!",! ## $% ( )) ( ( )!*

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "!",! ## $% ( )) ( ( )!*"

Transcript

1 5.13.1!",! ## $% &%' ( )) ( ( )!* )) ( )%.+., 8

2 ! &... 4, #- (...!*.! /!* '' #"(' #- ( #-' (...!* )! #-' (... $$ )! "!*... 3, ++. +!" #. (!* (.!' )!.( $$ )! #!" #. ( $$ )! )!.(!* )! !" #. (!* )! !" (!* "!*... 6, ( ".!'!* (.!' !*-( " -.!' !*-( " -.!'... 65

3 3 3.3.!*-( " &-.!',./1. )( ) %!* !'! "!* ( ). % "... 8, '!"%'!.!" "!* ) MATLAB ( )!.%!* $$% RASIS #1 )! RASIS )! RASIS )!'!" ".!'!* !*"' RASIS... 97, ++ 5.!)!*... &-1!*" RASIS !*... & " &-.!' (.!'!.. & !" ( (.!'!.. & & &+9 +:

4 4 " (!* (.!' )-!*-)!. )!* #!! ( "! " %!% " " ".! " )" "- "( '! )! "'/1',!('.' (!* )! [1, 8, 88]. )#!(! "!* (.!' [7]. (!* ")(!)'!* #! # (, (/1 : (!!*'!/# "('!*- )!.!*. )* $$%!*. (.! () "!( #, )!'/1 )!!. *!*! ) n n 1 ( ) ( ) ( ) ( ) ( ) D s, = a s + a s a s + a, P,.) n n 1 1 "'/' ) - P. 1 4 ) )!.!*.! [1, 8, 88]:!*', $$',!! '!!*'.!* )! $$%! '!'/'!* (, [ ] s + s +,, ). 1 n ax $$ )! $$%! #"! "*/!* (, 3 ( ) s ( ) s ( 5 ) s 1 7, [, ] ) n ax

5 5!! )! $$%!! "' -).,!!* $ ( ) s 3 ( ) s ( 9 3 ) s 5, [, ] n ax (, ).!!* )! $$%! "'!!* ' # ). (, ( 1 3 ) 1 1, [ n, ax ] s s ).!*! D( s, ) "' # (,! ( P. ) %!*"' )!*"*' " ' (, - P, #1.', )- #(.!. )!' ' ")( ( "#- #! "# "!(. ') "!*" "/.. [116], )!' # (! D( s, )!* )!*/ #) )(, (# ( %!* #" $! #! (. $$%! / )!* "(' " ")!. /.$(/ $, #!.)' )!'!' # ( )( * )!* ). ( ().).$..).$ "'.).$ 9-!' [93]. &!'!" # ( #!!- % $$ )!,!, '' #'.!*" ' #.!, # (... P, )'/1 ) ). ;, / ()*, #"/!. # )!' # (

6 #) )( (* #!. 3, ( #' "!' $$ )*!" # (,!*! (!!*!*!. 6 ) )!' 1 (.!' -!* '* #/ (*!*,!"*.!*/ #/ (* [66, 67, 68, 7, 81, 88, 91, 95, 11, 111], /1/ )! # (. +!" #. ( ) )! ) "! ( "!* ") )".! ) '1.!)'!*!* 1!* )(!.!* # ( [6, 7, 1, 73, 116].!*"!*,!,!.#( ( ).,, [89] "#!' )' ")!!, )(!.#( ( / ). a a a !. ;!' δ *,.) a a -.%! $$% a 3)(!" )!-!!! ' - [63]. &!'. ( #! $' 4 %!*! n,.) n ')!, '' (*.!(!, )!-1, ". 3, ( "# [63]!.!* # ( '!'' )( #!) )! */ ".

7 7 ') ", ) " ) '!'' - )* -)' )!*!, #(/' ") (. " ) (/ : )! '' (*, "'*, (# #(* ").!* '!'' )!* ' "# )!)'!*, "/1' #!* (*/,, '. "# ) )!.'!-* )),!*"/1 ".% (!!* [94 98]. )) '.!* # ( '" "!(!-', /1 )! ('!*.!*. )) ' ")( #( -!. ( < $%'!/# "- "('!*, ).'.!- -! #!. 3!* (!!* )!*/ ) n P( s) = a s, a a a, = n ax.) n!*' *!*. (.!, a!* $$%. " [5], (!* $$ )!' (! #! #-' (... $$%!.( #". #, - )!* "! (!*..% #!!!"% )!'/' #,!*, ")/1!* #

8 .. -) )!' )!*.!*"'!"!* )!' )!. 8 3, (!* )!,.! [7, 118], -!" #-' # (...!" #-'!*..,, [7] )!' $ )!- ") #! )!.' * ) n!, /1.. P. ), %, #"!, "' * ) )!' ")( *' (! '.!) *, (!!!!* )!' ( #!* /1!* %'!').% #!!!"%. )!'*' - ( (..., - *!*.! #- /!*, ( )( ")!*! (!"% #!* (!!* $$%. )!* # )!.' * (.!'!*!* $$ )!' (!.!(',.)!*!!*/!!! / )!*, )!.' )*!*! $$ )!!!* $, )!' [7]. 3, ( (..!(!* )!! #"'.!* $$%,!( $$ )!!*,! )'1 $$% (.!. &!'!(' ") "! ( #) "!.*!

9 ! /1 #". #( % ( % "/'!)/1 "!': */ (!#!**/. &!' #!) ")*!* )/!#!**!* )/ * (. 3) "!'.(* #!*,!-' )'!(,!'/ 1 */.! ϕ = arctgµ ( 1). 9 =>?@ 1 #!*!!"% ")!*!#!**/ 3)!* ) ( #.(* #!*,!-'!* ', )'1!!!* ' ( ). =>?@ #!*!!"% ")!* */ ( &!' ). #('!* )!#!* ϕ!* ) (

10 1 #), (# (.!!.!*!!* ', '1 '.! ϕ ( 3). =>?@ 3 #!* -!!!"% /.%, "/ 3 - *! */.#!. #) (*, ( $' b )' y = ± x,.! $$% a b µ = ± tgϕ = ±,.) a b!.#!, a x a y =.!.' a = η, ).#!!!, b 1 " 4. 4 ' #!* -!!!"%!) - *, ( 1/ (.!', #'!.( %

11 )/ -!# ). %. )!' - #( )( ). % )!'!*. )#' ")( ' ' [63, 93] ( # (. 11 +)( "' %, * "'. )' )!,55 ) 1 (' ).!#') [6]. * "' ). % "'!) ).! (!)!*!# ). ").!! '!''!).!#'.!#!* '!'' %, * "'. *,55. "' %, * "'. #!* 1. +)( ). % - #(* )!- #!-. 1. ' [6]. &!' )-' ").!' #).% #!!!"%!*. (.!!-* %!* #", " 5,.) < <.! [, ] a3 a a1 a a. ) 1 *,!* )!-!.*' ( ABCD,.(.! ϕ!* ', )'1 (" a #!!!"% )!' #(' )(. ). %

12 1 ')!- (!/ "!* ) #) (*!-!, "!-!' ' ). % :.! '.!' [15]. ")(!"!*,!* '!'' - ")( " )!'.!' [54]. ') #, '1!/, )!' ' ")( "!*"' # ) D-"#'.,, [9] )!' #(' # (!* "# ) )!', ' '.!* ) D-"#'. "!* "! '.% D-"#', '1' " '.!*, "!( #! # ( #/ "(' ". ) 1!* -!!*!* #(* #/ (*,.* ) "! (.!*". )) ")( (. ".!' )'!-/ #!!!"% (.! -! #!'!!. #", )!' '! ")( )!' "#. )) )!" #. (!*, - ) (. "!.!',./1 ") (!'. " ) )!.' "#* #-' #!!* ((...) /!*. &!'. #)!" #-' # (...

13 13 * '"* #" "!' ( (* (!#!**). &!' ' ")( #(' #. (!* )!.'!*"*! -, -! &-"!', '!!!!* (.!'. 3, ( 1 (.!'!* - $$, "!'/1 )*!" " ". &!'. "# )!)!."* ) ).!"% ;. )!.'!*"* ) MatLab, '/ '1 ' "!( #!'!) ")(. MatLab, )(.# ) '".', "!'/1 *. )% ), '' #( $!. A #!* * $$ #" $%, -!( %!" ##! MatLab. "') #! )!'!)!* %!. &!' $$ # MatLab, "'!..', (! ),!*"!* -!'* # ) '. " " "#. ) MatLab [5, 117] )!'!)' (.!'!) )!*. )!'!"!* «++» [117], )). ) ') ), : ).-#!(!"!*, "-* (. "!.!'!* )!*/, "-*.%!*"!. ") - %. '"!* ")( ")' %!".

14 !). )!' '! ")(!" "!*. 14 #$ # %# # )!'/: )!" #. (!* $$ )!' # (!; )!*-(. " - -.!', #(/1. "! (!/#"('!* ; )!*-(. " &-.!' #(/1. )( ) ). %!/#"('!* ; ) % -! #!!-'!/ (!-'! )!' #('. ' "! (. &' (&) *##('+ #!'/: "# ) Matlab!(!.!).!" #. ( ; "# ) Matlab!(!.!). (. "! -, -, &-.!' )!',./1 # (!'; "#!). RASIS, ( - *!*"', ( )!. ) ) )!' ' ( ")(!', - #(' ) /1 %!* ;

15 15! "!'!!/.! "-*!('. "). "(' % #!!-'!/.,-* ) -'.. "!* ).!)' - ( *', ".!-' )% # )!)!* #-)!*!)/1 $%' ": III, V VI ' (-(' $%' ),!) ( «!)-* $%!.»,.., ; XI, XII XIII -))' (-(' $%' ),!) ( «!.»,.., )% # #! 1 # 4 * -!, ) +: 1.,.. +!" " # (.!' ) Matlab //.. ),.+.,,.. 3' // "'.!(., B ,..!*-( " #. (*/. /.. ),.+., //!)-* $%!.: # ) V (-( $% ),!) (., 7 $!' 1 7. :, ,..!*-( " #. "!' (. /.. ),.+., //!.: ) XIII -)) (-( $%

16 16 ),!) ( -, :, !)!*! '. /.. ),.. 3',.. $ //!.: ) XII -)) (- ( $% )!) (,, :, ,.. )! -! #!!-' )/1!/ " (! /.. ),.+., // "'.!(., B !). )!'!" "!* //!)-* $%!.: # ) VI (-( $% ),!) (, 6 8 $!' 8. : #,$, ,.. ( "!..!'!*. "!' ( /.. ),.+.,,.. 3' // "'.!(., B "1 #!!!"% )/1!/!* (.!' ") ( /.. ),.+.,,.. 3' // "'.!(., B ,..!' # (!*.!. /.. ),.+., // «!)-* $%!.» III ' (-

17 17 (' $%' )., $!' 5.. : ")-, ,..!' # (! $$ )!*/. /.. ),.+., //!.: ) XI -)) (- ( $% )!) (<.....,, 8 1!' 5.. : ")-, '&' -/ -'.. &%' " )', '.!, "!/('!,!/(/ ; )- 131 (/ %., 59 6 #!%.

18 18! 1. '-1#,' (& ### & #'+#, # # &#$,(&(' C)!* "!*, "!'/1!)* #/ (*!* )!*/,!( #.. [114]. * (!!* )!*/ ): n P( s) = as, a a a, (.1) =.) a -!* $$%, a -!* "( a, a -.!* "(. (!,! " "( $$%, ()/1' () - "(' ) ) P( s) = a + a s + a s + a s +...; P ( s) = a + a s + a s + a s +...; P ( s) = a + a s + a s + a s +...; P ( s) = a + a s + a s + a s (.) ;!!(! "!. "(!)/1 #": )!' # (!*. #) )(, (#! #! ( [116]. *!!* $$%. #"/ (.., )!'/1 # '.!*.!!!), )-1 1 #.

19 (... )!'! '!* $$% "# (.. P )!/# ( P!* V, = 1, )!'/' -':.) a a = a + a, = 1, n, (.3) ( a a ) a ( a a ), (.4) 1 -.!*., a. "( V. * M(s) N(s) ) )!, )!' )' ), '" ) #. ) ' #.!. )!' # )( ) γ M ( s) + (1 γ ) N( s),.) γ 1. )!!)/1' [5]: * ") (.. P..) )!' # (!, ").. P #) )( (*. #!. &' " #. "!' $$ '* #/ (*,! (! )! $$%! ()( * #

20 !). )!!, (! "(!* ()- )!' =5 - * # #!*. #D (!. 1 =8 #!), ( '"!* #!!)' "- 1' (! ' #. " ' #! #-' (... (. 1.1),!) () ), ( )!'!" # ( )( *!*. 1 #, #"!'/.% #!!!"%!. ) )!'. #) * " )!'* 1 # /1 ' $%!! )!. $$%. #"( #-' V (... U. 1. )! #- P!/!*,!-'-!!"/' ) #!',.( #" # P. 1. #- (...

21 1 #!*.! #"( R, = 1,,.)!(!* $$%, '). #" # #"( (" P #" )! 1.3. RS " # '. # RS RS 1 RS 3 R 3 R 1 R 1.3 #- # (... )!/.. P!/#'..* '!'' '.!*! "' )!* $$% " ).,!*.! #"( G ( 1.4), = 1,, j = 1,, j, ') j. #". #"( (" GS j.

22 U V 1.4 #-. (... #"(.! ) ". "! U j j ( 1.5)., )!'/1.! ) #, #"( (" E j. 1.5.! ) # 1.. &!' #-' : P φ S,.) S - (.1), #) *, '"/1 ) ( P n

23 3 '! (.1). )!'!('!* )! - #*,!( "!* ) (.1) -' (.3) n P( s) + a s =. (.5) = (.5) " #-' #!* R P( s) + a s =. (.6) * (.6) '!'' ( )( # '"*/..) )(' $%'! " )!' # #) * ) W as ( a, s) = (.7) P( s) +!"' (.6) (.7) "%..).$, ", ( " a! (.3) )-'!/ $% (.7), /1 ) % ). %.).$..) )!' R, ' (.6) R. #"/ $.. φ S #) )! -': φ ( R ) = RS, : P φ ( V ) = U.!)!*,.! # #!!!"% (.1), #D) '!'' # ' S, #).( RS )(!*.).$. ) "!' * S.(!*.).$. (.1) " #-'!. G j '!*.( j as a js P s ( ). + + = (.8)

24 4 * ) " ' (.8) ) s = α + jβ, r 1, n. )!'' (.8) ) s r )!'' 1/ / (,!( )! )' a a j : j a Re( α + jβ ) + a j Re( α + jβ ) + k p + Re ak ( α + jβ ) + ap( α + jβ ) = ; k p j a I( α + jβ ) + a j I( α + jβ ) + k p + I ak ( α + jβ ) + ap( α + jβ ) =. k p &!' (.9)!)/1 )!('. r (.9) 1. ' " ) a = a, a j = a.!)!*, P G j. j φ 1 ( s ) = P,.) P = ( a, a ), ( r. '!(/' ' -!. ".!), (! G j 1 #' '' t ( ), '!/# " (.9), ( φ 1 ( s ) = t. r j 1.6 #-. (... # '

25 5 (' # #. #-'.% #! S r!!"%. '! s r, * φ 1 ( s ) = P, ( r 1 ( ) φ S = G (.1) r P R j.. ) P '!'/' ) (.9), (" RS )' *, )'1' s r.!)!*,! (.1).% /1' #" # G j. S r '!'/' * φ 1 ( sr ) = t t G j = PP 1 (( P 1 P )!- # G j ).!)!*, PP 1 φ ( ) = sr (" s r (". # "! #"( U ) ) -.).$!* $$%, #"/1 ' t #..! ) -) U..).$.! ) /1' U!- -) )' /1' - # '.!)!*,!(! (.1).% S r )' /1' #" ) # #", G j. RS. )*.% #!!!"% ' (.1) %!, ((, '* U. " #.( (#"( GRS ), #".( # ( GR ), #", )!-1 GR,.( "! ( GU ). 1.7 ) #-' (... '!*!/!*. 1.7 " #!* S r,.% '!'/' /1' #" # 1.7#.( /1' #" # P. P,

26 6 ) #) 1.7 #"'.% #!!!"% -, (!*. (.! P 1 ) # GR )!' #!!!"%!. * φ ( V ) = s1, s1 = α1 + jβ1, φ ( V ) = s, 1 ( ) s φ S1 = P, = α + jβ, ( s 1 '!''.( )!' S 1 s )!' S φ 1 ( S ) = P. &, ( ) "!* $$% a " " V ) " /.%, )!'/!' (.3) (.4). "!* - "*', ( s 1 S 1, s S.!( φ 1 ( s ) 1 P, φ 1 ( s ) P, (

27 ( 1/ s 1 s ). #".! * 7 ) #- V * GU, - '!'/' ). #-'. ". - )!* ), ( )!' φ S 1 : P ) #. GR,!'/1.( # " ).!"!), (! U Sr, GRS. )*.% S r!*/, ((, (!)!( '!'' "!* (' "! U. )! # #!' S r. GR #) (* "-!( U (), ( #)! U S '!'' ' t!' P. 3, (! ) -!#. 1 '' t,!!/#. (' P,!!!*.., - #) /1' '' t. #)! U Sr '!''!( ' t ' # ) "!. P, /1 ) #1/.!! C. #! ",! 1' ' t $$% a j r a #-' U ( α; jβ ) '!''! ' "* (.9). ; "*,! 1/ "(' α β,!'/'

28 ( j ) ( j ) 8 ( j j ) ( j j ) Re ( α + β ) Re ( α + β ) = = I ( α + β ) I ( α + β ) ( α + β ) + p ( α + β ) Re ak ( j ) a ( j ) k p = I ak ( j ) a ( j ) k p k p ( α + β ) + p ( α + β ) k p. (.11) (), ( α β )!- '!'*' '!( " (.11)! j j Re (( α + jβ ) ) I (( α + jβ ) ) Re (( α + jβ ) ) I (( α + jβ ) ) = ; j k p Re (( α + jβ ) ) I ak (( α + jβ ) ) + ap (( α + jβ ) ) k p j k p I (( α + jβ ) ) Re ak (( α + jβ ) ) + ap (( α + jβ ) ) =. k p (.1) 3, ( )!' (.! S r!./'!!! "- "! U / ) α < β. "!*!" (.1)!(!)/1 -). '1#. "! U (' # 1/!* #-'!., #" $$%! (.1) ), )!'/1!/ j 3. (.13) "&%'+('. )! (.1) #/ ) α + jβ = s. $!.( )! #" (.1) ) b b s = s (cos( bϕ ) + jsn( bϕ )) + j s (cos( ϕ )sn( jϕ ) cos( jϕ )sn( ϕ )) = ; j+ z az s (cos( jϕ )sn( zϕ ) cos( zϕ )sn( jϕ )) =, z (.14)

29 .) z = k p. (.14) ) U * '!'/'.! φ )!* s. (', ( α, β, -!*"' "..( $%, ' (.14) - * 9 sn(( j ) ϕ) = ; j+ z az s sn(( z j) ϕ) =. z (.15) (), (!-!' α < β ' (.15) )!- )!'* ϕ, ϕ 9.!( (.15) #) * '!* j 3. ; ' )!'!! )!'/' - π ϕ = π, j = 3,4,5... j ) "(' ϕ (.15) "!' )!* s,,, )!* ) U!!. #", #)! U S '!''!( (.1)!* $$% ), )!'/1 (.13). r 1.3. )! #-' P )!'!(' $$ )!,.)!* '!'/'!* ($"(),! )'1 $$% (.!. * (! ): = ( ) ( ) D( s) = T A ( s) + B s =, T T T, (.16)

30 3 k k j j.) A ( s) = ( a, js ), B( s) = ( bjs ). j= : j= &!' #-' φ P S!*"!)/1 -: k ( ) D ( s) + T A ( s) =, (.17) =.) D ( s )! "('!*, /1 (.... # P #)!*"* ) #"( R,.) ), = 1,, ) V, " T # '' T. (.17) " #-' # R!/!* : ( ) ( ) D s + T A s = (.18) - (.7) )!'!(' $$ )! #) * ): " W ( T, s) D A ( s) ( s) T = (.19) T (.18), '*!/ $% (.19)!', #"/ )(!*.).$. /#'.* )!* T P '!'' '.!*! "' (.16) " #-'!. T j " ) V. ( ) ( ) ( ) j j G j : D s + T A s + T A s = (.) * sr = α + jβ, r 1, n. )!'' (.) ) s r,!( )! )' T T j : ( ) ( ( )) ( ( α β )) ( ( α β )) ( ( )) ( ( α β )) ( α β ) T Re A + j + Tj Re Aj + j + Re D s = ; T I A + j + Tj I Aj + j + I D s =. (.1)

31 31 &!' (.1), )!'!('!* )! $$%!, - )!(': T = T, * 1. T j = T.!)!*, * j )!-! G j. 1 * φ * * * ( sr ) = P, P ( T, Tj ) =, ( (.. ".!), (! G j 1 '' t, '!/# " 1 (.1), ( ϕ ( s r ) = t.!. #- P!(!* )! #- # * P P )!'! $$ )!*/ - )"*, ( #. - )*.%!*/, ((, '* )!!!(' * U. * U. #! ",! '!''! ' "* (1.8). ; "*,! 1/ α β, (!'/' : ( ) ( ) ( ) ( ) ( D ( α + jβ )) ( ) Re A Re Re α + jβ A α + jβ = = I A α + jβ I A α + jβ I D α + jβ ( ) (.) &!' #) *!(/ " (.) )! : ( ) ( j α β ) ( ( α β )) ( Aj ( α jβ )) I( D ( α jβ )) ( Aj ( α jβ )) D ( α jβ ) ( A ( α jβ )) I Aj ( α jβ ) A ( j ) A j Re + + Re + I + = ; Re + + I + Re + =. (.3) ( -). " (.3) '!'/'! ( β #" #). (!.! (.3) ' β, #-'.

32 !!!* ( P 3 * U. (.3) )!' (!* "(, (.% /1' #. S r ' " 1.4. ).! ) #"(', ' # )..).$ )!" #-' /!* (...!*. (.! ). )!:!* $$. "!*!"!, ( #".( #.. # )!. )*.% #!!!"%!*.! %!, ((, '* # "! * U. )!' # )! $!'!(' * U.% #!!!"%. ", ( "- ( # #) (*! "..(. #.!*. (.!. ; #) )!' ' #!!!"% %!*/ )!*.!" #. (!*.

33 33!. # % -('# &(' #'+#. ( (' '' (&,# ).1. )!!' )!-. ).! ) U.% R "!. S r (.1). &!' U. #"(.! (" Θ.. - " ' $" [83], ". )!' U.! D ( s ) *, A ( s ) * z,.) T )' $! Θ!( * T n z Θ = 18 Θ + Θ, (.4) k l k= 1 l= 1.) Θ k n z k l k= 1 l= 1 (.5) Θ = Θ + Θ, Θ l -.! -) 1 */,! " U k-!/ l-!/ $% (1.6).!" "-!' )-' s r " U, ' #! #-'. P #1 V (.1). -) "! )-' s r )!'' E = E + E,.) j j E - #, ") E j Θ Θ j [98]..!!!.#, Ej ) " U!- #". E.! E j Ψ, ( Ψ 18. j j

34 34 Θ3 Θ Θ1.1 #- (... " GU )' ).( #, /1 #"/.(.! GΨ j, -!-1 )" [,18 ].!(!*.! Ψ j,,!)!*, )!'/1 # )!- )!-* GΨ j. " )! (".! ) #, (!-!* 1!.!/ C V V Θ Θ 1 < 18 (.6) #", (.6) - * )!-* P.% #! '. ) S r!!"%!.. " "-!-' RS ".(.. "!!-. S r (.#). GU (.) " "!,

35 35 Θ3 Θ Θ1 Θ3 Θ Θ1.!- ) RS ". "!..!" "- '.! ) ) # ( RS RS j ) " ).( "! ).( # */ '!'/' # ). P. * * U S r. " T k # GRS k (), ( #" S r, '" RS RS j GR k * s r )-' GRS k.. "'*'.! ) " s r s RS s RS j. ), * U S r, s RS s RS j /'. )

36 s r ). 36 GU ). #) '*'!)!**!( s Θ j (.3). ##1'!( #!* (! #, - "!/(*, ( ).( "! "('.! ) #)!.*' )!)!*. s Θ Θ Θ Θ1 Θ1 Θ Θ1 Θ1 Θ.3!- ) * ). RS ". "! * * U S r,.) s RS s RS j. *' * U.! " T k " %' sr * = U )! * U ) " S r,

37 ' ( 37 GRS k "' s Θ s Θ j.!( ).( "! #) '*'!)!**.! ) # (.3#).! $" )!'.( #!" "- (' # "! "#!..( # "% $$ )!. P )!'!(' * (.1) $$ )! / * )!' ) ". P # #1 ( U S r )..)! " GU )'1' ". GRS, ().( # */ #), )!* " -).! ).! ) " GRS #) * (#!*)., "'!(.! Θ, = 1, )!'!/#..(.. "!!- ') "' (#'), - )!*!)!** RS, = 1,, = 1,.(/1 #!*!!"%!. '. ;!)!* ')( # # P - ".( #..( "!/(*, ( " #, '"/1 P, ( ) -) /!-.( "('!*.! ' # )!' )!* (.1), #! S r "-!( * U.!( #) - "! GU, " )!'. )!*!)!** Θ /1/!)!** # P.! )-!( #" # () #!)/1 " -' #"!* T T j )!' (.1),

38 .( #!(!)!/(* #. G j. 38 #",!. #.!" )!' )!' #. (!* )!!)/1 : 1. ) (.! ) (.16).. )! ) P, /1.( "('!*. 3. (.1) ) " P )!'!'!*,.( #. *'. 4. -) (1.1).(. "!!!"%. * U #! 5.,(' #' "%' P.! ) # ".(.. "! ( "!* #-.(. #. /!*. 7. +!"!-' #!!!"%!*.! )! #. (. &, (!* )' $$. (. '!* */!, 1.!( (! #) * ): ( ) * ( ) ( ) P( s) = B s + T A s, (.7) = k 1 j * j.) B( s) = ( bjs ), A ( s) = ( a, js ), T T T j= j= < <.

39 39! B( s ) - #*!/#.!)!*, )!' )!* (.7), "(, #! S r "-!( U*.! (.! $$ )!*/ #) #- 1 (.4). Θ3 Θ 1 Θ.4!-'! (.! $$ )!*/!* "(!!*, 1 #",!! )( $% #"/!)!** s 1 >s > >s, #) *!)!**.! ) Θ 1 >Θ > >Θ n. "*.! )!'!)!*.) * 18º,!)!*, /1 "(' T "! '!''.(..! ' $" (.8) (.9), "*.! ) ", #".( "('!* $$% (!*!!*), #) * 18º,..!*.!!' )!/ º (!(,!!* ' E),!* 18º (!(,!!* '!/ E)..! ) ".( (.5)

40 4 T 1 T T 4 T 3 T T T 4 T 1 T 3 T.5 "#-'.! ) ".(!)!* "''.! ) #!*!- ')!(' (*'),!(.( (.6), )!'/1!* # )!'. T T T T 4 T 1 T 3 T 1 T T 4 3 T 4 T 1 T 3 T T T T T 4 T 1 T 3 T T T 3 T 3 T T T T 4 T 4 T 4 T 1 T 1 T 1 T T 3 T.6.! ) ".( #!%, #) ) ') "' ).!!' #!% 1!)/1: "/' ) )! $$%, ('!/#. )! a j. -)!)/1 /

41 ))1 "'' )!!* ). $$% ( (), ('.).!!(' + 1 )!,!-, " )! '' - '). "!* #!% #"' 41 /!- )!. P, ) ) ) #!% "/' ) ). # P, - "!/(*, ( )' #!% ") " # " #, '"/1 P. ( #!%.1 ) 1 )!'!*. (.! *. '), $$%. '!'/'!*. #!%.1 1 )!' (.! $$ )!*/ *. ') (!*!* $$%, )%) ) 1 T T 3 T T 1 T 4 T T 3 T T 1 T 4 3 T T 3 T T 1 T 4 4 T T 3 T T 1 T 4 5 T T 3 T T 1 T 4 6 T T 3 T T 1 T 4 7 T T 3 T T 1 T 4 8 T T T 3 T 1 T 4 9 T T 3 T T 1 T 4 1 T T 3 T T T 1 4

42 4 #",!. )!'.% #!!!"%!!* )!!)/1 : 1. ) (.! ) (.7).. )! )! (.!. 3. C!)!* )! (.! ') "' (#'). 4. C!* "('!, " ') "' (#')!. 5. C #.!)!* ".( "(! '), " #- #. /!*. 7. +!"!-' #!!!"%!*.! )! #. (. &!'!" $$ "#!. #! ) ' ( #-' #!* (! "!(!(!/ -) # "!(!(!* $$%. "!* ) )! #!%..3.

43 43 #!%.!*!" $$!. -)'!*. #.!* )! / #!*!!* )!*/ ', -) )-!(!( #' $-!* ( t # /t n!* ( $$% # (t # ) t # /t n (t n ) 4 5,55,,75 4 1,75,71, ,7 1,45,5517, ,3,83, ,3,35 3, ,6 1,3 3, ,8 3,1 3,4838 3, ,4 5,9 3, ,6, ,6 5, ,3 4,7 5,885 5, ,9 8,9 6,56 3* (.% #-'!*. (.! $$ )!*/ (#'!* # ) )!.7.

44 44.7 ' (.% #-'!* )!*/ (#'!* ) " ).!" $$ "#.. ) MATLAB!. (.% (.!!* )!*/ ), ( * (.% #-' ".(.!(!(!* $$%, / #. ( -)'!*. #. 6!* $$% ")'' # ( # ( # ) 6 ".!( ( "#' # (.%!(' %!* ' $$%, "'1!(!* $$% # ).

45 45 #!%.3!*!" $$!. -)'!*. #. $$ )! / #!*! $$ )!*/ ',!( )-!(- -)!* #' $ ( t # /t n $- -( #!* $% (t # ) t # /t n (t n ) 4 5,8,18 4,4444 4,, , 1,3 4 4, , ,7, 8,5 5 5,5,6 9, ,7 1,6 7,9375 8, ,8 3, ,8,5 15, 6 14,8,9 16, ,5, 15, , ,9 4,1 16,3171 3* (.% #-'!*. (.! $$ )!*/ (#'!* # ) )!.8.

46 46.8 ' (.% #-'! $$ )!*/ (#'!* ) " ).!" $$ "#.. ) MATLAB!. (.% (.! $$ )!*/ ), ( * (.% #-' ".(.!(!(!* $$%, / #. ( -)'!*. #. 6!* $$% ")'' # ( # ( # ) #!"!* 16 ".!( ( "#' # (.%!(' %!* ' $$%, "'1!(!* $$% # )..3. " [7], (!* )!!#!** * ( (.!' )!'' (...!*. (.!. )!(

47 !(!* $$%!( ".(., ( )! ")!*!# )!. %) )!'!" "! (!*. ).! "#' ) )!'!*, ).( #..( "! 47 )!* # (!*. 3 '.! ) # " " $$% $! * a.) a..! Θ!( n g= 1, a )' Θ = 18 Θ + Θ (.8) n g= 1 g Θ = Θ + Θ, (.9) Θ g Θ.! -) 1 */,! " U g-!/!' $% (.13), /1 ) ) (; j ). [111] (.8) (.9)!(!)/1! #-' g P.% #!: U #) )!-*.% #!!!"% ',! "% -)!*!*.! Θ * 18.). 3, (,.! (.8) (.9),.! Θ * #1'!'/1' n Θ, '!'!!'.(.!-' U. g= 1 g ) '.! (!( a $! Θ /.! Φ, Φ = π + Θ (.3),

48 48 * a $! Φ = Θ (.31) ) )( E )'1 " (! ) ).! Φ.! ")* "( Θ,,.! (.3) (.31),.! -). $$%!. )!'' #" (!' /1..!. (), ( "!-/ E - )* "! U. #) )!-*.% #!,! E!* $$% #)!.*'.!, * 18.). #!.!') *!.!' -.( #, ' E. )...9 (*'!* $$% " "-!- E )!'!('.(. 3, ( " )! $$%!*.!*! # "!' (* /1 18.). ; ) "-*, # ) ",!-*!* -! #".!)!*, # -!. $* )! $$%.( P.!" "-.!-' E - )!*!)/1 -):! )!' -). " $$% *. ). (.3) (.31) )!-,!/#!)!*!- #)!-*.!, * π,,!)!*, )!'* ).( P (.1).

49 49 #", ")'! 1' #' ( (!*. -) ", -!(* # " "-.( P.! $ # $ " " $! #.9 &.!-'.1.(.4. &!' )!'!. # (!!) (*!.% #!!!"% : # RS. )*.% #!!*/, ((, '* )! (. (!).!(', (

50 #., #" $$% a 5!(, )'1 " (! ) ).! a j, /' π ϕ = π. j U,.( ), ) (" #!(. *' )..!)!*, #) ( ). $ $ #.( P. &!'. )!.' )!* #!(,!-1 ").! γ..! π #!(, #! ", )'' $! ϕ = π, n k k =,1,,..., n.!-' #!( ".11.!.! γ "). )-' #!(, $.(!) )* #!/# Θ " )" π π < Θ < π. (.3) n! - γ )- #!(, #)!'* "/ %) Θ " (.3) " )!!*)" π π π < Θ < π, k =,1,,..., kax, n k + 1 n k + ax (.33) π π γ < Θ < π. (.34) n k + 1

51 51.11!-' #!(! -.( P '!'' #D) -,!( "!( "(' Θ.!(.( P )!'' $! k ( n ). = ' & 3 ## # % -('# &(' ( ('., #'+#4 #,##('. ).!" "#!)/1' %) $' #.( P. 1. &!' ").! γ (!!* $$% )!*.! #!(,!-1 AOD.. 3)* "(.! Θ " )" (.3). 3.. ). )!'!* $$% # )! *!(, )'1 " (! ) ).! (.33) (.34). 4.. )., ('!/#.!(, )!*!)!**!(,!- ) " ). )-!-!*! ( (!).

52 5. " /1!( )! $$% 5 $* ).( P. 6.!)!* "'' (!*!(, * %).4,5!(* ).( P. π 7.! π > π γ, * ) '. 3,4,5,6 "('.! Θ n " )" (.33) (.34). 8. -)!)/1 Θ #) "!(/1' #.( #* )#!'* )..5..,# ) # # -# 3'. 1. * ")!!* )!*/ [ 6;8] [ 14;18] [ 9,5;1,5] 3 s s s #) )!*!* # (...!*. (.!. )!.( # )!' P 3, )- 1 #. #- ) ". V 1 ) a = 6, a 1 = 14, a = 9,5 '!'' "! U1 = (,45 + j1,61)..! ) " U 1 #!* $$% /!)/1 "(': U1 Θ a = 54, U1 Θ a1 = 17, U1 Θ a = 31. )!'!''! (.6), # )./ V,!(/1/' ) a = 1,5. / "! U = (,31+ j1,5).! U Θ a = 57, Θ =, U a1 11 Θ =.!(! (.6) U a 141!'', * U '!''.( "!.!* (.3)!'' )!' ) )!* $$%, #- P 3 #

53 "!..( # " V )!'' " $$% $" U U Θ a1< a 53 Θ < Θ U a.!(. " 6 # ).1,.)! "!!*. $$% "(.!(,! " *. #% & "% ) "& % # &.1!*. #.. *!!* )!*/ D( s) a s a s a s a a [ 1; ]. = + + +,.) a [ ], a [ ], [ ] ,7;,1,3;,45 a1 1,1;1,5, #) )!*!* #!*. )!( P 4 #" (*'!* $$% )- 3 #. "!* # V ) a 3 =,7, a =,45, a 1 = 1,1, a = 1!, ( '!''.(.! ) # " #" U U U U U (,7; j1,4) / "(': Θ 3 = 89, Θ = 13, Θ 1 = 154, Θ = 17. a )!'/ #) )!' )!* "% P 4 $" U U U U Θ a < Θ a3 < Θ a< Θ a1. &!' ").!! (.3)!'' )!' ) $$% a 3 a. (.!( a a a

54 $".13.( # 54, )-1!* 1 #.. P 4..13!*. #. &!' "#.!. # "%,!( 1, # #! #- /!*. - ' P 3 P 4. #! #- (.. $$%. "!* #" #!*/!.% #!!!"% /1!*!, ( )!* ## )!-.!...,# ) -('# &('. 3. * ")!!* )!*/ D( s) a s a s a s a = + + +,.) a [ ], a [ ], [ ] ,7;,9,45;,49 a1 1,1;1,5, a [,1;,7 ]. #) %*. #/ (*.! γ = 7. #!%.4 ).( P 4,!( '. ).,.! "# ). '"/1 # #-

55 // /!!* ).% #!!!"%!-'- (..14). ) ".14, ' #!*!. '!*. (.!!-.! γ 4 = 6.!)!*, 55 ")!* (! #!) # (*/.! γ = 7. #!%.4 1 P 4 ) 1 a a a 1 a 3 3 a a a 1 a a 1 a a 3 a a a 1 a a 1 a a 3 a a 3 6 a a 1 a a 3 7 a 8 a a 1 a a 3 a a 1 a 3

56 56.14 #!*!!"%!*. (.! 4. ( #!"%.!, '1/ "..!,!), )(.!'! '-'. (! ) a s + a s + a s + a =, ) a3 = lj, a = J χ + χr (1 + Tk k ), 1 a = Jc + cr + k k r χ + Tc, 1 1 ( ) a = ck1k r,.", l )!..!, J %!), χ )!* $$% )$'..!, c )!*' -*..!, r ) ).!), k1, k $$%!'!( ( ) $$% )( -.!', T '' -.!'.

57 "(': 57 ' ##1. #D!' / J =.5', 4 χ = 1 1, c 4 = 1, r.1 =..!* ") )": [ 5,5] ', l [ 5,1], [ ] k1 5,5..!' k = 1, T =,1 )! )!' ) "(!*. #) "# %)!" #.!* ( *.(!*.).$ )!' ) #!"%! '-' )!* )!* "(' "! (. ) (! ) (.7): 1 l A1 ( s) + A ( s) + k1 A3 ( s) + A4 ( s) =,.) A ( s) = ck r + ( ck Tr + χk r ) s + χtk r s, 3 A ( s) 1 = Js 3 ; ( ) ( χ ) A s c χs r s ( ) = ( + ). 4 A s = J c + s s ; (.. #" '!* )- 8 : V (5;5;5), V (5;5;5), V (5;5;5), 1 3 V (5;5;5), V (5;1;5), V (5;1;5), V (5;1;5), V (5;1;5),.) ' ) ' l, *' k 1. &!' $% ) (.19) (... )! '!/ (3,34+j3,88, 3,34 j3,88, 1,53), - #! (! ' A ( s ) ; A ( s ) : 1 ; A ( ) 3 s : 1).&!'. "! 3,34+j3,88 (.4), (.5) ) Θ = 34, V1 V1 Θ l = 5, Θ 1 = 86..! )! (.6)!'',!)!*, V 1 )!- #., V1 V1 V1 l k1 V1 k Θ < Θ < Θ,,!)' "# ), "!)!** "'!* " V 1 (...: l k1 l k1 l. " ().( #!)/1 :

58 V1 V5 V6 V7 V4 V3 V1. #- //!!* )!,.)!* 1 #.(.!*...).$ #!*!!"%!*. (.!!!"%!* - %*.!*/ (*:!*' * (,35,!*'!#!** 3,8.). 5. * (! $$ )!*/ ): D s = s + s a + a + a + a + + a + a + a +, 4 ( ) 1 ( ) ) a 1 = [ ;5], a = [ ;5], a 3 = [ ;5], 4 [ ;5] a =. #) )!*!* #, *.).$.! ) (!*

59 % ( (!*/!#!**!*/ * (). a 1:, 59 )! )!.!: a :,5, a 3:,5, a 4 : ;!)!*, '* )!!* $$% #)!)/1!)!*: a 4, a, a 1, a 3, (' ) ".( ( (!#!* "('!* $$%,!#!*). "!* ") (!( #, )! !* #...).$ )!!* :!*'!#!** 1,15.),!*' * (,1.

60 6.6. ).! )!!' )!- #!*. (.!.( #!* $$ )!'. $" ', )!!' )!'.(.. "! )!' )!. "# ) )!'.(. #. )!'!*. (.! $$ )!*/ ( #!(. ", (!!* )'.!!* */, 1, "- 1 #!(!!!. )!' -)'.(. #. )( "* )! " ') "' (#')!)!* ".%!*, ('!* "(, )!*. "# ) )!'.( "! )!'!* )!*/. ", ( )!' -)' "! #) "- #!( )!* #.( )!' -)., #".!(. #.( #)! # ). ) ') (!,.!')!!//1 ##* "# )!" #. (!*.

61 61! 3. ' (& 4 ( #'% )' #'+#. ( (' '' (&,# ) 3.1.!- - ' (.!' (+) #D (* ( #D!' %!% "'/'! " " ". )!' "!* + " ), "# )!' #D ', '" #!* )'. /, )!' %!!( #" ))!* ". )..).$. &!'!('!* + ) %. "!' ( (!* */ ( η!*!#!**/ µ ) #), (# (.!!* +!.!*!!* ', '1 ' η,.! ϕ, ϕ = arctg( µ ). 3)( "!* (.!'!!"%!/!* + #!,!/# "- "('!* #D!'. + -.!', )!/ : 3.1 (.!' * +!* )!*/:

62 .!': 6 *!.!' )(/ $%/ - P ( ),.) K * -.!', )(' $%' #D!' ):.) A( s) = ( as ), = W n B( s) = b s, W s = K (.35) ( A( s) s =, (.36) B( s) ( ) b b b. j j j j j j= #) )!* -.!', #(/1!- #!!*. (.! ") (!/# "('!* #D!'. #!* "- "(!*-)! #-'!/!* ) #!!!"%!-'- " 1,.)!!"/' 1 ( 3.). 3. #- (... P n

63 63!* (! - #* " ): f ( s) = B( s) + KA( s) = (.37) $$%! (.37), ) " ) *, #"/ '.!*.!!!) /1 n P, 1 n # n. #) "#*!. )!'! K,! (.37)!./' #!,.!) (*, (,.! [94],!*'!#!**!*/ * (!* + )!''.. P. &!' '! ")( )!./'!)/1 : 1. )!* "-.( P, #-/1'.% #!,.. &!' -) ) )!* "(' *. K, /1' *..).$.%,. 3. &!' -).( )!*! ),..).$ #) )*' #!,. 4. &!'.( )!* (' )! ),! (.37)!./' ") #!,. &!'!"%.!*"' $" '..).$ [94] )!.! )..).$ " $$% )!' '. ).. " [11], ( )!'.( "% -)!*!*.! )!- * 18. [11] -!, (,.( ) #!!,. *' ). #!. ; #! ")!'/' #!(, )'1

64 " (! ) ).!: 64 π l ϕ =,.) l =,1,,..., z = 1,,3,..., n. " z!(!) #*,!-,.(..!!*!#!*. &!!) #* "!*.! -)!(,.! [11], )!' a a * / )..! Θ!-. 3 #) #* #%,!-1.! 18, #", )!* ).(. &!'!"%. '! ")(!*"' "..).$ )(- ; (,;) [11]:.) E( δ, ω ) = Re( B( s)), F( δ, ω ) = I( B( s)), P( δ, ω ) = Re( A( s)), R( δ, ω ) = I( A( s)), F( δ, ω) P( δ, ω) E( δ, ω) R( δ, ω) =, (.38) δ ω 1 ( ', )!-1.,;. )!'' (.38) '.%,, )!'/' "(' ω, ) ( #.%,. &!' )!*. -)' "( ) #)!*"*' -: K = E( δ, ω) P( δ, ω) + F( δ, ω) R( δ, ω). P ( δ, ω) + R ( δ, ω) (.39) )!'' (3.5)!( )!* "(' ω,!( "(' ), ) ( #.% #!,. * ) "( ) " )! )!'! ),! (.37)!-,.

65 65 ( ) (' )! ), )!'/1 -) " "-.(. ' & ( #'% -)': )!) "# )!*-(. " -.!',!/(/1'!)/1 : 1. 3) # "! ( (!* ) (!* )!#!*!* ).. -) "-.. P, #-/1'.% #!. 3. )! )!' -) ).( -' (.39), ( (' ") #!, */..).$. 4. )! ) ) "( " )! (.37)! "( *. K,..).$ )'' ") #!. 5. -) (' ).3! K )!.! K,!!./' ") #! )!'.(. &!' (. ' "# ) )!-.!. #! "#!-. MATLAB, )/1 1 $$ )!' "!* + ; !-!- (.!', )!/ 3.3.

66 66.!': 3.3 (.!' *!.!' )(/ $%/ - W.) K, K.!', * + P K s + K = (.4) s * + ( s), )(' $%' #D!' ):.) A( s) = ( as ), = W ( n B( s) = b s, A( s) s =, (.41) B( s) ( ) b b b. j j j j j j=.)!* (! - #* " ): ( K K s) A( s) s B( s). + + = (.4) + * #) )!* -.!', #(/1!- #!!*. (.! "), ( 3.)!/# "('!* #D!'. )!*! (.4) ) k c s =, (.43) =.) $$% c k. '!'*' $%'!* #D!'.!'.!* $$% c #"/ (..,. )!'/' "('.

67 67 "..).$ ", (! *!- 1,.! )..).$ ". '!'/! 18. (), ( )!'., (# 1 *!*.! ).!'! "!/#!* $$%, #), (#.! ) $$%!'! 18. #!* $$%, #( ) #, )!''!)/1. -)': '1# 1.!!* $$%! ") ()/1' )! cc1 cc3, ('!*. )!' c, ) # $$% )!' 1!/,.! ).).$ ".!* $$%!'/ 18. "&%'+('. " $"..).$ ", (.! ) " '!( $!:.) n Θ = 18 Θ + Θ, g= 1 g c - (.44) Θ g Θ.! -) 1 */,! " ' g-!/!' $%. *! (.44) 1 * S*..) )!'!/#!-'- )!'!/#. 1. ',!-1! S*,..).$ - "!/(*,( Θ 1 + Θ = 36, Θ 3 = ( 3.4). P P P

68 68 3.4!-'!)!*,.! ) " ' S*!( $!: *, c - Θ = 18 + Θ (.45) Θ = Θ (.46) #",!!*! #) * ()/1' )! $$% cc1 cc3,.! ) " #" /1 # (... P #) 18. ). -)' - )!* ), (!*' * (!* - #* ")!* ', )'1 (" 1 *, /1 ()/1' )! $$%!*.!. *!*' * ( ")' s* = α *. ) $%/ #! (.43), ")' ()/1' "(' b "( s* = α *. " )! K + (" K *,.!( -: v ( α ) K = f K, *, b, (.47) + * j

69 69.) v b j.( "(' $$%! B(s), #(/1 () )! c. &!' )!*. " -.!'!(!* (! ) * $$% v ( + ( * j ) * ) K K, α *, b + K s A( s) + s B( s) =. (.48) " [116], (,!(!* )! (.!,!*' * (!*'!#!** )!'/' #"..!* $$%, )!' '! ")( #) )!*. &!'. )!.'!*"*' ), "# [18].! -)' # ( #)..).$ )(-; [113] )!* )!' -) " "('..!' K *, ) (..).$ ") 3.3.% #!!!"%. )! )/ %), -!(* /1! "( K *,!*.!!- ") #!,. &!' -)'! "( K *, )!'/1.,!) (!. &!' (!*. )!' -.!' #) #* "( K * "!(.! )* "( - (.47))!' -)' "(' K +. )!) "# )!*-(. " -.!',!/(/1'!)/1 :

70 7 1. 3) # "! ( (!* ) (!* )!#!*!* ).. 3) (! s = α * )!!* #D!', /1 ) cc1 cc3. 3.!( " (.47) ) (.! )' * -.!'! ) * K *. 4. -) "-.. P, #-/1'.% #!,. 5. )! )!' -) ).( -' (.39) ( (' ") #!, */..).$. 6. )! ) ) "( " )! (.4)! "( *. K,..).$ )'' ") #!. 7. )! (' )! K *,!!./' ") #!, )!'.(. 8. # "(' K * " #! ('! )! "(' K + -' (.47). &!' (. ' "# ) )!-.!. - #! "#!-. MATLAB )!' "!* + ; -.

71 !-!"-, #$ % (.!', )!/ 3.5..!': 3.5 (.!' *!.!' )(/ $%/ &-.) K*, K+, K,.!', W P K* s + K+ + K, s ( s) =, (.49) s )(' $%' #D!' ): W ( A( s) ( s) =, (.5) B( s).) A( s) = a s, = n B( s) = b s, b b b. j j j j j j=.)!* (! - #* " ): ( + *, ) K + K s + K s A ( s ) + s B ( s ) =. (.51) &!' )- )( ). % "('!* $$% #D!' #) &-.!', # #(!!- #!!)/1 #": 1 )!-!.*' -) F 1 F,!* )!-!.*' #! ABCD,.(!* ',

72 7 )'1 (" F 3.! G, "/1!*/!#!** ( 3.6). #" #(' )!- 1, ) % #) )(!/# "('!* #D!' ") )!, "('!#!* #) *!* "). "(' !' #!*!-' ". )(*/ ). % )!*! (.51) ) k c s =, (.5) =.) $$% c k. '!'*' $%'!* #D!'.!'.!* $$% c #"/ (..,. )!'/' "('. &!'!!"% 1. ' ")! )! -)/ 1 )"!)/1 -):

73 73 '1#.!!* $$%! ") ()/1' )! 1 3, ('!*. )!' c, ) # $$% )!' 1 *,.! ).).$ ".!* $$%!'/. "&%'+('. " $"..).$ ", (.! ) " '!( $!:.) n g= 1, c - Θ = 18 Θ + Θ (.53) Θ g Θ.! -) 1 */,! " ' g-!/!' $%. *! (3.8)! 1 * s**..) )!'!/#!-'- )!'!/#. 1. ',!-1 s**,..).$ - "!/(*,( Θ 1 + Θ = 36, Θ 3 = ( 3.7). P P P g 3.7!-'!)!*,.! ) " ' s**!( c - $!: Θ = 18 + Θ (.54),

74 74 * Θ = Θ (.55) #",!!*! #) * ()/1' )! $$% 1 3,.! ) " #" /1 # (... P #). ). -)' - )!* ), (!*' * (!* - #* ")!* ', )'1 (" 1 *, /1 ()/1' )! $$%!*.!..! -)' 1, ) $%/ '!* */ (, ")/ s* = α1!* */ (, ")/ s** = α! (.5). *!*' * ( ")' s* = α1,!*' s** = α. ) $%/ # '! (.5), ")' ()/1' "(' s* = α1 s** α. =,!( : ( * +, α 1 3 ) ( * +, α 1 3 ) f K, K, K, *, c, c, c, c, = ; f K, K, K, **,,,,, =. c "(' (.56) (.56)!* K +, ' # ',!(: ( *, α 1 3 ) = ( *, α 1 3 ) f K, K, *, c, c, c, c, f K, K, **,,,,,. (.57) " K * " (.57),!( *, ( α α ) K = f K, *, **,,,,,, c, c, c, c,. (.58)

75 !(: 75 ) - (.58) ) " (.56), +, ( α α ) K = f K, *, **,,,,,, c, c, c, c,. (.59) &!' )!*. " &-.!' )!( ' (.58) (.59) (.5)!(!* (! ) * $$% ( + (, α α ) * (, α α ), ) K K, *, **, c + K K, *, **, c s+k s A( s) + s B( s) =. (.6) (.6)!)!(*..).$ )(-;,. )!' -) " (,!( ) [18] ), )!* )!' -) " "('..!' K,, ) (..).$ ").% #!!!"%,. )! )/ %) )!' -) (, -!(* /1! "( K,,!*.!!- ") #!,.!) (*, ( ) 1 * #'"!* #) )*'! α 1 ) α. &!' -)'! "( K,, )!'/1.,!) (!. &!' (!*. )!' &-.!' #) #* "( K, "!(.! )* "( -' (.58) (.59) )!' )!*. -)' K * K +. )!) "# )!*-(. " &-.!',!/(/1'!)/1 : 1. 3) # "! ( ( α 1, α, α 3, G).

76 76. 3) (! s* = α1 )!!* #D!', /1 ) cc1 cc ) (! s** = α )!!* #D!', /1 ) !( (.56) ) (.! ' * &-.!'! ) * K,. 5. -) "-.. P, #-/1'.% #!,. 6. )! )!' -) ).( -' (.39) ( (' ") #!, */..).$. 7. )! ) ) "( " )! (.51)! "( *. K,..).$ )'' ") #!. 8. )! (' )! K,,!!./' ") #!, )!'.(. 9. # "(' K, " #! ('! )! "(' K * K + - (.58), (.59). &!' (. ' "# ) )!-.!. - #! "#!-. MATLAB.

77 % " (.!'. "!' ( #) (*!*!/ "!*,!. "!-! " ( ). %. &!' %!'' #! ) ') (, * "!/(!*!)/1: #' )(' $%' "!' *!-'-!/, $!'!/,!- (!* */ (!*!#!*. &! ' *, #% ) /!-/ *!-'-!/, "(/!!(.!' ). %., )!' )( $% "!* ) P( s) ( s a1 )( s a )( s a3 ) ( s b )( s b )( s b ) = =, 1 3.) a 1 =, a = 5 6 j, a3 = j!* */ (, 3,5 ) *!/!( *, "#-/ 3.8:

78 78 3.8,$".!' ). % &!' )!' #!!-'!/!*..! ). % (.!' )# *! '.!' ( 3.9), "/1 "('.!' * )!-'-!/. 3.9 '...!'

79 79 ) ( - )!* ), ( ) "!.!' (.!' " "('!/ #)!', #!-/1' (/ 1 ). )! (! ).! #) **'. #", )!' #(' "). ( ). % #) (* -!-! " (.!'. &!'. )!.'! " (.!' " ( " (.!',! #), "' #!* ) "(.!'. &!'!"% %) "#!)/1' ): 1. # *!-'- )/1!/ P 1, P.. C%' '!/ ( #!*!#!**/!* */ (. 3. C%'! (,!-1 - #!- (! ). 4., #% ) /!-/ *!-'-!/, "(/!!(.!' ). %. 5., ( "(' *!/ "! "(.!'. 6. "). "('.!'!) "*.% #!, " " +.!) *, ( "# - ) MatLab.!" - %)

80 8 #!, (!. 1 #'!* #* -/ #!*, )!' ")..!' ( ".!' ).!' *-'. /, 1 '/, 31., ', 1 /. * ") (! ): K + a p + a p + a p =, ) a 1 = [ 1,13], a = [ 15;8], 3 [,95;1,5 ] a =. #)! K, #!!!"% ").! )'' #! φ = 1 η =. *!, φ = 1,,!)' [15], #) *!* ) ).!" ). )! "-.( P : a1 aa 3, a1 aa 3, a1 aa 3, a1 aa 3, a1 aa 3, a1 aa 3. &!,!)' "#. 3.1 ), )! K = [ 8,43;35,9 ]. &!'!(. "!*!*" "/ #/ #!!!"%!*.! K = [ 8,43;35,9 ] ( 3.1). " ), ( #!!!" ") #!,.

81 81 3.1!"%'!* -.!'. - *+-'. ' /. * ") )(' $%' " )( # '"*/: W p ( p 1) K p T s + K = s a s + a s + a.) K, T.!', p p 1 K ' $$% )( #D!',,

82 a, a1, a!* #D!', a = [,7;,8], a 1 = [,3;,4], [ ;3] a =. 8 #) )!* -.!',./1 α * = 1 ϕ = 1. ) ( ) ): c s + c s + c s + c = (.61) 3 3 1,.) c3 = a, c = a1, c 1 = a + K K p T p, c = K K p. ) (.61) /1 cc1 cc3.( "(' $$% a,!( "*: T p 3 a s + a1 s + a s + K K = K K s p p, (.6) ): (.6), ( ) 3 aα * + a 3 1α * + aα * + KK p as + a1s + as + KK p s + KK p =. (.63) KK pα *! #" (.63),!(: 3 K a s + a1 s + a s ( a α * + a1 α * + a ) s + K p K s. α * = (.64) (.64) ' )(-; ) (.39). ) [11], )!'..!* $$%, ) #1! K p,!!./' #!,: =,4733;5,16. # "( p K p K " ).!: K = 5,16 -' (.6)!( "(.. T =,4458. p #!!!"%!*. (.! ) -.!' )! p

83 !"%'!* -.!' 3. - *+,-'. ' ' 4. * ") )(' $%' " )( # '"*/: W p K p s + T + Td s K 3 s a3 s + a s + a1 s + a =.) K, T, T &.!', p d K = 1 ' $$% )( #D!', a3, a, a1, a!* #D!', a 3 = [,;,13], a = [,3;,34], a 1 = [,1;, ], [ 1;4 ] a =. #) )!* &-.!',./1 )( ) % )/1 1, )'1'! α 1 = 4 ) α = 6!*,

84 ',!-1 #!,.(!* */ ( α 3 = 14!*!#!**/ ϕ = 3. ) ( ) ): 84 c s + c s + c s + c s + c = (.65) ,.) c4 = a3, c3 = a, c 1 = a 1 + T d, c 1 = a + K p, c = T. ) (.65) /1 cc1 c3c3.( "(' $$% a, s = α1 = 4,!( "*: T = 16, K 16 T. (.66) p d ) (.66) /1 1 3.( "(' $$% a, s = α = 6,!( "*: T = 5, K 36 T. (.67) p d ' ' (.66) (.67), " K p T d : K p = 5, T. (.68) d ) (.68) (.66), " T T d,!(: T = 39, T. (.69) )!( -' (.68) (.69) (.66),!(!* (!, "!* T d, )/1 1 * - #).* ") " 4 ) 6: ( ) ( ) 4 T + 39, T + 5,797 + a s + d + T + a s + a s + a s + a s =. d d d (.7) (.7) ' )(-; ) (.39). "# ), )!' ))%..!* $$%, ) #1!!!./' #!,: [ 1,9;1,166 ] T =. d T d,

85 85 &!' (!*. )!' &-.!' '..).$ #.( (1,9; 1,166) ) ) (1,918) "(' " ).! T d. &! - (.58) (.59)!( "(' K p T. "!* ( ) #!% 3.1. #!% 3.1 ( $$% &-.!' B / T d K p T 1 1,9 15, ,391 1,918 16, , ,166 17,336 67,345 #!!!"%!*. (.! ) &-.!' )! 3.1, ,. 3.1!"%'!* &-.!'

86 !"%'!* &-.!' 3.14!"%'!* &-.!'

87 87 )! ) ( 3.15).$ ) % " )( ) ") -) ".( )!' T d = 1,9, K p = 15,9586, T = 64, ) %.( ). " - -)*, ( ) % " (.!' ' )( ),!/!* /'!- -! #!!/# "('!*.

88 88! 4. #) %* ) ' # % ( #'% #'+#. ( (' 4.1. MATLAB ( ), -,!)!', ) (.!' ( )'!'* (!, ")* ## "!*!*!), (* -,!'* (. 1/ %!", "!'/1!'* (! )! %. - ' (/' ")(,!)/1' )%,!# #/1!('!-!* )!,!# # '" "# #! $$ )!.!( #! $$ "'!*" #1 ( "!'/1 (!!#!( * )% ( ")(..),!)' ) #!*/ ' )(/ (/ )., - * *!) ")( '"(! ( ). #!* '1 '!(! #1( MathCad MatLab, "!'/1!'* (!,!( %. MathCad # ',. )%.., (!' ")'' ' - $! )' '/' $! %!* $, ( "!' * #( ). # ) ' -.(, ")' #!* (*/ (. &!' # MathCad!*"!' #/'!* "',.', (! ).

89 89 MatLab, )(.# ) '".', "!'/1 *. )% ), '' #( $!. # ##! ) ). $%, 1 1/. / "*!.. &!' $$ # MatLab, "'!..', (! ),!*"!* -!'* # ) '. '" " MatLab #!.), )!' '!..' "(' (! ), )!'!"%!) ")(..!. A #!* * $$ #" $%, -!( %!" ##! MatLab. "') #! )!'!)!* %!. MatLab (Matrx Laboratory) '!'' )!'!' - ( (, # ). MatLab "# $ MathWork Inc. (A+,.., (). )- / (/!/ $, ))-! %, % ), #!.#(!,! ")( "%,. ), )$$%!* ", "!( ).$,!.!( '".' )#' %' ) ". # ) ( $%, "!'/1' $!* #!!(* ', )# $ #.' )!"%. ). '".! ( "'..' "!'

90 9!"*!/#!. ) '". '.., )' )!/( %) $% '" C. 7" Matlab #( "-* # $! 1*/ )# $%..,!" ) )!.! )!'(' " $!. MatLab '!'' ( %) $% )!* )!'!*"', )!' % )$%. (,.',!*"!* ' "-., %) $%' ) ) $%'.!/(/ # %!" %$ ##.!,!" "! (.!',. )!' )(, ')!* " ". Maple V ).. &!'!" "!'!* Matlab 1!). Robust Control Toolbox, $!" ) "% H H 5 [6]. (', ( ), #! ", $$ )!'!" "!*, )!' "#. ) MATLAB %!".!)., #. *! ")(. " ) Robust Analyss and Syntheses of the Interval Systes (RASIS).

91 4.. & % '% RASIS 91!*! ): P( s) = a s + a s a, a a a, =, n, (.71) n n 1 n n 1.) n!*' *!*. (.!. MATLAB: 3)).% "'!* $$% a = a, a,..., a n n n n( n 1) n a = a, a,..., a ax ax n ax( n 1) ax,. (.7),% #) #"(* % -!#% (#"( < ), -! - #*!/! )% (!*!!* "(/, ). &!' -)'.(!*"'!)!*! # (# "(',! 1' '!''.( ).. #) n. #", (!.%: a, a,..., a, a n n n( n 1) n1 n.%: an n, an( n 1),..., an1, aax,, an n, an( n 1),..., aax1, a, n * an n, an( n 1),..., aax1, a ax. #",.% )( )!/ (#!% 4.1).

92 9 #!% 4.1 <.%. B,% '! #"(.% a, a,..., a, a n n n( n 1) n1 n a, a,..., a, a 1 n n n( n 1) n1 ax a, a,..., a, a n n n( n 1) ax1 n,,...,,,,...,,1,,...,1, a, a,..., a, a 3 n n n( n 1) ax1 ax,,...,1,1 a, a,..., a, a n ax n ax( n 1) ax1 ax 1,1,...,1, $ RASIS C%' defneallapexes (power) "1 %-, '1/ " )!'! ") power */!*. (.! ().!( "!*/1 %!(.!#% " 1,!!* $$%!* "(,!,!!*. C%' defnesectorapexes (power, beta) "1 %-, '1/ " "-.( )!'! ") power */!*. (.! () )!'!#!* beta. +!.(' $% ) 4.1.

93 5 $ A ( 5("#$%& $' (("$) $(* + +('-./!"#$%%& $' (("$) $(* (("+(,-./ /!( % +( '(( #B5$(( ( ( 5(C/$(('( 5(" +&+ $ $ ( 5('( $=> ;<=>CD $5 $ ( 5( %& ((% ( ) $''$( ';<=> &++ ()$( %+ (($C A! '( "((% (%# (5(%(% ( % '89:C?$5 ("$5 ( "((%& (%&# (5(%& (C $) % ( # (5(%( 5('( $(%& EFF(+$($' ("# (5("(%CG$ ( 5( (E ( 55-./+"+( $ ('( $(( 5( ( $(#EFF( CG$ ( 5( (H $(C +$( $(%"#$!(' % +) ' ( '+$ $(# ( 1( 3 4%$ $ ) $( ( ' # (5( '( ( "((" +$ $(, # (6 ( 7) ( "((, (, # (5(,( 89: /$$!( % ( ;<=>6 (?( 4.1 +!.(' $% defnesectorapexes

94 94!( "!*/1 %!( "-.(. C%' defneinterlacedapexes (power, frsteleent) "1 %- ()/1'! )%, (' FrstEleent. &! %- power. C%' defnetruncatedsectorapexes (power, beta, alpha) "1 %, '1/ " "-.( )!'! ") power */,!#!**/ beta */ ( alpha. C%' stintruncatedsector (Tn, Tax, apexes, beta, alpha) ',!, " apexes,!- (,.(!#!**/ beta */ ( alpha. "!* "1' 1,!!- ") #!!(. Tn Tax %-, "/'!*!* "('!* $$%, ('!*. :!- $% stintruncatedsector )! 4..

95 5 $ A % ( 5('( $(%& $(%&( 5(" ( $(%&EFF($' "+(-./ /$5( 5('( $ EFF(-./13 %+'%&( 13$) $( 13 +("5 13C!?(+$( %5$',' (("F("+ KLJMLN!! /$5+$( ( 5(' EFF( ((%& ( ( (( 5(" ((%& D%5$(+$( ( I $ (+$( J ((5(( # (5((#$ ( 5(6!(" ' "#$%& (?( 4. :!- $% stintruncatedsector

96 4.4. & RASIS 96 C%' defnemaxalphamnbeta (Tn, Tax, apexes) "1!*/!#!**!*/ * ( "('!* $$%, " Tn Tax.!*'!#!**!*' * ( )!'/', " apexes. ) %!*"' ' MATLAB $%' step. #/'!*!#!**/!* */ (. C%' edgetheorebuld (Tn, Tax, k, r) k-.$ #.. P r ( -) #. C%' fndcrosswthbandn (beta, alpha, T, TVar) ) ( ('..).$, "'/1.' *!'/1 TVar,.%, ") */ ( alpha!#!**/ beta. "' (* ")' T. &!'!"% ) $% '' )(- ;. C%' synthesbn (Tn, Tax, TVar, beta, alpha) )!*!* "(' $$% T k,.).$ ) ")/ #!*,.(/!*!#!**/ beta */ ( alpha. "- ' $%' "1 "( 1.

97 RASIS 1. *!!* )!*/ ) D( s) a s a s a s a = + + +,.) a [ ], a [ ], [ ] ,7;,9,45;,49 a1 1,1;1,5, a [,1;,7 ]. #) )!*, '!''! # (. "!*!' /1. RASIS!. )!' # ( (.!!* )!*/ #! )!, ( '!'' # (.. *!!* )!*/ ) D( s) a s a s a s a = + + +,.) a [ ], a [ ], a [ ], [ ] ;1 6;8 1 14;18 a 9,5;1,5. #) )!*!* #, #"*. /!* (!* % ( (!*/!#!**!*/ * (). # /1 ) ' RASIS ) (!* ). "!*!'.!( #-!!, )! 4.3 ()!'!* -)'!*. #. - " #- (.!!!) )!.. ').!!'. RASIS (!!!* "( (,,6557!* "(!#!*, 44,4345.).

98 #- (.!!* )!*/ )!' 4.1 *!!* )!*/ ) D( s) a s a s a s a = + + +,.) a [ ], a [ ], [ ] ,7;,1,3;,45 a1 1,1;1,5, a [ 1; ]. #) )!*!* #, *.).$.! ) (!* % ( (!*/!#!**!*/ * (). # /1 ) ' RASIS ) (!* ). "!*!'.!( #-!!, )! 4.4 ()!'!* -)'!*. #. -

99 " #- (.!!!) )!.. '): #- (.!!* )!*/!!'. RASIS (!!!* "( (,,4134!* "(!#!*, 7,834.).,( # " 1 #,.. 1 #!( #) '* # ).. ". ), ( 1 # "!,!.!)!** ) " "! ''. 3. 3) ) =, a s a s a K T

100 1.) a = [,1;,15 ], a 1 = [ 1;1,5 ], a = [ ],1;,, K T * $$%. #) )!*! K T, )'' (,.(.! ϕ = ± 45!* */ ( α =. 3 RASIS, # «)!!*! *. $$%, #(/1 / (*», ) #) ) ).! )' (!, )!)/1 : [,5;3,1 ] K =.!**!(. ',.(!*.).$.! # /1. RASIS,!( "!*, )! 4.5. T 4.5.(!*.).$! '.).$ )!)/1 (! "(':!*' * (:,5 : [,;1;1],!*'!#!**:,17 ) (1,.)) : [,1;1;41,4543]. " 4.5 ), (!./' -! #!!/#"('!* $$%.

101 11! 5. ((# &'+# ' "-1 ( (,+%# RASIS 5.1. "(-1!, #. ) -..! )"( )!'!(' )! $.,!*".. [8].,"" (,)!*.. &-1-13, ( 5.1) )"( )!' #. 1.!!#..!.( -)! )',!',!'%.'(. )#-'. )..!' ) 1 /( )!),3 º. 5.1!*.. &-1-13, %!*'!*... &-1-13, )! 5.,.) 1, - ##;

102 1 3, 4 '!* #..."); 5 (.'.); 6 $ ; 7, 8 #!! $. ; 9 ") ; 1, 11!! # "). (. ; 1! # ; 13, 14!! #!.#. ; 15 # #. (. ; 16 # ; 17.!; 18,.); 19 ).'; 1 ; #; 3!*'!'; 4 % ; 5 ); 6.!*; 7 )"!*!; 8 )!*!; 9 ; 3 ; 31 #) )( ).

103 13 5. %!*'!..!*.. &-1-13, ". 1 ()!.) -. ((.) ##, ) -) # ". '!* #!( 594., #"/ 3 4.")..,") ")! -) # (..) 5.")! ( $!).

104 14 )'' (* -. ## ' )-,!* (! /!*"'1, -,!/ )!'!. $ 118-/ #, #"/ : 6 )! $ ; 1! # ; 16 # (!.(!); 9 "). # )%. / - ) 51,5, ( ).'!(' ' %!'%'!. # % "!*% ## 1, - % ( -!!: $ 8,! # 13 (!.( ) ") ( 1.., $!! 8 ) ## (*' # 7,!- - #, -!!!. #. (. 13 (!.(,.) ) ## ) # 15,!- #. -!! 1 "). (. ) - ## # 11. ( $!! 8!- ).! 17. # '-!', ". (, $ ". (. ## " 1 "#-.!!. ##. ) "!* )!- * '.., ## )! )!.! (*! %),!''! 3, ( ) ), 1/.'! )/ ##.. ).' 19 )"( )!' -' *! (!.'! ((. )-.) )! (.) 18 (, )!' ) (

105 15."),..") 4 (.) (!). )(!* ) ")'! 3, #.!!'. ## 1!! % 4. # ")' ) 5. &!'!('..!*"/.!* 6,!/ #( " )! )' ') '!* #..")!. ##! : )"!* # 7, )!*! 8, 9, 3.! & ).")! " )!*!. #). '!*. ( #.") ")',!*" #)(.! ") )/'.! 17, #"' $!.'.! (.", " ( )%..!#, )' # ()% '.),.)! " (!)!!(.!# # )' ), %!/1. 3 (." 9 15 )' " (" (.) 18 )' ).' 19,.#/ (/.)! )'.") 3,.) )/! ( #.! 6 ( ).",.#' (./.) 5, )'.") 4 '!*. ( #! 5,!, )' "!!'/' )' ".!*' )! '.(' )% (" ) )'. ") ) #)!*! 3

106 16 )' ) #D. ## 1,.) '! ).! ' '* %!'%. 1- ( '!* #).!' ) ". ## 1 ' - ## '!* # 4. (,!-.") #! #! " (.". #"/1'' )'' * () )' ## '!* # 3,!-.") #! #! (.". - ( $ )!' ) ". ## 1 ( # 7 ))' $!! 8, )!'', #"/1'' # 6,!, )' ##. 3- ( ") )!' ) " -. ## # 11 ))' -!! 1, )!'', #"/1'' # 9,!-, )' ##. 4- (! # ( )!' ) ". ## 1 # 15 ()' #! -) ))' -!! 13!. #. ;!! 13 - ))' ) " -. ##, # 14,! (. ) )!''!!, #"/1'' # 1!. #.,!-, )' ##. 5- ( # 16) 1!''!.(!# (. ) )'' * () " %!'% )' ##,.) % 4 )!'', ) '! ) % %!'% ''.! %!(

107 17 1 ) #!/ ) 5!!''.!* 6 )!'!('... ' ) ")' ". ##!* () ).!'!. )(' ) ")' " ' (!: ( -!! -. ##. - ## ) )(!! ),!*"' )!'. ) )! '!.! #- )' )!*! 8 /1 : 9, 3, )"!*! 7. ")!! #)(, #, (.") " )!*!. ) - "'*' )", )! ))-/'!* " )! )!, ( #!!' #' "). - # #!. #!'!. ).!" % ") #D!' - $!*!)/1 ")( "%: #) #(* #!"%/ )!' ) "!.. " ( "' )!; #) #(* #!"%/ ' ) ##!.. " ) /1 ); #) #(*.! )! ") %!*/!. -.'!; #) #(*!.(!* )!, /1 ),, )!' #!'. ;

108 18 #) #(*!.(/.!"%/!*. )!' ## +,!*!* * ) ##. +('.!' ' )"( )!' ))-'!*. ' -) )!* )!."!. "!. '!- * ) ##! [8]. * ## "'' "-"!('! *' )!!' )!, "'!." )!' ##. ' " ) )! (!) - "!'.!' #!. "!, ( - '*' ( -)' #. - ' " - )! ( ) " ##) ) / %!'% ( -. #. ; #D''', ( )-.!' ' )D'!'/' #' [8]. #", " # (.!' '.( "1 -' ' ##!, ), '.!, ).. ; )! )!'/ #"* #!, " / %/. +('.!' ' ##.! )!- #(* )- ' ) )!: 1) " "1."!* )!' / )!- * ± ; ) (#" "1." 1%!* )!' / )!- * ±5 ; 3)!* % - #! (!!/(.!' )!- * [8].

109 19 * ##! "/!'. "1. " : " )!* ), "." #!', " )!, "!* ). "1 ) '!'' ' - «#» ',.. ". (!*, /1/ " "1/1. ") '. 7! «#'» - #D'*!)/1 #": " ),!(, )!! *', ) )!!* ),!( '. )!* * ( )* "-" ' )!* )..!' ' ) #(! #. )-' ' ) ##,!* (! "'!*,!*"! $ "('. '" #!! ")( (. " &-.!' "# ). / (/ )!* )!* (!' ) ##!.. - )* ), " 5.3,.)!!)/.( *!( '!, 1 T s + 1 " )(/ $%/ #), "!! ) '!, K T s + 1 " ), K T s " '! «#'» ' ) K T s + 1 )!' # )(/ $%/ )( ). &( ) (( '! «#'». ) #D!' '!'' * ) ##!..!* '!''! *.

110 11 K T s T s + 1 K T s K T s (' )!* (.!' ) ##!.. 3'!!.., - * (/ )!* (.!' ' ) ##!.. ( 5.4).,5 1s s ,4s 5 5s (' )!* (.!' ' ) ##!.. %' #D!' )( ") " 5.5.

111 %' #D!' )( ") 5..!"- "(-1 #" )( $% #D!' (##!.. #)),!( )(/ $%/ ): 89s + 1. s s s , ,4 : &, ( #D /!*, T '' ##!.. (-!(*' 1% "-" '!'. ##!..); K, T * «#'» '' «#'» (- "'*' %); T '' #) (-!(*' 5%).!)!*,!*' (.!' ) ##!.. ), " 5.6,.) a 3 = [ 157;3975,78], a = [ 791,8;11816,64 ], 1 [ 188,4;19,8] a =.

112 11 &H.!' )I 1 693,6 s a s + a s + a s *I ) 5.6 '!* (.!' ) ##!..!*"' RASIS )!' " &-.!' )!' ")!* +!)/1. : ) % )!- * )( );!*'!#!** )!-#* - 45 ;!*' * ()!-#* -,1. "!* " &-.!' #!!(!)/1 : K =,175, T =,1, T = 5,87; (.73) * +, K =,177, T =,1, T = 6,61; (.74) * +, K =,178, T =,1, T = 7,34. (.75) * +, 5.3. ) "(-1.(.).$,.! #, )!' +!( )!' " $$%.!' (.73) (.75) )! (5.7), (5.8), (5.9) (5.1).

113 (.).$ )!'.!' &-.!' (.73) 5.8.(.).$ )!'.!' &-.!' (.73)

114 (.).$ )!'.!' &-.!' (.75) 5.1.(.).$)!'.!' &-.!' (.75)!*'!#!** )!' -) "!*!' 45,!*' * (,1.

115 115 &!' "!( #!(.!' 5.11, 5.1 " %' )( ").( ( ) %.!' (.73)

116 ) %.!' (.75) "!* (. " &-.!'!* +!.. &-1!(, #!!!"%!*. (.!!- -! #!, ) % )( )!/#"('!*.

117 117 5 )!' )%' # "!*!),! "# )!" "!* $$ )!'./!"%/. "# ) #!*"/' # )..).$, $" ',!. # "% )(-;. "!* )% # '!'/': 1. "# ) $' #! )!'!" (!* )!*/.. "# ) $'.( (... )!'!".!* (!* )!*/. 3. "# ) $'.(. #.!*. (.! )!' )!' #!!!"% $$ )!*/. 4. "# )!*-(. "! - -.!'.!* */ (!*!#!**/ )!' (.!'!* )!*/. 5. "# )!*-(. " &-.!',./1. )( ) %!* ).!-' (. '. 6. "# ) % -! #!!!"%!/!* #!!-'! ( -! ' "! ( +.

118 "# %!"!). RASIS ) MatLab )!'!" " (.!'!* $$ )!'. "!* )% # "!.!', ( )-)' /1 ).

119 Ackerann, J. Paraeter space desgn of robust control systes / J. Ackerann // IEEE Trans. On Auto. Control Vol. 5. N 6. P Ackerann, J. Robust control: systes wth uncertan physcal paraeters / J. Ackerann London: Sprnger-Verlag, 1993, 46 p. 3. An, S. Robust stablty of polynoals wth nonlnear dependent coeffcent perturbatons / S. An, W. Lu // Proceedngs of the 4th IEEE Conference on Decson and Control Orlando Florda USA, 1 P Arzeler, D. Robust D-stablzaton of a polytope of atrces / D. Arzeler, D. Henron, D. Peaucelle // Internatonal Journal of Control,, Vol. 75, N 1, P Barlett, A.C. Root locaton of an entre polytope of polynoals: t suffces to check the edges / A.C. Barlett, C.V. Hollot, H. Ln // Math. Contr., Sgnals. Syst., 1987, Vol. 1, B1. P Barsh, B.R. The robust root locus / B.R. Barsh, R. Tepo // Autoatca, 199. Vol. 6, B. P Barsh, B.R. A generalzaton of Khartonov s four polynoal concept for robust stablty probles wth lnearly dependent coeffcents perturbatons / B.R. Barsh // IEEE Trans. Autoat. Control Vol. 34. B, P Bhattacharyya, S.P. Robust control: the paraetrc approach / S.P. Bhattacharyya, H. Chapellat, L.H. Keel Prentce Hall, Chang Y. H. Robust gaa stablty of hghly perturbed systes / Y.H. Chang, G.L. Wse // IEEE Proc. Control Theory Appl. N, P Chu E.K. Pole assgnent for second-order systes / E.K. Chu // Mechancal systes and sgnal processng,, N 1, P

120 1 11. Foo, Y.K. Root clusterng of nterval polynoals n the left sector / Y.K. Foo, Y.C. Soh // Syst. Control Letters Vol. 13, P Henron, D. An LMI condton for robust stablty of polynoal atrx polytopes / D. Henron, D. Arzeler, D. Peaucelle, M. Sebek // IFAC Autoatca, 1, Vol. 37, P Henron, D. D-Stablty of Polynoal Matrces / D. Henron, O. Bacheler, M. Sebek // Internatonal Journal of Control, 1, Vol. 74, N. 8, P Henron, D. Ellpsodal approxaton of the stablty doan of a polynoal / D. Henron, D. Peaucelle, D. Arzeler, M. Sebek // IEEE Transactons on Autoatc Control, 3, Vol. 48, N 1, P Henron, D. Postve polynoals and robust stablzaton wth fxed-order controllers / D. Henron, M. Sebek, V. Kucera // IEEE Transactons on Autoatc Control, 3 Vol. 48, No. 7, P Henron, D. Robust pole placeent for second-order systes: An LMI approach / D. Henron, M. Sebek, V. Kucera // Kybernetka, 5, Vol. 41,N 1, P Kawaura, T. Robust stablty analyss of characterstc polynoals whose coeffcents are polynoals of nterval paraeters / T. Kawaura, M. Sha // Journal of Matheatcal Syste, Estaton and Control, B 4, P Keel, L.H. Robust stablty and perforance wth fxed-order controllers / L.H. Keel, S.P. Bhattacharyya // Autoatca 1999 N 35, P Keel, L.H. Robust, fragle or optal? / L.H. Keel, S.P. Bhattacharyya // IEEE transactons on autoatc control, Vol. 4, N. 8, 1997, P Maar, N. Pole placeent n a unon of regons wth prespecfed subregon allocaton / N. Maar, O. Bacheler, D. Mehd // Matheatcs and Coputers n Sulaton, 6, N 7 P

121 11 1. Markus, A. H. The Khartonov theore and ts applcatons n sybolc atheatcal coputaton / A.H. Markus, E. Kaltofen // Journal sybolc coputaton, 1997 P Melnkov, U.S. Stablzaton of undersea object stuaton, connected wth shp by the rope / U.S. Melnkov, S.A. Gavoronsky, S.V. Novokshonov // KORUS 99 III Russan-Korean nternatonal Syposu. Novosbrsk, Russa, P Nesenchuk, A.A. Root locus felds technue n the uncertan control systes synthess / A.A. Nesenchuk // Proceedngs of the 5th World Multconference on Systes, Cybernetcs and Inforatcs. Orlando, FL, USA. 1. P Pare, T. Algorth for reduced order robust H control desgn / T. Pare, J. How. // Proceedngs of the 38-th conference on decson and control, Arzona, 1999 P Rao, P. Robust tunng of power syste stablzers usng QFT / P. Rao, I. Sen // IEEE transactons on control systes technology, 1999, Vol. 7, N. 4. P Rsky, G.V. Root locus ethods for robust control systes ualty and stablty nvestgatons / G.V. Rsky, A.A. Nesenchuk // Proceedngs IFAC 13th Trennal World Congress. San Francsco, USA, P Senel, W. Desgn and analyss of robust control systes n PARADISE / W. Senel, J. Ackerann, T. Bunte // Proc. IFAC Syposu on Robust Control Desgn, Budapest, Hungary, Senel, W. Robust control goes PARADISE. / W. Senel, J. Ackerann, D. Kaesbauer, T. Bünte // In Proc. EURACO Workshop on Control of Nonlnear Syste: Theory and Applcatons, Algarve, Portugal, P Soh, C.B. On the stablty propertes of polynoals wth perturbed coeffcents / C.B. Soh, C.S. Berger, K.P. Dabke // IEEE Trans. On Auto. Control Vol 3. B 1. P

122 1 3. Soh, Y.C. Generalzed edge theore / Y.C. Soh, Y.K. Foo // Systes & Control Letters, 1989, Vol. 1, N 3, P Soh, Y.C. A note on the edge theore / Y.C. Soh, Y.K. Foo // Systes & Control Letters 199, Vol. 15, N 1, P Soh, Y.C. Generalzaton of strong Khartonov theores to the left sector / Y.C. Soh, Y.K. Foo // IEEE Trans. On Autoatc Control, 199, Vol. 35. P Solyo, S. A synthess ethod for robust PID controllers for a class of uncertan systes / S. Solyo, A. Ingundarson // Asan Journal of Control, Vol. 4, N 4, P Soyleez, M.T. Fast calculaton of stablzng PID controllers / M.T. Soyleez, N. Munro, H. Bak // Autoatca 39, 3, P Taga, T. Desgn of robust pole assgnent based on Pareto-optal solutons / T. Taga, K. Ikeda // Asan Journal of Control, 3, Vol. 5, N, P Tan, N. Coputaton of stablzng PI and PID controllers usng the stablty boundary locus / N. Tan, I. Kaya, C. Yeroglu, P. Derek // Energy Converson and Manageent, 6, N 47 P The basc defntons: the stea boler. Retreved 7, fro the Web ste of the Boler Wkpeda, the free encyclopeda: Varga, A.A. nuercally relable approach to robust pole assgnent for descrptor systes / A.A. Varga // Future Generaton Coputer Systes, 3, N 19, P Vceno, A. Robustness of pole locaton n perturbed systes / A. Vceno // Autoatca, 1989, Vol. 5. N 3. P Wang L. Robust strong stablzablty of nterval plants: t suffces to check two vertces. / L. Wang // Syste and control letters, 1995, Vol. 6. P

123 Wang, L. Khartonov-lke theores for robust perforance of nterval systes / L. Wang // Journal of Matheatcal Analyss and Applcatons, 3,Vol. 79, N, P Wang, L. Robust stablty of a class of polynoal fales under nonlnearly correlated perturbatons / L. Wang // Systes and Control Letters, Vol. 3, N 1, 1997, P Wang, Y. PID and PID-lke controller desgn by pole assgnent wthn D- stable regons / Y. Wang, M. Schnkel, K.J. Hunt // Asan Journal of Control, Vol 4, N 4, P Wang, Y. The calculaton of stablty radus wth D stablty regon and nonlnear coeffcents / Y. Wang, K.J. Hunt // Proceedngs of 3rd IFAC Syposu on Robust Control Desgn, Czech Republc,, P Wang, Z. Deternatve vertces of nterval faly wth J-stablty / Z. Wang, L. Wang, W. Yu // Journal of Matheatcal Analyss and Applcatons Vol.66, N,, P Wang, Z. Iproved results on robust stablty of ultvarable nterval control systes / Z. Wang, L. Wang, W. Yu // Proceedngs of Aercan Control Conference, Denver, Colorado, USA, 1, P Xao, Y. Edge test for doan stablty of polytopes of two-densonal (- D) polynoals / Y. Xao // Proceedngs of the 39th IEEE Conference on Decson and Control,, P Zadeh, L.A. Lnear syste theory / L.A. Zadeh, C.A. Desoer McGraw- Hll, Zayatn, S.V. The robust sector stablty analyss of an nterval polynoal / S.V. Zayatn, S.A. Gayvoronsky // 1st Internatonal Syposu on Systes and Control n Aerospace and Astronautcs, Harbn, Chna, 5, P Zhabko, A.P. Necessary and suffcent condtons for the stablty of a lnear faly of polynoals. / A.P. Zhabko, V.L. Khartonov // Autoaton and Reote Control, 1994, Vol. 55, B1, P

9 /393 / Downloaded from energy.kashanu.ac.r at 5:3 0330 on Saturday October 0th 08 * hajakbar@grad.kashanu.ac.r mohammad@kashanu.ac.r. (shunt-apf) :... PSIM. : * 3... Downloaded from energy.kashanu.ac.r

Διαβάστε περισσότερα

5 Haar, R. Haar,. Antonads 994, Dogaru & Carn Kerkyacharan & Pcard 996. : Haar. Haar, y r x f rt xβ r + ε r x β r + mr k β r k ψ kx + ε r x, r,.. x [,

5 Haar, R. Haar,. Antonads 994, Dogaru & Carn Kerkyacharan & Pcard 996. : Haar. Haar, y r x f rt xβ r + ε r x β r + mr k β r k ψ kx + ε r x, r,.. x [, 4 Chnese Journal of Appled Probablty and Statstcs Vol.6 No. Apr. Haar,, 6,, 34 E-,,, 34 Haar.., D-, A- Q-,. :, Haar,. : O.6..,..,.. Herzberg & Traves 994, Oyet & Wens, Oyet Tan & Herzberg 6, 7. Haar Haar.,

Διαβάστε περισσότερα

Power allocation under per-antenna power constraints in multiuser MIMO systems

Power allocation under per-antenna power constraints in multiuser MIMO systems 33 0 Vol.33 No. 0 0 0 Journal on Councatons October 0 do:0.3969/.ssn.000-436x.0.0.009 IO 009 IO IO N94 A 000-436X(0)0-007-06 Power allocaton under er-antenna ower constrants n ultuser IO systes HAN Sheng-qan,

Διαβάστε περισσότερα

Research on fault detection for Markovian jump systems with time-varying delays and randomly occurring nonlinearities

Research on fault detection for Markovian jump systems with time-varying delays and randomly occurring nonlinearities 33 9 2016 9 DOI: 10.7641/CTA.2016.60012 Control Theory & Applcatons Vol. 33 No. 9 Sep. 2016 1 1 2 (1. 163318; 2. 163318) (RONs)... H. Lyapunov H.. ; ; ; TP273 A Research on fault detecton for Markovan

Διαβάστε περισσότερα

... 5 A.. RS-232C ( ) RS-232C ( ) RS-232C-LK & RS-232C-MK RS-232C-JK & RS-232C-KK

... 5 A.. RS-232C ( ) RS-232C ( ) RS-232C-LK & RS-232C-MK RS-232C-JK & RS-232C-KK RS-3C WIWM050 014.1.9 P1 :8... 1... 014.0.1 1 A... 014.0. 1... RS-3C()...01.08.03 A.. RS-3C()...01.08.03 3... RS-3C()... 003.11.5 4... RS-3C ()... 00.10.01 5... RS-3C().008.07.16 5 A.. RS-3C().0 1.08.

Διαβάστε περισσότερα

Feasible Regions Defined by Stability Constraints Based on the Argument Principle

Feasible Regions Defined by Stability Constraints Based on the Argument Principle Feasible Regions Defined by Stability Constraints Based on the Argument Principle Ken KOUNO Masahide ABE Masayuki KAWAMATA Department of Electronic Engineering, Graduate School of Engineering, Tohoku University

Διαβάστε περισσότερα

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων.

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων. Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 2015 ιδάσκων : Α. Μουχτάρης εύτερη Σειρά Ασκήσεων Λύσεις Ασκηση 1. 1. Consder the gven expresson for R 1/2 : R 1/2

Διαβάστε περισσότερα

Noriyasu MASUMOTO, Waseda University, Okubo, Shinjuku, Tokyo , Japan Hiroshi YAMAKAWA, Waseda University

Noriyasu MASUMOTO, Waseda University, Okubo, Shinjuku, Tokyo , Japan Hiroshi YAMAKAWA, Waseda University A Study on Predctve Control Usng a Short-Term Predcton Method Based on Chaos Theory (Predctve Control of Nonlnear Systems Usng Plural Predcted Dsturbance Values) Noryasu MASUMOTO, Waseda Unversty, 3-4-1

Διαβάστε περισσότερα

! "#$#% & '( K, X3/H }" I q +W R%2. >2" *+ + 1 LN6 H+ +ˆ,

! #$#% & '(   K, X3/H } I q +W R%2. >2 *+ + 1 LN6 H+ +ˆ, K+3 }K3" K+5 K, X3/H }" G +9), ;3 K, D 3 A +9),- ;3-SK, E E! +/ >HO A+< \ -S;? P A" ( 6M [ X& 5 +; \ ; D7 ] +; I$ X & >?# ; U (6 3 I q +W R% RBH % a >M 5 د! "#$#% & '( a.khan9@ms.tabrzu.a.r >" *+ + LN6

Διαβάστε περισσότερα

Evaluation of Expressing Uncertain Causalities as Conditional Causal Possibilities

Evaluation of Expressing Uncertain Causalities as Conditional Causal Possibilities Evaluaton of Expressng Uncertan Causaltes as Condtonal Causal ossbltes Koch Yamada Department of lannng & Management Scence, agaoa Unversty of Technology eng & Regga (v u u u v v u (v u ) 0 u v V [1] [1]

Διαβάστε περισσότερα

Parts Manual. Trio Mobile Surgery Platform. Model 1033

Parts Manual. Trio Mobile Surgery Platform. Model 1033 Trio Mobile Surgery Platform Model 1033 Parts Manual For parts or technical assistance: Pour pièces de service ou assistance technique : Für Teile oder technische Unterstützung Anruf: Voor delen of technische

Διαβάστε περισσότερα

ME 365: SYSTEMS, MEASUREMENTS, AND CONTROL (SMAC) I

ME 365: SYSTEMS, MEASUREMENTS, AND CONTROL (SMAC) I ME 365: SYSTEMS, MEASUREMENTS, AND CONTROL SMAC) I Dynamicresponseof 2 nd ordersystem Prof.SongZhangMEG088) Solutions to ODEs Forann@thorderLTIsystem a n yn) + a n 1 y n 1) ++ a 1 "y + a 0 y = b m u m)

Διαβάστε περισσότερα

Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design

Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design Supplemental Material for Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design By H. A. Murdoch and C.A. Schuh Miedema model RKM model ΔH mix ΔH seg ΔH

Διαβάστε περισσότερα

[1], [2] - (Danfoss, Rexroth, Char-Lynn. [3, 4, 5]), .. [6]. [7]

[1], [2] - (Danfoss, Rexroth, Char-Lynn. [3, 4, 5]), .. [6]. [7] OTROL. COISSION OF OTORIZATION AND ENERGETICS IN AGRICULTURE 0, Vol. 6, No. 5, 87 98 -,,, 008,.,., e-mal: mosgv@ukr.net. -,... -. :, -,. [],,.,,.., []. - (Danoss, Rexroth, Char-Lynn. [,, 5]),. -,.. [6]..,

Διαβάστε περισσότερα

HONDA. Έτος κατασκευής

HONDA. Έτος κατασκευής Accord + Coupe IV 2.0 16V (CB3) F20A2-A3 81 110 01/90-09/93 0800-0175 11,00 2.0 16V (CB3) F20A6 66 90 01/90-09/93 0800-0175 11,00 2.0i 16V (CB3-CC9) F20A8 98 133 01/90-09/93 0802-9205M 237,40 2.0i 16V

Διαβάστε περισσότερα

A Sequential Experimental Design based on Bayesian Statistics for Online Automatic Tuning. Reiji SUDA,

A Sequential Experimental Design based on Bayesian Statistics for Online Automatic Tuning. Reiji SUDA, Bayes, Bayes mult-armed bandt problem Bayes A Sequental Expermental Desgn based on Bayesan Statstcs for Onlne Automatc Tunng Re SUDA, Ths paper proposes to use Bayesan statstcs for software automatc tunng

Διαβάστε περισσότερα

Το άτομο του Υδρογόνου

Το άτομο του Υδρογόνου Το άτομο του Υδρογόνου Δυναμικό Coulomb Εξίσωση Schrödinger h e (, r, ) (, r, ) E (, r, ) m ψ θφ r ψ θφ = ψ θφ Συνθήκες ψ(, r θφ, ) = πεπερασμένη ψ( r ) = 0 ψ(, r θφ, ) =ψ(, r θφ+, ) π Επιτρεπτές ενέργειες

Διαβάστε περισσότερα

2002 Journal of Software /2002/13(08) Vol.13, No.8. , )

2002 Journal of Software /2002/13(08) Vol.13, No.8. , ) 000-985/00/3(08)55-06 00 Journal of Software Vol3, No8, (,00084) E-mal: yong98@malstsnghuaeducn http://netlabcstsnghuaeducn :,,, (proportonal farness schedulng, PFS), QoS, : ; ;QoS; : TP393 : A,,,,, (

Διαβάστε περισσότερα

! "# $ % $&'& () *+ (,-. / 0 1(,21(,*) (3 4 5 "$ 6, ::: ;"<$& = = 7 + > + 5 $?"# 46(A *( / A 6 ( 1,*1 B"',CD77E *+ *),*,*) F? $G'& 0/ (,.

! # $ % $&'& () *+ (,-. / 0 1(,21(,*) (3 4 5 $ 6, ::: ;<$& = = 7 + > + 5 $?# 46(A *( / A 6 ( 1,*1 B',CD77E *+ *),*,*) F? $G'& 0/ (,. ! " #$%&'()' *('+$,&'-. /0 1$23(/%/4. 1$)('%%'($( )/,)$5)/6%6 7$85,-9$(- /0 :/986-$, ;2'$(2$ 1'$-/-$)('')5( /&5&-/ 5(< =(4'($$,'(4 1$%$2/996('25-'/(& ;/0->5,$ 1'$-/%'')$(($/3?$%9'&-/?$( 5(< @6%-'9$

Διαβάστε περισσότερα

ITU-R P (2012/02) &' (

ITU-R P (2012/02) &' ( ITU-R P.530-4 (0/0) $ % " "#! &' ( P ITU-R P. 530-4 ii.. (IPR) (ITU-T/ITU-R/ISO/IEC).ITU-R http://www.itu.int/itu-r/go/patents/en. ITU-T/ITU-R/ISO/IEC (http://www.itu.int/publ/r-rec/en ) () ( ) BO BR BS

Διαβάστε περισσότερα

Vol. 34 ( 2014 ) No. 4. J. of Math. (PRC) : A : (2014) Frank-Wolfe [7],. Frank-Wolfe, ( ).

Vol. 34 ( 2014 ) No. 4. J. of Math. (PRC) : A : (2014) Frank-Wolfe [7],. Frank-Wolfe, ( ). Vol. 4 ( 214 ) No. 4 J. of Math. (PRC) 1,2, 1 (1., 472) (2., 714) :.,.,,,..,. : ; ; ; MR(21) : 9B2 : : A : 255-7797(214)4-759-7 1,,,,, [1 ].,, [4 6],, Frank-Wolfe, Frank-Wolfe [7],.,,.,,,., UE,, UE. O-D,,,,,

Διαβάστε περισσότερα

Multi-dimensional Central Limit Theorem

Multi-dimensional Central Limit Theorem Mult-dmensonal Central Lmt heorem Outlne () () () t as () + () + + () () () Consder a sequence of ndependent random proceses t, t, dentcal to some ( t). Assume t 0. Defne the sum process t t t t () t tme

Διαβάστε περισσότερα

ΕΚΛΟΓΙΚΗ ΠΕΡΙΦΕΡΕΙΑ ΕΒΡΟΥ

ΕΚΛΟΓΙΚΗ ΠΕΡΙΦΕΡΕΙΑ ΕΒΡΟΥ ΕΚΛΟΓΙΚΗ ΠΕΡΙΦΕΡΕΙΑ ΕΒΡΟΥ ΑΣΗΜΑΚΟΠΟΥΛΟΣ ΣΠΥΡΙΔΩΝ του ΔΗΜΗΤΡΙΟΥ ΚΑΛΑΪΤΖΙΔΟΥ ΑΙΚΑΤΕΡΙΝΗ του ΜΙΧΑΗΛ ΚΟΖΑΡΗΣ ΚΥΡΙΑΚΟΣ του ΧΡΗΣΤΟΥ ΜΑΛΚΟΥΚΗΣ ΒΑΣΙΛΕΙΟΣ του ΔΗΜΗΤΡΙΟΥ ΜΟΡΑΛΗΣ ΖΗΣΗΣ του ΙΩΑΝΝΗ ΕΚΛΟΓΙΚΗ ΠΕΡΙΦΕΡΕΙΑ

Διαβάστε περισσότερα

172,,,,. P,. Box (1980)P, Guttman (1967)Rubin (1984)P, Meng (1994), Gelman(1996)De la HorraRodriguez-Bernal (2003). BayarriBerger (2000)P P.. : Casell

172,,,,. P,. Box (1980)P, Guttman (1967)Rubin (1984)P, Meng (1994), Gelman(1996)De la HorraRodriguez-Bernal (2003). BayarriBerger (2000)P P.. : Casell 20104 Chinese Journal of Applied Probability and Statistics Vol.26 No.2 Apr. 2010 P (,, 200083) P P. Wang (2006)P, P, P,. : P,,,. : O212.1, O212.8. 1., (). : X 1, X 2,, X n N(θ, σ 2 ), σ 2. H 0 : θ = θ

Διαβάστε περισσότερα

ER-Tree (Extended R*-Tree)

ER-Tree (Extended R*-Tree) 1-9825/22/13(4)768-6 22 Journal of Software Vol13, No4 1, 1, 2, 1 1, 1 (, 2327) 2 (, 3127) E-mail xhzhou@ustceducn,,,,,,, 1, TP311 A,,,, Elias s Rivest,Cleary Arya Mount [1] O(2 d ) Arya Mount [1] Friedman,Bentley

Διαβάστε περισσότερα

IF(Ingerchange Format) [7] IF C-STAR(Consortium for speech translation advanced research ) [8] IF 2 IF

IF(Ingerchange Format) [7] IF C-STAR(Consortium for speech translation advanced research ) [8] IF 2 IF 100080 e-mal:{gdxe, cqzong, xubo}@nlpr.a.ac.cn tel:(010)82614468 IF 1 1 1 IF(Ingerchange Format) [7] IF C-STAR(Consortum for speech translaton advanced research ) [8] IF 2 IF 2 IF 69835003 60175012 [6][12]

Διαβάστε περισσότερα

Bundle Adjustment for 3-D Reconstruction: Implementation and Evaluation

Bundle Adjustment for 3-D Reconstruction: Implementation and Evaluation 3 2 3 2 3 undle Adjustment or 3-D Reconstruction: Implementation and Evaluation Yuuki Iwamoto, Yasuyuki Sugaya 2 and Kenichi Kanatani We describe in detail the algorithm o bundle adjustment or 3-D reconstruction

Διαβάστε περισσότερα

Stochastic Finite Element Analysis for Composite Pressure Vessel

Stochastic Finite Element Analysis for Composite Pressure Vessel * ** ** Stochastc Fnte Element Analyss for Composte Pressure Vessel Tae Kyung Hwang Young Dae Doh and Soon Il Moon Key Words : Relablty Progressve Falure Pressure Vessel Webull Functon Abstract ABAQUS

Διαβάστε περισσότερα

Ax = b. 7x = 21. x = 21 7 = 3.

Ax = b. 7x = 21. x = 21 7 = 3. 3 s st 3 r 3 t r 3 3 t s st t 3t s 3 3 r 3 3 st t t r 3 s t t r r r t st t rr 3t r t 3 3 rt3 3 t 3 3 r st 3 t 3 tr 3 r t3 t 3 s st t Ax = b. s t 3 t 3 3 r r t n r A tr 3 rr t 3 t n ts b 3 t t r r t x 3

Διαβάστε περισσότερα

ITU-R P (2009/10)

ITU-R P (2009/10) ITU-R.45-4 (9/) % # GHz,!"# $$ # ITU-R.45-4.. (IR) (ITU-T/ITU-R/ISO/IEC).ITU-R http://www.tu.t/itu-r/go/patets/e. (http://www.tu.t/publ/r-rec/e ) () ( ) BO BR BS BT F M RA S RS SA SF SM SNG TF V.ITU-R

Διαβάστε περισσότερα

Προβολές και Μετασχηματισμοί Παρατήρησης

Προβολές και Μετασχηματισμοί Παρατήρησης Γραφικά & Οπτικοποίηση Κεφάλαιο 4 Προβολές και Μετασχηματισμοί Παρατήρησης Εισαγωγή Στα γραφικά υπάρχουν: 3Δ μοντέλα 2Δ συσκευές επισκόπησης (οθόνες & εκτυπωτές) Προοπτική απεικόνιση (προβολή): Λαμβάνει

Διαβάστε περισσότερα

MICROMASTER Vector MIDIMASTER Vector

MICROMASTER Vector MIDIMASTER Vector s MICROMASTER Vector MIDIMASTER Vector... 2 1.... 4 2. -MICROMASTER VECTOR... 5 3. -MIDIMASTER VECTOR... 16 4.... 24 5.... 28 6.... 32 7.... 54 8.... 56 9.... 61 Siemens plc 1998 G85139-H1751-U553B 1.

Διαβάστε περισσότερα

Multi-dimensional Central Limit Theorem

Multi-dimensional Central Limit Theorem Mult-dmensonal Central Lmt heorem Outlne () () () t as () + () + + () () () Consder a sequence of ndependent random proceses t, t, dentcal to some ( t). Assume t 0. Defne the sum process t t t t () t ();

Διαβάστε περισσότερα

Εισαγωγικές έννοιες θεωρίας Συστημάτων Αυτομάτου Ελέγχου Ενότητα 6 η : Η ΜΕΘΟΔΟΣ ΤΟΥ ΓΕΩΜΕΤΡΙΚΟΥ ΤΟΠΟΥ ΡΙΖΩΝ

Εισαγωγικές έννοιες θεωρίας Συστημάτων Αυτομάτου Ελέγχου Ενότητα 6 η : Η ΜΕΘΟΔΟΣ ΤΟΥ ΓΕΩΜΕΤΡΙΚΟΥ ΤΟΠΟΥ ΡΙΖΩΝ Εισαγωγικές έννοιες θεωρίας Συστημάτων Αυτομάτου Ελέγχου Ενότητα 6 η : Η ΜΕΘΟΔΟΣ ΤΟΥ ΓΕΩΜΕΤΡΙΚΟΥ ΤΟΠΟΥ ΡΙΖΩΝ Επ. Καθηγητής Γαύρος Κωνσταντίνος ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΒΙΟΜΗΧΑΝΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ ΤΕ

Διαβάστε περισσότερα

Η Παραµετρική Προσέγγιση στον Εύρωστο Έλεγχο

Η Παραµετρική Προσέγγιση στον Εύρωστο Έλεγχο Η Παραµετρική Προσέγγιση στον Εύρωστο Έλεγχο ρ. Ε.Ν. Αντωνίου Μεταδιδακτορικός Ερευνητής Τµήµα Μαθηµατικών, Α.Π.Θ. Ιστορική Αναδροµή Κλασσική Θεωρία Maxwell O Goverors (1868) - Ρίζες της Θεωρίας Ελέγχου

Διαβάστε περισσότερα

(8) 017 У У θβ1.771...... ю E-mal: avk7777@mal.ru....... Р х х.. 93 % 6 % 166 %. М х х хх. : х х. ю. ю ( ). ю ю. ю. ю ю. - ю ю. ю [1 8] ю. [9 11] ю. [1]. 58 (8) 017 У ю μ (У) юю (. 1). u u+1 ЭС - ЭС (+1)-

Διαβάστε περισσότερα

ITU-R P (2009/10)

ITU-R P (2009/10) ITU-R.38-6 (009/0 $% #! " #( ' * & ' /0,-. # GHz 00 MHz 900 ITU-R.38-6 ii.. (IR (ITU-T/ITU-R/ISO/IEC.ITU-R http://www.itu.int/itu-r/go/patents/en. (http://www.itu.int/publ/r-rec/en ( ( BO BR BS BT F M

Διαβάστε περισσότερα

ΒΕΛΤΙΣΤΟΙ ΣΧΕΔΙΑΣΜΟΙ ΣΕ ΑΝΟΜΟΙΟΓΕΝΕΙΣ ΠΛΗΘΥΣΜΟΥΣ

ΒΕΛΤΙΣΤΟΙ ΣΧΕΔΙΑΣΜΟΙ ΣΕ ΑΝΟΜΟΙΟΓΕΝΕΙΣ ΠΛΗΘΥΣΜΟΥΣ Ελληνικό Στατιστικό Ινστιτούτο Πρακτικά 0 ου Πανελληνίου Συνεδρίου Στατιστικής (007), σελ 09-6 ΒΕΛΤΙΣΤΟΙ ΣΧΕΔΙΑΣΜΟΙ ΣΕ ΑΝΟΜΟΙΟΓΕΝΕΙΣ ΠΛΗΘΥΣΜΟΥΣ Στρατής Κουνιάς Ομότιμος Καθηγητής, Πανεπιστήμιο Αθηνών sounas@math.uoa.gr

Διαβάστε περισσότερα

Novel Ensemble Analytic Discrete Framelet Expansion for Machinery Fault Diagnosis 1

Novel Ensemble Analytic Discrete Framelet Expansion for Machinery Fault Diagnosis 1 50 17 2014 9 OURNAL OF MECHANICAL ENGINEERING Vol.50 No.17 Sep. 2014 DOI10.3901/ME.2014.17.077 * 1 2 2 2, 3 (1. 361005 2. 710049 3. 710049) -- () - TH17 Novel Ensemble Analytc Dscrete Framelet Expanson

Διαβάστε περισσότερα

Erkki Mäkinen ja Timo Poranen Algoritmit

Erkki Mäkinen ja Timo Poranen Algoritmit rkki Mäkinen ja Timo Poranen Algoritmit TITOJNKÄSITTLYTITIDN LAITOS TAMPRN YLIOPISTO D 2008 6 TAMPR 2009 TAMPRN YLIOPISTO TITOJNKÄSITTLYTITIDN LAITOS JULKAISUSARJA D VRKKOJULKAISUT D 2008 6, TOUKOKUU 2009

Διαβάστε περισσότερα

Kernel orthogonal and uncorrelated neighborhood preservation discriminant embedding algorithm

Kernel orthogonal and uncorrelated neighborhood preservation discriminant embedding algorithm 32 7 Vol 32 7 2011 7 Journal of Harbn Engneerng Unversty Jul 2011 do 10 3969 /j ssn 1006-7043 2011 07 018 150001 2 Yale PIE TE2 TP391 4 1006-7043 2011 07-0938-05 Kernel orthogonal and uncorrelated neghborhood

Διαβάστε περισσότερα

A Method for Determining Service Level of Road Network Based on Improved Capacity Model

A Method for Determining Service Level of Road Network Based on Improved Capacity Model 30 4 2013 4 Journal of Hghway and Transportaton Research and Development Vol. 30 No. 4 Apr. 2013 do10. 3969 /j. ssn. 1002-0268. 2013. 04. 018 1 1 2 1. 4000742. 201804 2 U491. 1 + 3 A 1002-0268 201304-0101

Διαβάστε περισσότερα

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2 ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =

Διαβάστε περισσότερα

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5 Vol. 37 ( 2017 ) No. 5 J. of Math. (PRC) 1,2, 1, 1 (1., 225002) (2., 225009) :. I +AT +, T + = T + (I +AT + ) 1, T +. Banach Hilbert Moore-Penrose.. : ; ; Moore-Penrose ; ; MR(2010) : 47L05; 46A32 : O177.2

Διαβάστε περισσότερα

V. Finite Element Method. 5.1 Introduction to Finite Element Method

V. Finite Element Method. 5.1 Introduction to Finite Element Method V. Fnte Element Method 5. Introducton to Fnte Element Method 5. Introducton to FEM Rtz method to dfferental equaton Problem defnton k Boundary value problem Prob. Eact : d d, 0 0 0, 0 ( ) ( ) 4 C C * 4

Διαβάστε περισσότερα

EL ECTR IC MACH IN ES AND CON TROL. System s vulnerability assessment of a ircraft guarantee system based on improved FPN

EL ECTR IC MACH IN ES AND CON TROL. System s vulnerability assessment of a ircraft guarantee system based on improved FPN 13 3 20095 EL ECTR ICMACH IN ESANDCON TROL Vol113 No13 May 2009 FPN,, (, 150001) :,,Petr( FPN ), BP, FPN,,,, : ; ; Petr; : U661 : A : 1007-449X (2009) 03-0464- 07 System s vulnerablty assessment of a rcraft

Διαβάστε περισσότερα

ITU-R P ITU-R P (ITU-R 204/3 ( )

ITU-R P ITU-R P (ITU-R 204/3 ( ) 1 ITU-R P.530-1 ITU-R P.530-1 (ITU-R 04/3 ) (007-005-001-1999-1997-1995-1994-199-1990-1986-198-1978)... ( ( ( 1 1. 1 : - - ) - ( 1 ITU-R P.530-1..... 6.3. :. ITU-R P.45 -. ITU-R P.619 -. ) (ITU-R P.55

Διαβάστε περισσότερα

A new practical method for closed-loop identification with PI control

A new practical method for closed-loop identification with PI control 7 9 1 9 : 1 815(1)9 14 5 Control Theory & Applications Vol. 7 No. 9 Sep. 1 PI,, (, 5164) : PI,,.,, (SOPDT).,, PI ;,, : ; PI ; ; : TP73 : A A new practical method for closed-loop identification with PI

Διαβάστε περισσότερα

A Method of Trajectory Tracking Control for Nonminimum Phase Continuous Time Systems

A Method of Trajectory Tracking Control for Nonminimum Phase Continuous Time Systems IIC-11-8 A Method of Trajectory Tracking Control for Nonminimum Phase Continuous Time Systems Takayuki Shiraishi, iroshi Fujimoto (The University of Tokyo) Abstract The purpose of this paper is achievement

Διαβάστε περισσότερα

Q π (/) ^ ^ ^ Η φ. <f) c>o. ^ ο. ö ê ω Q. Ο. o 'c. _o _) o U 03. ,,, ω ^ ^ -g'^ ο 0) f ο. Ε. ιη ο Φ. ο 0) κ. ο 03.,Ο. g 2< οο"" ο φ.

Q π (/) ^ ^ ^ Η φ. <f) c>o. ^ ο. ö ê ω Q. Ο. o 'c. _o _) o U 03. ,,, ω ^ ^ -g'^ ο 0) f ο. Ε. ιη ο Φ. ο 0) κ. ο 03.,Ο. g 2< οο ο φ. II 4»» «i p û»7'' s V -Ζ G -7 y 1 X s? ' (/) Ζ L. - =! i- Ζ ) Η f) " i L. Û - 1 1 Ι û ( - " - ' t - ' t/î " ι-8. Ι -. : wî ' j 1 Τ J en " il-' - - ö ê., t= ' -; '9 ',,, ) Τ '.,/,. - ϊζ L - (- - s.1 ai

Διαβάστε περισσότερα

= f(0) + f dt. = f. O 2 (x, u) x=(x 1,x 2,,x n ) T, f(x) =(f 1 (x), f 2 (x),, f n (x)) T. f x = A = f

= f(0) + f dt. = f. O 2 (x, u) x=(x 1,x 2,,x n ) T, f(x) =(f 1 (x), f 2 (x),, f n (x)) T. f x = A = f 2 n dx (x)+g(x)u () x n u (x), g(x) x n () +2 -a -b -b -a 3 () x,u dx x () dx () + x x + g()u + O 2 (x, u) x x x + g()u + O 2 (x, u) (2) x O 2 (x, u) x u 2 x(x,x 2,,x n ) T, (x) ( (x), 2 (x),, n (x)) T

Διαβάστε περισσότερα

!!" #7 $39 %" (07) ..,..,.. $ 39. ) :. :, «(», «%», «%», «%» «%». & ,. ). & :..,. '.. ( () #*. );..,..'. + (# ).

!! #7 $39 % (07) ..,..,.. $ 39. ) :. :, «(», «%», «%», «%» «%». & ,. ). & :..,. '.. ( () #*. );..,..'. + (# ). 1 00 3 !!" 344#7 $39 %" 6181001 63(07) & : ' ( () #* ); ' + (# ) $ 39 ) : : 00 %" 6181001 63(07)!!" 344#7 «(» «%» «%» «%» «%» & ) 4 )&-%/0 +- «)» * «1» «1» «)» ) «(» «%» «%» + ) 30 «%» «%» )1+ / + : +3

Διαβάστε περισσότερα

A Class of Orthohomological Triangles

A Class of Orthohomological Triangles A Class of Orthohomologcal Trangles Prof. Claudu Coandă Natonal College Carol I Craova Romana. Prof. Florentn Smarandache Unversty of New Mexco Gallup USA Prof. Ion Pătraşcu Natonal College Fraţ Buzeşt

Διαβάστε περισσότερα

1 Εισαγωγή. 1.1 Ιστορικά. 1.2 Πλαίσιο

1 Εισαγωγή. 1.1 Ιστορικά. 1.2 Πλαίσιο 1 Εισαγωγή 1.1 Ιστορικά Θεωρώ αρκετά ασφαλές να ορίσω ως τη χρονική έναρξη της σύγχρονης θεωρίας Αυτομάτου Ελέγχου τις αρχές της δεκαετίας του 1960. Την περίοδο αυτήν οι ανάγκες επίλυσης προβλημάτων του

Διαβάστε περισσότερα

ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ η εξεταστική περίοδος 0- - Σελίδα ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Τάξη: Γ Λυκείου Τμήμα: Βαθμός: Ημερομηνία: 8-0-0 Διάρκεια: ώρες Ύλη: Ταλαντώσεις Καθηγητής: ΑΤΡΕΙΔΗΣ ΓΙΩΡΓΟΣ Ονοματεπώνυμο:

Διαβάστε περισσότερα

Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.

Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. Περιοδικός πίνακας: α. Είναι µια ταξινόµηση των στοιχείων κατά αύξοντα

Διαβάστε περισσότερα

Vidyamandir Classes. Solutions to Revision Test Series - 2/ ACEG / IITJEE (Mathematics) = 2 centre = r. a

Vidyamandir Classes. Solutions to Revision Test Series - 2/ ACEG / IITJEE (Mathematics) = 2 centre = r. a Per -.(D).() Vdymndr lsses Solutons to evson est Seres - / EG / JEE - (Mthemtcs) Let nd re dmetrcl ends of crcle Let nd D re dmetrcl ends of crcle Hence mnmum dstnce s. y + 4 + 4 6 Let verte (h, k) then

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΟΔΟΝΤΙΑΤΡΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΟΔΟΝΤΙΚΗΣ ΚΑΙ ΑΝΩΤΕΡΑΣ ΠΡΟΣΘΕΤΙΚΗΣ

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΟΔΟΝΤΙΑΤΡΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΟΔΟΝΤΙΚΗΣ ΚΑΙ ΑΝΩΤΕΡΑΣ ΠΡΟΣΘΕΤΙΚΗΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΟΔΟΝΤΙΑΤΡΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΟΔΟΝΤΙΚΗΣ ΚΑΙ ΑΝΩΤΕΡΑΣ ΠΡΟΣΘΕΤΙΚΗΣ ΣΥΓΚΡΙΤΙΚΗ ΜΕΛΕΤΗ ΤΗΣ ΣΥΓΚΡΑΤΗΤΙΚΗΣ ΙΚΑΝΟΤΗΤΑΣ ΟΡΙΣΜΕΝΩΝ ΠΡΟΚΑΤΑΣΚΕΥΑΣΜΕΝΩΝ ΣΥΝΔΕΣΜΩΝ ΑΚΡΙΒΕΙΑΣ

Διαβάστε περισσότερα

Αλληλεπίδραση ακτίνων-χ με την ύλη

Αλληλεπίδραση ακτίνων-χ με την ύλη Άσκηση 8 Αλληλεπίδραση ακτίνων-χ με την ύλη Δ. Φ. Αναγνωστόπουλος Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων Ιωάννινα 2013 Άσκηση 8 ii Αλληλεπίδραση ακτίνων-χ με την ύλη Πίνακας περιεχομένων

Διαβάστε περισσότερα

(... )..!, ".. (! ) # - $ % % $ & % 2007

(... )..!, .. (! ) # - $ % % $ & % 2007 (! ), "! ( ) # $ % & % $ % 007 500 ' 67905:5394!33 : (! ) $, -, * +,'; ), -, *! ' - " #!, $ & % $ ( % %): /!, " ; - : - +', 007 5 ISBN 978-5-7596-0766-3 % % - $, $ &- % $ % %, * $ % - % % # $ $,, % % #-

Διαβάστε περισσότερα

a; b 2 R; a < b; f : [a; b] R! R y 2 R: y : [a; b]! R; ( y (t) = f t; y(t) ; a t b; y(a) = y : f (t; y) 2 [a; b]r: f 2 C ([a; b]r): y 2 C [a; b]; y(a) = y ; f y ỹ ỹ y ; jy ỹ j ky ỹk [a; b]; f y; ( y (t)

Διαβάστε περισσότερα

ITU-R P (2012/02)

ITU-R P (2012/02) ITU-R P.56- (0/0 P ITU-R P.56- ii.. (IPR (ITU-T/ITU-R/ISO/IEC.ITU-R ttp://www.itu.int/itu-r/go/patents/en. (ttp://www.itu.int/publ/r-rec/en ( ( BO BR BS BT F M P RA RS S SA SF SM SNG TF V 0.ITU-R ITU 0..(ITU

Διαβάστε περισσότερα

Constant Elasticity of Substitution in Applied General Equilibrium

Constant Elasticity of Substitution in Applied General Equilibrium Constant Elastct of Substtuton n Appled General Equlbru The choce of nput levels that nze the cost of producton for an set of nput prces and a fed level of producton can be epressed as n sty.. f Ltng for

Διαβάστε περισσότερα

Control Theory & Applications PID (, )

Control Theory & Applications PID (, ) 26 12 2009 12 : 1000 8152(2009)12 1317 08 Control Theory & Applications Vol. 26 No. 12 Dec. 2009 PID,, (, 200240) : PID (PIDNN), PID,, (BP).,, PIDNN PIDNN (MPIDNN), (CPSO) BP, MPIDNN CPSO MPIDNN CRPSO

Διαβάστε περισσότερα

One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF

One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF One and two partcle densty matrces for sngle determnant HF wavefunctons One partcle densty matrx Gven the Hartree-Fock wavefuncton ψ (,,3,!, = Âϕ (ϕ (ϕ (3!ϕ ( 3 The electronc energy s ψ H ψ = ϕ ( f ( ϕ

Διαβάστε περισσότερα

( [T]. , s 1 a as 1 [T] (derived category) Gelfand Manin [GM1] Chapter III, [GM2] Chapter 4. [I] XI ). Gelfand Manin [GM1]

( [T]. , s 1 a as 1 [T] (derived category) Gelfand Manin [GM1] Chapter III, [GM2] Chapter 4. [I] XI ). Gelfand Manin [GM1] 1 ( ) 2007 02 16 (2006 5 19 ) 1 1 11 1 12 2 13 Ore 8 14 9 2 (2007 2 16 ) 10 1 11 ( ) ( [T] 131),, s 1 a as 1 [T] 15 (, D ), Lie, (derived category), ( ) [T] Gelfand Manin [GM1] Chapter III, [GM2] Chapter

Διαβάστε περισσότερα

Motion analysis and simulation of a stratospheric airship

Motion analysis and simulation of a stratospheric airship 32 11 Vol 32 11 2011 11 Journal of Harbin Engineering University Nov 2011 doi 10 3969 /j issn 1006-7043 2011 11 019 410073 3 2 V274 A 1006-7043 2011 11-1501-08 Motion analysis and simulation of a stratospheric

Διαβάστε περισσότερα

!#$%!& '($) *#+,),# - '($) # -.!, '$%!%#$($) # - '& %#$/0#!#%! % '$%!%#$/0#!#%! % '#%3$-0 4 '$%3#-!#, '5&)!,#$-, '65!.#%

!#$%!& '($) *#+,),# - '($) # -.!, '$%!%#$($) # - '& %#$/0#!#%! % '$%!%#$/0#!#%! % '#%3$-0 4 '$%3#-!#, '5&)!,#$-, '65!.#% " #$%& '($) *#+,),# - '($) # -, '$% %#$($) # - '& %#$0##% % '$% %#$0##% % '1*2)$ '#%3$-0 4 '$%3#-#, '1*2)$ '#%3$-0 4 @ @ @

Διαβάστε περισσότερα

Α Ρ Ι Θ Μ Ο Σ : 6.913

Α Ρ Ι Θ Μ Ο Σ : 6.913 Α Ρ Ι Θ Μ Ο Σ : 6.913 ΠΡΑΞΗ ΚΑΤΑΘΕΣΗΣ ΟΡΩΝ ΔΙΑΓΩΝΙΣΜΟΥ Σ τ η ν Π ά τ ρ α σ ή μ ε ρ α σ τ ι ς δ ε κ α τ έ σ σ ε ρ ι ς ( 1 4 ) τ ο υ μ ή ν α Ο κ τ ω β ρ ί ο υ, η μ έ ρ α Τ ε τ ά ρ τ η, τ ο υ έ τ ο υ ς δ

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

Schedulability Analysis Algorithm for Timing Constraint Workflow Models

Schedulability Analysis Algorithm for Timing Constraint Workflow Models CIMS Vol.8No.72002pp.527-532 ( 100084) Petri Petri F270.7 A Schedulability Analysis Algorithm for Timing Constraint Workflow Models Li Huifang and Fan Yushun (Department of Automation, Tsinghua University,

Διαβάστε περισσότερα

Answers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l =

Answers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l = C ALGEBRA Answers - Worksheet A a 7 b c d e 0. f 0. g h 0 i j k 6 8 or 0. l or 8 a 7 b 0 c 7 d 6 e f g 6 h 8 8 i 6 j k 6 l a 9 b c d 9 7 e 00 0 f 8 9 a b 7 7 c 6 d 9 e 6 6 f 6 8 g 9 h 0 0 i j 6 7 7 k 9

Διαβάστε περισσότερα

ROVER (MG ROVER GROUP LTD)

ROVER (MG ROVER GROUP LTD) 100 114 D 38 52 01/92 + 0822-8962 237,40 0811-8962 134,20 115 D TUD 5 42 57 12/94 + 0822-8963 237,40 0811-8963 134,20 1500 (Triumph) 1.5 42 62 10/70-12/74 0800-0175 11,00 1.5 49 66 01/72-12/74 0800-0175

Διαβάστε περισσότερα

α & β spatial orbitals in

α & β spatial orbitals in The atrx Hartree-Fock equatons The most common method of solvng the Hartree-Fock equatons f the spatal btals s to expand them n terms of known functons, { χ µ } µ= consder the spn-unrestrcted case. We

Διαβάστε περισσότερα

No. 7 Modular Machine Tool & Automatic Manufacturing Technique. Jul TH166 TG659 A

No. 7 Modular Machine Tool & Automatic Manufacturing Technique. Jul TH166 TG659 A 7 2016 7 No. 7 Modular Machine Tool & Automatic Manufacturing Technique Jul. 2016 1001-2265 2016 07-0122 - 05 DOI 10. 13462 /j. cnki. mmtamt. 2016. 07. 035 * 100124 TH166 TG659 A Precision Modeling and

Διαβάστε περισσότερα

Optimization, PSO) DE [1, 2, 3, 4] PSO [5, 6, 7, 8, 9, 10, 11] (P)

Optimization, PSO) DE [1, 2, 3, 4] PSO [5, 6, 7, 8, 9, 10, 11] (P) ( ) 1 ( ) : : (Differential Evolution, DE) (Particle Swarm Optimization, PSO) DE [1, 2, 3, 4] PSO [5, 6, 7, 8, 9, 10, 11] 2 2.1 (P) (P ) minimize f(x) subject to g j (x) 0, j = 1,..., q h j (x) = 0, j

Διαβάστε περισσότερα

..., ISBN: :.!". # -. $, %, 1983 &"$ $ $. $, %, 1988 $ $. ## -. $, ', 1989 (( ). '. ') "!$!. $, %, 1991 $ 1. * $. $,.. +, 2001 $ 2. $. $,, 1992 # $!

..., ISBN: :.!. # -. $, %, 1983 &$ $ $. $, %, 1988 $ $. ## -. $, ', 1989 (( ). '. ') !$!. $, %, 1991 $ 1. * $. $,.. +, 2001 $ 2. $. $,, 1992 # $! !! " 007 : ISBN: # $! % :!" # - $ % 983 &"$ $ $ $ % 988 $ $ ## - $ ' 989 (( ) ' ') "!$! $ % 99 $ * $ $ + 00 $ $ $ 99!! " 007 -!" % $ 006 ---- $ 87 $ (( %( %(! $!$!" -!" $ $ %( * ( *!$ "!"!* "$!$ (!$! "

Διαβάστε περισσότερα

NON-HOMOGENEOUS BOUNDARY-VALUE PROBLEMS OF HIGHER ORDER DIFFERENTIAL EQUATIONS WITH p-laplacian

NON-HOMOGENEOUS BOUNDARY-VALUE PROBLEMS OF HIGHER ORDER DIFFERENTIAL EQUATIONS WITH p-laplacian Electronc Journal of Dfferental Equatons, Vol. 2828, No. 2, pp. 43. ISSN: 72-669. URL: http://ejde.ath.txstate.edu or http://ejde.ath.unt.edu ftp ejde.ath.txstate.edu logn: ftp NON-HOMOGENEOUS BOUNDARY-VALUE

Διαβάστε περισσότερα

Discriminantal arrangement

Discriminantal arrangement Discriminantal arrangement YAMAGATA So C k n arrangement C n discriminantal arrangement 1989 Manin-Schectman Braid arrangement Discriminantal arrangement Gr(3, n) S.Sawada S.Settepanella 1 A arrangement

Διαβάστε περισσότερα

VSC STEADY2STATE MOD EL AND ITS NONL INEAR CONTROL OF VSC2HVDC SYSTEM VSC (1. , ; 2. , )

VSC STEADY2STATE MOD EL AND ITS NONL INEAR CONTROL OF VSC2HVDC SYSTEM VSC (1. , ; 2. , ) 22 1 2002 1 Vol. 22 No. 1 Jan. 2002 Proceedings of the CSEE ν 2002 Chin. Soc. for Elec. Eng. :025828013 (2002) 0120017206 VSC 1, 1 2, (1., 310027 ; 2., 250061) STEADY2STATE MOD EL AND ITS NONL INEAR CONTROL

Διαβάστε περισσότερα

Prey-Taxis Holling-Tanner

Prey-Taxis Holling-Tanner Vol. 28 ( 2018 ) No. 1 J. of Math. (PRC) Prey-Taxis Holling-Tanner, (, 730070) : prey-taxis Holling-Tanner.,,.. : Holling-Tanner ; prey-taxis; ; MR(2010) : 35B32; 35B36 : O175.26 : A : 0255-7797(2018)01-0140-07

Διαβάστε περισσότερα

V r,k j F k m N k+1 N k N k+1 H j n = 7 n = 16 Ṽ r ñ,ñ j Ṽ Ṽ j x / Ṽ W 2r V r D N T T 2r 2r N k F k N 2r Ω R 2 n Ω I n = { N: n} n N R 2 x R 2, I n Ω R 2 u R 2, I n x k+1 = x k + u k, u, x R 2,

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΙΙ

ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΙΙ Ύλη µαθήµατος. Lead-Lag ελεγκτές 2. PID ελεγκτές (95%) (εκτός διαγράµµατα Nyquist-Nichols) ιακριτός & Ψηφιακός Αυτόµατος Έλεγχος ΨΗΦΙΑΚΟΣ ΑΥΤΟΜΑΤΟΣ ΕΛΕΓΧΟΣ Εργαστήριο Matlab LABview : συλλογή και αποστολή

Διαβάστε περισσότερα

Cite as: Pol Antras, course materials for International Economics I, Spring MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts

Cite as: Pol Antras, course materials for International Economics I, Spring MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts / / σ/σ σ/σ θ θ θ θ y 1 0.75 0.5 0.25 0 0 0.5 1 1.5 2 θ θ θ x θ θ Φ θ Φ θ Φ π θ /Φ γφ /θ σ θ π θ Φ θ θ Φ θ θ θ θ σ θ / Φ θ θ / Φ / θ / θ Normalized import share: (Xni / Xn) / (XII / XI) 1 0.1 0.01 0.001

Διαβάστε περισσότερα

Appendix B Table of Radionuclides Γ Container 1 Posting Level cm per (mci) mci

Appendix B Table of Radionuclides Γ Container 1 Posting Level cm per (mci) mci 3 H 12.35 Y β Low 80 1 - - Betas: 19 (100%) 11 C 20.38 M β+, EC Low 400 1 5.97 13.7 13 N 9.97 M β+ Low 1 5.97 13.7 Positrons: 960 (99.7%) Gaas: 511 (199.5%) Positrons: 1,199 (99.8%) Gaas: 511 (199.6%)

Διαβάστε περισσότερα

a; b 2 R; a < b; f : [a; b] R! R y 2 R: y : [a; b]! R; ( y (t) = f t; y(t) ; a t b; y(a) = y : f (t; y) 2 [a; b]r: f 2 C ([a; b]r): y 2 C [a; b]; y(a) = y ; f y ỹ ỹ y ; jy ỹ j ky ỹk [a; b]; f y; ( y (t)

Διαβάστε περισσότερα

ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s

ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s P P P P ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s r t r 3 2 r r r 3 t r ér t r s s r t s r s r s ér t r r t t q s t s sã s s s ér t

Διαβάστε περισσότερα

Διευθύνοντα Μέλη του mathematica.gr

Διευθύνοντα Μέλη του mathematica.gr Το «Εικοσιδωδεκάεδρον» παρουσιάζει ϑέματα που έχουν συζητηθεί στον ιστότοπο http://www.mathematica.gr. Η επιλογή και η ϕροντίδα του περιεχομένου γίνεται από τους Επιμελητές του http://www.mathematica.gr.

Διαβάστε περισσότερα

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA)

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA) ΓΗ ΚΑΙ ΣΥΜΠΑΝ Φύση του σύμπαντος Η γη είναι μία μονάδα μέσα στο ηλιακό μας σύστημα, το οποίο αποτελείται από τον ήλιο, τους πλανήτες μαζί με τους δορυφόρους τους, τους κομήτες, τα αστεροειδή και τους μετεωρίτες.

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Α Ρ Χ Α Ι Α Ι Σ Τ Ο Ρ Ι Α Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Σ η µ ε ί ω σ η : σ υ ν ά δ ε λ φ ο ι, ν α µ ο υ σ υ γ χ ω ρ ή σ ε τ ε τ ο γ ρ ή γ ο ρ ο κ α ι α τ η µ έ λ η τ ο ύ

Διαβάστε περισσότερα

rs r r â t át r st tíst Ó P ã t r r r â

rs r r â t át r st tíst Ó P ã t r r r â rs r r â t át r st tíst P Ó P ã t r r r â ã t r r P Ó P r sã rs r s t à r çã rs r st tíst r q s t r r t çã r r st tíst r t r ú r s r ú r â rs r r â t át r çã rs r st tíst 1 r r 1 ss rt q çã st tr sã

Διαβάστε περισσότερα

SUPPLEMENTAL INFORMATION. Fully Automated Total Metals and Chromium Speciation Single Platform Introduction System for ICP-MS

SUPPLEMENTAL INFORMATION. Fully Automated Total Metals and Chromium Speciation Single Platform Introduction System for ICP-MS Electronic Supplementary Material (ESI) for Journal of Analytical Atomic Spectrometry. This journal is The Royal Society of Chemistry 2018 SUPPLEMENTAL INFORMATION Fully Automated Total Metals and Chromium

Διαβάστε περισσότερα

Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté

Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté Alexis Nuttin To cite this version: Alexis Nuttin. Physique des réacteurs

Διαβάστε περισσότερα

CAP A CAP

CAP A CAP 2012 4 30 2 Journal of Northwestern Polytechnical University Apr. Vol. 30 2012 No. 2 Neal-Smith 710072 CAP Neal-Smith PIO Neal-Smith V249 A 1000-2758 2012 02-0279-07 Neal-Smith CAP Neal-Smith Neal-Smith

Διαβάστε περισσότερα

Fragility analysis for control systems

Fragility analysis for control systems 3 1 213 1 DOI: 1.7641/CTA.213.2294 Control Theory & Applications Vol. 3 No. 1 Jan. 213 1, 1, 2, 1, 1 (1., 151; 2., 158) :. ( 1, j), ( 1, j)., Bode...,,,, Bode. : ; Bode ; ; ; : TP273 : A Fragility analysis

Διαβάστε περισσότερα

Ó³ Ÿ , º 2(131).. 105Ä ƒ. ± Ï,.. ÊÉ ±μ,.. Šμ ² ±μ,.. Œ Ì ²μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

Ó³ Ÿ , º 2(131).. 105Ä ƒ. ± Ï,.. ÊÉ ±μ,.. Šμ ² ±μ,.. Œ Ì ²μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê Ó³ Ÿ. 2006.. 3, º 2(131).. 105Ä110 Š 537.311.5; 538.945 Œ ƒ ˆ ƒ Ÿ ˆŠ ˆ ƒ Ÿ ƒ ˆ œ ƒ Œ ƒ ˆ ˆ Š ˆ 4 ². ƒ. ± Ï,.. ÊÉ ±μ,.. Šμ ² ±μ,.. Œ Ì ²μ Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê ³ É É Ö μ ² ³ μ É ³ Í ² Ö Ê³ μ μ ³ É μ μ μ²ö

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα