Bayesian., 2016, 31(2): : (heterogeneity) Bayesian. . Gibbs : O212.8 : A : (2016)
|
|
- Μαριάμ Χριστόπουλος
- 6 χρόνια πριν
- Προβολές:
Transcript
1 2016, 31(2): Bayesian 1, 2 (1., ; 2., ) : (heterogeney).,. Gibbs Bayesian.,.. : ; Bayesian ; ; Gibbs ; Metropolis-Hastings : O212.8 : A : (2016) Aigner (1977) [1] Meeusen Broeck(1977) [2],.,,., [1], [2], [3], Gamma [4] Gamma [5].,,,,,.. (heterogeney),. [6]. [7], copula. [8],, Bayesian MCMC. [9],,. [10] Gamma Gamma Bayesian, : : : (13ZR ); (14YZ115)
2 [11],., GARCH(p, q).,,. p = q = 0,.,,. Gibbs Bayesian.,, Gibbs. λ α,, Griddy-Gibbs. Nakatsuma( [12]) GARCH, ARMA,, Metropolis-Hastings λ α.. 2,. y = x β + v u, i = 1, 2,, N, t = 1,, T. y i t, x k 1, i t, β k 1. v, v i t v N ( 0, σ 2). u,. v u, u log u = z γ + ε, t = 1, 2,, T, (1) ε = p h ξ, h = λ 0 + λ j ε 2 i,t j + α j h i,t j. i, t ξ N(0, 1), z m 1, γ m 1. z γ, N(0, h ). h GARCH(p, q), λ 1 = = λ p = α 1 = = α q = 0, h λ 0, u, h, (1).,, [8] [11].,.,,. λ = [λ 0, λ 1,..., λ p ], α = [α 1,..., α q ], u = [u, i = 1, 2,, N, t = 1,, T ], θ = [β, γ, α, λ, σ 2 ] u. θ p(θ), Bayesian, p(y x, u, β, σ 2 ), p(u z, γ, α, λ) p(θ), x = [x, i = 1, 2,, N, t = 1,, T ], y = [y, i = 1, 2,, N, t = 1,, T ]. y u p (y, u x, z, θ) =p(y x, u, β, σ 2 )p(u z, γ, α, λ)
3 : Bayesian 129 [ ] =(2πσ 2 ) (NT/2) exp 1 2σ 2 (y + u x β) 2 N T [ (h ) 1/2 exp 1 ] (log u z 2h γ) 2 log u 3 Bayesian Bayesian Gibbs.,,,. β, γ, α, λ σ 2, β, γ, α, λ p (β, γ, α, λ) = p (β) p (γ) p (λ, α).,., β, γ, α, λ., h, λ α λ i 0, α i 0 p λ i + α i < 1., β, γ, α, λ p p q p (β, γ, α, λ) I( λ i + α i < 1) I(λ i 0) I(α i 0)., I( ). i=0 σ 2 Gamma ( [13]),, p 0 > 0 q 0 > 0. p ( σ 2) σ p0 1 exp ( q 0 /σ 2) RG ((p 0 1)/2, q 0 ). Bayesian,. θ u p (θ, u x, z, y) p (y, u x, z, θ) p (θ), N [ T σ (NT +p0+1) (h ) 1/2 exp + N i=0 1 2σ 2 ( N ( 1 2h (log u z γ) 2 log u ) ] I( (y + u x β) 2 + 2q 0 ) p λ i + α i < 1) p q I(λ i 0) I(α i 0). (2), Bayesian. MCMC Monte Carlo,,. MCMC Markov Markov,,. Gibbs.
4 MCMC, Gibbs. MCMC Markov (2), Gibbs. Gibbs Markov {β (i), σ 2(i), γ (1), λ (i), α (i), u (i), i = 1,..., M}., Gibbs, E[ ˆf(θ)] 1 M = f(θ (i) ). M m i=m+1 Gibbs : {β (1), σ 2(1), γ (1), λ (1), α (1), u (1) }, i = 2,..., M, i : 1 p(β (t) σ 2(t 1), γ (t 1), λ (t 1), α (t 1), u (t 1), y, x) β (t), 2 p(σ 2(t) β (t), γ (t 1), λ (t 1), α (t 1), u (t 1), y, x) σ 2(t), 3 p(u (t) β (t), σ 2(t), γ (t 1), λ (t 1), α (t 1), y, x) u (t), 4 p(γ (t) β (t), σ 2(t), λ (t 1), α (t 1), u (t), y, x) γ (t) 5 p(λ (t) β (t), σ 2(t), γ (t), α (t 1), u (t), y, x) λ (t), 6 p(α (t) β (t), σ 2(t), γ (t), λ (t), u (t), y, x) α (t), 7 h = [h, i = 1, 2,, N, t = 1,, T ].. (2). p (β u, γ, λ, α, y, x) exp{ 1 2σ 2 (y + u x β) 2 } N((x x) 1 x (y + u), σ 2 (x x) 1 ), p ( σ 2 y, x, u, β, γ, λ, α ) σ (NT +p0+1) exp{ 1 2σ 2 [ N (y + u x β) 2 + 2q 0 ]} ( (y + u x β) (y + u x β) + 2q 0 σ 2 ) NT +p exp{ (y + u x β) (y + u x β) + 2q 0 2σ 2 }. (3), x (N T ) k, y (N T ) 1. (3), ((y + u x β) (y + u x β) + 2q 0 )/σ 2 Ga ((NT + p 0 + 3)/2, 1/2). = χ 2 NT +p 0+3., χ 2 NT +p NT + p χ 2. (log u z p(γ u, z, λ, α) exp{ γ)2 } N(µ γ, Σ γ ). 2h t=2 γ, µ γ = Σ γ ( z h 1 log u ), Σ γ = ( z h 1 z ) 1. β, γ σ 2,.
5 : Bayesian 131 u, i t u p(u y, x, z, β, γ, h) 1 exp{ 1 u 2σ 2 (y + u x β) 2 1 (log u z 2h γ) 2 }.,,., u 1. 1( u ) 1 U[0, f 1 (u (t 1) )] ω 1. 2 U[0, f 2 (u (t 1) )] ω 2. 3 U A u (t). U A A, A = {x; f i (x) ω i, i = 1, 2}. 1 f 1 f 2 u, p(u y, x, z, β, γ, h) = f 1 (u )f 2 (u ). f 1 (u ) = exp{ (y + u x β) 2 /(2σ 2 )}, f 2 (u ) = exp{ 1 2h (log u z γ) 2 log(u )}. λ α N T p(λ, α u, γ) (h ) 1 2 exp{ h = λ 0 + p λ j ε 2 i,t j + (log u z γ)2 2h }. α j h i,t j., u, γ, λ α,. Nakatsuma( [12]) GARCH, Metropolis-Hastings. h = λ 0 + w = ε 2 h, p λ j ε 2 i,t j + ε 2, GARCH : l ε 2 = λ 0 + (λ j + α j ) ε 2 i,t j + w l = max{p, q}, α j h i,t j α j w i,t j, w N ( 0, 2h 2 ). E(w ε 2, h, λ, α) = 0, Var(w ε 2, h, λ, α) = 2h 2. λ, Metropolis-Hastings : 2( λ) 1 π(λ) λ. 2 U(0, 1) e.
6 e α(λ (t 1), λ ), λ (t) = λ ;, λ (t) = λ (t 1) ; { α(λ (t 1), λ ) = min 1, p(λ β, σ 2, α, u, y, x)π(λ (t 1) } ). p(λ (t 1) β, σ 2, α, u, y, x)π(λ ) 2 λ, GARCH :,, λ, π ( ε 2 λ, α, u, γ ) N T N 1 exp{ w2 h 4h 2 } T 1 exp{ (ε2 ζ λ ) 2 } h N(ˆµ λ, ˆΣ λ ). ζ = [ ι, ε 2 i,t 1,..., ε 2 i,t p], ι = 1 + 4h 2 α j ι i,t j, ε 2 = ε 2 + λ α, u, γ N(ˆµ λ, ˆΣ λ ) ˆµ λ = ˆΣ λ N ε 2 ζ 2h 2 p I(λ i 0). i=0, ˆΣ λ = ( ζ ζ 2h 2 ) 1. α j ε 2 i,t j. α, w (α) α Taylor, GARCH π (α λ, u, γ) N T N 1 exp{ w2 h 4h 2 } T 1 exp{ (w (α ) ζ (α α ) ) 2 } h N(ˆµ α, ˆΣ α ). 4h 2 α α, α w (α) = arg min 2h 2, (0 < α j < 1, j = 1,..., q). ζ = [ζ 1,..., ζ q ], ζ j w αj. dw (α j ) dw i,t s = h i,t j + α s, dα j dα j s=1 ζ j = dw (α j ) dα j = h i,t 1 (α ) + αsζ i,t s,j. s=1
7 : Bayesian 133, α ˆµ α = ˆΣ α N α λ, γ, u N(ˆµ α, ˆΣ α ) q I(α i 0). Y α = w (α ) + ζ (α ), X α = ζ, t=2 Y α Xα 2h 2, ˆΣ α = ( t=2 4 (X α) (X α) 2h 2 ) 1. Gibbs,., p = q = 1, : y = x β + v u, i = 1, 2, t = 1,, T, log u = z γ + ε, ε = h ξ, h = λ 0 + λ 1 ε 2 i,t 1 + α 1 h i,t 1. k = 3, m = 3, x, z 1,, x, z k 1, 0.5, [14]. β [1, 1, 1], γ [ 0.3, 1, 1]. σ 2 = 0.05, λ 0 = 0.05, λ 1 = 0.2, α 1 = 0.7. p 0 = 4, q 0 = , , T=100 T=500 T=1000 sd sd sd β β β γ γ γ σ λ λ α ,, β, z. λ 0, λ 1, α 1 σ 2,,., λ 0, λ 1 α 1,,., Gibbs Bayesian.,, λ 0, h,., λ 0 Metropolis-Hasting., λ 0, λ 0, Metropolis-Hasting.
8 , λ 0. λ 0 U[δ, 1], δ, λ [15], ,, log y =β 0 + β 2 log x 1 + β 3 log x β 4 log x 1 log x β 5 log x 2 log x 2 + β 6 log x 1 log x 2 + v u, log u =γ 0 + γ 1 z + ε., y, x 1, x 2 i t,. z i t. [16]., p q 1. Gibbs ,. 2 β 0 β 1 β 2 β 3 β 4 β (0.433) (0.292) (0.244) (0.124) (0.195) (0.153) γ 0 γ 1 σ 2 λ 0 λ 1 α (0.893) (0.209) (0.001) (0.003) (0.136) (0.148) 2, γ,. λ , λ 1 α ,.,. h GARCH(1,1),., [8] [11],. : [1] Aigner D, Knox-Lovell C A, Schmdt P. Formulation and estimation of stochastic frontier production function models [J]. J Econometrics, 1977, 6: [2] Meeusen W, van der Broeck J. Efficiency estimation from Cobb-Douglas production functions wh Composed Error[J]. Internat Econom Rev, 1977, 18: [3] Stevenson R E. Likelihood functions for generalized stochastic frontier model[j]. J Econometrics, 1980, 13: [4] Greene W H. A gamma-distributed stochastic frontier model[j]. J Econometrics, 1994, 61: [5],. Gamma Bayesian [J]., 2013, 28(4): [6] Greene W. Reconsidering heterogeney in panel data estimators of the stochastic frontier model[j]. J Econometrics, 2005, 126:
9 : Bayesian 135 [7] Carta A, Steel M F J. Modelling multi-output stochastic frontiers using copulas[j]. Comput Statist Data Anal, 2012, 56: [8] Tsionas E. Inference in dynamic stochastic frontier models[j]. J Appl Econom, 2006, 21: [9] Chen Yi-Yi, Schmidt P, Wang Hung-Jen. Consistent estimation of the fixed effects stochastic frontier model[j]. J Econometrics, 2014, 181: [10] Griffin J, Steel M. Flexible mixture modelling of stochastic frontiers[j]. J Prod Anal, 2008, 29: [11] Gal n J, Veiga H, Wiper M. Bayesian estimation of inefficiency heterogeney in stochastic frontier models[j]. J Prod Anal, 2014, 42: [12] Nakatsuma T. Bayesian Analysis of ARMA-GARCH Models A Markov chain Sampling Approach[J]. J Econometrics, 2000, 95: [13] Fernandez C, Osiewalski J, Steel M F J. On the use of panel data in stochastic frontier models[j]. J Econometrics, 1997, 79: [14] Wang Hung-Jen, Schmidt P. One step and two step estimation of the effects of exogenous variables on technical efficiency levels[j]. Prod Anal, 2002, 18: [15] Gal n J E, Pollt M. Inefficiency persistence and heterogeney in Colombian electricy utilies[j]. Energ Econ, 2014, 46: [16] Growsch T, Jamasb T, Pollt M. Qualy of service, efficiency and scale in network industries: an analysis of European electricy distribution[j]. Appl Econ, 2005, 41: Bayesian inference for dynamic heterogeney stochastic frontier model CHENG Di 1, ZHANG Shi-bin 2 (1. School of Math. Sci., Inner Mongolian Univ., Hohhot , China; 2. Dept. of Math., Shanghai Marime Univ., Shanghai , China) Abstract: If heterogeney of the inefficiency term is disregarded, will result in the incorrect estimate of this term in the stochastic frontier model. By combining the influence from characteristic differences of individuals wh the time-varying property of variance, a dynamic heterogeney stochastic frontier model is proposed. dynamic heterogeney stochastic frontier model is given. By the Gibbs sampling, the methodology for Bayesian analysis of the For each model parameter, the posterior distribution is derived. A simulation study shows that under the crerion of minimizing the posterior mean square error, the Bayesian estimate is close to s true value for small and medium sized samples. From the Bayesian analysis based on the real electric power company generation data, is evidenced that there exists the time-varying property for the variance of the logarhm inefficiency term. Keywords: stochastic frontier model; Bayesian inference; heterogeney; Gibbs sampling; Metropolis-Hastings sampling MR Subject Classification: 62F15; 65C60
: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM
2008 6 Chinese Journal of Applied Probability and Statistics Vol.24 No.3 Jun. 2008 Monte Carlo EM 1,2 ( 1,, 200241; 2,, 310018) EM, E,,. Monte Carlo EM, EM E Monte Carlo,. EM, Monte Carlo EM,,,,. Newton-Raphson.
Web-based supplementary materials for Bayesian Quantile Regression for Ordinal Longitudinal Data
Web-based supplementary materials for Bayesian Quantile Regression for Ordinal Longitudinal Data Rahim Alhamzawi, Haithem Taha Mohammad Ali Department of Statistics, College of Administration and Economics,
Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.
Bayesian statistics DS GA 1002 Probability and Statistics for Data Science http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall17 Carlos Fernandez-Granda Frequentist vs Bayesian statistics In frequentist
J. of Math. (PRC) 6 n (nt ) + n V = 0, (1.1) n t + div. div(n T ) = n τ (T L(x) T ), (1.2) n)xx (nt ) x + nv x = J 0, (1.4) n. 6 n
Vol. 35 ( 215 ) No. 5 J. of Math. (PRC) a, b, a ( a. ; b., 4515) :., [3]. : ; ; MR(21) : 35Q4 : O175. : A : 255-7797(215)5-15-7 1 [1] : [ ( ) ] ε 2 n n t + div 6 n (nt ) + n V =, (1.1) n div(n T ) = n
ΜΕΤΡΗΣΗ ΤΟΥ ΒΑΘΜΟΥ ΤΗΣ ΤΕΧΝΙΚΗΣ ΑΠΟΤΕΛΕΣΜΑΤΙΚΟΤΗΤΑΣ ΣΤΑ ΕΛΛΗΝΙΚΑ ΝΟΣΟΚΟΜΕΙΑ ΜΕ ΤΗΝ ΜΕΘΟΔΟ ΤΗΣ ΣΤΟΧΑΣΤΙΚΗΣ ΕΝ ΔΥΝΑΜΕΙ ΣΥΝΑΡΤΗΣΗΣ ΠΑΡΑΓΩΓΗΣ
ΜΕΤΡΗΣΗ ΤΟΥ ΒΑΘΜΟΥ ΤΗΣ ΤΕΧΝΙΚΗΣ ΑΠΟΤΕΛΕΣΜΑΤΙΚΟΤΗΤΑΣ ΣΤΑ ΕΛΛΗΝΙΚΑ ΝΟΣΟΚΟΜΕΙΑ ΜΕ ΤΗΝ ΜΕΘΟΔΟ ΤΗΣ ΣΤΟΧΑΣΤΙΚΗΣ ΕΝ ΔΥΝΑΜΕΙ ΣΥΝΑΡΤΗΣΗΣ ΠΑΡΑΓΩΓΗΣ Ρωξάνη Καραγιάννη, Μιχάλης Χατζηπροκοπίου Τμήμα Οικονομικών Επιστημών
552 Lee (2006),,, BIC,. : ; ; ;. 2., Poisson (Zero-Inflated Poisson Distribution), ZIP. Y ZIP(φ, λ), φ + (1 φ) exp( λ), y = 0; P {Y = y} = (1 φ) exp(
2012 10 Chinese Journal of Applied Probability and Statistics Vol.28 No.5 Oct. 2012 (,, 675000) Poisson,,, Gibbs, BIC.,. :,, Gibbs, BIC. : O212.8. 1. (count data), Poisson Poisson., (zeroinflation).,.,,
Introduction to the ML Estimation of ARMA processes
Introduction to the ML Estimation of ARMA processes Eduardo Rossi University of Pavia October 2013 Rossi ARMA Estimation Financial Econometrics - 2013 1 / 1 We consider the AR(p) model: Y t = c + φ 1 Y
90 [, ] p Panel nested error structure) : Lagrange-multiple LM) Honda [3] LM ; King Wu, Baltagi, Chang Li [4] Moulton Randolph ANOVA) F p Panel,, p Z
00 Chinese Journal of Applied Probability and Statistics Vol6 No Feb 00 Panel, 3,, 0034;,, 38000) 3,, 000) p Panel,, p Panel : Panel,, p,, : O,,, nuisance parameter), Tsui Weerahandi [] Weerahandi [] p
Solution Series 9. i=1 x i and i=1 x i.
Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x
Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03)..
Supplemental Material (not for publication) Persistent vs. Permanent Income Shocks in the Buffer-Stock Model Jeppe Druedahl Thomas H. Jørgensen May, A Additional Figures and Tables Figure A.: Wealth and
Description of the PX-HC algorithm
A Description of the PX-HC algorithm Let N = C c= N c and write C Nc K c= i= k= as, the Gibbs sampling algorithm at iteration m for continuous outcomes: Step A: For =,, J, draw θ m in the following steps:
6.3 Forecasting ARMA processes
122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear
1 1 1 2 1 2 2 1 43 123 5 122 3 1 312 1 1 122 1 1 1 1 6 1 7 1 6 1 7 1 3 4 2 312 43 4 3 3 1 1 4 1 1 52 122 54 124 8 1 3 1 1 1 1 1 152 1 1 1 1 1 1 152 1 5 1 152 152 1 1 3 9 1 159 9 13 4 5 1 122 1 4 122 5
Other Test Constructions: Likelihood Ratio & Bayes Tests
Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :
22 .5 Real consumption.5 Real residential investment.5.5.5 965 975 985 995 25.5 965 975 985 995 25.5 Real house prices.5 Real fixed investment.5.5.5 965 975 985 995 25.5 965 975 985 995 25.3 Inflation
Statistical Inference I Locally most powerful tests
Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided
Bayesian modeling of inseparable space-time variation in disease risk
Bayesian modeling of inseparable space-time variation in disease risk Leonhard Knorr-Held Laina Mercer Department of Statistics UW May, 013 Motivation Ohio Lung Cancer Example Lung Cancer Mortality Rates
Congruence Classes of Invertible Matrices of Order 3 over F 2
International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and
Μπεϋζιανή Στατιστική και MCMC Μέρος 2 ο : MCMC
Μπεϋζιανή Στατιστική και MCMC Μέρος 2 ο : MCMC Δημήτρης Φουσκάκης, Επίκουρος Καθηγητής, Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών, Τομέας Μαθηματικών, Τηλέφωνο: (210) 772-1702, Φαξ: (210) 772-1775.
476,,. : 4. 7, MML. 4 6,.,. : ; Wishart ; MML Wishart ; CEM 2 ; ;,. 2. EM 2.1 Y = Y 1,, Y d T d, y = y 1,, y d T Y. k : p(y θ) = k α m p(y θ m ), (2.1
2008 10 Chinese Journal of Applied Probability and Statistics Vol.24 No.5 Oct. 2008 (,, 1000871;,, 100044) (,, 100875) (,, 100871). EM, Wishart Jeffery.,,,,. : :,,, EM, Wishart. O212.7. 1.,. 1894, Pearson.
Chinese Journal of Applied Probability and Statistics Vol.28 No.3 Jun (,, ) 应用概率统计 版权所用,,, EM,,. :,,, P-. : O (count data)
2012 6 Chinese Journal of Applied Probability and Statistics Vol.28 No.3 Jun. 2012 (,, 675000),,, EM,,. :,,, P-. : O212.7. 1. (count data), Poisson Poisson,, (zero-inflation).,.,, ;,,.,, Fahrmeir Echavarrri
172,,,,. P,. Box (1980)P, Guttman (1967)Rubin (1984)P, Meng (1994), Gelman(1996)De la HorraRodriguez-Bernal (2003). BayarriBerger (2000)P P.. : Casell
20104 Chinese Journal of Applied Probability and Statistics Vol.26 No.2 Apr. 2010 P (,, 200083) P P. Wang (2006)P, P, P,. : P,,,. : O212.1, O212.8. 1., (). : X 1, X 2,, X n N(θ, σ 2 ), σ 2. H 0 : θ = θ
Prey-Taxis Holling-Tanner
Vol. 28 ( 2018 ) No. 1 J. of Math. (PRC) Prey-Taxis Holling-Tanner, (, 730070) : prey-taxis Holling-Tanner.,,.. : Holling-Tanner ; prey-taxis; ; MR(2010) : 35B32; 35B36 : O175.26 : A : 0255-7797(2018)01-0140-07
Monte Carlo Methods. for Econometric Inference I. Institute on Computational Economics. July 19, John Geweke, University of Iowa
Monte Carlo Methods for Econometric Inference I Institute on Computational Economics July 19, 2006 John Geweke, University of Iowa Monte Carlo Methods for Econometric Inference I 1 Institute on Computational
Overview. Transition Semantics. Configurations and the transition relation. Executions and computation
Overview Transition Semantics Configurations and the transition relation Executions and computation Inference rules for small-step structural operational semantics for the simple imperative language Transition
5.1 logistic regresssion Chris Parrish July 3, 2016
5.1 logistic regresssion Chris Parrish July 3, 2016 Contents logistic regression model 1 1992 vote 1 data..................................................... 1 model....................................................
Lecture 34 Bootstrap confidence intervals
Lecture 34 Bootstrap confidence intervals Confidence Intervals θ: an unknown parameter of interest We want to find limits θ and θ such that Gt = P nˆθ θ t If G 1 1 α is known, then P θ θ = P θ θ = 1 α
Probability and Random Processes (Part II)
Probability and Random Processes (Part II) 1. If the variance σ x of d(n) = x(n) x(n 1) is one-tenth the variance σ x of a stationary zero-mean discrete-time signal x(n), then the normalized autocorrelation
Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013
Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering
Statistical analysis of extreme events in a nonstationary context via a Bayesian framework. Case study with peak-over-threshold data
Statistical analysis of extreme events in a nonstationary context via a Bayesian framework. Case study with peak-over-threshold data B. Renard, M. Lang, P. Bois To cite this version: B. Renard, M. Lang,
w o = R 1 p. (1) R = p =. = 1
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:
Supplementary Appendix
Supplementary Appendix Measuring crisis risk using conditional copulas: An empirical analysis of the 2008 shipping crisis Sebastian Opitz, Henry Seidel and Alexander Szimayer Model specification Table
J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5
Vol. 37 ( 2017 ) No. 5 J. of Math. (PRC) 1,2, 1, 1 (1., 225002) (2., 225009) :. I +AT +, T + = T + (I +AT + ) 1, T +. Banach Hilbert Moore-Penrose.. : ; ; Moore-Penrose ; ; MR(2010) : 47L05; 46A32 : O177.2
Η ΧΡΗΣΗ ΤΗΣ ΓΕΝΙΚΕΥΜΕΝΗΣ ΣΤΟΧΑΣΤΙΚΗΣ ΕΝ ΥΝΑΜΕΙ ΣΥΝΑΡΤΗΣΗΣ ΠΑΡΑΓΩΓΗΣ ΓΙΑ ΤΗΝ ΜΕΤΡΗΣΗ ΤΟΥ ΒΑΘΜΟΥ ΤΗΣ ΤΕΧΝΙΚΗΣ ΑΠΟΤΕΛΕΣΜΑΤΙΚΟΤΗΤΑΣ
Ελληνικό Στατιστικό Ινστιτούτο Πρακτικά 7 ου Πανελληνίου Συνεδρίου Στατιστικής (004), σελ. 5-33 Η ΧΡΗΣΗ ΤΗΣ ΓΕΝΙΚΕΥΜΕΝΗΣ ΣΤΟΧΑΣΤΙΚΗΣ ΕΝ ΥΝΑΜΕΙ ΣΥΝΑΡΤΗΣΗΣ ΠΑΡΑΓΩΓΗΣ ΓΙΑ ΤΗΝ ΜΕΤΡΗΣΗ ΤΟΥ ΒΑΘΜΟΥ ΤΗΣ ΤΕΧΝΙΚΗΣ
SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018
Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals
ST5224: Advanced Statistical Theory II
ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known
Η ΧΡΗΣΗ ΤΗΣ ΓΕΝΙΚΕΥΜΕΝΗΣ ΣΤΟΧΑΣΤΙΚΗΣ ΕΝ ΔΥΝΑΜΕΙ ΣΥΝΑΡΤΗΣΗΣ ΠΑΡΑΓΩΓΗΣ ΓΙΑ ΤΗΝ ΜΕΤΡΗΣΗ ΤΟΥ ΒΑΘΜΟΥ ΤΗΣ ΤΕΧΝΙΚΗΣ ΑΠΟΤΕΛΕΣΜΑΤΙΚΟΤΗΤΑΣ
Η ΧΡΗΣΗ ΤΗΣ ΓΕΝΙΚΕΥΜΕΝΗΣ ΣΤΟΧΑΣΤΙΚΗΣ ΕΝ ΔΥΝΑΜΕΙ ΣΥΝΑΡΤΗΣΗΣ ΠΑΡΑΓΩΓΗΣ ΓΙΑ ΤΗΝ ΜΕΤΡΗΣΗ ΤΟΥ ΒΑΘΜΟΥ ΤΗΣ ΤΕΧΝΙΚΗΣ ΑΠΟΤΕΛΕΣΜΑΤΙΚΟΤΗΤΑΣ Ρωξάνη Καραγιάννη και Μιχάλης Χατζηπροκοπίου Τμήμα Οικονομικών Επιστημών,
Table 1: Military Service: Models. Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 num unemployed mili mili num unemployed
Tables: Military Service Table 1: Military Service: Models Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 num unemployed mili mili num unemployed mili 0.489-0.014-0.044-0.044-1.469-2.026-2.026
1 (forward modeling) 2 (data-driven modeling) e- Quest EnergyPlus DeST 1.1. {X t } ARMA. S.Sp. Pappas [4]
212 2 ( 4 252 ) No.2 in 212 (Total No.252 Vol.4) doi 1.3969/j.issn.1673-7237.212.2.16 STANDARD & TESTING 1 2 2 (1. 2184 2. 2184) CensusX12 ARMA ARMA TU111.19 A 1673-7237(212)2-55-5 Time Series Analysis
ΠΩΣ ΕΠΗΡΕΑΖΕΙ Η ΜΕΡΑ ΤΗΣ ΕΒΔΟΜΑΔΑΣ ΤΙΣ ΑΠΟΔΟΣΕΙΣ ΤΩΝ ΜΕΤΟΧΩΝ ΠΡΙΝ ΚΑΙ ΜΕΤΑ ΤΗΝ ΟΙΚΟΝΟΜΙΚΗ ΚΡΙΣΗ
Σχολή Διοίκησης και Οικονομίας Κρίστια Κυριάκου ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΕΜΠΟΡΙΟΥ,ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΝΑΥΤΙΛΙΑΣ Της Κρίστιας Κυριάκου ii Έντυπο έγκρισης Παρουσιάστηκε
Stabilization of stock price prediction by cross entropy optimization
,,,,,,,, Stabilization of stock prediction by cross entropy optimization Kazuki Miura, Hideitsu Hino and Noboru Murata Prediction of series data is a long standing important problem Especially, prediction
HW 3 Solutions 1. a) I use the auto.arima R function to search over models using AIC and decide on an ARMA(3,1)
HW 3 Solutions a) I use the autoarima R function to search over models using AIC and decide on an ARMA3,) b) I compare the ARMA3,) to ARMA,0) ARMA3,) does better in all three criteria c) The plot of the
ΧΩΡΙΚΑ ΟΙΚΟΝΟΜΕΤΡΙΚΑ ΥΠΟΔΕΙΓΜΑΤΑ ΣΤΗΝ ΕΚΤΙΜΗΣΗ ΤΩΝ ΤΙΜΩΝ ΤΩΝ ΑΚΙΝΗΤΩΝ SPATIAL ECONOMETRIC MODELS FOR VALUATION OF THE PROPERTY PRICES
1 ο Συνέδριο Χωρικής Ανάλυσης: Πρακτικά, Αθήνα, 013, Σ. Καλογήρου (Επ.) ISBN: 978-960-86818-6-6 ΧΩΡΙΚΑ ΟΙΚΟΝΟΜΕΤΡΙΚΑ ΥΠΟΔΕΙΓΜΑΤΑ ΣΤΗΝ ΕΚΤΙΜΗΣΗ ΤΩΝ ΤΙΜΩΝ ΤΩΝ ΑΚΙΝΗΤΩΝ Μαριάνθη Στάμου 1*, Άγγελος Μιμής και
FORMULAS FOR STATISTICS 1
FORMULAS FOR STATISTICS 1 X = 1 n Sample statistics X i or x = 1 n x i (sample mean) S 2 = 1 n 1 s 2 = 1 n 1 (X i X) 2 = 1 n 1 (x i x) 2 = 1 n 1 Xi 2 n n 1 X 2 x 2 i n n 1 x 2 or (sample variance) E(X)
Introduction to Bayesian Statistics
Introduction to Bayesian Statistics Lecture 9: Hierarchical Models Rung-Ching Tsai Department of Mathematics National Taiwan Normal University May 6, 2015 Example Data: Weekly weights of 30 young rats
Exercises to Statistics of Material Fatigue No. 5
Prof. Dr. Christine Müller Dipl.-Math. Christoph Kustosz Eercises to Statistics of Material Fatigue No. 5 E. 9 (5 a Show, that a Fisher information matri for a two dimensional parameter θ (θ,θ 2 R 2, can
Summary of the model specified
Program: HLM 7 Hierarchical Linear and Nonlinear Modeling Authors: Stephen Raudenbush, Tony Bryk, & Richard Congdon Publisher: Scientific Software International, Inc. (c) 2010 techsupport@ssicentral.com
«ΑΝΑΠΣΤΞΖ ΓΠ ΚΑΗ ΥΩΡΗΚΖ ΑΝΑΛΤΖ ΜΔΣΔΩΡΟΛΟΓΗΚΩΝ ΓΔΓΟΜΔΝΩΝ ΣΟΝ ΔΛΛΑΓΗΚΟ ΥΩΡΟ»
ΓΔΩΠΟΝΗΚΟ ΠΑΝΔΠΗΣΖΜΗΟ ΑΘΖΝΩΝ ΣΜΗΜΑ ΑΞΙΟΠΟΙΗΗ ΦΤΙΚΩΝ ΠΟΡΩΝ & ΓΕΩΡΓΙΚΗ ΜΗΥΑΝΙΚΗ ΣΟΜΕΑ ΕΔΑΦΟΛΟΓΙΑ ΚΑΙ ΓΕΩΡΓΙΚΗ ΥΗΜΕΙΑ ΕΙΔΙΚΕΤΗ: ΕΦΑΡΜΟΓΕ ΣΗ ΓΕΩΠΛΗΡΟΦΟΡΙΚΗ ΣΟΤ ΦΤΙΚΟΤ ΠΟΡΟΤ «ΑΝΑΠΣΤΞΖ ΓΠ ΚΑΗ ΥΩΡΗΚΖ ΑΝΑΛΤΖ ΜΔΣΔΩΡΟΛΟΓΗΚΩΝ
Notes on the Open Economy
Notes on the Open Econom Ben J. Heijdra Universit of Groningen April 24 Introduction In this note we stud the two-countr model of Table.4 in more detail. restated here for convenience. The model is Table.4.
FENXI HUAXUE Chinese Journal of Analytical Chemistry. Savitzky-Golay. n = SG SG. Savitzky-Golay mmol /L 5700.
38 2010 3 FENXI HUAXUE Chinese Journal of Analytical Chemistry 3 342 ~ 346 DOI 10. 3724 /SP. J. 1096. 2010. 00342 Savitzky-Golay 1 * 1 2 1 3 1 1 510632 2 510632 3 200444 PLS Savitzky-Golay SG 10000 ~ 5300
Study on Re-adhesion control by monitoring excessive angular momentum in electric railway traction
() () Study on e-adhesion control by monitoring excessive angular momentum in electric railway traction Takafumi Hara, Student Member, Takafumi Koseki, Member, Yutaka Tsukinokizawa, Non-member Abstract
Buried Markov Model Pairwise
Buried Markov Model 1 2 2 HMM Buried Markov Model J. Bilmes Buried Markov Model Pairwise 0.6 0.6 1.3 Structuring Model for Speech Recognition using Buried Markov Model Takayuki Yamamoto, 1 Tetsuya Takiguchi
Chapter 1 Introduction to Observational Studies Part 2 Cross-Sectional Selection Bias Adjustment
Contents Preface ix Part 1 Introduction Chapter 1 Introduction to Observational Studies... 3 1.1 Observational vs. Experimental Studies... 3 1.2 Issues in Observational Studies... 5 1.3 Study Design...
Nov Journal of Zhengzhou University Engineering Science Vol. 36 No FCM. A doi /j. issn
2015 11 Nov 2015 36 6 Journal of Zhengzhou University Engineering Science Vol 36 No 6 1671-6833 2015 06-0056 - 05 C 1 1 2 2 1 450001 2 461000 C FCM FCM MIA MDC MDC MIA I FCM c FCM m FCM C TP18 A doi 10
DEA (2011) DEA DEA DEA DEA. Decision DEA. Making Unit, DMU Data Envelopment Analysis DEA DEA C 2 R DEA 1978 DEA. A. Charnes W.
31 7 Vol.31 No. 7 2011 7 ECONOMIC GEOGRAPHY Jul. 2011 1000-8462(2011)07-1178 - 07 DEA 1 2 1 1 2 1 2 1. 100101 2. 100049 DEA 2009 DEA F304.7 A 1980 DEA 2010 7 8 1 DEA 8 [1] DEA [6] DEA [7] 1 [2] DEA Decision
: , : (1) 1993, , ; (2) , (Solow,1957), ( ) (04AJ Y006)
2005 6 :1979 2004 3 ( 100872) :, 1979 2004, : (1) 1993,,1993,, 2000, ; (2) 1979 2004,, ; (3) :,,,, ( ),,,,,, ( ),, (Solow,1957),,, (1999),, (1993) 1952 1990,, 0102 %, 013 % (2000) 1953 1999,,1953 1978-0117
5.4 The Poisson Distribution.
The worst thing you can do about a situation is nothing. Sr. O Shea Jackson 5.4 The Poisson Distribution. Description of the Poisson Distribution Discrete probability distribution. The random variable
Homework 8 Model Solution Section
MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx
Applying Markov Decision Processes to Role-playing Game
1,a) 1 1 1 1 2011 8 25, 2012 3 2 MDPRPG RPG MDP RPG MDP RPG MDP RPG MDP RPG Applying Markov Decision Processes to Role-playing Game Yasunari Maeda 1,a) Fumitaro Goto 1 Hiroshi Masui 1 Fumito Masui 1 Masakiyo
Lecture 7: Overdispersion in Poisson regression
Lecture 7: Overdispersion in Poisson regression Claudia Czado TU München c (Claudia Czado, TU Munich) ZFS/IMS Göttingen 2004 0 Overview Introduction Modeling overdispersion through mixing Score test for
: Ω F F 0 t T P F 0 t T F 0 P Q. Merton 1974 XT T X T XT. T t. V t t X d T = XT [V t/t ]. τ 0 < τ < X d T = XT I {V τ T } δt XT I {V τ<t } I A
2012 4 Chinese Journal of Applied Probability and Statistics Vol.28 No.2 Apr. 2012 730000. :. : O211.9. 1..... Johnson Stulz [3] 1987. Merton 1974 Johnson Stulz 1987. Hull White 1995 Klein 1996 2008 Klein
6. MAXIMUM LIKELIHOOD ESTIMATION
6 MAXIMUM LIKELIHOOD ESIMAION [1] Maximum Likelihood Estimator (1) Cases in which θ (unknown parameter) is scalar Notational Clarification: From now on, we denote the true value of θ as θ o hen, view θ
Module 5. February 14, h 0min
Module 5 Stationary Time Series Models Part 2 AR and ARMA Models and Their Properties Class notes for Statistics 451: Applied Time Series Iowa State University Copyright 2015 W. Q. Meeker. February 14,
Error ana lysis of P2wave non2hyperbolic m oveout veloc ity in layered media
28 1 2009 3 Vol128 No11 GLOBAL GEOLOGY Mar1 2009 : 1004 5589 (2009) 01 0098 05 P 1, 1, 2, 1 1., 130026; 2., 100027 :,,,, 1%,,, 12187%,, : ; ; ; : P63114 : A Abstract: Error ana lysis of P2wave non2hyperbolic
Supplementary Material for The Cusp Catastrophe Model as Cross-Sectional and Longitudinal Mixture Structural Equation Models
Supplementary Material for The Cusp Catastrophe Model as Cross-Sectional and Longitudinal Mixture Structural Equation Models Sy-Miin Chow Pennsylvania State University Katie Witkiewitz University of New
Asymptotic distribution of MLE
Asymptotic distribution of MLE Theorem Let {X t } be a causal and invertible ARMA(p,q) process satisfying Φ(B)X = Θ(B)Z, {Z t } IID(0, σ 2 ). Let ( ˆφ, ˆϑ) the values that minimize LL n (φ, ϑ) among those
Μπεϋζιανή Στατιστική και MCMC Μέρος 2 ο : MCMC
Μπεϋζιανή Στατιστική και MCMC Μέρος 2 ο : MCMC Περιεχόμενα Μαθήματος Εισαγωγή στο Πρόβλημα. Monte Carlo Εκτιμητές. Προσομοίωση. Αλυσίδες Markov. Αλγόριθμοι MCMC (Metropolis Hastings & Gibbs Sampling).
Supplementary Material For Testing Homogeneity of. High-dimensional Covariance Matrices
Supplementary Material For Testing Homogeneity of High-dimensional Covariance Matrices Shurong Zheng, Ruitao Lin, Jianhua Guo, and Guosheng Yin 3 School of Mathematics & Statistics and KLAS, Northeast
Generalized additive models in R
www.nr.no Generalized additive models in R Magne Aldrin, Norwegian Computing Center and the University of Oslo Sharp workshop, Copenhagen, October 2012 Generalized Linear Models - GLM y Distributed with
Research on Economics and Management
36 5 2015 5 Research on Economics and Management Vol. 36 No. 5 May 2015 490 490 F323. 9 A DOI:10.13502/j.cnki.issn1000-7636.2015.05.007 1000-7636 2015 05-0052 - 10 2008 836 70% 1. 2 2010 1 2 3 2015-03
ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΑΓΡΟΤΙΚΗΣ ΟΙΚΟΝΟΜΙΑΣ & ΑΝΑΠΤΥΞΗΣ
ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΑΓΡΟΤΙΚΗΣ ΟΙΚΟΝΟΜΙΑΣ & ΑΝΑΠΤΥΞΗΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ «ΟΛΟΚΛΗΡΩΜΕΝΗ ΑΝΑΠΤΥΞΗ & ΔΙΑΧΕΙΡΙΣΗ ΤΟΥ ΑΓΡΟΤΙΚΟΥ ΧΩΡΟΥ» ΜΕΤΑΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ «Οικονομετρική διερεύνηση
Simplex Crossover for Real-coded Genetic Algolithms
Technical Papers GA Simplex Crossover for Real-coded Genetic Algolithms 47 Takahide Higuchi Shigeyoshi Tsutsui Masayuki Yamamura Interdisciplinary Graduate school of Science and Engineering, Tokyo Institute
SECTION II: PROBABILITY MODELS
SECTION II: PROBABILITY MODELS 1 SECTION II: Aggregate Data. Fraction of births with low birth weight per province. Model A: OLS, using observations 1 260 Heteroskedasticity-robust standard errors, variant
RCA models with correlated errors
Applied Mathematics Letters 19 (006) 84 89 www.elsevier.com/locate/aml RCA models with correlated errors S.S. Appadoo a,a.thavaneswaran a,,jagbir Singh b a Department of Statistics, The University of Manitoba,
255 (log-normal distribution) 83, 106, 239 (malus) 26 - (Belgian BMS, Markovian presentation) 32 (median premium calculation principle) 186 À / Á (goo
(absolute loss function)186 - (posterior structure function)163 - (a priori rating variables)25 (Bayes scale) 178 (bancassurance)233 - (beta distribution)203, 204 (high deductible)218 (bonus)26 ( ) (total
Vol. 31,No JOURNAL OF CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb
Ξ 31 Vol 31,No 1 2 0 0 1 2 JOURNAL OF CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb 2 0 0 1 :025322778 (2001) 0120016205 (, 230026) : Q ( m 1, m 2,, m n ) k = m 1 + m 2 + + m n - n : Q ( m 1, m 2,, m
Bayesian Data Analysis, Midterm I
Bayesian Data Analysis, Midterm I Bugra Gedik bgedik@cc.gatech.edu October 3, 4 Q1) I have used Gibs sampler to solve this problem. 5, iterations with burn-in value of 1, is used. The resulting histograms
y = f(x)+ffl x 2.2 x 2X f(x) x x p T (x) = 1 Z T exp( f(x)=t ) (2) x 1 exp Z T Z T = X x2x exp( f(x)=t ) (3) Z T T > 0 T 0 x p T (x) x f(x) (MAP = Max
2006 2006 Workshop on Information-Based Induction Sciences (IBIS2006) Osaka, Japan, October 31- November 2, 2006. [ ] Introduction to statistical models for populational optimization Λ Shotaro Akaho Abstract:
Approximation of distance between locations on earth given by latitude and longitude
Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth
Yahoo 2. SNS Social Networking Service [3,5,12] Copyright c by ORSJ. Unauthorized reproduction of this article is prohibited.
c 1. SNS Social Networking Service [3,5,12] 3 1 CM 190 8562 10 3 E-mail: eiji.motohashi@gmail.com 141 6009 2 1 1 190 8562 10 3 12.5.3 12.7.24 Yahoo 2 1 2 3 1 1 2 574 32 Copyright c by ORSJ. Unauthorized
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΑΓΡΟΤΙΚΕΣ ΣΤΑΤΙΣΤΙΚΕΣ ΜΕ ΕΡΓΑΛΕΙΑ ΓΕΩΠΛΗΡΟΦΟΡΙΚΗΣ
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΣΕΡΡΩΝ ΤΜΗΜΑ ΓΕΩΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΟΠΟΓΡΑΦΙΑΣ ΑΓΡΟΤΙΚΕΣ ΣΤΑΤΙΣΤΙΚΕΣ ΜΕ ΕΡΓΑΛΕΙΑ ΓΕΩΠΛΗΡΟΦΟΡΙΚΗΣ Πτυχιακή Εργασία των Αϊβαλιώτης Κων/νος (ΑΕΜ 902) Τσουρέκας Κων/νος (ΑΕΜ 559)
«Χρήσεις γης, αξίες γης και κυκλοφοριακές ρυθμίσεις στο Δήμο Χαλκιδέων. Η μεταξύ τους σχέση και εξέλιξη.»
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΚΑΙ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΓΕΩΓΡΑΦΙΑΣ ΚΑΙ ΠΕΡΙΦΕΡΕΙΑΚΟΥ ΣΧΕΔΙΑΣΜΟΥ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ: «Χρήσεις γης, αξίες γης και κυκλοφοριακές ρυθμίσεις στο Δήμο Χαλκιδέων.
2 Composition. Invertible Mappings
Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,
Statistics 104: Quantitative Methods for Economics Formula and Theorem Review
Harvard College Statistics 104: Quantitative Methods for Economics Formula and Theorem Review Tommy MacWilliam, 13 tmacwilliam@college.harvard.edu March 10, 2011 Contents 1 Introduction to Data 5 1.1 Sample
Λογαριθμικά Γραμμικά Μοντέλα Poisson Παλινδρόμηση Παράδειγμα στο SPSS
Λογαριθμικά Γραμμικά Μοντέλα Poisson Παλινδρόμηση Παράδειγμα στο SPSS Ο παρακάτω πίνακας παρουσιάζει θανάτους από καρδιακή ανεπάρκεια ανάμεσα σε άνδρες γιατρούς οι οποίοι έχουν κατηγοριοποιηθεί κατά ηλικία
Homework for 1/27 Due 2/5
Name: ID: Homework for /7 Due /5. [ 8-3] I Example D of Sectio 8.4, the pdf of the populatio distributio is + αx x f(x α) =, α, otherwise ad the method of momets estimate was foud to be ˆα = 3X (where
.5 Real consumption.5 Real residential investment.5.5.5 965 975 985 995 25.5 965 975 985 995 25.5 Real house prices.5 Real fixed investment.5.5.5 965 975 985 995 25.5 965 975 985 995 25.3 Inflation rate.3
MIA MONTE CARLO ΜΕΛΕΤΗ ΤΩΝ ΕΚΤΙΜΗΤΩΝ RIDGE ΚΑΙ ΕΛΑΧΙΣΤΩΝ ΤΕΤΡΑΓΩΝΩΝ
«ΣΠΟΥΔΑΙ», Τόμος 41, Τεύχος 2ο, Πανεπιστήμιο Πειραιώς «SPOUDAI», Vol. 41, No 2, University of Piraeus MIA MONTE CARLO ΜΕΛΕΤΗ ΤΩΝ ΕΚΤΙΜΗΤΩΝ RIDGE ΚΑΙ ΕΛΑΧΙΣΤΩΝ ΤΕΤΡΑΓΩΝΩΝ Του Πάνου Αναστ. Πανόπουλου Οικονομικό
A General Note on δ-quasi Monotone and Increasing Sequence
International Mathematical Forum, 4, 2009, no. 3, 143-149 A General Note on δ-quasi Monotone and Increasing Sequence Santosh Kr. Saxena H. N. 419, Jawaharpuri, Badaun, U.P., India Presently working in
Lecture 21: Properties and robustness of LSE
Lecture 21: Properties and robustness of LSE BLUE: Robustness of LSE against normality We now study properties of l τ β and σ 2 under assumption A2, i.e., without the normality assumption on ε. From Theorem
ESTIMATION OF SYSTEM RELIABILITY IN A TWO COMPONENT STRESS-STRENGTH MODELS DAVID D. HANAGAL
ESTIMATION OF SYSTEM RELIABILITY IN A TWO COMPONENT STRESS-STRENGTH MODELS DAVID D. HANAGAL Department of Statistics, University of Poona, Pune-411007, India. Abstract In this paper, we estimate the reliability
4.6 Autoregressive Moving Average Model ARMA(1,1)
84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this
ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 13. Συμπεράσματα για τη σύγκριση δύο πληθυσμών
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ
CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD
CHAPTER FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD EXERCISE 36 Page 66. Determine the Fourier series for the periodic function: f(x), when x +, when x which is periodic outside this rge of period.
Υγιεινή Εγκαταστάσεων Βιομηχανιών Τροφίμων
Υγιεινή Εγκαταστάσεων Βιομηχανιών Τροφίμων Ενότητα 13 η - ΜΕΡΟΣ Γ ΑΠΟΤΙΜΗΣΗ ΕΠΙΚΙΝΔΥΝΟΤΗΤΑΣ Όνομα καθηγητή: ΠΑΝ. Ν. ΣΚΑΝΔΑΜΗΣ Τμήμα: Επιστήμης τροφίμων και διατροφής του ανθρώπου ΣΤΟΧΟΙ ΤΟΥ ΜΑΘΗΜΑΤΟΣ Κατανόηση
5.6 evaluating, checking, comparing Chris Parrish July 3, 2016
5.6 evaluating, checking, comparing Chris Parrish July 3, 2016 Contents residuals 1 evaluating, checking, comparing 1 data..................................................... 1 model....................................................
[4] 1.2 [5] Bayesian Approach min-max min-max [6] UCB(Upper Confidence Bound ) UCT [7] [1] ( ) Amazons[8] Lines of Action(LOA)[4] Winands [4] 1
1,a) Bayesian Approach An Application of Monte-Carlo Tree Search Algorithm for Shogi Player Based on Bayesian Approach Daisaku Yokoyama 1,a) Abstract: Monte-Carlo Tree Search (MCTS) algorithm is quite
Optimizing Microwave-assisted Extraction Process for Paprika Red Pigments Using Response Surface Methodology
2012 34 2 382-387 http / /xuebao. jxau. edu. cn Acta Agriculturae Universitatis Jiangxiensis E - mail ndxb7775@ sina. com 212018 105 W 42 2 min 0. 631 TS202. 3 A 1000-2286 2012 02-0382 - 06 Optimizing
A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics
A Bonus-Malus System as a Markov Set-Chain Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics Contents 1. Markov set-chain 2. Model of bonus-malus system 3. Example 4. Conclusions
ΣΧΕΔΙΑΣΜΟΣ ΔΙΚΤΥΩΝ ΔΙΑΝΟΜΗΣ. Η εργασία υποβάλλεται για τη μερική κάλυψη των απαιτήσεων με στόχο. την απόκτηση του διπλώματος
ΣΧΕΔΙΑΣΜΟΣ ΔΙΚΤΥΩΝ ΔΙΑΝΟΜΗΣ Η εργασία υποβάλλεται για τη μερική κάλυψη των απαιτήσεων με στόχο την απόκτηση του διπλώματος «Οργάνωση και Διοίκηση Βιομηχανικών Συστημάτων με εξειδίκευση στα Συστήματα Εφοδιασμού