑΙΟ 5 ΨΗΦΙΑΚΑ ΚΡΥΠΤΟΣΥΣΤΗΜΑΤΑ

KEΦΑΛΑΙΟ 5 ΨΗΦΙΑΚΑ ΚΡΥΠΤΟΣΥΣΤΗΜΑΤΑ Βασικές έννοιες KEΦΑΛΑΙΟ 5 ΨΗΦΙΑΚΑ ΚΡΥΠΤΟΣΥΣΤΗΜΑΤΑ Ένα κρυπτοσύστηµα όπου οι χώροι των καθαρών µηνυµάτων, των κρυπτογραφηµένων µυνηµάτων και των κλειδιών είναι ο m,,,... m = καλείται ψηφιακό κρυπτοσύστηµα.

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Γ ΛΥΚΕΙΟΥ ΟΜΑΔΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Γ ΛΥΚΕΙΟΥ ΟΜΑΔΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΜΑ Α ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Γ ΛΥΚΕΙΟΥ ΟΜΑΔΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ Α1. Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω προτάσεις

Διαβάστε περισσότερα

Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων. Κρυπτογραφία. Διαχείριση κλειδιών. Χρήστος Ξενάκης

Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων. Κρυπτογραφία. Διαχείριση κλειδιών. Χρήστος Ξενάκης Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων Κρυπτογραφία Διαχείριση κλειδιών Χρήστος Ξενάκης Διαχείριση κλειδιών Η ασφάλεια ενός κρυπτοσυστήματος εξαρτάται αποκλειστικά από τα κλειδιά (αρχή του Kerchoff)

Διαβάστε περισσότερα

Κρυπτογραφία. Κρυπτοσυστήματα τμήματος (Block ciphers) Άρης Παγουρτζής Στάθης Ζάχος Πέτρος Ποτίκας

Κρυπτογραφία. Κρυπτοσυστήματα τμήματος (Block ciphers) Άρης Παγουρτζής Στάθης Ζάχος Πέτρος Ποτίκας Κρυπτογραφία Κρυπτοσυστήματα τμήματος (Block ciphers) Άρης Παγουρτζής Στάθης Ζάχος Πέτρος Ποτίκας Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Block ciphers (κρυπτοσυστήματα

Διαβάστε περισσότερα

Κρυπτογραφία. Κρυπτοσυστήματα πακέτου (Block ciphers) Άρης Παγουρτζής Στάθης Ζάχος Πέτρος Ποτίκας

Κρυπτογραφία. Κρυπτοσυστήματα πακέτου (Block ciphers) Άρης Παγουρτζής Στάθης Ζάχος Πέτρος Ποτίκας Κρυπτογραφία Κρυπτοσυστήματα πακέτου (Block ciphers) Άρης Παγουρτζής Στάθης Ζάχος Πέτρος Ποτίκας Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Block ciphers και ψευδοτυχαίες

Διαβάστε περισσότερα

Διαχείριση Ασφάλειας και Εμπιστοσύνης σε Πολιτισμικά Περιβάλλοντα

Διαχείριση Ασφάλειας και Εμπιστοσύνης σε Πολιτισμικά Περιβάλλοντα Διαχείριση Ασφάλειας και Εμπιστοσύνης σε Πολιτισμικά Περιβάλλοντα Ενότητα 5: ΚΡΥΠΤΟΓΡΑΦΗΣΗ Δημήτριος Κουκόπουλος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διαχείρισης Πολιτισμικού Περιβάλλοντος

Διαβάστε περισσότερα

ΚΡΥΠΤΟΓΡΑΦIΑ Α ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ Δ Εξάμηνο

ΚΡΥΠΤΟΓΡΑΦIΑ Α ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ Δ Εξάμηνο ΚΡΥΠΤΟΓΡΑΦIΑ Α ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ Δ Εξάμηνο Μαθησιακοί στόχοι, Περίγραμμα θεματικών ενοτήτων και αξιολόγηση των φοιτητών Διδάσκων : Δρ. Αθανάσιος Κούτρας Επίκουρος Καθηγητής Τμήμα Μηχανικών Πληροφορικής

Διαβάστε περισσότερα

Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων. Κρυπτογραφία. Κρυπτογραφικές Συναρτήσεις. Χρήστος Ξενάκης

Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων. Κρυπτογραφία. Κρυπτογραφικές Συναρτήσεις. Χρήστος Ξενάκης Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων Κρυπτογραφία Κρυπτογραφικές Συναρτήσεις Χρήστος Ξενάκης Ψευδοτυχαίες ακολουθίες Η επιλογή τυχαίων αριθμών είναι ένα βασικό σημείο στην ασφάλεια των κρυπτοσυστημάτων

Διαβάστε περισσότερα

Κρυπτογραφία. Κρυπτοσυστήματα τμήματος (Block ciphers) Άρης Παγουρτζής Στάθης Ζάχος Πέτρος Ποτίκας

Κρυπτογραφία. Κρυπτοσυστήματα τμήματος (Block ciphers) Άρης Παγουρτζής Στάθης Ζάχος Πέτρος Ποτίκας Κρυπτογραφία Κρυπτοσυστήματα τμήματος (Block ciphers) Άρης Παγουρτζής Στάθης Ζάχος Πέτρος Ποτίκας Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Σχολή ΗΜΜΥ ΕΜΠ 1 / 26

Διαβάστε περισσότερα

Ψηφιακά Πιστοποιητικά Ψηφιακές Υπογραφές

Ψηφιακά Πιστοποιητικά Ψηφιακές Υπογραφές ΤΕΙ Κρητης Τμήμα Μηχανικών Πληροφορικής Εργαστήριο Ασφάλεια Πληροφοριακών Συστημάτων Ψηφιακά Πιστοποιητικά Ψηφιακές Υπογραφές Ψηφιακά Πιστοποιητικά Υποδομή δημόσιου κλειδιού (Public Key Infrastructure

Διαβάστε περισσότερα

Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία

Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία Επιθέσεις και Ασφάλεια Κρυπτοσυστημάτων Διδάσκοντες: Άρης Παγουρτζής Στάθης Ζάχος Διαφάνειες: Παναγιώτης Γροντάς Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων

Διαβάστε περισσότερα

Επιθέσεις και Ασφάλεια Κρυπτοσυστημάτων

Επιθέσεις και Ασφάλεια Κρυπτοσυστημάτων Στοιχεία Θεωρίας Αριθμών και Εφαρμογές στην Κρυπτογραφία Επιθέσεις και Ασφάλεια Κρυπτοσυστημάτων Άρης Παγουρτζής Στάθης Ζάχος Διαφάνειες: Παναγιώτης Γροντάς Σχολή Ηλεκτρολόγων Μηχανικών - Μηχανικών Υπολογιστών

Διαβάστε περισσότερα

Εφαρμοσμένη Κρυπτογραφία Ι

Εφαρμοσμένη Κρυπτογραφία Ι Εφαρμοσμένη Κρυπτογραφία Ι Κωνσταντίνου Ελισάβετ ekonstantinou@aegean.gr http://www.icsd.aegean.gr/ekonstantinou Ψηφιακές Υπογραφές Ορίζονται πάνω σε μηνύματα και είναι αριθμοί που εξαρτώνται από κάποιο

Διαβάστε περισσότερα

Μελέτη και Υλοποίηση Συστήµατος Ηλεκτρονικών Εκλογών, για τις Ανάγκες των Φοιτητικών Εκλογών

Μελέτη και Υλοποίηση Συστήµατος Ηλεκτρονικών Εκλογών, για τις Ανάγκες των Φοιτητικών Εκλογών ΤΕΙ ΚΑΒΑΛΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΒΙΟΜΗΧΑΝΙΚΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Μελέτη και Υλοποίηση Συστήµατος Ηλεκτρονικών Εκλογών, για τις Ανάγκες των Φοιτητικών Εκλογών ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΓΟΥ ΟΥΛΑΚΗΣ ΕΥΣΤΑΘΙΟΣ

Διαβάστε περισσότερα

Αλγόριθµοι συµµετρικού κλειδιού

Αλγόριθµοι συµµετρικού κλειδιού Αλγόριθµοι συµµετρικού κλειδιού Αλγόριθµοι συµµετρικού κλειδιού Χρησιµοποιούν το ίδιο κλειδί για την κρυπτογράφηση και την αποκρυπτογράφηση Υλοποιούνται τόσο µε υλικό (hardware) όσο και µε λογισµικό (software)

Διαβάστε περισσότερα

Κρυπτογραφία. Κρυπτοσυστήματα ροής. Πέτρος Ποτίκας. Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Κρυπτογραφία. Κρυπτοσυστήματα ροής. Πέτρος Ποτίκας. Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Κρυπτογραφία Κρυπτοσυστήματα ροής Πέτρος Ποτίκας Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 1 / 22 Περιεχόμενα 1 Εισαγωγή 2 Υπολογιστική

Διαβάστε περισσότερα