!",! ## $% ( )) ( ( )!*
|
|
- Κασσάνδρα Ελευθερόπουλος
- 8 χρόνια πριν
- Προβολές:
Transcript
1 5.13.1!",! ## $% &%' ( )) ( ( )!* )) ( )%.+., 8
2 ! &... 4, #- (...!*.! /!* '' #"(' #- ( #-' (...!* )! #-' (... $$ )! "!*... 3, ++. +!" #. (!* (.!' )!.( $$ )! #!" #. ( $$ )! )!.(!* )! !" #. (!* )! !" (!* "!*... 6, ( ".!'!* (.!' !*-( " -.!' !*-( " -.!'... 65
3 3 3.3.!*-( " &-.!',./1. )( ) %!* !'! "!* ( ). % "... 8, '!"%'!.!" "!* ) MATLAB ( )!.%!* $$% RASIS #1 )! RASIS )! RASIS )!'!" ".!'!* !*"' RASIS... 97, ++ 5.!)!*... &-1!*" RASIS !*... & " &-.!' (.!'!.. & !" ( (.!'!.. & & &+9 +:
4 4 " (!* (.!' )-!*-)!. )!* #!! ( "! " %!% " " ".! " )" "- "( '! )! "'/1',!('.' (!* )! [1, 8, 88]. )#!(! "!* (.!' [7]. (!* ")(!)'!* #! # (, (/1 : (!!*'!/# "('!*- )!.!*. )* $$%!*. (.! () "!( #, )!'/1 )!!. *!*! ) n n 1 ( ) ( ) ( ) ( ) ( ) D s, = a s + a s a s + a, P,.) n n 1 1 "'/' ) - P. 1 4 ) )!.!*.! [1, 8, 88]:!*', $$',!! '!!*'.!* )! $$%! '!'/'!* (, [ ] s + s +,, ). 1 n ax $$ )! $$%! #"! "*/!* (, 3 ( ) s ( ) s ( 5 ) s 1 7, [, ] ) n ax
5 5!! )! $$%!! "' -).,!!* $ ( ) s 3 ( ) s ( 9 3 ) s 5, [, ] n ax (, ).!!* )! $$%! "'!!* ' # ). (, ( 1 3 ) 1 1, [ n, ax ] s s ).!*! D( s, ) "' # (,! ( P. ) %!*"' )!*"*' " ' (, - P, #1.', )- #(.!. )!' ' ")( ( "#- #! "# "!(. ') "!*" "/.. [116], )!' # (! D( s, )!* )!*/ #) )(, (# ( %!* #" $! #! (. $$%! / )!* "(' " ")!. /.$(/ $, #!.)' )!'!' # ( )( * )!* ). ( ().).$..).$ "'.).$ 9-!' [93]. &!'!" # ( #!!- % $$ )!,!, '' #'.!*" ' #.!, # (... P, )'/1 ) ). ;, / ()*, #"/!. # )!' # (
6 #) )( (* #!. 3, ( #' "!' $$ )*!" # (,!*! (!!*!*!. 6 ) )!' 1 (.!' -!* '* #/ (*!*,!"*.!*/ #/ (* [66, 67, 68, 7, 81, 88, 91, 95, 11, 111], /1/ )! # (. +!" #. ( ) )! ) "! ( "!* ") )".! ) '1.!)'!*!* 1!* )(!.!* # ( [6, 7, 1, 73, 116].!*"!*,!,!.#( ( ).,, [89] "#!' )' ")!!, )(!.#( ( / ). a a a !. ;!' δ *,.) a a -.%! $$% a 3)(!" )!-!!! ' - [63]. &!'. ( #! $' 4 %!*! n,.) n ')!, '' (*.!(!, )!-1, ". 3, ( "# [63]!.!* # ( '!'' )( #!) )! */ ".
7 7 ') ", ) " ) '!'' - )* -)' )!*!, #(/' ") (. " ) (/ : )! '' (*, "'*, (# #(* ").!* '!'' )!* ' "# )!)'!*, "/1' #!* (*/,, '. "# ) )!.'!-* )),!*"/1 ".% (!!* [94 98]. )) '.!* # ( '" "!(!-', /1 )! ('!*.!*. )) ' ")( #( -!. ( < $%'!/# "- "('!*, ).'.!- -! #!. 3!* (!!* )!*/ ) n P( s) = a s, a a a, = n ax.) n!*' *!*. (.!, a!* $$%. " [5], (!* $$ )!' (! #! #-' (... $$%!.( #". #, - )!* "! (!*..% #!!!"% )!'/' #,!*, ")/1!* #
8 .. -) )!' )!*.!*"'!"!* )!' )!. 8 3, (!* )!,.! [7, 118], -!" #-' # (...!" #-'!*..,, [7] )!' $ )!- ") #! )!.' * ) n!, /1.. P. ), %, #"!, "' * ) )!' ")( *' (! '.!) *, (!!!!* )!' ( #!* /1!* %'!').% #!!!"%. )!'*' - ( (..., - *!*.! #- /!*, ( )( ")!*! (!"% #!* (!!* $$%. )!* # )!.' * (.!'!*!* $$ )!' (!.!(',.)!*!!*/!!! / )!*, )!.' )*!*! $$ )!!!* $, )!' [7]. 3, ( (..!(!* )!! #"'.!* $$%,!( $$ )!!*,! )'1 $$% (.!. &!'!(' ") "! ( #) "!.*!
9 ! /1 #". #( % ( % "/'!)/1 "!': */ (!#!**/. &!' #!) ")*!* )/!#!**!* )/ * (. 3) "!'.(* #!*,!-' )'!(,!'/ 1 */.! ϕ = arctgµ ( 1). 9 =>?@ 1 #!*!!"% ")!*!#!**/ 3)!* ) ( #.(* #!*,!-'!* ', )'1!!!* ' ( ). =>?@ #!*!!"% ")!* */ ( &!' ). #('!* )!#!* ϕ!* ) (
10 1 #), (# (.!!.!*!!* ', '1 '.! ϕ ( 3). =>?@ 3 #!* -!!!"% /.%, "/ 3 - *! */.#!. #) (*, ( $' b )' y = ± x,.! $$% a b µ = ± tgϕ = ±,.) a b!.#!, a x a y =.!.' a = η, ).#!!!, b 1 " 4. 4 ' #!* -!!!"%!) - *, ( 1/ (.!', #'!.( %
11 )/ -!# ). %. )!' - #( )( ). % )!'!*. )#' ")( ' ' [63, 93] ( # (. 11 +)( "' %, * "'. )' )!,55 ) 1 (' ).!#') [6]. * "' ). % "'!) ).! (!)!*!# ). ").!! '!''!).!#'.!#!* '!'' %, * "'. *,55. "' %, * "'. #!* 1. +)( ). % - #(* )!- #!-. 1. ' [6]. &!' )-' ").!' #).% #!!!"%!*. (.!!-* %!* #", " 5,.) < <.! [, ] a3 a a1 a a. ) 1 *,!* )!-!.*' ( ABCD,.(.! ϕ!* ', )'1 (" a #!!!"% )!' #(' )(. ). %
12 1 ')!- (!/ "!* ) #) (*!-!, "!-!' ' ). % :.! '.!' [15]. ")(!"!*,!* '!'' - ")( " )!'.!' [54]. ') #, '1!/, )!' ' ")( "!*"' # ) D-"#'.,, [9] )!' #(' # (!* "# ) )!', ' '.!* ) D-"#'. "!* "! '.% D-"#', '1' " '.!*, "!( #! # ( #/ "(' ". ) 1!* -!!*!* #(* #/ (*,.* ) "! (.!*". )) ")( (. ".!' )'!-/ #!!!"% (.! -! #!'!!. #", )!' '! ")( )!' "#. )) )!" #. (!*, - ) (. "!.!',./1 ") (!'. " ) )!.' "#* #-' #!!* ((...) /!*. &!'. #)!" #-' # (...
13 13 * '"* #" "!' ( (* (!#!**). &!' ' ")( #(' #. (!* )!.'!*"*! -, -! &-"!', '!!!!* (.!'. 3, ( 1 (.!'!* - $$, "!'/1 )*!" " ". &!'. "# )!)!."* ) ).!"% ;. )!.'!*"* ) MatLab, '/ '1 ' "!( #!'!) ")(. MatLab, )(.# ) '".', "!'/1 *. )% ), '' #( $!. A #!* * $$ #" $%, -!( %!" ##! MatLab. "') #! )!'!)!* %!. &!' $$ # MatLab, "'!..', (! ),!*"!* -!'* # ) '. " " "#. ) MatLab [5, 117] )!'!)' (.!'!) )!*. )!'!"!* «++» [117], )). ) ') ), : ).-#!(!"!*, "-* (. "!.!'!* )!*/, "-*.%!*"!. ") - %. '"!* ")( ")' %!".
14 !). )!' '! ")(!" "!*. 14 #$ # %# # )!'/: )!" #. (!* $$ )!' # (!; )!*-(. " - -.!', #(/1. "! (!/#"('!* ; )!*-(. " &-.!' #(/1. )( ) ). %!/#"('!* ; ) % -! #!!-'!/ (!-'! )!' #('. ' "! (. &' (&) *##('+ #!'/: "# ) Matlab!(!.!).!" #. ( ; "# ) Matlab!(!.!). (. "! -, -, &-.!' )!',./1 # (!'; "#!). RASIS, ( - *!*"', ( )!. ) ) )!' ' ( ")(!', - #(' ) /1 %!* ;
15 15! "!'!!/.! "-*!('. "). "(' % #!!-'!/.,-* ) -'.. "!* ).!)' - ( *', ".!-' )% # )!)!* #-)!*!)/1 $%' ": III, V VI ' (-(' $%' ),!) ( «!)-* $%!.»,.., ; XI, XII XIII -))' (-(' $%' ),!) ( «!.»,.., )% # #! 1 # 4 * -!, ) +: 1.,.. +!" " # (.!' ) Matlab //.. ),.+.,,.. 3' // "'.!(., B ,..!*-( " #. (*/. /.. ),.+., //!)-* $%!.: # ) V (-( $% ),!) (., 7 $!' 1 7. :, ,..!*-( " #. "!' (. /.. ),.+., //!.: ) XIII -)) (-( $%
16 16 ),!) ( -, :, !)!*! '. /.. ),.. 3',.. $ //!.: ) XII -)) (- ( $% )!) (,, :, ,.. )! -! #!!-' )/1!/ " (! /.. ),.+., // "'.!(., B !). )!'!" "!* //!)-* $%!.: # ) VI (-( $% ),!) (, 6 8 $!' 8. : #,$, ,.. ( "!..!'!*. "!' ( /.. ),.+.,,.. 3' // "'.!(., B "1 #!!!"% )/1!/!* (.!' ") ( /.. ),.+.,,.. 3' // "'.!(., B ,..!' # (!*.!. /.. ),.+., // «!)-* $%!.» III ' (-
17 17 (' $%' )., $!' 5.. : ")-, ,..!' # (! $$ )!*/. /.. ),.+., //!.: ) XI -)) (- ( $% )!) (<.....,, 8 1!' 5.. : ")-, '&' -/ -'.. &%' " )', '.!, "!/('!,!/(/ ; )- 131 (/ %., 59 6 #!%.
18 18! 1. '-1#,' (& ### & #'+#, # # &#$,(&(' C)!* "!*, "!'/1!)* #/ (*!* )!*/,!( #.. [114]. * (!!* )!*/ ): n P( s) = as, a a a, (.1) =.) a -!* $$%, a -!* "( a, a -.!* "(. (!,! " "( $$%, ()/1' () - "(' ) ) P( s) = a + a s + a s + a s +...; P ( s) = a + a s + a s + a s +...; P ( s) = a + a s + a s + a s +...; P ( s) = a + a s + a s + a s (.) ;!!(! "!. "(!)/1 #": )!' # (!*. #) )(, (#! #! ( [116]. *!!* $$%. #"/ (.., )!'/1 # '.!*.!!!), )-1 1 #.
19 (... )!'! '!* $$% "# (.. P )!/# ( P!* V, = 1, )!'/' -':.) a a = a + a, = 1, n, (.3) ( a a ) a ( a a ), (.4) 1 -.!*., a. "( V. * M(s) N(s) ) )!, )!' )' ), '" ) #. ) ' #.!. )!' # )( ) γ M ( s) + (1 γ ) N( s),.) γ 1. )!!)/1' [5]: * ") (.. P..) )!' # (!, ").. P #) )( (*. #!. &' " #. "!' $$ '* #/ (*,! (! )! $$%! ()( * #
20 !). )!!, (! "(!* ()- )!' =5 - * # #!*. #D (!. 1 =8 #!), ( '"!* #!!)' "- 1' (! ' #. " ' #! #-' (... (. 1.1),!) () ), ( )!'!" # ( )( *!*. 1 #, #"!'/.% #!!!"%!. ) )!'. #) * " )!'* 1 # /1 ' $%!! )!. $$%. #"( #-' V (... U. 1. )! #- P!/!*,!-'-!!"/' ) #!',.( #" # P. 1. #- (...
21 1 #!*.! #"( R, = 1,,.)!(!* $$%, '). #" # #"( (" P #" )! 1.3. RS " # '. # RS RS 1 RS 3 R 3 R 1 R 1.3 #- # (... )!/.. P!/#'..* '!'' '.!*! "' )!* $$% " ).,!*.! #"( G ( 1.4), = 1,, j = 1,, j, ') j. #". #"( (" GS j.
22 U V 1.4 #-. (... #"(.! ) ". "! U j j ( 1.5)., )!'/1.! ) #, #"( (" E j. 1.5.! ) # 1.. &!' #-' : P φ S,.) S - (.1), #) *, '"/1 ) ( P n
23 3 '! (.1). )!'!('!* )! - #*,!( "!* ) (.1) -' (.3) n P( s) + a s =. (.5) = (.5) " #-' #!* R P( s) + a s =. (.6) * (.6) '!'' ( )( # '"*/..) )(' $%'! " )!' # #) * ) W as ( a, s) = (.7) P( s) +!"' (.6) (.7) "%..).$, ", ( " a! (.3) )-'!/ $% (.7), /1 ) % ). %.).$..) )!' R, ' (.6) R. #"/ $.. φ S #) )! -': φ ( R ) = RS, : P φ ( V ) = U.!)!*,.! # #!!!"% (.1), #D) '!'' # ' S, #).( RS )(!*.).$. ) "!' * S.(!*.).$. (.1) " #-'!. G j '!*.( j as a js P s ( ). + + = (.8)
24 4 * ) " ' (.8) ) s = α + jβ, r 1, n. )!'' (.8) ) s r )!'' 1/ / (,!( )! )' a a j : j a Re( α + jβ ) + a j Re( α + jβ ) + k p + Re ak ( α + jβ ) + ap( α + jβ ) = ; k p j a I( α + jβ ) + a j I( α + jβ ) + k p + I ak ( α + jβ ) + ap( α + jβ ) =. k p &!' (.9)!)/1 )!('. r (.9) 1. ' " ) a = a, a j = a.!)!*, P G j. j φ 1 ( s ) = P,.) P = ( a, a ), ( r. '!(/' ' -!. ".!), (! G j 1 #' '' t ( ), '!/# " (.9), ( φ 1 ( s ) = t. r j 1.6 #-. (... # '
25 5 (' # #. #-'.% #! S r!!"%. '! s r, * φ 1 ( s ) = P, ( r 1 ( ) φ S = G (.1) r P R j.. ) P '!'/' ) (.9), (" RS )' *, )'1' s r.!)!*,! (.1).% /1' #" # G j. S r '!'/' * φ 1 ( sr ) = t t G j = PP 1 (( P 1 P )!- # G j ).!)!*, PP 1 φ ( ) = sr (" s r (". # "! #"( U ) ) -.).$!* $$%, #"/1 ' t #..! ) -) U..).$.! ) /1' U!- -) )' /1' - # '.!)!*,!(! (.1).% S r )' /1' #" ) # #", G j. RS. )*.% #!!!"% ' (.1) %!, ((, '* U. " #.( (#"( GRS ), #".( # ( GR ), #", )!-1 GR,.( "! ( GU ). 1.7 ) #-' (... '!*!/!*. 1.7 " #!* S r,.% '!'/' /1' #" # 1.7#.( /1' #" # P. P,
26 6 ) #) 1.7 #"'.% #!!!"% -, (!*. (.! P 1 ) # GR )!' #!!!"%!. * φ ( V ) = s1, s1 = α1 + jβ1, φ ( V ) = s, 1 ( ) s φ S1 = P, = α + jβ, ( s 1 '!''.( )!' S 1 s )!' S φ 1 ( S ) = P. &, ( ) "!* $$% a " " V ) " /.%, )!'/!' (.3) (.4). "!* - "*', ( s 1 S 1, s S.!( φ 1 ( s ) 1 P, φ 1 ( s ) P, (
27 ( 1/ s 1 s ). #".! * 7 ) #- V * GU, - '!'/' ). #-'. ". - )!* ), ( )!' φ S 1 : P ) #. GR,!'/1.( # " ).!"!), (! U Sr, GRS. )*.% S r!*/, ((, (!)!( '!'' "!* (' "! U. )! # #!' S r. GR #) (* "-!( U (), ( #)! U S '!'' ' t!' P. 3, (! ) -!#. 1 '' t,!!/#. (' P,!!!*.., - #) /1' '' t. #)! U Sr '!''!( ' t ' # ) "!. P, /1 ) #1/.!! C. #! ",! 1' ' t $$% a j r a #-' U ( α; jβ ) '!''! ' "* (.9). ; "*,! 1/ "(' α β,!'/'
28 ( j ) ( j ) 8 ( j j ) ( j j ) Re ( α + β ) Re ( α + β ) = = I ( α + β ) I ( α + β ) ( α + β ) + p ( α + β ) Re ak ( j ) a ( j ) k p = I ak ( j ) a ( j ) k p k p ( α + β ) + p ( α + β ) k p. (.11) (), ( α β )!- '!'*' '!( " (.11)! j j Re (( α + jβ ) ) I (( α + jβ ) ) Re (( α + jβ ) ) I (( α + jβ ) ) = ; j k p Re (( α + jβ ) ) I ak (( α + jβ ) ) + ap (( α + jβ ) ) k p j k p I (( α + jβ ) ) Re ak (( α + jβ ) ) + ap (( α + jβ ) ) =. k p (.1) 3, ( )!' (.! S r!./'!!! "- "! U / ) α < β. "!*!" (.1)!(!)/1 -). '1#. "! U (' # 1/!* #-'!., #" $$%! (.1) ), )!'/1!/ j 3. (.13) "&%'+('. )! (.1) #/ ) α + jβ = s. $!.( )! #" (.1) ) b b s = s (cos( bϕ ) + jsn( bϕ )) + j s (cos( ϕ )sn( jϕ ) cos( jϕ )sn( ϕ )) = ; j+ z az s (cos( jϕ )sn( zϕ ) cos( zϕ )sn( jϕ )) =, z (.14)
29 .) z = k p. (.14) ) U * '!'/'.! φ )!* s. (', ( α, β, -!*"' "..( $%, ' (.14) - * 9 sn(( j ) ϕ) = ; j+ z az s sn(( z j) ϕ) =. z (.15) (), (!-!' α < β ' (.15) )!- )!'* ϕ, ϕ 9.!( (.15) #) * '!* j 3. ; ' )!'!! )!'/' - π ϕ = π, j = 3,4,5... j ) "(' ϕ (.15) "!' )!* s,,, )!* ) U!!. #", #)! U S '!''!( (.1)!* $$% ), )!'/1 (.13). r 1.3. )! #-' P )!'!(' $$ )!,.)!* '!'/'!* ($"(),! )'1 $$% (.!. * (! ): = ( ) ( ) D( s) = T A ( s) + B s =, T T T, (.16)
30 3 k k j j.) A ( s) = ( a, js ), B( s) = ( bjs ). j= : j= &!' #-' φ P S!*"!)/1 -: k ( ) D ( s) + T A ( s) =, (.17) =.) D ( s )! "('!*, /1 (.... # P #)!*"* ) #"( R,.) ), = 1,, ) V, " T # '' T. (.17) " #-' # R!/!* : ( ) ( ) D s + T A s = (.18) - (.7) )!'!(' $$ )! #) * ): " W ( T, s) D A ( s) ( s) T = (.19) T (.18), '*!/ $% (.19)!', #"/ )(!*.).$. /#'.* )!* T P '!'' '.!*! "' (.16) " #-'!. T j " ) V. ( ) ( ) ( ) j j G j : D s + T A s + T A s = (.) * sr = α + jβ, r 1, n. )!'' (.) ) s r,!( )! )' T T j : ( ) ( ( )) ( ( α β )) ( ( α β )) ( ( )) ( ( α β )) ( α β ) T Re A + j + Tj Re Aj + j + Re D s = ; T I A + j + Tj I Aj + j + I D s =. (.1)
31 31 &!' (.1), )!'!('!* )! $$%!, - )!(': T = T, * 1. T j = T.!)!*, * j )!-! G j. 1 * φ * * * ( sr ) = P, P ( T, Tj ) =, ( (.. ".!), (! G j 1 '' t, '!/# " 1 (.1), ( ϕ ( s r ) = t.!. #- P!(!* )! #- # * P P )!'! $$ )!*/ - )"*, ( #. - )*.%!*/, ((, '* )!!!(' * U. * U. #! ",! '!''! ' "* (1.8). ; "*,! 1/ α β, (!'/' : ( ) ( ) ( ) ( ) ( D ( α + jβ )) ( ) Re A Re Re α + jβ A α + jβ = = I A α + jβ I A α + jβ I D α + jβ ( ) (.) &!' #) *!(/ " (.) )! : ( ) ( j α β ) ( ( α β )) ( Aj ( α jβ )) I( D ( α jβ )) ( Aj ( α jβ )) D ( α jβ ) ( A ( α jβ )) I Aj ( α jβ ) A ( j ) A j Re + + Re + I + = ; Re + + I + Re + =. (.3) ( -). " (.3) '!'/'! ( β #" #). (!.! (.3) ' β, #-'.
32 !!!* ( P 3 * U. (.3) )!' (!* "(, (.% /1' #. S r ' " 1.4. ).! ) #"(', ' # )..).$ )!" #-' /!* (...!*. (.! ). )!:!* $$. "!*!"!, ( #".( #.. # )!. )*.% #!!!"%!*.! %!, ((, '* # "! * U. )!' # )! $!'!(' * U.% #!!!"%. ", ( "- ( # #) (*! "..(. #.!*. (.!. ; #) )!' ' #!!!"% %!*/ )!*.!" #. (!*.
33 33!. # % -('# &(' #'+#. ( (' '' (&,# ).1. )!!' )!-. ).! ) U.% R "!. S r (.1). &!' U. #"(.! (" Θ.. - " ' $" [83], ". )!' U.! D ( s ) *, A ( s ) * z,.) T )' $! Θ!( * T n z Θ = 18 Θ + Θ, (.4) k l k= 1 l= 1.) Θ k n z k l k= 1 l= 1 (.5) Θ = Θ + Θ, Θ l -.! -) 1 */,! " U k-!/ l-!/ $% (1.6).!" "-!' )-' s r " U, ' #! #-'. P #1 V (.1). -) "! )-' s r )!'' E = E + E,.) j j E - #, ") E j Θ Θ j [98]..!!!.#, Ej ) " U!- #". E.! E j Ψ, ( Ψ 18. j j
34 34 Θ3 Θ Θ1.1 #- (... " GU )' ).( #, /1 #"/.(.! GΨ j, -!-1 )" [,18 ].!(!*.! Ψ j,,!)!*, )!'/1 # )!- )!-* GΨ j. " )! (".! ) #, (!-!* 1!.!/ C V V Θ Θ 1 < 18 (.6) #", (.6) - * )!-* P.% #! '. ) S r!!"%!.. " "-!-' RS ".(.. "!!-. S r (.#). GU (.) " "!,
35 35 Θ3 Θ Θ1 Θ3 Θ Θ1.!- ) RS ". "!..!" "- '.! ) ) # ( RS RS j ) " ).( "! ).( # */ '!'/' # ). P. * * U S r. " T k # GRS k (), ( #" S r, '" RS RS j GR k * s r )-' GRS k.. "'*'.! ) " s r s RS s RS j. ), * U S r, s RS s RS j /'. )
36 s r ). 36 GU ). #) '*'!)!**!( s Θ j (.3). ##1'!( #!* (! #, - "!/(*, ( ).( "! "('.! ) #)!.*' )!)!*. s Θ Θ Θ Θ1 Θ1 Θ Θ1 Θ1 Θ.3!- ) * ). RS ". "! * * U S r,.) s RS s RS j. *' * U.! " T k " %' sr * = U )! * U ) " S r,
37 ' ( 37 GRS k "' s Θ s Θ j.!( ).( "! #) '*'!)!**.! ) # (.3#).! $" )!'.( #!" "- (' # "! "#!..( # "% $$ )!. P )!'!(' * (.1) $$ )! / * )!' ) ". P # #1 ( U S r )..)! " GU )'1' ". GRS, ().( # */ #), )!* " -).! ).! ) " GRS #) * (#!*)., "'!(.! Θ, = 1, )!'!/#..(.. "!!- ') "' (#'), - )!*!)!** RS, = 1,, = 1,.(/1 #!*!!"%!. '. ;!)!* ')( # # P - ".( #..( "!/(*, ( " #, '"/1 P, ( ) -) /!-.( "('!*.! ' # )!' )!* (.1), #! S r "-!( * U.!( #) - "! GU, " )!'. )!*!)!** Θ /1/!)!** # P.! )-!( #" # () #!)/1 " -' #"!* T T j )!' (.1),
38 .( #!(!)!/(* #. G j. 38 #",!. #.!" )!' )!' #. (!* )!!)/1 : 1. ) (.! ) (.16).. )! ) P, /1.( "('!*. 3. (.1) ) " P )!'!'!*,.( #. *'. 4. -) (1.1).(. "!!!"%. * U #! 5.,(' #' "%' P.! ) # ".(.. "! ( "!* #-.(. #. /!*. 7. +!"!-' #!!!"%!*.! )! #. (. &, (!* )' $$. (. '!* */!, 1.!( (! #) * ): ( ) * ( ) ( ) P( s) = B s + T A s, (.7) = k 1 j * j.) B( s) = ( bjs ), A ( s) = ( a, js ), T T T j= j= < <.
39 39! B( s ) - #*!/#.!)!*, )!' )!* (.7), "(, #! S r "-!( U*.! (.! $$ )!*/ #) #- 1 (.4). Θ3 Θ 1 Θ.4!-'! (.! $$ )!*/!* "(!!*, 1 #",!! )( $% #"/!)!** s 1 >s > >s, #) *!)!**.! ) Θ 1 >Θ > >Θ n. "*.! )!'!)!*.) * 18º,!)!*, /1 "(' T "! '!''.(..! ' $" (.8) (.9), "*.! ) ", #".( "('!* $$% (!*!!*), #) * 18º,..!*.!!' )!/ º (!(,!!* ' E),!* 18º (!(,!!* '!/ E)..! ) ".( (.5)
40 4 T 1 T T 4 T 3 T T T 4 T 1 T 3 T.5 "#-'.! ) ".(!)!* "''.! ) #!*!- ')!(' (*'),!(.( (.6), )!'/1!* # )!'. T T T T 4 T 1 T 3 T 1 T T 4 3 T 4 T 1 T 3 T T T T T 4 T 1 T 3 T T T 3 T 3 T T T T 4 T 4 T 4 T 1 T 1 T 1 T T 3 T.6.! ) ".( #!%, #) ) ') "' ).!!' #!% 1!)/1: "/' ) )! $$%, ('!/#. )! a j. -)!)/1 /
41 ))1 "'' )!!* ). $$% ( (), ('.).!!(' + 1 )!,!-, " )! '' - '). "!* #!% #"' 41 /!- )!. P, ) ) ) #!% "/' ) ). # P, - "!/(*, ( )' #!% ") " # " #, '"/1 P. ( #!%.1 ) 1 )!'!*. (.! *. '), $$%. '!'/'!*. #!%.1 1 )!' (.! $$ )!*/ *. ') (!*!* $$%, )%) ) 1 T T 3 T T 1 T 4 T T 3 T T 1 T 4 3 T T 3 T T 1 T 4 4 T T 3 T T 1 T 4 5 T T 3 T T 1 T 4 6 T T 3 T T 1 T 4 7 T T 3 T T 1 T 4 8 T T T 3 T 1 T 4 9 T T 3 T T 1 T 4 1 T T 3 T T T 1 4
42 4 #",!. )!'.% #!!!"%!!* )!!)/1 : 1. ) (.! ) (.7).. )! )! (.!. 3. C!)!* )! (.! ') "' (#'). 4. C!* "('!, " ') "' (#')!. 5. C #.!)!* ".( "(! '), " #- #. /!*. 7. +!"!-' #!!!"%!*.! )! #. (. &!'!" $$ "#!. #! ) ' ( #-' #!* (! "!(!(!/ -) # "!(!(!* $$%. "!* ) )! #!%..3.
43 43 #!%.!*!" $$!. -)'!*. #.!* )! / #!*!!* )!*/ ', -) )-!(!( #' $-!* ( t # /t n!* ( $$% # (t # ) t # /t n (t n ) 4 5,55,,75 4 1,75,71, ,7 1,45,5517, ,3,83, ,3,35 3, ,6 1,3 3, ,8 3,1 3,4838 3, ,4 5,9 3, ,6, ,6 5, ,3 4,7 5,885 5, ,9 8,9 6,56 3* (.% #-'!*. (.! $$ )!*/ (#'!* # ) )!.7.
44 44.7 ' (.% #-'!* )!*/ (#'!* ) " ).!" $$ "#.. ) MATLAB!. (.% (.!!* )!*/ ), ( * (.% #-' ".(.!(!(!* $$%, / #. ( -)'!*. #. 6!* $$% ")'' # ( # ( # ) 6 ".!( ( "#' # (.%!(' %!* ' $$%, "'1!(!* $$% # ).
45 45 #!%.3!*!" $$!. -)'!*. #. $$ )! / #!*! $$ )!*/ ',!( )-!(- -)!* #' $ ( t # /t n $- -( #!* $% (t # ) t # /t n (t n ) 4 5,8,18 4,4444 4,, , 1,3 4 4, , ,7, 8,5 5 5,5,6 9, ,7 1,6 7,9375 8, ,8 3, ,8,5 15, 6 14,8,9 16, ,5, 15, , ,9 4,1 16,3171 3* (.% #-'!*. (.! $$ )!*/ (#'!* # ) )!.8.
46 46.8 ' (.% #-'! $$ )!*/ (#'!* ) " ).!" $$ "#.. ) MATLAB!. (.% (.! $$ )!*/ ), ( * (.% #-' ".(.!(!(!* $$%, / #. ( -)'!*. #. 6!* $$% ")'' # ( # ( # ) #!"!* 16 ".!( ( "#' # (.%!(' %!* ' $$%, "'1!(!* $$% # )..3. " [7], (!* )!!#!** * ( (.!' )!'' (...!*. (.!. )!(
47 !(!* $$%!( ".(., ( )! ")!*!# )!. %) )!'!" "! (!*. ).! "#' ) )!'!*, ).( #..( "! 47 )!* # (!*. 3 '.! ) # " " $$% $! * a.) a..! Θ!( n g= 1, a )' Θ = 18 Θ + Θ (.8) n g= 1 g Θ = Θ + Θ, (.9) Θ g Θ.! -) 1 */,! " U g-!/!' $% (.13), /1 ) ) (; j ). [111] (.8) (.9)!(!)/1! #-' g P.% #!: U #) )!-*.% #!!!"% ',! "% -)!*!*.! Θ * 18.). 3, (,.! (.8) (.9),.! Θ * #1'!'/1' n Θ, '!'!!'.(.!-' U. g= 1 g ) '.! (!( a $! Θ /.! Φ, Φ = π + Θ (.3),
48 48 * a $! Φ = Θ (.31) ) )( E )'1 " (! ) ).! Φ.! ")* "( Θ,,.! (.3) (.31),.! -). $$%!. )!'' #" (!' /1..!. (), ( "!-/ E - )* "! U. #) )!-*.% #!,! E!* $$% #)!.*'.!, * 18.). #!.!') *!.!' -.( #, ' E. )...9 (*'!* $$% " "-!- E )!'!('.(. 3, ( " )! $$%!*.!*! # "!' (* /1 18.). ; ) "-*, # ) ",!-*!* -! #".!)!*, # -!. $* )! $$%.( P.!" "-.!-' E - )!*!)/1 -):! )!' -). " $$% *. ). (.3) (.31) )!-,!/#!)!*!- #)!-*.!, * π,,!)!*, )!'* ).( P (.1).
49 49 #", ")'! 1' #' ( (!*. -) ", -!(* # " "-.( P.! $ # $ " " $! #.9 &.!-'.1.(.4. &!' )!'!. # (!!) (*!.% #!!!"% : # RS. )*.% #!!*/, ((, '* )! (. (!).!(', (
50 #., #" $$% a 5!(, )'1 " (! ) ).! a j, /' π ϕ = π. j U,.( ), ) (" #!(. *' )..!)!*, #) ( ). $ $ #.( P. &!'. )!.' )!* #!(,!-1 ").! γ..! π #!(, #! ", )'' $! ϕ = π, n k k =,1,,..., n.!-' #!( ".11.!.! γ "). )-' #!(, $.(!) )* #!/# Θ " )" π π < Θ < π. (.3) n! - γ )- #!(, #)!'* "/ %) Θ " (.3) " )!!*)" π π π < Θ < π, k =,1,,..., kax, n k + 1 n k + ax (.33) π π γ < Θ < π. (.34) n k + 1
51 51.11!-' #!(! -.( P '!'' #D) -,!( "!( "(' Θ.!(.( P )!'' $! k ( n ). = ' & 3 ## # % -('# &(' ( ('., #'+#4 #,##('. ).!" "#!)/1' %) $' #.( P. 1. &!' ").! γ (!!* $$% )!*.! #!(,!-1 AOD.. 3)* "(.! Θ " )" (.3). 3.. ). )!'!* $$% # )! *!(, )'1 " (! ) ).! (.33) (.34). 4.. )., ('!/#.!(, )!*!)!**!(,!- ) " ). )-!-!*! ( (!).
52 5. " /1!( )! $$% 5 $* ).( P. 6.!)!* "'' (!*!(, * %).4,5!(* ).( P. π 7.! π > π γ, * ) '. 3,4,5,6 "('.! Θ n " )" (.33) (.34). 8. -)!)/1 Θ #) "!(/1' #.( #* )#!'* )..5..,# ) # # -# 3'. 1. * ")!!* )!*/ [ 6;8] [ 14;18] [ 9,5;1,5] 3 s s s #) )!*!* # (...!*. (.!. )!.( # )!' P 3, )- 1 #. #- ) ". V 1 ) a = 6, a 1 = 14, a = 9,5 '!'' "! U1 = (,45 + j1,61)..! ) " U 1 #!* $$% /!)/1 "(': U1 Θ a = 54, U1 Θ a1 = 17, U1 Θ a = 31. )!'!''! (.6), # )./ V,!(/1/' ) a = 1,5. / "! U = (,31+ j1,5).! U Θ a = 57, Θ =, U a1 11 Θ =.!(! (.6) U a 141!'', * U '!''.( "!.!* (.3)!'' )!' ) )!* $$%, #- P 3 #
53 "!..( # " V )!'' " $$% $" U U Θ a1< a 53 Θ < Θ U a.!(. " 6 # ).1,.)! "!!*. $$% "(.!(,! " *. #% & "% ) "& % # &.1!*. #.. *!!* )!*/ D( s) a s a s a s a a [ 1; ]. = + + +,.) a [ ], a [ ], [ ] ,7;,1,3;,45 a1 1,1;1,5, #) )!*!* #!*. )!( P 4 #" (*'!* $$% )- 3 #. "!* # V ) a 3 =,7, a =,45, a 1 = 1,1, a = 1!, ( '!''.(.! ) # " #" U U U U U (,7; j1,4) / "(': Θ 3 = 89, Θ = 13, Θ 1 = 154, Θ = 17. a )!'/ #) )!' )!* "% P 4 $" U U U U Θ a < Θ a3 < Θ a< Θ a1. &!' ").!! (.3)!'' )!' ) $$% a 3 a. (.!( a a a
54 $".13.( # 54, )-1!* 1 #.. P 4..13!*. #. &!' "#.!. # "%,!( 1, # #! #- /!*. - ' P 3 P 4. #! #- (.. $$%. "!* #" #!*/!.% #!!!"% /1!*!, ( )!* ## )!-.!...,# ) -('# &('. 3. * ")!!* )!*/ D( s) a s a s a s a = + + +,.) a [ ], a [ ], [ ] ,7;,9,45;,49 a1 1,1;1,5, a [,1;,7 ]. #) %*. #/ (*.! γ = 7. #!%.4 ).( P 4,!( '. ).,.! "# ). '"/1 # #-
55 // /!!* ).% #!!!"%!-'- (..14). ) ".14, ' #!*!. '!*. (.!!-.! γ 4 = 6.!)!*, 55 ")!* (! #!) # (*/.! γ = 7. #!%.4 1 P 4 ) 1 a a a 1 a 3 3 a a a 1 a a 1 a a 3 a a a 1 a a 1 a a 3 a a 3 6 a a 1 a a 3 7 a 8 a a 1 a a 3 a a 1 a 3
56 56.14 #!*!!"%!*. (.! 4. ( #!"%.!, '1/ "..!,!), )(.!'! '-'. (! ) a s + a s + a s + a =, ) a3 = lj, a = J χ + χr (1 + Tk k ), 1 a = Jc + cr + k k r χ + Tc, 1 1 ( ) a = ck1k r,.", l )!..!, J %!), χ )!* $$% )$'..!, c )!*' -*..!, r ) ).!), k1, k $$%!'!( ( ) $$% )( -.!', T '' -.!'.
57 "(': 57 ' ##1. #D!' / J =.5', 4 χ = 1 1, c 4 = 1, r.1 =..!* ") )": [ 5,5] ', l [ 5,1], [ ] k1 5,5..!' k = 1, T =,1 )! )!' ) "(!*. #) "# %)!" #.!* ( *.(!*.).$ )!' ) #!"%! '-' )!* )!* "(' "! (. ) (! ) (.7): 1 l A1 ( s) + A ( s) + k1 A3 ( s) + A4 ( s) =,.) A ( s) = ck r + ( ck Tr + χk r ) s + χtk r s, 3 A ( s) 1 = Js 3 ; ( ) ( χ ) A s c χs r s ( ) = ( + ). 4 A s = J c + s s ; (.. #" '!* )- 8 : V (5;5;5), V (5;5;5), V (5;5;5), 1 3 V (5;5;5), V (5;1;5), V (5;1;5), V (5;1;5), V (5;1;5),.) ' ) ' l, *' k 1. &!' $% ) (.19) (... )! '!/ (3,34+j3,88, 3,34 j3,88, 1,53), - #! (! ' A ( s ) ; A ( s ) : 1 ; A ( ) 3 s : 1).&!'. "! 3,34+j3,88 (.4), (.5) ) Θ = 34, V1 V1 Θ l = 5, Θ 1 = 86..! )! (.6)!'',!)!*, V 1 )!- #., V1 V1 V1 l k1 V1 k Θ < Θ < Θ,,!)' "# ), "!)!** "'!* " V 1 (...: l k1 l k1 l. " ().( #!)/1 :
58 V1 V5 V6 V7 V4 V3 V1. #- //!!* )!,.)!* 1 #.(.!*...).$ #!*!!"%!*. (.!!!"%!* - %*.!*/ (*:!*' * (,35,!*'!#!** 3,8.). 5. * (! $$ )!*/ ): D s = s + s a + a + a + a + + a + a + a +, 4 ( ) 1 ( ) ) a 1 = [ ;5], a = [ ;5], a 3 = [ ;5], 4 [ ;5] a =. #) )!*!* #, *.).$.! ) (!*
59 % ( (!*/!#!**!*/ * (). a 1:, 59 )! )!.!: a :,5, a 3:,5, a 4 : ;!)!*, '* )!!* $$% #)!)/1!)!*: a 4, a, a 1, a 3, (' ) ".( ( (!#!* "('!* $$%,!#!*). "!* ") (!( #, )! !* #...).$ )!!* :!*'!#!** 1,15.),!*' * (,1.
60 6.6. ).! )!!' )!- #!*. (.!.( #!* $$ )!'. $" ', )!!' )!'.(.. "! )!' )!. "# ) )!'.(. #. )!'!*. (.! $$ )!*/ ( #!(. ", (!!* )'.!!* */, 1, "- 1 #!(!!!. )!' -)'.(. #. )( "* )! " ') "' (#')!)!* ".%!*, ('!* "(, )!*. "# ) )!'.( "! )!'!* )!*/. ", ( )!' -)' "! #) "- #!( )!* #.( )!' -)., #".!(. #.( #)! # ). ) ') (!,.!')!!//1 ##* "# )!" #. (!*.
61 61! 3. ' (& 4 ( #'% )' #'+#. ( (' '' (&,# ) 3.1.!- - ' (.!' (+) #D (* ( #D!' %!% "'/'! " " ". )!' "!* + " ), "# )!' #D ', '" #!* )'. /, )!' %!!( #" ))!* ". )..).$. &!'!('!* + ) %. "!' ( (!* */ ( η!*!#!**/ µ ) #), (# (.!!* +!.!*!!* ', '1 ' η,.! ϕ, ϕ = arctg( µ ). 3)( "!* (.!'!!"%!/!* + #!,!/# "- "('!* #D!'. + -.!', )!/ : 3.1 (.!' * +!* )!*/:
62 .!': 6 *!.!' )(/ $%/ - P ( ),.) K * -.!', )(' $%' #D!' ):.) A( s) = ( as ), = W n B( s) = b s, W s = K (.35) ( A( s) s =, (.36) B( s) ( ) b b b. j j j j j j= #) )!* -.!', #(/1!- #!!*. (.! ") (!/# "('!* #D!'. #!* "- "(!*-)! #-'!/!* ) #!!!"%!-'- " 1,.)!!"/' 1 ( 3.). 3. #- (... P n
63 63!* (! - #* " ): f ( s) = B( s) + KA( s) = (.37) $$%! (.37), ) " ) *, #"/ '.!*.!!!) /1 n P, 1 n # n. #) "#*!. )!'! K,! (.37)!./' #!,.!) (*, (,.! [94],!*'!#!**!*/ * (!* + )!''.. P. &!' '! ")( )!./'!)/1 : 1. )!* "-.( P, #-/1'.% #!,.. &!' -) ) )!* "(' *. K, /1' *..).$.%,. 3. &!' -).( )!*! ),..).$ #) )*' #!,. 4. &!'.( )!* (' )! ),! (.37)!./' ") #!,. &!'!"%.!*"' $" '..).$ [94] )!.! )..).$ " $$% )!' '. ).. " [11], ( )!'.( "% -)!*!*.! )!- * 18. [11] -!, (,.( ) #!!,. *' ). #!. ; #! ")!'/' #!(, )'1
64 " (! ) ).!: 64 π l ϕ =,.) l =,1,,..., z = 1,,3,..., n. " z!(!) #*,!-,.(..!!*!#!*. &!!) #* "!*.! -)!(,.! [11], )!' a a * / )..! Θ!-. 3 #) #* #%,!-1.! 18, #", )!* ).(. &!'!"%. '! ")(!*"' "..).$ )(- ; (,;) [11]:.) E( δ, ω ) = Re( B( s)), F( δ, ω ) = I( B( s)), P( δ, ω ) = Re( A( s)), R( δ, ω ) = I( A( s)), F( δ, ω) P( δ, ω) E( δ, ω) R( δ, ω) =, (.38) δ ω 1 ( ', )!-1.,;. )!'' (.38) '.%,, )!'/' "(' ω, ) ( #.%,. &!' )!*. -)' "( ) #)!*"*' -: K = E( δ, ω) P( δ, ω) + F( δ, ω) R( δ, ω). P ( δ, ω) + R ( δ, ω) (.39) )!'' (3.5)!( )!* "(' ω,!( "(' ), ) ( #.% #!,. * ) "( ) " )! )!'! ),! (.37)!-,.
65 65 ( ) (' )! ), )!'/1 -) " "-.(. ' & ( #'% -)': )!) "# )!*-(. " -.!',!/(/1'!)/1 : 1. 3) # "! ( (!* ) (!* )!#!*!* ).. -) "-.. P, #-/1'.% #!. 3. )! )!' -) ).( -' (.39), ( (' ") #!, */..).$. 4. )! ) ) "( " )! (.37)! "( *. K,..).$ )'' ") #!. 5. -) (' ).3! K )!.! K,!!./' ") #! )!'.(. &!' (. ' "# ) )!-.!. #! "#!-. MATLAB, )/1 1 $$ )!' "!* + ; !-!- (.!', )!/ 3.3.
66 66.!': 3.3 (.!' *!.!' )(/ $%/ - W.) K, K.!', * + P K s + K = (.4) s * + ( s), )(' $%' #D!' ):.) A( s) = ( as ), = W ( n B( s) = b s, A( s) s =, (.41) B( s) ( ) b b b. j j j j j j=.)!* (! - #* " ): ( K K s) A( s) s B( s). + + = (.4) + * #) )!* -.!', #(/1!- #!!*. (.! "), ( 3.)!/# "('!* #D!'. )!*! (.4) ) k c s =, (.43) =.) $$% c k. '!'*' $%'!* #D!'.!'.!* $$% c #"/ (..,. )!'/' "('.
67 67 "..).$ ", (! *!- 1,.! )..).$ ". '!'/! 18. (), ( )!'., (# 1 *!*.! ).!'! "!/#!* $$%, #), (#.! ) $$%!'! 18. #!* $$%, #( ) #, )!''!)/1. -)': '1# 1.!!* $$%! ") ()/1' )! cc1 cc3, ('!*. )!' c, ) # $$% )!' 1!/,.! ).).$ ".!* $$%!'/ 18. "&%'+('. " $"..).$ ", (.! ) " '!( $!:.) n Θ = 18 Θ + Θ, g= 1 g c - (.44) Θ g Θ.! -) 1 */,! " ' g-!/!' $%. *! (.44) 1 * S*..) )!'!/#!-'- )!'!/#. 1. ',!-1! S*,..).$ - "!/(*,( Θ 1 + Θ = 36, Θ 3 = ( 3.4). P P P
68 68 3.4!-'!)!*,.! ) " ' S*!( $!: *, c - Θ = 18 + Θ (.45) Θ = Θ (.46) #",!!*! #) * ()/1' )! $$% cc1 cc3,.! ) " #" /1 # (... P #) 18. ). -)' - )!* ), (!*' * (!* - #* ")!* ', )'1 (" 1 *, /1 ()/1' )! $$%!*.!. *!*' * ( ")' s* = α *. ) $%/ #! (.43), ")' ()/1' "(' b "( s* = α *. " )! K + (" K *,.!( -: v ( α ) K = f K, *, b, (.47) + * j
69 69.) v b j.( "(' $$%! B(s), #(/1 () )! c. &!' )!*. " -.!'!(!* (! ) * $$% v ( + ( * j ) * ) K K, α *, b + K s A( s) + s B( s) =. (.48) " [116], (,!(!* )! (.!,!*' * (!*'!#!** )!'/' #"..!* $$%, )!' '! ")( #) )!*. &!'. )!.'!*"*' ), "# [18].! -)' # ( #)..).$ )(-; [113] )!* )!' -) " "('..!' K *, ) (..).$ ") 3.3.% #!!!"%. )! )/ %), -!(* /1! "( K *,!*.!!- ") #!,. &!' -)'! "( K *, )!'/1.,!) (!. &!' (!*. )!' -.!' #) #* "( K * "!(.! )* "( - (.47))!' -)' "(' K +. )!) "# )!*-(. " -.!',!/(/1'!)/1 :
70 7 1. 3) # "! ( (!* ) (!* )!#!*!* ).. 3) (! s = α * )!!* #D!', /1 ) cc1 cc3. 3.!( " (.47) ) (.! )' * -.!'! ) * K *. 4. -) "-.. P, #-/1'.% #!,. 5. )! )!' -) ).( -' (.39) ( (' ") #!, */..).$. 6. )! ) ) "( " )! (.4)! "( *. K,..).$ )'' ") #!. 7. )! (' )! K *,!!./' ") #!, )!'.(. 8. # "(' K * " #! ('! )! "(' K + -' (.47). &!' (. ' "# ) )!-.!. - #! "#!-. MATLAB )!' "!* + ; -.
71 !-!"-, #$ % (.!', )!/ 3.5..!': 3.5 (.!' *!.!' )(/ $%/ &-.) K*, K+, K,.!', W P K* s + K+ + K, s ( s) =, (.49) s )(' $%' #D!' ): W ( A( s) ( s) =, (.5) B( s).) A( s) = a s, = n B( s) = b s, b b b. j j j j j j=.)!* (! - #* " ): ( + *, ) K + K s + K s A ( s ) + s B ( s ) =. (.51) &!' )- )( ). % "('!* $$% #D!' #) &-.!', # #(!!- #!!)/1 #": 1 )!-!.*' -) F 1 F,!* )!-!.*' #! ABCD,.(!* ',
72 7 )'1 (" F 3.! G, "/1!*/!#!** ( 3.6). #" #(' )!- 1, ) % #) )(!/# "('!* #D!' ") )!, "('!#!* #) *!* "). "(' !' #!*!-' ". )(*/ ). % )!*! (.51) ) k c s =, (.5) =.) $$% c k. '!'*' $%'!* #D!'.!'.!* $$% c #"/ (..,. )!'/' "('. &!'!!"% 1. ' ")! )! -)/ 1 )"!)/1 -):
73 73 '1#.!!* $$%! ") ()/1' )! 1 3, ('!*. )!' c, ) # $$% )!' 1 *,.! ).).$ ".!* $$%!'/. "&%'+('. " $"..).$ ", (.! ) " '!( $!:.) n g= 1, c - Θ = 18 Θ + Θ (.53) Θ g Θ.! -) 1 */,! " ' g-!/!' $%. *! (3.8)! 1 * s**..) )!'!/#!-'- )!'!/#. 1. ',!-1 s**,..).$ - "!/(*,( Θ 1 + Θ = 36, Θ 3 = ( 3.7). P P P g 3.7!-'!)!*,.! ) " ' s**!( c - $!: Θ = 18 + Θ (.54),
74 74 * Θ = Θ (.55) #",!!*! #) * ()/1' )! $$% 1 3,.! ) " #" /1 # (... P #). ). -)' - )!* ), (!*' * (!* - #* ")!* ', )'1 (" 1 *, /1 ()/1' )! $$%!*.!..! -)' 1, ) $%/ '!* */ (, ")/ s* = α1!* */ (, ")/ s** = α! (.5). *!*' * ( ")' s* = α1,!*' s** = α. ) $%/ # '! (.5), ")' ()/1' "(' s* = α1 s** α. =,!( : ( * +, α 1 3 ) ( * +, α 1 3 ) f K, K, K, *, c, c, c, c, = ; f K, K, K, **,,,,, =. c "(' (.56) (.56)!* K +, ' # ',!(: ( *, α 1 3 ) = ( *, α 1 3 ) f K, K, *, c, c, c, c, f K, K, **,,,,,. (.57) " K * " (.57),!( *, ( α α ) K = f K, *, **,,,,,, c, c, c, c,. (.58)
75 !(: 75 ) - (.58) ) " (.56), +, ( α α ) K = f K, *, **,,,,,, c, c, c, c,. (.59) &!' )!*. " &-.!' )!( ' (.58) (.59) (.5)!(!* (! ) * $$% ( + (, α α ) * (, α α ), ) K K, *, **, c + K K, *, **, c s+k s A( s) + s B( s) =. (.6) (.6)!)!(*..).$ )(-;,. )!' -) " (,!( ) [18] ), )!* )!' -) " "('..!' K,, ) (..).$ ").% #!!!"%,. )! )/ %) )!' -) (, -!(* /1! "( K,,!*.!!- ") #!,.!) (*, ( ) 1 * #'"!* #) )*'! α 1 ) α. &!' -)'! "( K,, )!'/1.,!) (!. &!' (!*. )!' &-.!' #) #* "( K, "!(.! )* "( -' (.58) (.59) )!' )!*. -)' K * K +. )!) "# )!*-(. " &-.!',!/(/1'!)/1 : 1. 3) # "! ( ( α 1, α, α 3, G).
76 76. 3) (! s* = α1 )!!* #D!', /1 ) cc1 cc ) (! s** = α )!!* #D!', /1 ) !( (.56) ) (.! ' * &-.!'! ) * K,. 5. -) "-.. P, #-/1'.% #!,. 6. )! )!' -) ).( -' (.39) ( (' ") #!, */..).$. 7. )! ) ) "( " )! (.51)! "( *. K,..).$ )'' ") #!. 8. )! (' )! K,,!!./' ") #!, )!'.(. 9. # "(' K, " #! ('! )! "(' K * K + - (.58), (.59). &!' (. ' "# ) )!-.!. - #! "#!-. MATLAB.
77 % " (.!'. "!' ( #) (*!*!/ "!*,!. "!-! " ( ). %. &!' %!'' #! ) ') (, * "!/(!*!)/1: #' )(' $%' "!' *!-'-!/, $!'!/,!- (!* */ (!*!#!*. &! ' *, #% ) /!-/ *!-'-!/, "(/!!(.!' ). %., )!' )( $% "!* ) P( s) ( s a1 )( s a )( s a3 ) ( s b )( s b )( s b ) = =, 1 3.) a 1 =, a = 5 6 j, a3 = j!* */ (, 3,5 ) *!/!( *, "#-/ 3.8:
78 78 3.8,$".!' ). % &!' )!' #!!-'!/!*..! ). % (.!' )# *! '.!' ( 3.9), "/1 "('.!' * )!-'-!/. 3.9 '...!'
79 79 ) ( - )!* ), ( ) "!.!' (.!' " "('!/ #)!', #!-/1' (/ 1 ). )! (! ).! #) **'. #", )!' #(' "). ( ). % #) (* -!-! " (.!'. &!'. )!.'! " (.!' " ( " (.!',! #), "' #!* ) "(.!'. &!'!"% %) "#!)/1' ): 1. # *!-'- )/1!/ P 1, P.. C%' '!/ ( #!*!#!**/!* */ (. 3. C%'! (,!-1 - #!- (! ). 4., #% ) /!-/ *!-'-!/, "(/!!(.!' ). %. 5., ( "(' *!/ "! "(.!'. 6. "). "('.!'!) "*.% #!, " " +.!) *, ( "# - ) MatLab.!" - %)
80 8 #!, (!. 1 #'!* #* -/ #!*, )!' ")..!' ( ".!' ).!' *-'. /, 1 '/, 31., ', 1 /. * ") (! ): K + a p + a p + a p =, ) a 1 = [ 1,13], a = [ 15;8], 3 [,95;1,5 ] a =. #)! K, #!!!"% ").! )'' #! φ = 1 η =. *!, φ = 1,,!)' [15], #) *!* ) ).!" ). )! "-.( P : a1 aa 3, a1 aa 3, a1 aa 3, a1 aa 3, a1 aa 3, a1 aa 3. &!,!)' "#. 3.1 ), )! K = [ 8,43;35,9 ]. &!'!(. "!*!*" "/ #/ #!!!"%!*.! K = [ 8,43;35,9 ] ( 3.1). " ), ( #!!!" ") #!,.
81 81 3.1!"%'!* -.!'. - *+-'. ' /. * ") )(' $%' " )( # '"*/: W p ( p 1) K p T s + K = s a s + a s + a.) K, T.!', p p 1 K ' $$% )( #D!',,
82 a, a1, a!* #D!', a = [,7;,8], a 1 = [,3;,4], [ ;3] a =. 8 #) )!* -.!',./1 α * = 1 ϕ = 1. ) ( ) ): c s + c s + c s + c = (.61) 3 3 1,.) c3 = a, c = a1, c 1 = a + K K p T p, c = K K p. ) (.61) /1 cc1 cc3.( "(' $$% a,!( "*: T p 3 a s + a1 s + a s + K K = K K s p p, (.6) ): (.6), ( ) 3 aα * + a 3 1α * + aα * + KK p as + a1s + as + KK p s + KK p =. (.63) KK pα *! #" (.63),!(: 3 K a s + a1 s + a s ( a α * + a1 α * + a ) s + K p K s. α * = (.64) (.64) ' )(-; ) (.39). ) [11], )!'..!* $$%, ) #1! K p,!!./' #!,: =,4733;5,16. # "( p K p K " ).!: K = 5,16 -' (.6)!( "(.. T =,4458. p #!!!"%!*. (.! ) -.!' )! p
83 !"%'!* -.!' 3. - *+,-'. ' ' 4. * ") )(' $%' " )( # '"*/: W p K p s + T + Td s K 3 s a3 s + a s + a1 s + a =.) K, T, T &.!', p d K = 1 ' $$% )( #D!', a3, a, a1, a!* #D!', a 3 = [,;,13], a = [,3;,34], a 1 = [,1;, ], [ 1;4 ] a =. #) )!* &-.!',./1 )( ) % )/1 1, )'1'! α 1 = 4 ) α = 6!*,
84 ',!-1 #!,.(!* */ ( α 3 = 14!*!#!**/ ϕ = 3. ) ( ) ): 84 c s + c s + c s + c s + c = (.65) ,.) c4 = a3, c3 = a, c 1 = a 1 + T d, c 1 = a + K p, c = T. ) (.65) /1 cc1 c3c3.( "(' $$% a, s = α1 = 4,!( "*: T = 16, K 16 T. (.66) p d ) (.66) /1 1 3.( "(' $$% a, s = α = 6,!( "*: T = 5, K 36 T. (.67) p d ' ' (.66) (.67), " K p T d : K p = 5, T. (.68) d ) (.68) (.66), " T T d,!(: T = 39, T. (.69) )!( -' (.68) (.69) (.66),!(!* (!, "!* T d, )/1 1 * - #).* ") " 4 ) 6: ( ) ( ) 4 T + 39, T + 5,797 + a s + d + T + a s + a s + a s + a s =. d d d (.7) (.7) ' )(-; ) (.39). "# ), )!' ))%..!* $$%, ) #1!!!./' #!,: [ 1,9;1,166 ] T =. d T d,
85 85 &!' (!*. )!' &-.!' '..).$ #.( (1,9; 1,166) ) ) (1,918) "(' " ).! T d. &! - (.58) (.59)!( "(' K p T. "!* ( ) #!% 3.1. #!% 3.1 ( $$% &-.!' B / T d K p T 1 1,9 15, ,391 1,918 16, , ,166 17,336 67,345 #!!!"%!*. (.! ) &-.!' )! 3.1, ,. 3.1!"%'!* &-.!'
86 !"%'!* &-.!' 3.14!"%'!* &-.!'
87 87 )! ) ( 3.15).$ ) % " )( ) ") -) ".( )!' T d = 1,9, K p = 15,9586, T = 64, ) %.( ). " - -)*, ( ) % " (.!' ' )( ),!/!* /'!- -! #!!/# "('!*.
88 88! 4. #) %* ) ' # % ( #'% #'+#. ( (' 4.1. MATLAB ( ), -,!)!', ) (.!' ( )'!'* (!, ")* ## "!*!*!), (* -,!'* (. 1/ %!", "!'/1!'* (! )! %. - ' (/' ")(,!)/1' )%,!# #/1!('!-!* )!,!# # '" "# #! $$ )!.!( #! $$ "'!*" #1 ( "!'/1 (!!#!( * )% ( ")(..),!)' ) #!*/ ' )(/ (/ )., - * *!) ")( '"(! ( ). #!* '1 '!(! #1( MathCad MatLab, "!'/1!'* (!,!( %. MathCad # ',. )%.., (!' ")'' ' - $! )' '/' $! %!* $, ( "!' * #( ). # ) ' -.(, ")' #!* (*/ (. &!' # MathCad!*"!' #/'!* "',.', (! ).
89 89 MatLab, )(.# ) '".', "!'/1 *. )% ), '' #( $!. # ##! ) ). $%, 1 1/. / "*!.. &!' $$ # MatLab, "'!..', (! ),!*"!* -!'* # ) '. '" " MatLab #!.), )!' '!..' "(' (! ), )!'!"%!) ")(..!. A #!* * $$ #" $%, -!( %!" ##! MatLab. "') #! )!'!)!* %!. MatLab (Matrx Laboratory) '!'' )!'!' - ( (, # ). MatLab "# $ MathWork Inc. (A+,.., (). )- / (/!/ $, ))-! %, % ), #!.#(!,! ")( "%,. ), )$$%!* ", "!( ).$,!.!( '".' )#' %' ) ". # ) ( $%, "!'/1' $!* #!!(* ', )# $ #.' )!"%. ). '".! ( "'..' "!'
90 9!"*!/#!. ) '". '.., )' )!/( %) $% '" C. 7" Matlab #( "-* # $! 1*/ )# $%..,!" ) )!.! )!'(' " $!. MatLab '!'' ( %) $% )!* )!'!*"', )!' % )$%. (,.',!*"!* ' "-., %) $%' ) ) $%'.!/(/ # %!" %$ ##.!,!" "! (.!',. )!' )(, ')!* " ". Maple V ).. &!'!" "!'!* Matlab 1!). Robust Control Toolbox, $!" ) "% H H 5 [6]. (', ( ), #! ", $$ )!'!" "!*, )!' "#. ) MATLAB %!".!)., #. *! ")(. " ) Robust Analyss and Syntheses of the Interval Systes (RASIS).
91 4.. & % '% RASIS 91!*! ): P( s) = a s + a s a, a a a, =, n, (.71) n n 1 n n 1.) n!*' *!*. (.!. MATLAB: 3)).% "'!* $$% a = a, a,..., a n n n n( n 1) n a = a, a,..., a ax ax n ax( n 1) ax,. (.7),% #) #"(* % -!#% (#"( < ), -! - #*!/! )% (!*!!* "(/, ). &!' -)'.(!*"'!)!*! # (# "(',! 1' '!''.( ).. #) n. #", (!.%: a, a,..., a, a n n n( n 1) n1 n.%: an n, an( n 1),..., an1, aax,, an n, an( n 1),..., aax1, a, n * an n, an( n 1),..., aax1, a ax. #",.% )( )!/ (#!% 4.1).
92 9 #!% 4.1 <.%. B,% '! #"(.% a, a,..., a, a n n n( n 1) n1 n a, a,..., a, a 1 n n n( n 1) n1 ax a, a,..., a, a n n n( n 1) ax1 n,,...,,,,...,,1,,...,1, a, a,..., a, a 3 n n n( n 1) ax1 ax,,...,1,1 a, a,..., a, a n ax n ax( n 1) ax1 ax 1,1,...,1, $ RASIS C%' defneallapexes (power) "1 %-, '1/ " )!'! ") power */!*. (.! ().!( "!*/1 %!(.!#% " 1,!!* $$%!* "(,!,!!*. C%' defnesectorapexes (power, beta) "1 %-, '1/ " "-.( )!'! ") power */!*. (.! () )!'!#!* beta. +!.(' $% ) 4.1.
93 5 $ A ( 5("#$%& $' (("$) $(* + +('-./!"#$%%& $' (("$) $(* (("+(,-./ /!( % +( '(( #B5$(( ( ( 5(C/$(('( 5(" +&+ $ $ ( 5('( $=> ;<=>CD $5 $ ( 5( %& ((% ( ) $''$( ';<=> &++ ()$( %+ (($C A! '( "((% (%# (5(%(% ( % '89:C?$5 ("$5 ( "((%& (%&# (5(%& (C $) % ( # (5(%( 5('( $(%& EFF(+$($' ("# (5("(%CG$ ( 5( (E ( 55-./+"+( $ ('( $(( 5( ( $(#EFF( CG$ ( 5( (H $(C +$( $(%"#$!(' % +) ' ( '+$ $(# ( 1( 3 4%$ $ ) $( ( ' # (5( '( ( "((" +$ $(, # (6 ( 7) ( "((, (, # (5(,( 89: /$$!( % ( ;<=>6 (?( 4.1 +!.(' $% defnesectorapexes
94 94!( "!*/1 %!( "-.(. C%' defneinterlacedapexes (power, frsteleent) "1 %- ()/1'! )%, (' FrstEleent. &! %- power. C%' defnetruncatedsectorapexes (power, beta, alpha) "1 %, '1/ " "-.( )!'! ") power */,!#!**/ beta */ ( alpha. C%' stintruncatedsector (Tn, Tax, apexes, beta, alpha) ',!, " apexes,!- (,.(!#!**/ beta */ ( alpha. "!* "1' 1,!!- ") #!!(. Tn Tax %-, "/'!*!* "('!* $$%, ('!*. :!- $% stintruncatedsector )! 4..
95 5 $ A % ( 5('( $(%& $(%&( 5(" ( $(%&EFF($' "+(-./ /$5( 5('( $ EFF(-./13 %+'%&( 13$) $( 13 +("5 13C!?(+$( %5$',' (("F("+ KLJMLN!! /$5+$( ( 5(' EFF( ((%& ( ( (( 5(" ((%& D%5$(+$( ( I $ (+$( J ((5(( # (5((#$ ( 5(6!(" ' "#$%& (?( 4. :!- $% stintruncatedsector
96 4.4. & RASIS 96 C%' defnemaxalphamnbeta (Tn, Tax, apexes) "1!*/!#!**!*/ * ( "('!* $$%, " Tn Tax.!*'!#!**!*' * ( )!'/', " apexes. ) %!*"' ' MATLAB $%' step. #/'!*!#!**/!* */ (. C%' edgetheorebuld (Tn, Tax, k, r) k-.$ #.. P r ( -) #. C%' fndcrosswthbandn (beta, alpha, T, TVar) ) ( ('..).$, "'/1.' *!'/1 TVar,.%, ") */ ( alpha!#!**/ beta. "' (* ")' T. &!'!"% ) $% '' )(- ;. C%' synthesbn (Tn, Tax, TVar, beta, alpha) )!*!* "(' $$% T k,.).$ ) ")/ #!*,.(/!*!#!**/ beta */ ( alpha. "- ' $%' "1 "( 1.
97 RASIS 1. *!!* )!*/ ) D( s) a s a s a s a = + + +,.) a [ ], a [ ], [ ] ,7;,9,45;,49 a1 1,1;1,5, a [,1;,7 ]. #) )!*, '!''! # (. "!*!' /1. RASIS!. )!' # ( (.!!* )!*/ #! )!, ( '!'' # (.. *!!* )!*/ ) D( s) a s a s a s a = + + +,.) a [ ], a [ ], a [ ], [ ] ;1 6;8 1 14;18 a 9,5;1,5. #) )!*!* #, #"*. /!* (!* % ( (!*/!#!**!*/ * (). # /1 ) ' RASIS ) (!* ). "!*!'.!( #-!!, )! 4.3 ()!'!* -)'!*. #. - " #- (.!!!) )!.. ').!!'. RASIS (!!!* "( (,,6557!* "(!#!*, 44,4345.).
98 #- (.!!* )!*/ )!' 4.1 *!!* )!*/ ) D( s) a s a s a s a = + + +,.) a [ ], a [ ], [ ] ,7;,1,3;,45 a1 1,1;1,5, a [ 1; ]. #) )!*!* #, *.).$.! ) (!* % ( (!*/!#!**!*/ * (). # /1 ) ' RASIS ) (!* ). "!*!'.!( #-!!, )! 4.4 ()!'!* -)'!*. #. -
99 " #- (.!!!) )!.. '): #- (.!!* )!*/!!'. RASIS (!!!* "( (,,4134!* "(!#!*, 7,834.).,( # " 1 #,.. 1 #!( #) '* # ).. ". ), ( 1 # "!,!.!)!** ) " "! ''. 3. 3) ) =, a s a s a K T
100 1.) a = [,1;,15 ], a 1 = [ 1;1,5 ], a = [ ],1;,, K T * $$%. #) )!*! K T, )'' (,.(.! ϕ = ± 45!* */ ( α =. 3 RASIS, # «)!!*! *. $$%, #(/1 / (*», ) #) ) ).! )' (!, )!)/1 : [,5;3,1 ] K =.!**!(. ',.(!*.).$.! # /1. RASIS,!( "!*, )! 4.5. T 4.5.(!*.).$! '.).$ )!)/1 (! "(':!*' * (:,5 : [,;1;1],!*'!#!**:,17 ) (1,.)) : [,1;1;41,4543]. " 4.5 ), (!./' -! #!!/#"('!* $$%.
101 11! 5. ((# &'+# ' "-1 ( (,+%# RASIS 5.1. "(-1!, #. ) -..! )"( )!'!(' )! $.,!*".. [8].,"" (,)!*.. &-1-13, ( 5.1) )"( )!' #. 1.!!#..!.( -)! )',!',!'%.'(. )#-'. )..!' ) 1 /( )!),3 º. 5.1!*.. &-1-13, %!*'!*... &-1-13, )! 5.,.) 1, - ##;
102 1 3, 4 '!* #..."); 5 (.'.); 6 $ ; 7, 8 #!! $. ; 9 ") ; 1, 11!! # "). (. ; 1! # ; 13, 14!! #!.#. ; 15 # #. (. ; 16 # ; 17.!; 18,.); 19 ).'; 1 ; #; 3!*'!'; 4 % ; 5 ); 6.!*; 7 )"!*!; 8 )!*!; 9 ; 3 ; 31 #) )( ).
103 13 5. %!*'!..!*.. &-1-13, ". 1 ()!.) -. ((.) ##, ) -) # ". '!* #!( 594., #"/ 3 4.")..,") ")! -) # (..) 5.")! ( $!).
104 14 )'' (* -. ## ' )-,!* (! /!*"'1, -,!/ )!'!. $ 118-/ #, #"/ : 6 )! $ ; 1! # ; 16 # (!.(!); 9 "). # )%. / - ) 51,5, ( ).'!(' ' %!'%'!. # % "!*% ## 1, - % ( -!!: $ 8,! # 13 (!.( ) ") ( 1.., $!! 8 ) ## (*' # 7,!- - #, -!!!. #. (. 13 (!.(,.) ) ## ) # 15,!- #. -!! 1 "). (. ) - ## # 11. ( $!! 8!- ).! 17. # '-!', ". (, $ ". (. ## " 1 "#-.!!. ##. ) "!* )!- * '.., ## )! )!.! (*! %),!''! 3, ( ) ), 1/.'! )/ ##.. ).' 19 )"( )!' -' *! (!.'! ((. )-.) )! (.) 18 (, )!' ) (
105 15."),..") 4 (.) (!). )(!* ) ")'! 3, #.!!'. ## 1!! % 4. # ")' ) 5. &!'!('..!*"/.!* 6,!/ #( " )! )' ') '!* #..")!. ##! : )"!* # 7, )!*! 8, 9, 3.! & ).")! " )!*!. #). '!*. ( #.") ")',!*" #)(.! ") )/'.! 17, #"' $!.'.! (.", " ( )%..!#, )' # ()% '.),.)! " (!)!!(.!# # )' ), %!/1. 3 (." 9 15 )' " (" (.) 18 )' ).' 19,.#/ (/.)! )'.") 3,.) )/! ( #.! 6 ( ).",.#' (./.) 5, )'.") 4 '!*. ( #! 5,!, )' "!!'/' )' ".!*' )! '.(' )% (" ) )'. ") ) #)!*! 3
106 16 )' ) #D. ## 1,.) '! ).! ' '* %!'%. 1- ( '!* #).!' ) ". ## 1 ' - ## '!* # 4. (,!-.") #! #! " (.". #"/1'' )'' * () )' ## '!* # 3,!-.") #! #! (.". - ( $ )!' ) ". ## 1 ( # 7 ))' $!! 8, )!'', #"/1'' # 6,!, )' ##. 3- ( ") )!' ) " -. ## # 11 ))' -!! 1, )!'', #"/1'' # 9,!-, )' ##. 4- (! # ( )!' ) ". ## 1 # 15 ()' #! -) ))' -!! 13!. #. ;!! 13 - ))' ) " -. ##, # 14,! (. ) )!''!!, #"/1'' # 1!. #.,!-, )' ##. 5- ( # 16) 1!''!.(!# (. ) )'' * () " %!'% )' ##,.) % 4 )!'', ) '! ) % %!'% ''.! %!(
107 17 1 ) #!/ ) 5!!''.!* 6 )!'!('... ' ) ")' ". ##!* () ).!'!. )(' ) ")' " ' (!: ( -!! -. ##. - ## ) )(!! ),!*"' )!'. ) )! '!.! #- )' )!*! 8 /1 : 9, 3, )"!*! 7. ")!! #)(, #, (.") " )!*!. ) - "'*' )", )! ))-/'!* " )! )!, ( #!!' #' "). - # #!. #!'!. ).!" % ") #D!' - $!*!)/1 ")( "%: #) #(* #!"%/ )!' ) "!.. " ( "' )!; #) #(* #!"%/ ' ) ##!.. " ) /1 ); #) #(*.! )! ") %!*/!. -.'!; #) #(*!.(!* )!, /1 ),, )!' #!'. ;
108 18 #) #(*!.(/.!"%/!*. )!' ## +,!*!* * ) ##. +('.!' ' )"( )!' ))-'!*. ' -) )!* )!."!. "!. '!- * ) ##! [8]. * ## "'' "-"!('! *' )!!' )!, "'!." )!' ##. ' " ) )! (!) - "!'.!' #!. "!, ( - '*' ( -)' #. - ' " - )! ( ) " ##) ) / %!'% ( -. #. ; #D''', ( )-.!' ' )D'!'/' #' [8]. #", " # (.!' '.( "1 -' ' ##!, ), '.!, ).. ; )! )!'/ #"* #!, " / %/. +('.!' ' ##.! )!- #(* )- ' ) )!: 1) " "1."!* )!' / )!- * ± ; ) (#" "1." 1%!* )!' / )!- * ±5 ; 3)!* % - #! (!!/(.!' )!- * [8].
109 19 * ##! "/!'. "1. " : " )!* ), "." #!', " )!, "!* ). "1 ) '!'' ' - «#» ',.. ". (!*, /1/ " "1/1. ") '. 7! «#'» - #D'*!)/1 #": " ),!(, )!! *', ) )!!* ),!( '. )!* * ( )* "-" ' )!* )..!' ' ) #(! #. )-' ' ) ##,!* (! "'!*,!*"! $ "('. '" #!! ")( (. " &-.!' "# ). / (/ )!* )!* (!' ) ##!.. - )* ), " 5.3,.)!!)/.( *!( '!, 1 T s + 1 " )(/ $%/ #), "!! ) '!, K T s + 1 " ), K T s " '! «#'» ' ) K T s + 1 )!' # )(/ $%/ )( ). &( ) (( '! «#'». ) #D!' '!'' * ) ##!..!* '!''! *.
110 11 K T s T s + 1 K T s K T s (' )!* (.!' ) ##!.. 3'!!.., - * (/ )!* (.!' ' ) ##!.. ( 5.4).,5 1s s ,4s 5 5s (' )!* (.!' ' ) ##!.. %' #D!' )( ") " 5.5.
111 %' #D!' )( ") 5..!"- "(-1 #" )( $% #D!' (##!.. #)),!( )(/ $%/ ): 89s + 1. s s s , ,4 : &, ( #D /!*, T '' ##!.. (-!(*' 1% "-" '!'. ##!..); K, T * «#'» '' «#'» (- "'*' %); T '' #) (-!(*' 5%).!)!*,!*' (.!' ) ##!.. ), " 5.6,.) a 3 = [ 157;3975,78], a = [ 791,8;11816,64 ], 1 [ 188,4;19,8] a =.
112 11 &H.!' )I 1 693,6 s a s + a s + a s *I ) 5.6 '!* (.!' ) ##!..!*"' RASIS )!' " &-.!' )!' ")!* +!)/1. : ) % )!- * )( );!*'!#!** )!-#* - 45 ;!*' * ()!-#* -,1. "!* " &-.!' #!!(!)/1 : K =,175, T =,1, T = 5,87; (.73) * +, K =,177, T =,1, T = 6,61; (.74) * +, K =,178, T =,1, T = 7,34. (.75) * +, 5.3. ) "(-1.(.).$,.! #, )!' +!( )!' " $$%.!' (.73) (.75) )! (5.7), (5.8), (5.9) (5.1).
113 (.).$ )!'.!' &-.!' (.73) 5.8.(.).$ )!'.!' &-.!' (.73)
114 (.).$ )!'.!' &-.!' (.75) 5.1.(.).$)!'.!' &-.!' (.75)!*'!#!** )!' -) "!*!' 45,!*' * (,1.
115 115 &!' "!( #!(.!' 5.11, 5.1 " %' )( ").( ( ) %.!' (.73)
116 ) %.!' (.75) "!* (. " &-.!'!* +!.. &-1!(, #!!!"%!*. (.!!- -! #!, ) % )( )!/#"('!*.
117 117 5 )!' )%' # "!*!),! "# )!" "!* $$ )!'./!"%/. "# ) #!*"/' # )..).$, $" ',!. # "% )(-;. "!* )% # '!'/': 1. "# ) $' #! )!'!" (!* )!*/.. "# ) $'.( (... )!'!".!* (!* )!*/. 3. "# ) $'.(. #.!*. (.! )!' )!' #!!!"% $$ )!*/. 4. "# )!*-(. "! - -.!'.!* */ (!*!#!**/ )!' (.!'!* )!*/. 5. "# )!*-(. " &-.!',./1. )( ) %!* ).!-' (. '. 6. "# ) % -! #!!!"%!/!* #!!-'! ( -! ' "! ( +.
118 "# %!"!). RASIS ) MatLab )!'!" " (.!'!* $$ )!'. "!* )% # "!.!', ( )-)' /1 ).
119 Ackerann, J. Paraeter space desgn of robust control systes / J. Ackerann // IEEE Trans. On Auto. Control Vol. 5. N 6. P Ackerann, J. Robust control: systes wth uncertan physcal paraeters / J. Ackerann London: Sprnger-Verlag, 1993, 46 p. 3. An, S. Robust stablty of polynoals wth nonlnear dependent coeffcent perturbatons / S. An, W. Lu // Proceedngs of the 4th IEEE Conference on Decson and Control Orlando Florda USA, 1 P Arzeler, D. Robust D-stablzaton of a polytope of atrces / D. Arzeler, D. Henron, D. Peaucelle // Internatonal Journal of Control,, Vol. 75, N 1, P Barlett, A.C. Root locaton of an entre polytope of polynoals: t suffces to check the edges / A.C. Barlett, C.V. Hollot, H. Ln // Math. Contr., Sgnals. Syst., 1987, Vol. 1, B1. P Barsh, B.R. The robust root locus / B.R. Barsh, R. Tepo // Autoatca, 199. Vol. 6, B. P Barsh, B.R. A generalzaton of Khartonov s four polynoal concept for robust stablty probles wth lnearly dependent coeffcents perturbatons / B.R. Barsh // IEEE Trans. Autoat. Control Vol. 34. B, P Bhattacharyya, S.P. Robust control: the paraetrc approach / S.P. Bhattacharyya, H. Chapellat, L.H. Keel Prentce Hall, Chang Y. H. Robust gaa stablty of hghly perturbed systes / Y.H. Chang, G.L. Wse // IEEE Proc. Control Theory Appl. N, P Chu E.K. Pole assgnent for second-order systes / E.K. Chu // Mechancal systes and sgnal processng,, N 1, P
120 1 11. Foo, Y.K. Root clusterng of nterval polynoals n the left sector / Y.K. Foo, Y.C. Soh // Syst. Control Letters Vol. 13, P Henron, D. An LMI condton for robust stablty of polynoal atrx polytopes / D. Henron, D. Arzeler, D. Peaucelle, M. Sebek // IFAC Autoatca, 1, Vol. 37, P Henron, D. D-Stablty of Polynoal Matrces / D. Henron, O. Bacheler, M. Sebek // Internatonal Journal of Control, 1, Vol. 74, N. 8, P Henron, D. Ellpsodal approxaton of the stablty doan of a polynoal / D. Henron, D. Peaucelle, D. Arzeler, M. Sebek // IEEE Transactons on Autoatc Control, 3, Vol. 48, N 1, P Henron, D. Postve polynoals and robust stablzaton wth fxed-order controllers / D. Henron, M. Sebek, V. Kucera // IEEE Transactons on Autoatc Control, 3 Vol. 48, No. 7, P Henron, D. Robust pole placeent for second-order systes: An LMI approach / D. Henron, M. Sebek, V. Kucera // Kybernetka, 5, Vol. 41,N 1, P Kawaura, T. Robust stablty analyss of characterstc polynoals whose coeffcents are polynoals of nterval paraeters / T. Kawaura, M. Sha // Journal of Matheatcal Syste, Estaton and Control, B 4, P Keel, L.H. Robust stablty and perforance wth fxed-order controllers / L.H. Keel, S.P. Bhattacharyya // Autoatca 1999 N 35, P Keel, L.H. Robust, fragle or optal? / L.H. Keel, S.P. Bhattacharyya // IEEE transactons on autoatc control, Vol. 4, N. 8, 1997, P Maar, N. Pole placeent n a unon of regons wth prespecfed subregon allocaton / N. Maar, O. Bacheler, D. Mehd // Matheatcs and Coputers n Sulaton, 6, N 7 P
121 11 1. Markus, A. H. The Khartonov theore and ts applcatons n sybolc atheatcal coputaton / A.H. Markus, E. Kaltofen // Journal sybolc coputaton, 1997 P Melnkov, U.S. Stablzaton of undersea object stuaton, connected wth shp by the rope / U.S. Melnkov, S.A. Gavoronsky, S.V. Novokshonov // KORUS 99 III Russan-Korean nternatonal Syposu. Novosbrsk, Russa, P Nesenchuk, A.A. Root locus felds technue n the uncertan control systes synthess / A.A. Nesenchuk // Proceedngs of the 5th World Multconference on Systes, Cybernetcs and Inforatcs. Orlando, FL, USA. 1. P Pare, T. Algorth for reduced order robust H control desgn / T. Pare, J. How. // Proceedngs of the 38-th conference on decson and control, Arzona, 1999 P Rao, P. Robust tunng of power syste stablzers usng QFT / P. Rao, I. Sen // IEEE transactons on control systes technology, 1999, Vol. 7, N. 4. P Rsky, G.V. Root locus ethods for robust control systes ualty and stablty nvestgatons / G.V. Rsky, A.A. Nesenchuk // Proceedngs IFAC 13th Trennal World Congress. San Francsco, USA, P Senel, W. Desgn and analyss of robust control systes n PARADISE / W. Senel, J. Ackerann, T. Bunte // Proc. IFAC Syposu on Robust Control Desgn, Budapest, Hungary, Senel, W. Robust control goes PARADISE. / W. Senel, J. Ackerann, D. Kaesbauer, T. Bünte // In Proc. EURACO Workshop on Control of Nonlnear Syste: Theory and Applcatons, Algarve, Portugal, P Soh, C.B. On the stablty propertes of polynoals wth perturbed coeffcents / C.B. Soh, C.S. Berger, K.P. Dabke // IEEE Trans. On Auto. Control Vol 3. B 1. P
122 1 3. Soh, Y.C. Generalzed edge theore / Y.C. Soh, Y.K. Foo // Systes & Control Letters, 1989, Vol. 1, N 3, P Soh, Y.C. A note on the edge theore / Y.C. Soh, Y.K. Foo // Systes & Control Letters 199, Vol. 15, N 1, P Soh, Y.C. Generalzaton of strong Khartonov theores to the left sector / Y.C. Soh, Y.K. Foo // IEEE Trans. On Autoatc Control, 199, Vol. 35. P Solyo, S. A synthess ethod for robust PID controllers for a class of uncertan systes / S. Solyo, A. Ingundarson // Asan Journal of Control, Vol. 4, N 4, P Soyleez, M.T. Fast calculaton of stablzng PID controllers / M.T. Soyleez, N. Munro, H. Bak // Autoatca 39, 3, P Taga, T. Desgn of robust pole assgnent based on Pareto-optal solutons / T. Taga, K. Ikeda // Asan Journal of Control, 3, Vol. 5, N, P Tan, N. Coputaton of stablzng PI and PID controllers usng the stablty boundary locus / N. Tan, I. Kaya, C. Yeroglu, P. Derek // Energy Converson and Manageent, 6, N 47 P The basc defntons: the stea boler. Retreved 7, fro the Web ste of the Boler Wkpeda, the free encyclopeda: Varga, A.A. nuercally relable approach to robust pole assgnent for descrptor systes / A.A. Varga // Future Generaton Coputer Systes, 3, N 19, P Vceno, A. Robustness of pole locaton n perturbed systes / A. Vceno // Autoatca, 1989, Vol. 5. N 3. P Wang L. Robust strong stablzablty of nterval plants: t suffces to check two vertces. / L. Wang // Syste and control letters, 1995, Vol. 6. P
123 Wang, L. Khartonov-lke theores for robust perforance of nterval systes / L. Wang // Journal of Matheatcal Analyss and Applcatons, 3,Vol. 79, N, P Wang, L. Robust stablty of a class of polynoal fales under nonlnearly correlated perturbatons / L. Wang // Systes and Control Letters, Vol. 3, N 1, 1997, P Wang, Y. PID and PID-lke controller desgn by pole assgnent wthn D- stable regons / Y. Wang, M. Schnkel, K.J. Hunt // Asan Journal of Control, Vol 4, N 4, P Wang, Y. The calculaton of stablty radus wth D stablty regon and nonlnear coeffcents / Y. Wang, K.J. Hunt // Proceedngs of 3rd IFAC Syposu on Robust Control Desgn, Czech Republc,, P Wang, Z. Deternatve vertces of nterval faly wth J-stablty / Z. Wang, L. Wang, W. Yu // Journal of Matheatcal Analyss and Applcatons Vol.66, N,, P Wang, Z. Iproved results on robust stablty of ultvarable nterval control systes / Z. Wang, L. Wang, W. Yu // Proceedngs of Aercan Control Conference, Denver, Colorado, USA, 1, P Xao, Y. Edge test for doan stablty of polytopes of two-densonal (- D) polynoals / Y. Xao // Proceedngs of the 39th IEEE Conference on Decson and Control,, P Zadeh, L.A. Lnear syste theory / L.A. Zadeh, C.A. Desoer McGraw- Hll, Zayatn, S.V. The robust sector stablty analyss of an nterval polynoal / S.V. Zayatn, S.A. Gayvoronsky // 1st Internatonal Syposu on Systes and Control n Aerospace and Astronautcs, Harbn, Chna, 5, P Zhabko, A.P. Necessary and suffcent condtons for the stablty of a lnear faly of polynoals. / A.P. Zhabko, V.L. Khartonov // Autoaton and Reote Control, 1994, Vol. 55, B1, P
9 /393 / Downloaded from energy.kashanu.ac.r at 5:3 0330 on Saturday October 0th 08 * hajakbar@grad.kashanu.ac.r mohammad@kashanu.ac.r. (shunt-apf) :... PSIM. : * 3... Downloaded from energy.kashanu.ac.r
5 Haar, R. Haar,. Antonads 994, Dogaru & Carn Kerkyacharan & Pcard 996. : Haar. Haar, y r x f rt xβ r + ε r x β r + mr k β r k ψ kx + ε r x, r,.. x [,
4 Chnese Journal of Appled Probablty and Statstcs Vol.6 No. Apr. Haar,, 6,, 34 E-,,, 34 Haar.., D-, A- Q-,. :, Haar,. : O.6..,..,.. Herzberg & Traves 994, Oyet & Wens, Oyet Tan & Herzberg 6, 7. Haar Haar.,
Power allocation under per-antenna power constraints in multiuser MIMO systems
33 0 Vol.33 No. 0 0 0 Journal on Councatons October 0 do:0.3969/.ssn.000-436x.0.0.009 IO 009 IO IO N94 A 000-436X(0)0-007-06 Power allocaton under er-antenna ower constrants n ultuser IO systes HAN Sheng-qan,
Research on fault detection for Markovian jump systems with time-varying delays and randomly occurring nonlinearities
33 9 2016 9 DOI: 10.7641/CTA.2016.60012 Control Theory & Applcatons Vol. 33 No. 9 Sep. 2016 1 1 2 (1. 163318; 2. 163318) (RONs)... H. Lyapunov H.. ; ; ; TP273 A Research on fault detecton for Markovan
... 5 A.. RS-232C ( ) RS-232C ( ) RS-232C-LK & RS-232C-MK RS-232C-JK & RS-232C-KK
RS-3C WIWM050 014.1.9 P1 :8... 1... 014.0.1 1 A... 014.0. 1... RS-3C()...01.08.03 A.. RS-3C()...01.08.03 3... RS-3C()... 003.11.5 4... RS-3C ()... 00.10.01 5... RS-3C().008.07.16 5 A.. RS-3C().0 1.08.
Feasible Regions Defined by Stability Constraints Based on the Argument Principle
Feasible Regions Defined by Stability Constraints Based on the Argument Principle Ken KOUNO Masahide ABE Masayuki KAWAMATA Department of Electronic Engineering, Graduate School of Engineering, Tohoku University
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων.
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 2015 ιδάσκων : Α. Μουχτάρης εύτερη Σειρά Ασκήσεων Λύσεις Ασκηση 1. 1. Consder the gven expresson for R 1/2 : R 1/2
Noriyasu MASUMOTO, Waseda University, Okubo, Shinjuku, Tokyo , Japan Hiroshi YAMAKAWA, Waseda University
A Study on Predctve Control Usng a Short-Term Predcton Method Based on Chaos Theory (Predctve Control of Nonlnear Systems Usng Plural Predcted Dsturbance Values) Noryasu MASUMOTO, Waseda Unversty, 3-4-1
! "#$#% & '( K, X3/H }" I q +W R%2. >2" *+ + 1 LN6 H+ +ˆ,
K+3 }K3" K+5 K, X3/H }" G +9), ;3 K, D 3 A +9),- ;3-SK, E E! +/ >HO A+< \ -S;? P A" ( 6M [ X& 5 +; \ ; D7 ] +; I$ X & >?# ; U (6 3 I q +W R% RBH % a >M 5 د! "#$#% & '( a.khan9@ms.tabrzu.a.r >" *+ + LN6
Evaluation of Expressing Uncertain Causalities as Conditional Causal Possibilities
Evaluaton of Expressng Uncertan Causaltes as Condtonal Causal ossbltes Koch Yamada Department of lannng & Management Scence, agaoa Unversty of Technology eng & Regga (v u u u v v u (v u ) 0 u v V [1] [1]
Parts Manual. Trio Mobile Surgery Platform. Model 1033
Trio Mobile Surgery Platform Model 1033 Parts Manual For parts or technical assistance: Pour pièces de service ou assistance technique : Für Teile oder technische Unterstützung Anruf: Voor delen of technische
ME 365: SYSTEMS, MEASUREMENTS, AND CONTROL (SMAC) I
ME 365: SYSTEMS, MEASUREMENTS, AND CONTROL SMAC) I Dynamicresponseof 2 nd ordersystem Prof.SongZhangMEG088) Solutions to ODEs Forann@thorderLTIsystem a n yn) + a n 1 y n 1) ++ a 1 "y + a 0 y = b m u m)
Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design
Supplemental Material for Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design By H. A. Murdoch and C.A. Schuh Miedema model RKM model ΔH mix ΔH seg ΔH
[1], [2] - (Danfoss, Rexroth, Char-Lynn. [3, 4, 5]), .. [6]. [7]
OTROL. COISSION OF OTORIZATION AND ENERGETICS IN AGRICULTURE 0, Vol. 6, No. 5, 87 98 -,,, 008,.,., e-mal: mosgv@ukr.net. -,... -. :, -,. [],,.,,.., []. - (Danoss, Rexroth, Char-Lynn. [,, 5]),. -,.. [6]..,
HONDA. Έτος κατασκευής
Accord + Coupe IV 2.0 16V (CB3) F20A2-A3 81 110 01/90-09/93 0800-0175 11,00 2.0 16V (CB3) F20A6 66 90 01/90-09/93 0800-0175 11,00 2.0i 16V (CB3-CC9) F20A8 98 133 01/90-09/93 0802-9205M 237,40 2.0i 16V
A Sequential Experimental Design based on Bayesian Statistics for Online Automatic Tuning. Reiji SUDA,
Bayes, Bayes mult-armed bandt problem Bayes A Sequental Expermental Desgn based on Bayesan Statstcs for Onlne Automatc Tunng Re SUDA, Ths paper proposes to use Bayesan statstcs for software automatc tunng
Το άτομο του Υδρογόνου
Το άτομο του Υδρογόνου Δυναμικό Coulomb Εξίσωση Schrödinger h e (, r, ) (, r, ) E (, r, ) m ψ θφ r ψ θφ = ψ θφ Συνθήκες ψ(, r θφ, ) = πεπερασμένη ψ( r ) = 0 ψ(, r θφ, ) =ψ(, r θφ+, ) π Επιτρεπτές ενέργειες
2002 Journal of Software /2002/13(08) Vol.13, No.8. , )
000-985/00/3(08)55-06 00 Journal of Software Vol3, No8, (,00084) E-mal: yong98@malstsnghuaeducn http://netlabcstsnghuaeducn :,,, (proportonal farness schedulng, PFS), QoS, : ; ;QoS; : TP393 : A,,,,, (
! "# $ % $&'& () *+ (,-. / 0 1(,21(,*) (3 4 5 "$ 6, ::: ;"<$& = = 7 + > + 5 $?"# 46(A *( / A 6 ( 1,*1 B"',CD77E *+ *),*,*) F? $G'& 0/ (,.
! " #$%&'()' *('+$,&'-. /0 1$23(/%/4. 1$)('%%'($( )/,)$5)/6%6 7$85,-9$(- /0 :/986-$, ;2'$(2$ 1'$-/-$)('')5( /&5&-/ 5(< =(4'($$,'(4 1$%$2/996('25-'/(& ;/0->5,$ 1'$-/%'')$(($/3?$%9'&-/?$( 5(< @6%-'9$
ITU-R P (2012/02) &' (
ITU-R P.530-4 (0/0) $ % " "#! &' ( P ITU-R P. 530-4 ii.. (IPR) (ITU-T/ITU-R/ISO/IEC).ITU-R http://www.itu.int/itu-r/go/patents/en. ITU-T/ITU-R/ISO/IEC (http://www.itu.int/publ/r-rec/en ) () ( ) BO BR BS
Vol. 34 ( 2014 ) No. 4. J. of Math. (PRC) : A : (2014) Frank-Wolfe [7],. Frank-Wolfe, ( ).
Vol. 4 ( 214 ) No. 4 J. of Math. (PRC) 1,2, 1 (1., 472) (2., 714) :.,.,,,..,. : ; ; ; MR(21) : 9B2 : : A : 255-7797(214)4-759-7 1,,,,, [1 ].,, [4 6],, Frank-Wolfe, Frank-Wolfe [7],.,,.,,,., UE,, UE. O-D,,,,,
Multi-dimensional Central Limit Theorem
Mult-dmensonal Central Lmt heorem Outlne () () () t as () + () + + () () () Consder a sequence of ndependent random proceses t, t, dentcal to some ( t). Assume t 0. Defne the sum process t t t t () t tme
ΕΚΛΟΓΙΚΗ ΠΕΡΙΦΕΡΕΙΑ ΕΒΡΟΥ
ΕΚΛΟΓΙΚΗ ΠΕΡΙΦΕΡΕΙΑ ΕΒΡΟΥ ΑΣΗΜΑΚΟΠΟΥΛΟΣ ΣΠΥΡΙΔΩΝ του ΔΗΜΗΤΡΙΟΥ ΚΑΛΑΪΤΖΙΔΟΥ ΑΙΚΑΤΕΡΙΝΗ του ΜΙΧΑΗΛ ΚΟΖΑΡΗΣ ΚΥΡΙΑΚΟΣ του ΧΡΗΣΤΟΥ ΜΑΛΚΟΥΚΗΣ ΒΑΣΙΛΕΙΟΣ του ΔΗΜΗΤΡΙΟΥ ΜΟΡΑΛΗΣ ΖΗΣΗΣ του ΙΩΑΝΝΗ ΕΚΛΟΓΙΚΗ ΠΕΡΙΦΕΡΕΙΑ
172,,,,. P,. Box (1980)P, Guttman (1967)Rubin (1984)P, Meng (1994), Gelman(1996)De la HorraRodriguez-Bernal (2003). BayarriBerger (2000)P P.. : Casell
20104 Chinese Journal of Applied Probability and Statistics Vol.26 No.2 Apr. 2010 P (,, 200083) P P. Wang (2006)P, P, P,. : P,,,. : O212.1, O212.8. 1., (). : X 1, X 2,, X n N(θ, σ 2 ), σ 2. H 0 : θ = θ
ER-Tree (Extended R*-Tree)
1-9825/22/13(4)768-6 22 Journal of Software Vol13, No4 1, 1, 2, 1 1, 1 (, 2327) 2 (, 3127) E-mail xhzhou@ustceducn,,,,,,, 1, TP311 A,,,, Elias s Rivest,Cleary Arya Mount [1] O(2 d ) Arya Mount [1] Friedman,Bentley
IF(Ingerchange Format) [7] IF C-STAR(Consortium for speech translation advanced research ) [8] IF 2 IF
100080 e-mal:{gdxe, cqzong, xubo}@nlpr.a.ac.cn tel:(010)82614468 IF 1 1 1 IF(Ingerchange Format) [7] IF C-STAR(Consortum for speech translaton advanced research ) [8] IF 2 IF 2 IF 69835003 60175012 [6][12]
Bundle Adjustment for 3-D Reconstruction: Implementation and Evaluation
3 2 3 2 3 undle Adjustment or 3-D Reconstruction: Implementation and Evaluation Yuuki Iwamoto, Yasuyuki Sugaya 2 and Kenichi Kanatani We describe in detail the algorithm o bundle adjustment or 3-D reconstruction
Stochastic Finite Element Analysis for Composite Pressure Vessel
* ** ** Stochastc Fnte Element Analyss for Composte Pressure Vessel Tae Kyung Hwang Young Dae Doh and Soon Il Moon Key Words : Relablty Progressve Falure Pressure Vessel Webull Functon Abstract ABAQUS
Ax = b. 7x = 21. x = 21 7 = 3.
3 s st 3 r 3 t r 3 3 t s st t 3t s 3 3 r 3 3 st t t r 3 s t t r r r t st t rr 3t r t 3 3 rt3 3 t 3 3 r st 3 t 3 tr 3 r t3 t 3 s st t Ax = b. s t 3 t 3 3 r r t n r A tr 3 rr t 3 t n ts b 3 t t r r t x 3
ITU-R P (2009/10)
ITU-R.45-4 (9/) % # GHz,!"# $$ # ITU-R.45-4.. (IR) (ITU-T/ITU-R/ISO/IEC).ITU-R http://www.tu.t/itu-r/go/patets/e. (http://www.tu.t/publ/r-rec/e ) () ( ) BO BR BS BT F M RA S RS SA SF SM SNG TF V.ITU-R
Προβολές και Μετασχηματισμοί Παρατήρησης
Γραφικά & Οπτικοποίηση Κεφάλαιο 4 Προβολές και Μετασχηματισμοί Παρατήρησης Εισαγωγή Στα γραφικά υπάρχουν: 3Δ μοντέλα 2Δ συσκευές επισκόπησης (οθόνες & εκτυπωτές) Προοπτική απεικόνιση (προβολή): Λαμβάνει
MICROMASTER Vector MIDIMASTER Vector
s MICROMASTER Vector MIDIMASTER Vector... 2 1.... 4 2. -MICROMASTER VECTOR... 5 3. -MIDIMASTER VECTOR... 16 4.... 24 5.... 28 6.... 32 7.... 54 8.... 56 9.... 61 Siemens plc 1998 G85139-H1751-U553B 1.
Multi-dimensional Central Limit Theorem
Mult-dmensonal Central Lmt heorem Outlne () () () t as () + () + + () () () Consder a sequence of ndependent random proceses t, t, dentcal to some ( t). Assume t 0. Defne the sum process t t t t () t ();
Εισαγωγικές έννοιες θεωρίας Συστημάτων Αυτομάτου Ελέγχου Ενότητα 6 η : Η ΜΕΘΟΔΟΣ ΤΟΥ ΓΕΩΜΕΤΡΙΚΟΥ ΤΟΠΟΥ ΡΙΖΩΝ
Εισαγωγικές έννοιες θεωρίας Συστημάτων Αυτομάτου Ελέγχου Ενότητα 6 η : Η ΜΕΘΟΔΟΣ ΤΟΥ ΓΕΩΜΕΤΡΙΚΟΥ ΤΟΠΟΥ ΡΙΖΩΝ Επ. Καθηγητής Γαύρος Κωνσταντίνος ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΒΙΟΜΗΧΑΝΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ ΤΕ
Η Παραµετρική Προσέγγιση στον Εύρωστο Έλεγχο
Η Παραµετρική Προσέγγιση στον Εύρωστο Έλεγχο ρ. Ε.Ν. Αντωνίου Μεταδιδακτορικός Ερευνητής Τµήµα Μαθηµατικών, Α.Π.Θ. Ιστορική Αναδροµή Κλασσική Θεωρία Maxwell O Goverors (1868) - Ρίζες της Θεωρίας Ελέγχου
(8) 017 У У θβ1.771...... ю E-mal: avk7777@mal.ru....... Р х х.. 93 % 6 % 166 %. М х х хх. : х х. ю. ю ( ). ю ю. ю. ю ю. - ю ю. ю [1 8] ю. [9 11] ю. [1]. 58 (8) 017 У ю μ (У) юю (. 1). u u+1 ЭС - ЭС (+1)-
ITU-R P (2009/10)
ITU-R.38-6 (009/0 $% #! " #( ' * & ' /0,-. # GHz 00 MHz 900 ITU-R.38-6 ii.. (IR (ITU-T/ITU-R/ISO/IEC.ITU-R http://www.itu.int/itu-r/go/patents/en. (http://www.itu.int/publ/r-rec/en ( ( BO BR BS BT F M
ΒΕΛΤΙΣΤΟΙ ΣΧΕΔΙΑΣΜΟΙ ΣΕ ΑΝΟΜΟΙΟΓΕΝΕΙΣ ΠΛΗΘΥΣΜΟΥΣ
Ελληνικό Στατιστικό Ινστιτούτο Πρακτικά 0 ου Πανελληνίου Συνεδρίου Στατιστικής (007), σελ 09-6 ΒΕΛΤΙΣΤΟΙ ΣΧΕΔΙΑΣΜΟΙ ΣΕ ΑΝΟΜΟΙΟΓΕΝΕΙΣ ΠΛΗΘΥΣΜΟΥΣ Στρατής Κουνιάς Ομότιμος Καθηγητής, Πανεπιστήμιο Αθηνών sounas@math.uoa.gr
Novel Ensemble Analytic Discrete Framelet Expansion for Machinery Fault Diagnosis 1
50 17 2014 9 OURNAL OF MECHANICAL ENGINEERING Vol.50 No.17 Sep. 2014 DOI10.3901/ME.2014.17.077 * 1 2 2 2, 3 (1. 361005 2. 710049 3. 710049) -- () - TH17 Novel Ensemble Analytc Dscrete Framelet Expanson
Erkki Mäkinen ja Timo Poranen Algoritmit
rkki Mäkinen ja Timo Poranen Algoritmit TITOJNKÄSITTLYTITIDN LAITOS TAMPRN YLIOPISTO D 2008 6 TAMPR 2009 TAMPRN YLIOPISTO TITOJNKÄSITTLYTITIDN LAITOS JULKAISUSARJA D VRKKOJULKAISUT D 2008 6, TOUKOKUU 2009
Kernel orthogonal and uncorrelated neighborhood preservation discriminant embedding algorithm
32 7 Vol 32 7 2011 7 Journal of Harbn Engneerng Unversty Jul 2011 do 10 3969 /j ssn 1006-7043 2011 07 018 150001 2 Yale PIE TE2 TP391 4 1006-7043 2011 07-0938-05 Kernel orthogonal and uncorrelated neghborhood
A Method for Determining Service Level of Road Network Based on Improved Capacity Model
30 4 2013 4 Journal of Hghway and Transportaton Research and Development Vol. 30 No. 4 Apr. 2013 do10. 3969 /j. ssn. 1002-0268. 2013. 04. 018 1 1 2 1. 4000742. 201804 2 U491. 1 + 3 A 1002-0268 201304-0101
ECE Spring Prof. David R. Jackson ECE Dept. Notes 2
ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =
J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5
Vol. 37 ( 2017 ) No. 5 J. of Math. (PRC) 1,2, 1, 1 (1., 225002) (2., 225009) :. I +AT +, T + = T + (I +AT + ) 1, T +. Banach Hilbert Moore-Penrose.. : ; ; Moore-Penrose ; ; MR(2010) : 47L05; 46A32 : O177.2
V. Finite Element Method. 5.1 Introduction to Finite Element Method
V. Fnte Element Method 5. Introducton to Fnte Element Method 5. Introducton to FEM Rtz method to dfferental equaton Problem defnton k Boundary value problem Prob. Eact : d d, 0 0 0, 0 ( ) ( ) 4 C C * 4
EL ECTR IC MACH IN ES AND CON TROL. System s vulnerability assessment of a ircraft guarantee system based on improved FPN
13 3 20095 EL ECTR ICMACH IN ESANDCON TROL Vol113 No13 May 2009 FPN,, (, 150001) :,,Petr( FPN ), BP, FPN,,,, : ; ; Petr; : U661 : A : 1007-449X (2009) 03-0464- 07 System s vulnerablty assessment of a rcraft
ITU-R P ITU-R P (ITU-R 204/3 ( )
1 ITU-R P.530-1 ITU-R P.530-1 (ITU-R 04/3 ) (007-005-001-1999-1997-1995-1994-199-1990-1986-198-1978)... ( ( ( 1 1. 1 : - - ) - ( 1 ITU-R P.530-1..... 6.3. :. ITU-R P.45 -. ITU-R P.619 -. ) (ITU-R P.55
A new practical method for closed-loop identification with PI control
7 9 1 9 : 1 815(1)9 14 5 Control Theory & Applications Vol. 7 No. 9 Sep. 1 PI,, (, 5164) : PI,,.,, (SOPDT).,, PI ;,, : ; PI ; ; : TP73 : A A new practical method for closed-loop identification with PI
A Method of Trajectory Tracking Control for Nonminimum Phase Continuous Time Systems
IIC-11-8 A Method of Trajectory Tracking Control for Nonminimum Phase Continuous Time Systems Takayuki Shiraishi, iroshi Fujimoto (The University of Tokyo) Abstract The purpose of this paper is achievement
Q π (/) ^ ^ ^ Η φ. <f) c>o. ^ ο. ö ê ω Q. Ο. o 'c. _o _) o U 03. ,,, ω ^ ^ -g'^ ο 0) f ο. Ε. ιη ο Φ. ο 0) κ. ο 03.,Ο. g 2< οο"" ο φ.
II 4»» «i p û»7'' s V -Ζ G -7 y 1 X s? ' (/) Ζ L. - =! i- Ζ ) Η f) " i L. Û - 1 1 Ι û ( - " - ' t - ' t/î " ι-8. Ι -. : wî ' j 1 Τ J en " il-' - - ö ê., t= ' -; '9 ',,, ) Τ '.,/,. - ϊζ L - (- - s.1 ai
= f(0) + f dt. = f. O 2 (x, u) x=(x 1,x 2,,x n ) T, f(x) =(f 1 (x), f 2 (x),, f n (x)) T. f x = A = f
2 n dx (x)+g(x)u () x n u (x), g(x) x n () +2 -a -b -b -a 3 () x,u dx x () dx () + x x + g()u + O 2 (x, u) x x x + g()u + O 2 (x, u) (2) x O 2 (x, u) x u 2 x(x,x 2,,x n ) T, (x) ( (x), 2 (x),, n (x)) T
!!" #7 $39 %" (07) ..,..,.. $ 39. ) :. :, «(», «%», «%», «%» «%». & ,. ). & :..,. '.. ( () #*. );..,..'. + (# ).
1 00 3 !!" 344#7 $39 %" 6181001 63(07) & : ' ( () #* ); ' + (# ) $ 39 ) : : 00 %" 6181001 63(07)!!" 344#7 «(» «%» «%» «%» «%» & ) 4 )&-%/0 +- «)» * «1» «1» «)» ) «(» «%» «%» + ) 30 «%» «%» )1+ / + : +3
A Class of Orthohomological Triangles
A Class of Orthohomologcal Trangles Prof. Claudu Coandă Natonal College Carol I Craova Romana. Prof. Florentn Smarandache Unversty of New Mexco Gallup USA Prof. Ion Pătraşcu Natonal College Fraţ Buzeşt
1 Εισαγωγή. 1.1 Ιστορικά. 1.2 Πλαίσιο
1 Εισαγωγή 1.1 Ιστορικά Θεωρώ αρκετά ασφαλές να ορίσω ως τη χρονική έναρξη της σύγχρονης θεωρίας Αυτομάτου Ελέγχου τις αρχές της δεκαετίας του 1960. Την περίοδο αυτήν οι ανάγκες επίλυσης προβλημάτων του
ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ
η εξεταστική περίοδος 0- - Σελίδα ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Τάξη: Γ Λυκείου Τμήμα: Βαθμός: Ημερομηνία: 8-0-0 Διάρκεια: ώρες Ύλη: Ταλαντώσεις Καθηγητής: ΑΤΡΕΙΔΗΣ ΓΙΩΡΓΟΣ Ονοματεπώνυμο:
Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.
Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. Περιοδικός πίνακας: α. Είναι µια ταξινόµηση των στοιχείων κατά αύξοντα
Vidyamandir Classes. Solutions to Revision Test Series - 2/ ACEG / IITJEE (Mathematics) = 2 centre = r. a
Per -.(D).() Vdymndr lsses Solutons to evson est Seres - / EG / JEE - (Mthemtcs) Let nd re dmetrcl ends of crcle Let nd D re dmetrcl ends of crcle Hence mnmum dstnce s. y + 4 + 4 6 Let verte (h, k) then
CRASH COURSE IN PRECALCULUS
CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΟΔΟΝΤΙΑΤΡΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΟΔΟΝΤΙΚΗΣ ΚΑΙ ΑΝΩΤΕΡΑΣ ΠΡΟΣΘΕΤΙΚΗΣ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΟΔΟΝΤΙΑΤΡΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΟΔΟΝΤΙΚΗΣ ΚΑΙ ΑΝΩΤΕΡΑΣ ΠΡΟΣΘΕΤΙΚΗΣ ΣΥΓΚΡΙΤΙΚΗ ΜΕΛΕΤΗ ΤΗΣ ΣΥΓΚΡΑΤΗΤΙΚΗΣ ΙΚΑΝΟΤΗΤΑΣ ΟΡΙΣΜΕΝΩΝ ΠΡΟΚΑΤΑΣΚΕΥΑΣΜΕΝΩΝ ΣΥΝΔΕΣΜΩΝ ΑΚΡΙΒΕΙΑΣ
Αλληλεπίδραση ακτίνων-χ με την ύλη
Άσκηση 8 Αλληλεπίδραση ακτίνων-χ με την ύλη Δ. Φ. Αναγνωστόπουλος Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων Ιωάννινα 2013 Άσκηση 8 ii Αλληλεπίδραση ακτίνων-χ με την ύλη Πίνακας περιεχομένων
(... )..!, ".. (! ) # - $ % % $ & % 2007
(! ), "! ( ) # $ % & % $ % 007 500 ' 67905:5394!33 : (! ) $, -, * +,'; ), -, *! ' - " #!, $ & % $ ( % %): /!, " ; - : - +', 007 5 ISBN 978-5-7596-0766-3 % % - $, $ &- % $ % %, * $ % - % % # $ $,, % % #-
a; b 2 R; a < b; f : [a; b] R! R y 2 R: y : [a; b]! R; ( y (t) = f t; y(t) ; a t b; y(a) = y : f (t; y) 2 [a; b]r: f 2 C ([a; b]r): y 2 C [a; b]; y(a) = y ; f y ỹ ỹ y ; jy ỹ j ky ỹk [a; b]; f y; ( y (t)
ITU-R P (2012/02)
ITU-R P.56- (0/0 P ITU-R P.56- ii.. (IPR (ITU-T/ITU-R/ISO/IEC.ITU-R ttp://www.itu.int/itu-r/go/patents/en. (ttp://www.itu.int/publ/r-rec/en ( ( BO BR BS BT F M P RA RS S SA SF SM SNG TF V 0.ITU-R ITU 0..(ITU
Constant Elasticity of Substitution in Applied General Equilibrium
Constant Elastct of Substtuton n Appled General Equlbru The choce of nput levels that nze the cost of producton for an set of nput prces and a fed level of producton can be epressed as n sty.. f Ltng for
Control Theory & Applications PID (, )
26 12 2009 12 : 1000 8152(2009)12 1317 08 Control Theory & Applications Vol. 26 No. 12 Dec. 2009 PID,, (, 200240) : PID (PIDNN), PID,, (BP).,, PIDNN PIDNN (MPIDNN), (CPSO) BP, MPIDNN CPSO MPIDNN CRPSO
One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF
One and two partcle densty matrces for sngle determnant HF wavefunctons One partcle densty matrx Gven the Hartree-Fock wavefuncton ψ (,,3,!, = Âϕ (ϕ (ϕ (3!ϕ ( 3 The electronc energy s ψ H ψ = ϕ ( f ( ϕ
( [T]. , s 1 a as 1 [T] (derived category) Gelfand Manin [GM1] Chapter III, [GM2] Chapter 4. [I] XI ). Gelfand Manin [GM1]
1 ( ) 2007 02 16 (2006 5 19 ) 1 1 11 1 12 2 13 Ore 8 14 9 2 (2007 2 16 ) 10 1 11 ( ) ( [T] 131),, s 1 a as 1 [T] 15 (, D ), Lie, (derived category), ( ) [T] Gelfand Manin [GM1] Chapter III, [GM2] Chapter
Motion analysis and simulation of a stratospheric airship
32 11 Vol 32 11 2011 11 Journal of Harbin Engineering University Nov 2011 doi 10 3969 /j issn 1006-7043 2011 11 019 410073 3 2 V274 A 1006-7043 2011 11-1501-08 Motion analysis and simulation of a stratospheric
!#$%!& '($) *#+,),# - '($) # -.!, '$%!%#$($) # - '& %#$/0#!#%! % '$%!%#$/0#!#%! % '#%3$-0 4 '$%3#-!#, '5&)!,#$-, '65!.#%
" #$%& '($) *#+,),# - '($) # -, '$% %#$($) # - '& %#$0##% % '$% %#$0##% % '1*2)$ '#%3$-0 4 '$%3#-#, '1*2)$ '#%3$-0 4 @ @ @
Α Ρ Ι Θ Μ Ο Σ : 6.913
Α Ρ Ι Θ Μ Ο Σ : 6.913 ΠΡΑΞΗ ΚΑΤΑΘΕΣΗΣ ΟΡΩΝ ΔΙΑΓΩΝΙΣΜΟΥ Σ τ η ν Π ά τ ρ α σ ή μ ε ρ α σ τ ι ς δ ε κ α τ έ σ σ ε ρ ι ς ( 1 4 ) τ ο υ μ ή ν α Ο κ τ ω β ρ ί ο υ, η μ έ ρ α Τ ε τ ά ρ τ η, τ ο υ έ τ ο υ ς δ
Homework 3 Solutions
Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For
Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------
Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin
Schedulability Analysis Algorithm for Timing Constraint Workflow Models
CIMS Vol.8No.72002pp.527-532 ( 100084) Petri Petri F270.7 A Schedulability Analysis Algorithm for Timing Constraint Workflow Models Li Huifang and Fan Yushun (Department of Automation, Tsinghua University,
Answers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l =
C ALGEBRA Answers - Worksheet A a 7 b c d e 0. f 0. g h 0 i j k 6 8 or 0. l or 8 a 7 b 0 c 7 d 6 e f g 6 h 8 8 i 6 j k 6 l a 9 b c d 9 7 e 00 0 f 8 9 a b 7 7 c 6 d 9 e 6 6 f 6 8 g 9 h 0 0 i j 6 7 7 k 9
ROVER (MG ROVER GROUP LTD)
100 114 D 38 52 01/92 + 0822-8962 237,40 0811-8962 134,20 115 D TUD 5 42 57 12/94 + 0822-8963 237,40 0811-8963 134,20 1500 (Triumph) 1.5 42 62 10/70-12/74 0800-0175 11,00 1.5 49 66 01/72-12/74 0800-0175
α & β spatial orbitals in
The atrx Hartree-Fock equatons The most common method of solvng the Hartree-Fock equatons f the spatal btals s to expand them n terms of known functons, { χ µ } µ= consder the spn-unrestrcted case. We
No. 7 Modular Machine Tool & Automatic Manufacturing Technique. Jul TH166 TG659 A
7 2016 7 No. 7 Modular Machine Tool & Automatic Manufacturing Technique Jul. 2016 1001-2265 2016 07-0122 - 05 DOI 10. 13462 /j. cnki. mmtamt. 2016. 07. 035 * 100124 TH166 TG659 A Precision Modeling and
Optimization, PSO) DE [1, 2, 3, 4] PSO [5, 6, 7, 8, 9, 10, 11] (P)
( ) 1 ( ) : : (Differential Evolution, DE) (Particle Swarm Optimization, PSO) DE [1, 2, 3, 4] PSO [5, 6, 7, 8, 9, 10, 11] 2 2.1 (P) (P ) minimize f(x) subject to g j (x) 0, j = 1,..., q h j (x) = 0, j
..., ISBN: :.!". # -. $, %, 1983 &"$ $ $. $, %, 1988 $ $. ## -. $, ', 1989 (( ). '. ') "!$!. $, %, 1991 $ 1. * $. $,.. +, 2001 $ 2. $. $,, 1992 # $!
!! " 007 : ISBN: # $! % :!" # - $ % 983 &"$ $ $ $ % 988 $ $ ## - $ ' 989 (( ) ' ') "!$! $ % 99 $ * $ $ + 00 $ $ $ 99!! " 007 -!" % $ 006 ---- $ 87 $ (( %( %(! $!$!" -!" $ $ %( * ( *!$ "!"!* "$!$ (!$! "
NON-HOMOGENEOUS BOUNDARY-VALUE PROBLEMS OF HIGHER ORDER DIFFERENTIAL EQUATIONS WITH p-laplacian
Electronc Journal of Dfferental Equatons, Vol. 2828, No. 2, pp. 43. ISSN: 72-669. URL: http://ejde.ath.txstate.edu or http://ejde.ath.unt.edu ftp ejde.ath.txstate.edu logn: ftp NON-HOMOGENEOUS BOUNDARY-VALUE
Discriminantal arrangement
Discriminantal arrangement YAMAGATA So C k n arrangement C n discriminantal arrangement 1989 Manin-Schectman Braid arrangement Discriminantal arrangement Gr(3, n) S.Sawada S.Settepanella 1 A arrangement
VSC STEADY2STATE MOD EL AND ITS NONL INEAR CONTROL OF VSC2HVDC SYSTEM VSC (1. , ; 2. , )
22 1 2002 1 Vol. 22 No. 1 Jan. 2002 Proceedings of the CSEE ν 2002 Chin. Soc. for Elec. Eng. :025828013 (2002) 0120017206 VSC 1, 1 2, (1., 310027 ; 2., 250061) STEADY2STATE MOD EL AND ITS NONL INEAR CONTROL
Prey-Taxis Holling-Tanner
Vol. 28 ( 2018 ) No. 1 J. of Math. (PRC) Prey-Taxis Holling-Tanner, (, 730070) : prey-taxis Holling-Tanner.,,.. : Holling-Tanner ; prey-taxis; ; MR(2010) : 35B32; 35B36 : O175.26 : A : 0255-7797(2018)01-0140-07
V r,k j F k m N k+1 N k N k+1 H j n = 7 n = 16 Ṽ r ñ,ñ j Ṽ Ṽ j x / Ṽ W 2r V r D N T T 2r 2r N k F k N 2r Ω R 2 n Ω I n = { N: n} n N R 2 x R 2, I n Ω R 2 u R 2, I n x k+1 = x k + u k, u, x R 2,
ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΙΙ
Ύλη µαθήµατος. Lead-Lag ελεγκτές 2. PID ελεγκτές (95%) (εκτός διαγράµµατα Nyquist-Nichols) ιακριτός & Ψηφιακός Αυτόµατος Έλεγχος ΨΗΦΙΑΚΟΣ ΑΥΤΟΜΑΤΟΣ ΕΛΕΓΧΟΣ Εργαστήριο Matlab LABview : συλλογή και αποστολή
Cite as: Pol Antras, course materials for International Economics I, Spring MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts
/ / σ/σ σ/σ θ θ θ θ y 1 0.75 0.5 0.25 0 0 0.5 1 1.5 2 θ θ θ x θ θ Φ θ Φ θ Φ π θ /Φ γφ /θ σ θ π θ Φ θ θ Φ θ θ θ θ σ θ / Φ θ θ / Φ / θ / θ Normalized import share: (Xni / Xn) / (XII / XI) 1 0.1 0.01 0.001
Appendix B Table of Radionuclides Γ Container 1 Posting Level cm per (mci) mci
3 H 12.35 Y β Low 80 1 - - Betas: 19 (100%) 11 C 20.38 M β+, EC Low 400 1 5.97 13.7 13 N 9.97 M β+ Low 1 5.97 13.7 Positrons: 960 (99.7%) Gaas: 511 (199.5%) Positrons: 1,199 (99.8%) Gaas: 511 (199.6%)
a; b 2 R; a < b; f : [a; b] R! R y 2 R: y : [a; b]! R; ( y (t) = f t; y(t) ; a t b; y(a) = y : f (t; y) 2 [a; b]r: f 2 C ([a; b]r): y 2 C [a; b]; y(a) = y ; f y ỹ ỹ y ; jy ỹ j ky ỹk [a; b]; f y; ( y (t)
ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s
P P P P ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s r t r 3 2 r r r 3 t r ér t r s s r t s r s r s ér t r r t t q s t s sã s s s ér t
Διευθύνοντα Μέλη του mathematica.gr
Το «Εικοσιδωδεκάεδρον» παρουσιάζει ϑέματα που έχουν συζητηθεί στον ιστότοπο http://www.mathematica.gr. Η επιλογή και η ϕροντίδα του περιεχομένου γίνεται από τους Επιμελητές του http://www.mathematica.gr.
ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA)
ΓΗ ΚΑΙ ΣΥΜΠΑΝ Φύση του σύμπαντος Η γη είναι μία μονάδα μέσα στο ηλιακό μας σύστημα, το οποίο αποτελείται από τον ήλιο, τους πλανήτες μαζί με τους δορυφόρους τους, τους κομήτες, τα αστεροειδή και τους μετεωρίτες.
Matrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α
Α Ρ Χ Α Ι Α Ι Σ Τ Ο Ρ Ι Α Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Σ η µ ε ί ω σ η : σ υ ν ά δ ε λ φ ο ι, ν α µ ο υ σ υ γ χ ω ρ ή σ ε τ ε τ ο γ ρ ή γ ο ρ ο κ α ι α τ η µ έ λ η τ ο ύ
rs r r â t át r st tíst Ó P ã t r r r â
rs r r â t át r st tíst P Ó P ã t r r r â ã t r r P Ó P r sã rs r s t à r çã rs r st tíst r q s t r r t çã r r st tíst r t r ú r s r ú r â rs r r â t át r çã rs r st tíst 1 r r 1 ss rt q çã st tr sã
SUPPLEMENTAL INFORMATION. Fully Automated Total Metals and Chromium Speciation Single Platform Introduction System for ICP-MS
Electronic Supplementary Material (ESI) for Journal of Analytical Atomic Spectrometry. This journal is The Royal Society of Chemistry 2018 SUPPLEMENTAL INFORMATION Fully Automated Total Metals and Chromium
Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté
Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté Alexis Nuttin To cite this version: Alexis Nuttin. Physique des réacteurs
CAP A CAP
2012 4 30 2 Journal of Northwestern Polytechnical University Apr. Vol. 30 2012 No. 2 Neal-Smith 710072 CAP Neal-Smith PIO Neal-Smith V249 A 1000-2758 2012 02-0279-07 Neal-Smith CAP Neal-Smith Neal-Smith
Fragility analysis for control systems
3 1 213 1 DOI: 1.7641/CTA.213.2294 Control Theory & Applications Vol. 3 No. 1 Jan. 213 1, 1, 2, 1, 1 (1., 151; 2., 158) :. ( 1, j), ( 1, j)., Bode...,,,, Bode. : ; Bode ; ; ; : TP273 : A Fragility analysis
Ó³ Ÿ , º 2(131).. 105Ä ƒ. ± Ï,.. ÊÉ ±μ,.. Šμ ² ±μ,.. Œ Ì ²μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê
Ó³ Ÿ. 2006.. 3, º 2(131).. 105Ä110 Š 537.311.5; 538.945 Œ ƒ ˆ ƒ Ÿ ˆŠ ˆ ƒ Ÿ ƒ ˆ œ ƒ Œ ƒ ˆ ˆ Š ˆ 4 ². ƒ. ± Ï,.. ÊÉ ±μ,.. Šμ ² ±μ,.. Œ Ì ²μ Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê ³ É É Ö μ ² ³ μ É ³ Í ² Ö Ê³ μ μ ³ É μ μ μ²ö
Second Order RLC Filters
ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor