Study of the function of PGC-1β in white adipose tissue and its contribution to the development of insulin resistance

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Study of the function of PGC-1β in white adipose tissue and its contribution to the development of insulin resistance"

Transcript

1 Study of the function of PGC-1β in white adipose tissue and its contribution to the development of insulin resistance Natalia Enguix Elena Phd Thesis Barcelona, 2014 Laboratory of Metabolism and Obesity Unit of Diabetes and Metabolism Vall d Hebron Research Institute Department of Biochemistry and Molecular Biology Autonomous University of Barcelona

2

3 Study of the function of PGC-1β in white adipose tissue and its contribution to the development of insulin resistance Natàlia Enguix Elena Thesis submitted for the Degree of Doctor in Biochemistry, Molecular Biology and Biomedicine Barcelona, 2014 Josep A. Villena Delgado Thesis Director Anna Meseguer Navarro Tutor Natàlia Enguix Elena

4

5

6

7 ABBREVIATIONS

8 A B C ACC a.u. ABHD5 AC acetyl-coa carboxylase Arbitrary units adipose triglyceride lipase co-activator adenylate cylcase Acaa2 acetyl-coenzyme A acyltransferase 2 Acadm acetyl CoA acyl-coenzyme A dehydrogenase, medium chain acetyl coenzyme A Aco2 aconitase 2 ACOD ACS acyl-coa oxidase acyl-coa synthetase Acss1 acyl-coa synthetase short-chain family member 1 ADD-1 adipocyte determination and differentiation-dependent factor 1 Adipoq AEBSF AGPAT AJ-9677 AKT AMPK ANOVA adiponectin, C1Q and collagen domain containing 4-(2-Aminoethyl) benzenesulfonyl fluoride hydrochloride (serine protease inhibitor) lysophosphatide acyltransferase β3-agonist protein kinase B AMP-dependent kinase analysis of the variance ap2 adipocyte fatty acid-binding protein 4 AQP7 aquaporin 7 AS kDa substrate of Akt ATF2 Activating Transcription Factor 2 ATF6 activating transcription factor-6 Atgl/Pnpla2 adipose trigliceride lipase, also known as patatin-like phospholipase domain containing 2 Atp5a1 ATP synthase, H+ transporting, mitochondrial F1 complex, alpha subunit 1 Atp5b ATP synthase, H+ transporting mitochondrial F1 complex, beta subunit Atp5o ATP synthase, H+ transporting, mitochondrial F1 complex, O subunit BAC BAT BCA BLAST BMI Bp BP Brite BSA C/EBPα C/EBPβ Bacterial Artificial Chromosome brown adipose tissue Bicinchoninic Acid Basic Local Alignment Search Tool Body mass index Bases pairs Biological proces brown in white Bovine serum albumin CCAAT/enhancer binding protein α CCAAT/enhancer binding protein β

9 D C/EBPδ CCAAT/enhancer binding protein δ C57BL/6 Common inbred strain of laboratory mouse camp Cyclic adenosine monophosphate Car- 6-carboxy-2',7'-dichlorodihydrofluorescein diacetate (general oxidative stress indicator) boxy-h2dc- FDA Cat catalase CC Cellular component CCCP Carbonyl cyanide m-chlorophenyl hydrazone CD36/FAT fatty acid translocase Cdk4/6 cyclin dependent kinases cdna complementary DNA Ci curie Cidea cell death-inducing DNA fragmentation factor, alpha subunit-like effector A Cideb cell death-inducing DNA fragmentation factor, alpha subunit-like effector B CL-316,243 β3-agonist CoA-SH thiol group COD cholesterol oxidase COE cholesterol esterase Complex I NADH-ubiquinone oxidoreductase Complex II succinate dehydrogenase Complex III Ubiquinol-cytochrome c reductase Complex IV Cytochrome c oxidase Cox4i1 cytochrome c oxidase subunit IV isoform 1 Cox5a cytochrome c oxidase subunit Va Cox5b cytochrome c oxidase subunit Vb Cox7a1 cytochrome c oxidase subunit VIIa 1 Cox8b cytochrome c oxidase subunit VIIIb Cpt1b carnitine palmitoyltransferase 1b, muscle Cre recombinase CREB camp Responsive Element Binding Protein Cs citrate synthase CT computed tomography CtBP C-terminal-binding protein Cyc1 cytochrome c-1 Cycs cytochrome c, somatic Cypa/Ppia cyclophilin A, also known as peptidylprolyl isomerase A DAG DAVID db/db mice DCIP Decyl-Q diacylglycerol Database for Annotation, Visualization and Integrated Discovery mice with mutation in the leptin receptor gene 2,6-Dichlorophenolindophenol Decylubiquinone

10 E F G DEPC Diethyl pyrocarbonate DGATs diacylglycerol acyltransferases DharmaFECT 4 cationic lipid-based reagent (Thermo Fisher Scientific) Dio2 deiodinase, iodothyronine, type II Dlk1 preadipocyte factor 1 DMEM Dubelcos s Eagle Modified Medium DMSO Dimethyl sulfoxide dpm disintegrations per minute dsrna Double-stranded RNA DTNB 5,5'-dithiobis-(2-nitrobenzoic acid) DTT Dithiothreitol dutp deoxyuridine-triphosphate EASE score a modified Fisher Exact P-Value ECL Enhanced chemiluminescence EDTA Ethylenediaminetetraacetic acid EGTA ethylene glycol tetraacetic acid Elovl6 ELOVL family member 6, elongation of long chain fatty acids (yeast) ER Endoplasmic reticulum ERK Mitogen-activated protein kinases ERREs ERR response elements ERs estrogen receptors ESPT ethyl-sulphopropyl-toluidine Esrra estrogen related receptor, alpha Esrrg estrogen-related receptor gamma Fabp3 fatty acid binding protein 3, muscle and heart Fabp4 fatty acid binding protein 4, adipocyte FABPm Fatty acid binding protein plasma membrane FADH2 Flavin Adenine Dinucleotide Reduced FASN fatty acid synthase FATP fatty acid transporter protein FBS Fetal Bovine Serum FDG-PET fluorodeoxyglucose-positron emission tomography FFA free fatty acid Flox Floxed LoxP FLP flippase (recombinase) FOXO1 Forkhead box protein O1 FRT short flippase recognition target sites G-6-Pase glucose-6-phosphatase G1 phase Growth phase

11 H I GABP GA-binding protein Gapdh glyceraldehyde-3-phosphate dehydrogenase Gastroc. gastrocnemius muscle GDP guanosine diphosphate Gi inhibitory regulatory protein GK glycerol kinase GLUT4 glucose transporter 4 GO gene ontology Gon. WAT Gonadal WAT GPAT glycerol 3-phosphate acyltransferase GPO glycerol-phosphate-oxidase Gpx1 glutathione peroxidase 1 GR glucocorticoid receptor Gs G stimulatory proteins GS glycogen synthase GSK3 glycogen synthase kinase-3 GTT Glucose tolerance test HCF Host Cell Factor HDACs histone deacetylases Hepes 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid HFD High fat diet HNF1B hepatocyte nuclear factor 1 homeobox B HNF4α hepatocyte nuclear factor 4 α HOMA-IR homeostatic model assessment of insulin resistance HRP horseradish peroxidase HSL hormone sensitive lipase IBMX 3-Isobutyl-1-methylxanthine Idh3a isocitrate dehydrogenase 3 (NAD+) alpha Idh3b isocitrate dehydrogenase 3 (NAD+) beta IGF-1 Insulin growth factor IKKβ NF-κβ kinase IL-10 Interleukin 10 IL-1Ra interleukin-1 receptor antagonist IL-1β Interleukin-1 beta IL-6 Interleukin 6 Ing. WAT Inguinal WAT IR insulin receptor IRE-1α inositol requiring enzyme-1 IRS 1-4 insulin receptor substrate proteins 1 to 4 ITT insulin tolerance test

12 J K L M N IU International units JNK c-jun N-terminal Kinase kda kilo (unified atomic mass unit or dalton) KO knock-out KRB Buffer Krebs-Ringer Bicarbonate Buffer LBD carboxy-terminal ligand-binding domain Lep leptin Lipe lipase, hormone sensitive LoxP Locus of X-over P1phage LPA lysophosphatidic acid LPL lipoprotein lipase LXXLL leucine-rich motifs MAG monoacylglycerols MAPK kinase Mitogen-activated protein kinases MCK muscle creatine kinase promoter MCP-1 chemo-attractant protein-1 Mdh2 malate dehydrogenase 2, NAD (mitochondrial) MEFA 3-methy-N-ethyl-N(β-hydroxyethyl)-aniline MF Molecular function MGL monoacylglycerol lipase min minutes mrna Messenger RNA MRS magnetic resonance spectroscopy mt-co2 cytochrome c oxidase II, mitochondrial mt-nd2 NADH dehydrogenase 2, mitochondrial myf5 Macrophage migration inhibitory factor 5 NADH Nicotinamide adenine dinucleotide reduced NAFLD non-alcoholic fatty liver disease NCS Newborn Calf Serum ndna nuclear DNA Ndufa4 NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 4 Ndufab1 NADH dehydrogenase (ubiquinone) 1, alpha/beta subcomplex, 1 Ndufb6 NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 6 Ndufb9 NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 9 NEFA Non-esterified fatty acids npkc novel protein kinase C Nrf1 nuclear respiratory factor 1

13 O P Nrf2/Gabpa NT-PGC-1α ob/ob mice OD OLEFT rats OxPhos system GA repeat binding protein, alpha [Mus musculus truncated isoforms of PGC-1α mice with mutation in the leptin gene optical density (absorbance) Otsuka Long-Evans Tokushima Fatty rats oxidative phosphorylation system p38 MAPK p38 mitogen activated protein kinase PA phosphatidic acid PAI-1 Plasminogen activator inhibitor-1 PAP phosphatidic acid phosphatase PBS phosphate buffered saline PCR polymerase chain reaction PDE phosphodiesterase PDH acetyl-coa by pyruvate dehydrogenase PDK1 phosphoinositide-dependent protein kinase 1 Pdk4 pyruvate dehydrogenase kinase PEI Polyethylenimine PEPCK phosphoenolpyruvate carboxykinase PERK PKR-like ER kinase PGC-1α Peroxisome Proliferator Activated Receptor Gamma Coactivator 1α PGC1β-FAT-KO knockout mice for PGC-1β in adipose tissues PGE2 prostaglandin E2 PGK Phosphoglycerate kinase PI phosphatidylinositol PI3K phosphoinositide 3-kinase PIP2 lipid 4,5-bisphosphate PIP3 phosphatidylinositol 3,4,5-trisphosphate PKA protein kinase A PKB protein kinase B PKCζ atypical PKC isoform PLIN perilipin PMSF Phenylmethanesulfonyl fluoride POD peroxidase POLRMT mitochondrial RNA polymerase Ppara peroxisome proliferator activated receptor alpha Pparg peroxisome proliferator activated receptor gamma Ppargc1a peroxisome proliferative activated receptor, gamma, coactivator 1 alpha Ppargc1b peroxisome proliferative activated receptor, gamma, coactivator 1 beta Pprc1 peroxisome proliferative activated receptor, gamma, coactivator-related 1

14 Q R S PPRE PPAR Responsive Elements Prdm16 PR domain containing 16 [Mus musculus Pref1/Dlk1 delta-like 1 homolog (Drosophila) Primer F Reverse primer Primer R Forward primer PRMT1 protein arginine methyltransferase 1 PVDF polyvinyl difluoride qpcr Quantitative PCR Rab member of the Ras superfamily of monomeric G proteins RBP4 Retinol binding protein 4 Ret. WAT Retroperitoneal WAT Retn resistin Rip11 Rab11 effector Rip140/Nrip1 nuclear receptor interacting protein 1 ROS reactive oxygen species Rosig. rosiglitazone rpm Revolutions per minute RRM RNA recognition motif RS short argenine/serine-rich areas RT-PCR Reverse transcription polymerase chain reaction RXR retinoid X receptor S phase DNA synthesis phase S6K1 ribosomal s6 kinase Sdhb succinate dehydrogenase complex, subunit B, iron sulfur (Ip) Sdhd succinate dehydrogenase complex, subunit D, integral membrane protein SDS Sodium dodecyl sulfate SEM the standard error of the mean shrna short hairpin RNA sicontrol non-targeting sirna sigapdh sirna targeted to glyceraldehyde-3-phosphate dehydrogenase siglo transfection indicator sipgc-1α sirna targeted to Ppargc1a sipgc-1β sirna targeted to Ppargc1b sirna small interference RNA SIRT1 sirtuin 1 Sod2 superoxide dismutase 2, mitochondrial SOX9 Sry-related HMG box-9 SPF Specific Patogen Free SREBP-1 sterol regulatory element-binding protein 1

15 T T U V W ssdna SVF TAE TAG TBS TBS-T TCA cycle Td TdT TE buffer TEMED Tfam Tfb1m Tfb2m TG THR TLRs TNB Tnfa Tris trna TZDs TAE buffer Ucp1 Ucp2 Ucp3 UDG UPR Uqcrc2 Uqcrh Uqcrq UV Vehic. VLDL WAT Wt single-stranded DNA stromal vascular fraction Tris-Acetate-EDTA triacylglycerol Tris-buffered saline Tris-buffered saline-tween tricarboxylic acid cycle dissociation temperature terminal deoxynucleotidyl transferase Tris-EDTA buffer Tetramethylethylenediamine transcription factor A, mitochondrial transcription factor B1, mitochondrial transcription factor B2, mitochondrial triglycerides thyroid hormone receptor Toll-like receptots tumor necrosis factor 2-Amino-2-hydroxymethyl-propane-1,3-diol transfer RNA thiazolidinediones Tris Acetate EDTA uncoupling protein 1 (mitochondrial, proton carrier) uncoupling protein 2 (mitochondrial, proton carrier) uncoupling protein 3 (mitochondrial, proton carrier) uracil DNA glycosylase unfolded protein response ubiquinol cytochrome c reductase core protein 2 [Mus musculus ubiquinol-cytochrome c reductase hinge protein ubiquinol-cytochrome c reductase, complex III subunit VII Ultraviolet vehicle very low-density lipoproteins white adipose tissue Wild type

16

17 ABSTRACT

18 ABSTRACT $ # $ # # %. / )# " $ " $ $" " ) $ $ " $ # $# # $ " $) " $# " % $ + # $ # )+ " # # $ ' $ $ & $ $ # " "# # % # # % $) 1 $ #, % $ $" # " $ $ "# " % $ "# % $ " % $, # # ( " # # + $ " $ $# $ & $ # # % # $ " # # ) $, # $% ) $# % $ + ' & -0 ' - 0 #, $ + ' & # $% $ $ '-$ -" " $ % $ # - -0 $ " % $, & )* $ $ & $) # $ " % $ $ $" $ # ) $ # )$ " ( # $ & $) " - " # # # $ $ " $ $ * #. # /+ ' " $ % $ $ - $ & # $ # ' " # $ % $ $ $" %$ -0-0 # ) % ) " # $ % + # + %$ $ + -0 # $ $ " $ " # $ " ( " $ & % $ % ) # ' $ )$ #, + $ %# # " # $ -0 # $" $ $ $ $ # " % $ " # "!% " " # - $ $ " ( " # # + () # % $ $ $ ( $ $ )+ $ " $ $ -0 # # # ") $ $ ' & "+ - " # # # $ $# " $" # " $ " % $ ( $ " ) " # $ " # # $ #, " & "+ # ' $ $ % $ " ( " # # ( $ & $ # " $ # % -# # $ * $) #, $ $ ' $ )$ # + & " " "$ " $ )$ #. ") $ " # # / %, # $% ) " $ "% " $ $ -0 $ 2- " $ " - # $ $ $ % $ " " $ " "% $ $, & " & # ( # # % "$ $ "!% " $ " $ -0 ( " # # " ' - " $ " # $ " "# " $ $ " - ( " # # 2-, " ' " # + # $ % $ $ ( " # # )$ #, # -0 " & - $ " " - $ % -" % $ $ # # # + # % # $ " $ ( -0 " # # " ' )$ " "# " $ )$ #, # - % $ " % $ + $ $ % $ $ " ( $ # # $ " $ # % -# # $ * $# $ * #, " & "+ % # $ % - # " " # $#,

19 RESUM " " " ' % 81,! + 1 & 2 2 3! # " 2 3 " + + "! ( 3 3 " " 3 " " 1 & * 0 +! * 5 % 2 & 1! " ;089: " * + * 1 ( 0 "! $ $ 1 3

20

21 CONTENTS

22 CONTENTS ACKNOWLEDGEMENTS ABBREVIATIONS ABSTRACT RESUM 1. INTRODUCTION Pathogenesis of type 2 diabetes and adipose tissue Adipose tissue White adipose tissue Brown adipose tissue Regulation of adipogenesis Hormones and signal transduction pathways regulating adipogenesis Transcriptional regulation of adipocyte differentiation Mechanisms of insulin resistance Insulin signaling pathway Mechanisms of insulin resistance Regulation of mitochondrial biogenesis Mitochondrial functions Transcriptional control of mitochondrial biogenesis PGC-1 family coactivators Structure and mode of action Regulation of PGCs activity by post-translational modi#cations Function of PGC1 coactivators in different tissues OBJECTIVES MATERIALS AND METHODS Animal studies PGC1β-FAT-KO mice generation Mice genotyping Mice housing conditions Efficiency of Ppargc1b gene recombination Measurement of food intake Pharmacological treatments Intraperitoneal glucose tolerance test Intraperitoneal insulin tolerance test Tissue collection Isolation of mature adipocytes and stromal vascular fraction Gene expression analysis Total RNA isolation RNA quality control 56

23 Reverse transcription Real-time quantitative PCR Primer design Gene expression profiling Protein extraction and protein analysis by Western Blot Total protein extraction and quantification SDS-polyacrylamide gel electrophoresis Western Blot Stripping of PVDF membranes Mitochondrial DNA quantification DNA isolation RNA removal from DNA extract Mitochondrial activity Citrate synthase activity Respiratory chain complexes enzymatic activity Fatty acid oxidation assay ex vivo Protocol for preparing BSA:Palmitate conjugate Fatty acid oxidation assay ex vivo Study of insulin-stimulated phosphorylation of AKT Serological parameters Serum preparation Triglycerides determination Total cholesterol determination Non-esterified fatty acids (NEFA) determination Insulin and leptin determination Determination of homeostasis model assessment of insulin resistance Histological analysis Cell culture procedures of 3T3-L1 cells Cell culture media for 3T3-L1 fibroblasts Resurrection of frozen 3T3-L1 cell stocks from liquid nitrogen T3-L1 fibroblasts subculturing protocol T3-L1 fibroblasts differentiation protocol Preparation of 3T3-L1 fibroblast cells for freezing sirna transfection of 3T3-L1 adipocytes Transfection of adhered 3T3-L1 adipocytes. Optimization protocol Transfection of 3T3-L1 adipocytes on suspension. Optimization protocol sirna transfection of 3T3-L1 adipocytes to knockdown PGC-1α and PGC-1β ATP production measurement ROS production measurement Oxygen consumption Fatty acid oxidation assay in vitro Statistical analysis 92

24 4.RESULTS Generation of a mouse model lacking PGC-1β specifically in adipocytes Ppargc1b expression in white adipocytes Generation of a PGC1β-FAT-KO mouse model to study the role of PGC-1β in WAT Efficiency of Ppargc1b gene disruption in adipose tissues Effect of Ppargc1b gene disruption on PGC-1β mrna levels Effect of Ppargc1b gene disruption on PGC-1β protein levels Physiological characterization of PGC1β-FAT-KO mice housed at 21ºC Study of the cellular process regulated BY PGC-1β in white adipose tissue Gene expression profile analysis of retroperitoneal WAT from PGC1β-FAT-KO mice housed at 30ºC Expression of genes in retroperitoneal WAT by real-time quantitative PCR Gene expression analysis of PGC-1β target genes in subcutaneous WAT and interscapular BAT of PGC1β- FAT-KO mice Western Blot analysis of proteins coded by PGC-1β target genes in WAT of PGC1β-FAT-KO mice Analysis of mitochondrial function in WAT of PGC1β-FAT-KO mice Effect of PGC-1β deficiency on mitochondrial biogenesis in WAT Effects of PGC-1β knocdown in cultured 3T3-L1 adipocytes Lipid-based sirna transfection of 3T3-L1 adipocytes Optimization of the conditions for sirna transfection of 3T3-L1 adipocytes Analysis of mitochondrial gene expression in 3T3-L1 adipocytes lacking PGC-1β Study of the role of PGC-1β in fatty acid re-esterification in 3T3-L1 adipocytes Assessment of mitochondrial function in 3T3-L1 adipocytes lacking PGC-1β Effect of PGC-1β deletion on oxidative capacity of rosiglitazone in white adipose tissue Effects of the lack of PGC-1β in WAT on rosiglitazone-induced expression of mitochondrial genes Effect of the lack of PGC-1β on rosiglitazone-dependent induction of TCA cycle and OxPhos protein levels in WAT Role of PGC-1! on rosiglitazone-induced lipogenesis and adipogenesis Contribution of PGC-1β to rosiglitazone-enhancement of mitochondrial function Influence of PGC-1β on the transcriptional regulation of antioxidant enzymes Study of the contribution of PGC-1β to rosiglitazone-induced mitochondriogenesis Effect of adipose PGC-1β deficiency on glucose homeostasis and insulin sensitivity Effect of the lack of PGC-1β in body adiposity of mice fed a chow diet Effect of the lack of PGC-1β in white adipose tissue on glucose homeostasis Effect of the lack of PGC-1β in body adiposity upon rosiglitazone treatment Effect of adipose deletion of PGC-1β on glucose homeostasis upon rosiglitazone treatment Effect of adipose-targeted deletion of PGC-1β on the amelioration of the metabolic profile by rosiglitazone Assessment of tissue-specific insulin signaling in PGC1β-FAT-KO mice Role of PGC-1β in brite adipocyte recruitment in WAT Role of PGC-1β in brite adipocyte recruitment in WAT by rosiglitazone treatment Effect of β-adrenergic stimulation on brite adipocyte recruitment in WAT of PGC1β-FAT-KO mice Role of PGC-1β on the regulation of mitochondrial gene expression induced by CL-316,243 treatment Role of PGC-1β on β-adrenergic stimulation in BAT 151

25 5. DISCUSSION Analysis of the pathways regulated by PGC-1β in WAT Role of PGC-1β in white adipocyte physiology Role of PGC-1β in the regulation of mitochondrial biogenesis induced by rosiglitazone in WAT Role of PGC-1β in the function of BAT Role of PGC-1β in the function of BAT in the recruitment of brite adipocytes in WAT Effect of mitochondrial dysfunction on insulin resistance Contribution of PGC-1β to rosiglitazone-dependent oxidative capacity in WAT CONCLUSIONS REFERENCES ANNEX 189 Table 1. List of up-regulated genes in PGC1β-FAT-KO mice Table 2. List of down-regulated genes in PGC1β-FAT-KO mice

26

27 1. INTRODUCTION

28

29 1.1. Pathogenesis of type 2 diabetes and adipose tissue # " " # " # # " " # &! * %!!!# ",! # $ # ( # #! # # "! # =,9:? # &! $ # " & ( " # 37 54, #, " #$ (# ( * # "! % # # #! % # " " %!*! " $ # 384,! " #$ ( * # " #$ (! % # # " # 96? " " $ " " #$! * $! $ " #!! # # ",!#$ # ( * # $!! # " " " # (! *! #! # # #! # # "! #! # : >6 & # ( # " 869: 37 4, INTRODUCTION # " "! # ( # $! $" " %! # ",! $ # # " $ # # #" $!! (!# " * #! # # ( *!! $! # ( *! # ( #! # " " " #!! " # "! $"! "! $ # * " #"! # #" #! " ( " # ",? " " ", #! " # # #( 7 # " * & #! " " # #( # "!! " " # #( 8 # " * &! " $! ( $" ( # $# $ " #!$ - # " * #( 8! # # " "! #! ) ( % " $ " # # '# " $! " " # " $, #*! ( # " " *! " " # # $ (, # - # ( $ * # & %!*! %! " $! " " # * #! " "!$ $ " * " #! (! ( " " # " ", %!* & # " # " " $ 2 #!! # (! " # " $ #! # # ", # #! " " $ -" # $ # $ " #! "!# " " # (! # ( " ( # " "! $ " $ - # $ " " * #! ( #! $# # #! #! " # (! ( # ",! %!* " $! " " # & # " # " " $ "! " $ #" ( " " ( " $ * # % # #! #! ##( " # $ #!!( $" # " " " # $ & * % % # " $! " " # " #!!( $" #( 8 # ", " #( * $# # # " # $# # #" & # #( 8 # "! " $ -! " "! " # % " #$ " % " & # # " $! " " # % " " # " " 3: * ;4, # * " $! " " # " " & #! " # 3

30 INTRODUCTION #( 8 # # #"! # ( % # " " 3<4, ( * #! # #! " #! " $ " " # % #(! % # # % # #( 8 # ", # # # " $! " " # $! #! #( 8 # "!! $ # # #" % % # # " " #(! " % " " # & #! " $ "! # * " $ $"* % " $" $ &"$. &( & #&"$ 2 * # &" + &!' $ &"$ 0 " "" * "$ " * #$"&! * # "! &! %& $" $ ' &"$+!&.!! #$"&! 0 * " #( 3> " # # #&!! " #!" #!! # " ", " #!( #! $# # ' " " % & # " #( * & # # #! " " $! " " #, " $ " 7 >=6 " " $! $ ( " # % #( ' # $ # & " , $! # " # " #$ " " # " % $!"! #! % " # " " $ #!! " # $! " " #( 8 # " " " " # # # "! "! # ( # &! $ #, #* &! 86 (!" * &! %!& #,! %!*! # #!! # " " $ " # # # #! " " " 37 84, " # " " $ " /! 0 & # # " # " "!! " ( # " ) "! #! ( " & " $#! # " # #$" # #! # #, # " " $ % $ " " # #! ( " # " " * " ( " #! % # %!, %!" ( * ' " " # $ $ # " "!% " # #" " # # " * $! " %! #! (! # # " $! " & # #! $# * " # * #! "! "! #( 8! % " $! " " 37 94, " " ' #! # #& 8 # " " # # " " # # *! ( # ' " # " #! #( # # $ $ # " * & * #$! *! " $ #! $ " # " % "! ( # " & # #! " 2 (!! # " # $ # * #! ( " 4

31 ! $!!! "! # " $ -" " # ) " * " $ " # #!! ( * " # " " $! " # #" "! #! ) ( # "! " # " " $ * "! " " # " $ " ( " $ # - ( " $ # * $ # # ( * #( 8 # " 37 : * 7 ;4, $ # * # " " " # # & # # # # #! " $ " " # % #( $ " $ # " # " " $!!!!# # ( " ), $" * $!" # ( " ( #! " " " # # " " " "!( # % & " #! " #( #"! #! # " * " $ " #( 8 # ", INTRODUCTION 1.2. Adipose tissue " # " " $ " " # % # " " $ " # #$#! # ( ( 2 37 <4, White adipose tissue Morphology and anatomical distribution of white adipose tissue " #!! $ # ", # ( # "!! $ " " " " # #! (! "! # #! * & # " ( # Figure 1. Histological section of white adipose tissue stained with hematoxylin/eosin. 5

32 INTRODUCTION * " # # " " $ # # " # # # " $#" #! # % #(, #!! " $ $# $" # " " #" " #! # " " $ #! $ # ", $ " * " $ $# $" #! " #! $# # " #!! $!* $! * $## * $ $ " #! $ $# # (, " # # #! % # ", $ $ + " #! * # *! #!! # *!! *! Figure 2. White adipose tissue distribution in humans and mice. Image extracted from [18] Metabolic function of WAT " # * # $ # " " # " #!! #! (! ", & # ( # " * #! (! " " ( # " ) #! $ # "! " " #!"("! " " 1! #! # $ # ##(,! ( "! $! * # #! (! " " #! # ( # ( " " * & %!"! ##( " (! # #! $ # # # &!"(" # "! %%!"(" " " " #! " " ( & ##( "! " ( # " )! 6

33 " # ) # (!$% # % ( ( " ", * (!$% # #!" #! #! "! # #( #+ - $' ( & ( + $"! %! # #!, # ( # " * #! # "! & # %! ##( " ( # " ", ##( " ( # " " " % # " # " + #! #! #( - &+(. " $" * + % " $ " " % # #( - ( # $ # - &&+ )( %+!& % '!"(" " " ( # " " #! (! ", " $ "! ( INTRODUCTION &&+ ' #& # & #!"(" " " * ##( " #!! $ #! $ ( # "! # # # " # " # # "#$"&,! # %" # " " $ * " "! # ( ( # "! " # # % " " " * &! # #! #" &&+ &$!% " % ( "*! &&+ &$!%#"$& $ #$"&! &&+!! #$"&! # % $! $ + $ %+!& %% +. " %+!& & $! % + $" 1.# "%# & + &$!% $ % #! $ # # + %"# "%# & + &$!% $ % # "%# & # "%# & % $ + + $" + &$!% $ % % #" + %% " $ " $ # ( $" "! ( " $ " #! # " #! # " " $ "! "! # " " $ " " #", 7

34 INTRODUCTION &! # #! "!#! " " # "! # #! $ # ##( #! "!#! # ", (!! " #! $ # # # " " $ # ( " "!!! ( #! " $ # #! #! (! " " #! ( # #! #" * &! " " $ # $ # " #&! " * %!" ( * $ # " #!, Figure 3. Metabolic functions of WAT. Uptake and metabolism of glucose is represented in the pink box. De novo lipogenesis is represented in the green box. Triglyceride synthesis is represented in the turquoise box. Lipolysis is represented in the yellow box. Fatty acid uptake from circulation is represented in the blue box. Image obtained from [18] Endocrine function of WAT # # #"!! ( " #! *! $ " &! $ " * " - / " 0* $! " *! & # #!" * ( # 8

35 & #! "! # ( ( # " * & " %! " #$ " % " & # # # " #! % " $!! # # # " " $!! " "! "! # ( 38;4, " $ " * # # $ # # # " # " " $ * " #! # " " $ " #! $ # #! # "! $ #, INTRODUCTION! " "! %!" * % % (! " " " * 37 8* Figure 4. Adipokines and other adipocyte products that affect insulin action, nutrient homeostasis and cardiovascular function. Image adapted from [28]. " # " # # "! % " # ## #, #! $ $ #! ( # " "! " # "!$! #!!# " # " " $ 38>4, # " "! # " # ' $" % ( ( ( # " * #" ( #! #! ( ' #$!, # % # #! #! " #!! " "! ' # & ( " $ # #! "' " " # "! ( # " # # ( # $" # #!, * $# # " # (! " %! " #(! #" $!#! " 396* 97 4, #! #" * #! " " # ' # " # $" ( # " 3 #!!# # *!# $! ( # # '#! ( " " # % #( * " * "! $ ' $" % ( ( ( # " 3994, # " $ " "!* #!!* '!*! $! & # " #!$ #! "! #!!# " 39: * 9;4, # $ # " " $ " " # % #( #! $ 9

36 INTRODUCTION $ "! $ # * $ " $ # $" *! " # %! $" 39<4, #! " # # " # " * # '! " "! $ # % " # "! " " #( * #! $! $ # # " ( #! # # " ( # " " " " " # & # " $! " " #! " # ", #! $ ( * # " " #$ # # # -; $! (& $"! ((" '! " " # % #( *! " '! " " ##( #! "!#!* Brown adipose tissue Morphology and anatomical distribution of brown adipose tissue # # ( #! #$! #! $! " " & " -" %! # #! $ #! ( # " * # %!! (! ( " " #! (! " *!! ( % " $! ) # " $! $ # '( " $ " #! # " " $ ( #! & $ # & # # % # # # #! * "! " " #! #! ) " # # " " $, Figure 5. Histological section of brown adipose tissue stained with hematoxylin/eosin.! #" * " # " * # #"! & " # " " $ 10

37 INTRODUCTION Figure 6. Distribution of major brown adipose tissue depots in (A) humans and (B) rodents. Adapted from [48] Thermogenic function of brown adipose tissue '! " "! & ( # " * & " ) # #!!! #! $ ( #! "! #!( " " " # " #* " # #!! # #! # 3: 84,!!! #!" # " $!! & ( # ", $ " - $ - # ( * " # $ # 7 9! # " & # " # # # % # # #!! " ", # #! (! ", " ##( " * # # " -!% ' "# " $ " #! # " #!! 11

38 INTRODUCTION ABHD5 perlipin-1 ATP AC camp PKA Gs Norepinephrine Cold Lipid droplet TAG ABHD5 ATGL DAG P P perlipin-1 P HSL HSL P FFA MAG FFA MGL FFA Glycerol Nucleus β PGC-1α UCP1 H + H + H + H + UCP1 UCP1 CREB ATF2 Figure 7. Overview of the regulatory mechanisms involved in cold-induced non-shivering adaptive thermogenesis in BAT. Image adapted from [48]. " %! #! "! #! $ #!", # %#"!%( *!&!! $"&! Brite adipocytes & # ( # ",!!$ # # # "! & - ( # " -!! " #" 2 *! " " & "! &, " $! & # & 2! ( # " # " # $ " #! & # ( ( # " *! # ( # " %! ( : - # % * " 12

39 TABLE 1. Differences between brown and beige adipocytes. Table adapted from [56]. Brown adipocytes Brite adipocytes Developmental origin in mice Myf5+ cells (dermomyotome) Myf5- cells Pdgfr-α+ (dermomyotome) Enriched markers Zic1 Lhx8 Eva1 Pdk4 Epsti1 mir-206 mir-133b Cd137 Tbx1 Tmem26 Cited1 Shox2 Key transcription factors C/ebpβ Prdm16 Pgc-1α Pparα Ebf2 TR C/ebpβ Prdm16 Pgc-1α (Pparα) Activators Cold Thiazolidinediones Natriuretic peptides Thyroid hormone Fgf21, Bmp7 Bmp8b Orexin Cold Thiazolidinediones Natriuretic peptides Thyroid hormone Fgf21 Irisin INTRODUCTION # $! # ( # "! "!! #! $!"!" # " "! # ( " " " "! ( #! #$! " * " $ ' #$!! " " #!! # '#! $ ",!! * # "! # #!!$ # #! & - ( # " $ ( #! (! (, " # " " *!!$ # #! # ( # " & # " #! "! ( ' #$!! $ ( & # 3: <4, Figure 8. Histological section of white adipose tissue stimulated with a 3-adregergic agonist. Brite adipocytes can be found among white adipocytes. Tissue stained with hematoxylin/eosin. #! # # & # 9 #! " "! # #! & ( # " * % " & # #! # # & # " $ " # " # #! #! & ( #!!$ # $! % " $ " " # % #(! ( " # " " " $! " " #! " $ #" # *!! " # $ # $ " "! 13

40 INTRODUCTION #! % " $! " ( " # 3;7 4* & # " $! # $" # "!$ "! " " # 7,9,8,2, 1.3. Regulation of adipogenesis # $! " # #( " # " " $ " #$! # # %!"! ( " # #$" * # " % ( $ # ( # " ) * $! " " * #! " " ( &! ( # "! " # # # " " $ #$! ( # " * $!" # " " $! #$! %!! # # * ( # " $! #!! #! " # #! #" $ #, $" *!!! # # ( # " " " " #!!!! $ # " # " " $,! & # # " * # "! ( #! # # " # ( " #! ( * &!" #! % # #( 8 # " 3;: * ;;4, %!# " #(!" * " # "! ( # " " " & " " ( " % & ( $" # " #$ ( ( #! # # 3;<* ;=4, $ & # ( # ",! # " " #$ " * & & # # " " " #& -" # % #!! #! # #, # "!! 9 9-7!! # $ # # (! & # -!! " # ( # # # * & #!! - #! (!! " " #! $ # " # #& - ( % " ' " 3<7 4, $! # ' " " * " '! " " $! #! ( #! # # * & "! #! ) ( " $ 14

41 Hormones and signal transduction pathways regulating adipogenesis " #! $! % #"!! " # # # # $ " # #$! ( # #(, #!" % % ( #! # #! "! &, INTRODUCTION!%'! $") & &"$! %'!!! $!! ( #! # # 3<9 #! "! # #!" " #!! " "!!(! (& $" " #$ ( # " "*, $!# "! " #! * & ( $ #! " #" # % #( 3<<4, # * ' # "! $ # '! " " #$ # " + & &"$.0 3<=4 ( # " " % # &! ( # " #!! " " #! $! " ", * 3<>4* ( #! "! # #! #! ( " " " ",!! #!! " % % " " & " $") #" &!! "$ "!*! " # *! ( $ " " %! #( $ #$! " * $#!!(! ( # $ #$! " # " & # " # 3=64, (!! " # # % " & #! # (& $" # " " '# " # * $#! & #! " # % # " $!!# ((" " $,! Transcriptional regulation of adipocyte differentiation *! # #! # " #&! 3;<4, # 1 3<<4 15

42 INTRODUCTION! #! 3=: 4, #$! * # # #! # # " # #, ( # #! #! # # - # #! 7 1" #!! #! # % (! $ # # '! " " " % % # 2 3;<* <84, "! ( # * # # '! " " # " #!! ( # #(, #! "! # *! " $ # # ( #!! # # # # ", #!( # # ( #! # # 3=;* =<4, " # " #!# # #! "! # #! %! $ "! " " "! ((" #! (& $" 3>64,! #!!" & #! #! #! " # '! " " $! $" #!" "! #! " # " " $ * " $ " $ " " # % #(, " # % # #! $ # " # #" " # #! '( -#! -! " # 16

43 " ( ( # " *! % # #! $ INTRODUCTION $ # # ' #"! $ # ##( " - " # " " $ " ( # " & $ #! " $" ",! " " #" % $ " # # " #!! # ", # " " " * # " "!% " # " " $ " #" # # #! " #! " "!! 3>>-7 684, " # & $!#! " $" " # " $ # # '! " " #! ", " # # " δ δ β γ! α fi ff Figure 9. Schematic overview of the transcriptional and hormonal induction of adipogenesis. Scheme adapted from [72]. 17

44 INTRODUCTION 1.4. Mechanisms of insulin resistance Insulin signaling pathway! $ # " %! $!! " " "! & # *!! # * # " $ " #! " -! # " ( #! ", # " & "! " ( # " " * $# # " " # &! #"!! # $ " " " $" * #! # # " #! " # " " $ * #! % # # '!# #"! $ " " # " " *! %' " $! $ #&"$ " #! # # # & " $# "!( # #! #! # " #!!" #!!$ # # "!(! %' #! $ "#&"$ %! %' % &$ & #$"&! % # "%# "! "%& 1.! % "!( # " # 2,3. %# "%# & 1,2,3.&$% # "%# & #$"&!! % 0 #$"&!! % ' % &$ & " 04/ "! , # + "! %+!& %! %.1 + "! %+!& % #" $ - "!( # " # # * 7 " ) # # $ $" * &! #! " " " $ # #! #!! $ " ;- " # " "! " " #"! # #! "! #, 7 * #! $! " #! " ;- " # " # "%# "!" #+ $' ( & $" * +! % # $ "! $ # #! $! " #! "! # $ 18

45 Insulin P IRS PIP PIP PIP 3 3 PIP 3 2 PDK1 PI3K P AKT Thr 308 P + Ser P Rip11 Rab AS160 Rip11 Rab Glucose GLUT4 GLUT4 GLUT4 GLUT4 INTRODUCTION GSK3 Glycogen Synthesis FOXO Glucose Synthesis GLUT4 GLUT4 Glucose Uptake Figure 10. Abbreviated insulin signaling pathway. Image adapted from [104]. # " #! " $, " # #! $ # % " " " $ *! # %!! $ # " $! " $ #" "! ( "# $ # * & $! " # # '! # " $ *! " $ # % # $ " " $! " " #! # $! " " # $!"!! ( " # $" * %! " # " " $ # # & ( " # #! % # # " # " # #,! ' *! " " # " # # ( " " ( " $ * " $ # ( % ", # %!*! " $ #! $ " ( " ( # " $ - # # # $ " " *! " $ " #! $# # # (! ( # #! #! ) " # ", " $ # ( * "! " $ #" # $ # # " # " " $ "! #" & ( $ " " # " ", Mechanisms of insulin resistance $ " # &! " #!" # # # " $! " " # # " " % % # % # " $! " " # #( 19

46 INTRODUCTION ENDOCRINE DYSFUNCTION Leptin Adiponectin INFLAMMATION MCP-1 TNF-α IL-6 IL-1β Insulin LIPOTOXICITY Fatty Acids IKK JNK θ Fatty Acids ER STRESS Acyl-CoAs Dyacylglicerols Ceramides β-oxidation ATP Figure 11. Scheme of the mechanisms mediating insulin resistance in obesity. Image from [105] Lipotoxicity " " # #& #! # " # # " " " " # # & # # # # " & " #! " " # " #( $" " #! (! $ " " $"!! (! " % "! $ # " " $! " " #, # # # #"! $ ##( ( - " #! (! " # - " # " #! " * " $ " " & # #! $# # " $! " " #, #* " #$ "! & $ #" $ # # #! ( $! #! (! # # & " " #!!! #! $! # # " " $ " ( (!! " * $# " *! # $ " # # $ # # (! # " $! " " # 37 6>4, " %! % " # #!"! " # # $ $ # ( (! # % # # #!(! " $!96< " # $" ( # "! " $ , & " *! "! " ( # " " $ ( $!# "! " $ # $ " $ # ( " ( # " " #! $ 20

47 INTRODUCTION Inflammation! " " # #( 8 # " 37 7 ;* 7 7 <4, " # " " $ # " " ) " $! " " # 37 7 =* 7 7 >4,! ( * # "!!# # # " $ #" " " #"! ' # ( : -7 6?! " * &! " $!!! " " " #( * %! #( % #" # " # " " $ # " # " " *! " # # " " $! " * & #! ) # " # " # " " $ (!#! ( * ( # " "! #! - ##! # (!#! ( # " #! $# # # " #! # % # 8 #( # * -;* , ( "! $ # ( #! $ # 1! "! # ( % # " " " #! #! "! #! $ # " " # "! $!! # #$! ( # $ # #"! # # $ ( #! $!"!" '! " " 37 88* 7 894, & " * -; #" -; % " & #! " ( ( # " 37 8: * 7 8;4, $" *! " " "! " ( " " " # $! #( " # " " $,! $ " #! #( %! # $ $ # ##( " # ( * &! # ( $ $ " " $# #! % $" " #, 21

48 INTRODUCTION 2! # - $!96<* #! ( #!! & #! " $ # 37 8<4, ( # " " # #! $ #! "! # " " (! " # '! " " % 37 8=4, ( * ( # " "! 37 8>4, Endoplasmic reticulum stress '! " #$"&! $ %#"!% #!! " + 2 # ( #! " #!! $ # # ( # 2! "! # " 2 # % # # " # & ( " # #! $ # $!! " % %! #, # ( # " ", "!( # # " $! #! " $ " #! # -7 # ( "! * ", Mitochondrial dysfunction &!! ( " #$ " %! % # " " # #& # " " # ( # " ) # #! $ $! ' # % #( * $ # #! ' # % $ #!! " #! # # #! $! $ $ # " " # # #!! & #! # $ #! % #! ( " $ # # # ( " $ #! %!" * ( " #$ " $ "! %!"! # " " #! # % #(! " " " #! (!! # & # #! " $! " 22

49 !# " #( #!% # " " $ " '! " *!! & # " # " " $ * " $ # & ( " $ " " # % #(, INTRODUCTION #!! % " $ " " # % #( * " $!# #! % & " "! $ + % '! &"!! ' % # $" " #!" #! $ " " ",!! * #! # " % " $ " # # # ( " $ # #! $"! # #! ( " $ #" * &!! " $! " " # # # ( $ % $ " * ' #! (! " $" $ # & #! " " #! # $! % "!! " " #! # % #(! " " # # ( $ " $ -! " " # # "! # #" & # #( 8 #! # " #! " " #! " " * % & " #" '! " " * $" #!! (! #! # #* $! $" " #$ " ' $" # $ # #! " " # #! #! "!# $" # " " $ "! 7 9>4* " $ " # # # ' " " #!( #!" #! " " # " * # $ " $! " " #, " *!!! ( " #$ "!! " "! # ( *! # # $ " % $ " $ % $ "! " #! " '! " " " $ " # " % % ' # % * " $ " ##( ' # * #!! '( (! ' # % " # #!* # " " #$ "! % % # " $!# # ( # " " # # #! ' # % # " " # $" & "! % # %! " " # 1! # # #!! " " # #( 8 # ", & " "! $ + % '! &"!! ( $ %! ( "!# #! $ " " # " " (! $ # ( ( " " $! " # * ( " ( # " " $! # " # #, # (! ( # #! #! ) " #( 8 # ",! # & # " "!% " # $" * " %! " #$ " %! ( " $ # " " # & # # " $! " " #! # ", 23

50 INTRODUCTION! "!!" $ #! $ # # ' # & # # # #! $! $ $ # * " #! ( " $!# $"! ( " $ # # % # " $! " " #, #! " #$ ( *! "! #" & # # #! " $ # # " # # " " # # & " " " #$ " " $ " % # ( # " ) # #! #! $ # # $"! # # #( #! $ ' # % # ", $! ' # % #( $ " " $" "!!* & $ # " $ ", & " "! $ + % '! &"!! ) & # "% &% %'! % & # " # " " $ $ " " # " " " "!! % $" " # ", # " & " # " # # ( " $ # " # " " $ * " $ ( " #! ( * # $" " $! " " # $ # #! # " #! (! "! $ #, # " # " " $ " #! #! ) ( # # #! " $ " # # # #! #!# #! #$! ( # $ #! # " #$ ( $ # #! ( % #" #! # " " $" #! (! " " " $ " " " * & # - ' # 2 * #!!! $! ( # " #! %! # # #! $ # & $ #! # $ # " ( # " * " " # % #(, % " #! $ # " # #( 8 # ",! " # * % " $ " " %! 24

51 ! " " # * #( 8 # " * " %! " #( * # $ #! %!*! " " #&!" # #& " "! #! " #* " $ " #"! $ # #! " ", " " # # & # # ( # " " " # #! % # " $! " " #, INTRODUCTION #! " #$ " % $" #( 8 #! #! ) (!! $# ( # "! 1 1 ' #! ##( '! $ '( " $ #! # " 37 : 84, #! " #!$ #$! ( " " ( # "!! $ # #! # #*!# & #! $ # " #! -! #! #! 2,! ( * #! % " # #!" $ # # #! # # &! %! ( # " 1 &! : 6? &! # # #!!! # & # # % # #( 8 # " 3>>4, # " " #$ " # # # #! #! $ # ( # #* ## " & $# # ' # " " # #! $ # # " ", 1.5. Regulation of mitochondrial biogenesis Mitochondrial functions #!!! - $! " $ " # $!( # - ' # * & # 8 8! ' ) * #! " " " # # #! #! -#! "!# * 8 25

52 INTRODUCTION # #! #! ' # # #!! " *! $! # Fatty acid Glucose Fatty acid FA-CoA TAG TAG Glucose TAG DAG Glycogen Ceramide Pyruvate Cpt1 Cpt2 Acetyl-CoA Pyruvate Heat FA-CoA H + H + H + UCP1 I II Q III H + H + H H + H+ + H + H H + H+ H + H + + H H + H + + Cytc H + β CO 2 ADP H 2 O ½ O 2 NAD + NADH FADH 2 FAD + H + IV ATP V Figure 12. Schematic overview of metabolic oxidative pathways that take place in mitochondria. Image adapted from [153].! " " " * $ " ( # " "! $ * $ # " * " #! * #! ", #! ( *! ' # ( : 6? #! "! '! " # " ) $ # ", #! " " ( " " * 8@ *!! #! $ #!" # " ", Transcriptional control of mitochondrial biogenesis #! " " * $ #! (! # (!!#* " " (! $ #! # ", #!! # " # #! ',!! * #! " " "! $! " #! #&! # " * ( " ( #! #!# #", 26

53 #!" * # # #! # " # # $#!# ( %! " #" EXERCISE COLD EXPOSURE THIAZOLIDINEDIONES INTRODUCTION # mtdna Replication/Transcription PGC-1β PGC-1α TFAM TFB1M/ TFB2M PGC-1 PGC-1 NRF1/2 I mtdna ERRα/γ OXPHOS System I II III IV V PGC-1 PPARα/δ Fatty Acid Oxidation NUCLEUS Figure 13. Overview of transcriptional control of mitochondrial biogenesis. Image a from [105] Transcriptional regulators of mtdna gene expression ' " " " #! #! #!" & # # -, ( $# * &! ( $!!( " " 37 : <4, % "! (& $" 37 : =4, 27

54 INTRODUCTION! #!! $ #! " # #! " # 37 ;64, #! "! # # #, Transcriptional regulators of mitochondrial genes encoded in the nuclear genome ' $ %#$ &"$+ &"$% '! " " 37 ;7 * 7 ;84, " # & # " $!! "! #!( #!" " #!$ #$! (! #, * # % #( 37 ;>4, ( " " & # $ #! " "!! " #! $ # "!# $! " & #! " - ( 37 ;: 4, * & # " 28

55 '! " " "! 37 <64! $ # ( % # ( " % "! " # # " #! " " $! # " " $ % # $!! &! (&( # $" 37 <7 4,! # & "# * &! $ # " *! $ # - ( *! " * ( * $! $" $ )( $" $ ' #! - # # # #( * &! # #! - #! #" 37 <64, INTRODUCTION Peroxisome Proliferator-Activated Receptors #! #! "! # #!" & # #! $# # #! " 37 <;4, ( " $ #! #! "." # # # " # # 2 " '! " " & (! $ # " # ##( ' #!! " & * $# # # " #! " " " " # # #! $ # #!! " " #! " " 37 <>4, #! # # #! # # ", " $ (! " " #" % $ # " # #! #! # (! $ # " #!! " "! # ( #! $ #! #! "! # #!", #! " # ( * # " " # % " $ " # - $ -! $ # " " # " " $ " * 29

56 INTRODUCTION & " # # # #"! " # ) # " " $ # & # " # " " $ 37 =84, %&$"!. & #&"$% 2!!" #! $!! # # % # ( #$! " #! "! " # #$# % ( # %! # #! # #! #!! " " (! $ # # '! " " #!!#* #! ( " * ' # % " #! " " " " #" #! '! " " 37 =;* (! # ", $! % * " & " $!! " *! %! $ # * & " $ % " # % $#! $ #!( 37 ==* 7 >8* 7 >94*! " " # " " $#! $ # #! ( #! #$! & $ # #! #( # $ # $ # #!! " " 37 " #" " " "!# $! & "! & # #! # ( %! " #" $ * &! # ( * % " #! ( " $ #! " ' # % #( #!#, 30

57 Transcriptional coregulators of mitochondrial gene expression # % #( # #! "! # #!" INTRODUCTION # % "! #!! " "!" * # # ( (! #! $ #! ( # " ( %! # ( " $ " # # "! ( "! " " 37 >;4 #! $ # $ # # #! "! # # % #( # #! % $" " # ", " #-! #! ) # % #!" % % #! " "! # % #!" *! # % #&"$. # " #!& $ # &! $"&!.02/ &! $ # %! $ #! #!! (& $"! ((" " #$ " ", " " $!# # #! " '! " " ( #! " * $ " & #! # " #! "! # #!" # " # % # % #" '! " " * # $! # '# #(! $ #!"! " 1.6. PGC-1 family coactivators Structure and mode of action! & " # " " $ * &! # & " " & #! $ # # ' 7 37 ;<* 7 ;=* 867 4, #!!" # ( ' #! #! ( " # % # # # "!% " " " $!! #!!$ # #! # " # # #( # * " $ %& $" " $ #&"$ " &( &"$.0 $ %#"!%!&!! #$"&! # % #!" # & %! #( $!! #!", 31

58 INTRODUCTION PRC PGC-1 AD Proline rich RS RRM NT-PGC-1 AGLTPP(T/A)TPP E rich LXXLL motif HCF T295 S570 M M Acetylation M Methylation PGC-1 Phosphorylation T262 S265 T298 S568 S572 Figure 14. Structural domains of PGC-1 family members. # $ # "! "( &$"& "!# #! ((" * & #! # "! & ( # ",! '( -#! #( " # " #& # " $ & $ # " "%& &"$ #" " # % #! #! $ # '! " " $! (!! " " '!# #! $ #!( $ # #! "! # * # " # % #!" #!"! $!! #!" # " #! "! #!! # " & #! "! " # % #( %! # " " ( # " #! "! # #! "! #, *! " # * # # % " #!" 32

59 " #! #" #! "! # #!" $#" $!! #! " $ 2 " ' #"! & % # , " ' " $" #! # # #! " #! "! # #! # INTRODUCTION " $" # #! "! # #!" # # #!!# $!- *! ' * " " $ # #! #! "! # # % #( * "! #! # # '! " " $!- # " # 7,;,9, Regulation of PGCs activity by post-translational modifications * # $ " $ "!% # #! # 2 * 33

60 INTRODUCTION Function of PGC1 coactivators in different tissues " ( $" - " " - - $ # ( " "! # ((", $ # #$! $ " " " &! # " " $ " * % " #! # # # # # " " $! ( " # '#, # & " # " * & $ # * % # # # $ # $!! *! # " % %! (! $! $ (! # % #(! $ # " 386<* 86>4, " " # & # '! # #! * " ( # " #! #$ # ( $!" # * # " " # # '! # " $" #! $ " # " " # " $ # #" #! $ # 3 $&! '! " " $ # (!#*! & # # ' #! "! #(!#" # "!! (! $ " #! $ # # '! " " " % % ' # % "! "! #! # % #( * 87 84, " #! # "! " $ #!# " $# #! "!! # " '# # " & #( $ #!!#" , 34

61 # % #!" " # (! $ #! " & #!! # #! " "!#, $ " &!! # " #!$ #$!! # " * &! ( $ # " & #! " &! " & # # &! " ##( ' # # 1 - ' # 2, 1 #!# #! " &!, INTRODUCTION, $" * & #& $ " 387 : - # " # # '# 387 =4, ( $ #! $ # # #! '! " " 87 >4* " " #! # " " $ ", " ( #! $ # ", # " " " " ( # " # %! #! ", "! # (! " $ " # # " # $ # $ # # # " "! " * '! " " * & * #$! * " # $ # " # $ " " # #! % 2 * $ % # " # # " " #! "!#-#! " #!% # $ # #! #!! "! #!( #(! " '! " " " # % # ( $ $!# " * " " ##! " # ( $ # " # % ( 35

62 INTRODUCTION # # $#! # # " # $ " " # " ", "! "! " " # #!( # " #$! #! #! " - ##( " " (! #! #" # % # " " %! #!" * $ #! $ # # " " #! $# # % #! ' # % $ # #! $ ' # % #( %! 37 =>* 88;4, & ' %! $ # ( '! " " " # $" *!# $! ( "! (& $" $ #$! ( #$ " $ #! '! " "! # (! " " " $", $" "! # " $ ( '! " 37 <94 " " " #!! $ # #! "! #! $ #! " " " % % # # # " $" # $#! (! " # '! "! " #! # # $ # 3896* 897 4, " * ( " #$ " $ # * %! '! " " " #$ " " # $" " &! % " #! # " #-#& # ' # % * " " #$ "! % # # " $" $! $ #, 36

63 " # " " # (! $!!! $" % # # # $" # '! ", " "!% # ", " # $ ( '! " * $# # # # (!$ $#, INTRODUCTION "! $ " # $" # # #" $! " " $ #! # # $ # #( 8 # ", " " " $!# ( # " #$ " & # # $ 0 % " " # # #( 8 # " 389=* 89>4,! ( * ( # # $ 0 '! " " #! #( " $"! " $ " $! " " #, $")! # "% &% %'! # # '! " " " %! ( " % % # # % #! #" #! #! " % % # " ( # % # %!" #! "! # #!" $!! #!" * " $ " # # #! # #!! " #$ (!! (& - "!# "! " # #! # #!!!, * " #$ & ( -! $" #!! # ( 7 #!$ # "! *! $ (! # % # % # #!!!, " " #! " #! # # # #! #! " " ( ( '!# #!(! 37

64 INTRODUCTION! " $ #"! " # '! " " "! # # #! 37 =>* 87 64, $! $ # # '! " " #! " " # ' # % #(! # # $! ( $" # # $# * " # '! " " # #!!! " 37 =>4, " #! $# " # " '# # # # $ "! & ( # #( # # " #!! " $ #"!! $! " # '! " " #! " * " $ # % #!" " %! ( #" #! '! " " " " & # "% &% %' ' # % #( & # " # " " $ " &! *! '! & " # " " $, & ' # % #(!! # " & #! $! , #! %! #! # " " #! $!! #! '! " " ( # ", * # # " #! $! # # "!! " # ) - $ # & # " # " " $ 37 =84, $!!# ((" $! ( # " #! " & ( #! # # "!! " # ) - $ #! " *! #! ' # % #( 37 =84, "! " $ #"! # " "! ( #!! $ * & $" $" "! # $!"! # " #$ " $ ##! $# # $" # ", $" * & # # # %!" #!!$ # #! & ( # ", #!" $ ##! $# # # #! #"! &! # ( #, $# " %! # * ( " #$ (!!# " " $#! " & # & #( ##! # " * " & ", 38

65 2. OBJECTIVES

66

67 OBJECTIVES 41

68 OBJECTIVES 42

69 3.MATERIALS AND METHODS

70

71 3.1. Animal studies PGC1β-FAT-KO mice generation & "! '! " * ' &! "! ) " " # "! #!! " 23 -! &!! #! " $ ' " " & #! $ ' &!! " " " "!! # "! " #! "!! "!! # " "! " '" " ) %! ""' + ) "! &!!! # " " " % %!! # " ' #! " % % " "!! #! #! " 1 +, & MATERIALS AND METHODS! % " * * " '! ) " &! 2) /1 ) " &! 5) 6 7. ' " # #! - '"!. #! "! " * " &! " %! " # #! " & 3* - # 0. %! " " " 03 1 '! "!! ) 3 % " " " " " $ " %! " " 4 6,5! " '! "! * % " % " " " $ " + '! * # " ') % ". ' & % " &! 3 4 "! " * 45

72 Figure 1. Scheme of PGC1β-FAT-KO mice generation. MATERIALS AND METHODS Mice genotyping $ " # ( 0(.(/ (.( # & " & ( '.( +-(2 7 & -(. & -(-2 ) 5& 0 & -(. * / ( 0( # & " % )/ -, / - " ( 1( & " " ( 2 (. " # 2 ( 3( " ( 4( "! # # 5( & " 2 2,.-! # 6( 46

73 # MATERIALS AND METHODS Figure 2. (A) Scheme of Ppargc1b wildtype and floxed allele and location of primers used for mice genotyping. (B) Scheme of ap2-cre insert and location of primers used for mice genotyping.! -! % " $" % " $" -!! % " $"! % " $" 47

74 " )# # * # & '" MATERIALS AND METHODS + #,# - #.# + #)#* #+ # $ & ' &,(! * (! ) # * $* # # - * +, $0 ) * +, ).. $0 ) ).. $0 ) 48

75 - % -0. ' Figure 3. Example of a PCR of tail genomic DNA to detect loxp flanked Ppargc1b alleles and the presence of ap2-cre transgene. DNA amplified samples were electrophoresed on a 2% agarose gel Mice housing conditions MATERIALS AND METHODS #! # & ' $ (,' ) *!! (,' ' (,' ) ' * & * (,' "&!!!! & " $ +/1 $ -/1 # * 49

76 " +& * 1), 3 -. ) - - +& Efficiency of Ppargc1b gene recombination MATERIALS AND METHODS $ " * +&! 0 1 " 2. 2 & Figure 4. Location of primers to detect recombination in Ppargc1b floxed allele. 1, '-,, # /&- &. &- & % % 1( /( & 50

77 Measurement of food intake % ' Pharmacological treatments Rosiglitazone treatment # "& & ) $ () # " # " MATERIALS AND METHODS Figure 5. Overwiew of rosiglitazone experiment setup β 3 -adrenergic agonist (CL-316,243) treatment &! 51

78 %&! # #! - (. * - (45! ( - (45 #! " ( Figure 6. Overwiew 0 ) ergic agonist experiment setup Intraperitoneal glucose tolerance test MATERIALS AND METHODS! (! + ( "!!, #! & % & & (,(! %&! # %!!!! # '.( /( # &! + %, #!!! ( 0( & & "! & #! (! #!! + -,( 1( "!, # /2 ( 2(!! ( 3( # &! #!! #!!! " # ( Intraperitoneal insulin tolerance test! +, #! ) "! (!!!!!! %& $ & # 2!!!! # ' 52

79 1* 2* ) # " - '. %! " " "!" # "! " " ) $ " " # " " ' " #! "!" *! #! %!!# " # " -" 0.* 3 *!! # ". % " 25 * 4 * #! * 5 * " % " " ) #! %! " # " "! " # "! " # " # $ #! #!! Tissue collection '!!) "!!#!! % " ) % " ' ( 3!" '!!) "!!# ) & " ' 0*5!"!! -!! " 3 *10.* MATERIALS AND METHODS! % " " $ " ' " # "!! #! %! " 1 0*89! # " %! %!! " " "! %! ( '!!* 3.2. Isolation of mature adipocytes and stromal vascular fraction # "!! "!!#! " '! 1*!" )!" # -29 2,! 3 6/ * 2* #! %! # " ( ' $! " # "! % % " * 3 *!" # * 10 # % #! "!!# * 53

80 MATERIALS AND METHODS 1) 2) # & 2 "! ( $! & #! %! /... 2!! " $!,/2*0. "! %! &-) 3 )!! " $! &! ( # "! $!!!! ) 4) "!! " )! "!! $!! /2*0.! $!!! 5)!" ) 6 ) /.!!!"! /. ) //) 3.3. Gene expression analysis Total RNA isolation! ) "! $ " $!!! $! &! -)! & '&!! #!& & & * ( * 0! -) " '! ) *! " ( $ '! " $! ' $, -) 54

81 RNA isolation by isopropanol precipitation )# $! # * # - # +# " * ((, # + # - # " )+((( * ( #.# /# " - (( # 0# 1# " )+((( )(, ' # )(# " ) ))# 1- (( )* # # )+# ), # " )( - - $.(' # )- # $* (' $0(' # MATERIALS AND METHODS RNA isolation from fatty tissues or cells using the RNeasy Lipid Tissue Mini Kit " % # # &#! " )( * ((( 55

82 ) *' RNA quality control (- +++ % - /+ MATERIALS AND METHODS %! ' Reverse transcription # # % $ # ' % *' ) *!, '! "! +'- ) ) * ).++, - (, 0 - ' 56

83 3) ' $ #! -"! 5! 4 0) $ 1 4) #! 42/ 50! % % " ) 5) # ' #! 70/ 15! " 6 ) 7) ' 20 # #!!! ) 8 ) %' # *20/!! ) Real-time quantitative PCR # " ' #! *!! % # % - % % # " "! % $ %!, ) ' % - %.) MATERIALS AND METHODS (+ + ) ) " ). 3)3)5) " )!!! 1) 57

84 ! MATERIALS AND METHODS " # $ %!! $ & ' " TABLE 1. List of primers used for real-time quantitative PCR in this study. Gene symbol Entrez ID Gene name Forward primer Reverse primer Acaa acetyl-coenzyme A acyltransferase 2 TGTGTCAGAAATGTGCGCTTC CAAGGCGTATCTGTCACAGTC Acadm acyl-coenzyme A dehydrogenase, medium chain AAGCCACGAAGTATGCCCTG CCATAGCCTCCGAAAATCTG Aco aconitase 2 TCTCTAACAACCTGCTCATCGG TCATCTCCAATCACCACCCACC Acss acyl-coa synthetase short-chain family member 1 TGCAAGGCTGTTATCACCTTC TCTTCACTGCTCATGCTCTCA Adipoq adiponectin, C1Q and collagen domain containing TGTTCCTCTTAATCCTGCCCA CCAACCTGCACAAGTTCCCTT Atgl/ Pnpla patatin-like phospholipase domain containing 2 CCTGATGACCACCCTTTCCAAC ACCCGTCTGCTCTTTCATCCAC Atp5a ATP synthase, H+ transporting, mitochondrial F1 complex, alpha subunit 1 TTAGAGACAACGGCAAGCACG ACATCTGGCGGTAAGCGACAG 58

85 Atp5b ATP synthase, H+ transporting mitochondrial F1 complex, beta subunit GCAAGGCAGGGACAGCAGA CCCAAGGTCTCAGGACCAACA Atp5o ATP synthase, H+ transporting, mitochondrial F1 complex, O subunit AAGGACCCCAAAGTGTCTCTG TAGGCGACCATTTTCAGCAAG Cat catalase TGGCACACTTTGACAGAGAGC CCTTTGCCTTGGAGTATCTGG Cebpa CCAAT/enhancer binding protein (C/EBP), alpha CGCTGTTGCTGAAGGAACTTG GGCAGACGAAAAAACCCAAAC Cidea cell death-inducing DNA fragmentation factor, alpha subunit-like effector A CCTCGGCTGTCTCAATGTC GGCTGCTCTTCTGTATGC Cideb cell death-inducing DNA fragmentation factor, alpha subunit-like effector B TTTCAGCCTTCAACCCCAATG GTCCACAGCAGTCCATCCTC Cox4i cytochrome c oxidase subunit IV isoform 1 ATGTCACGATGCTGTCTGCC GTGCCCCTGTTCATCTCGGC Cox5a cytochrome c oxidase subunit Va AACAAGCCAGACATTGATGCC CAACCTCCAAGATGCGAACAG Cox5b cytochrome c oxidase subunit Vb GCTACTGGGCTGGAGAGGGAG CTTGTTGCTGATGGACGGGAC Cox7a cytochrome c oxidase subunit VIIa 1 GACAATGACCTCCCAGTACAC GCCCAGCCCAAGCAGTATAAG Cox8b cytochrome c oxidase subunit VIIIb CGAAGTTCACAGTGGTTCCC TCTCCAAGTGGGCTAAGACC Cpt1b carnitine palmitoyltransferase 1b, muscle TCTAGGCAATGCCGTTCAC GAGCACATGGGCACCATAC Cs citrate synthase AGAGGCATGAAGGGACTTGTGTA TGTTCCTCTGTGGGCATCTGT Cyc cytochrome c-1 ATTTCAACCCTTACTTTCCCG CCACTTATGCCGCTTCATGGC Cycs cytochrome c, somatic CACGGCTCTCCCTTTCTCAAG ACAGTTGCCTCCTGGTGGTTA Cypa/Ppia peptidylprolyl isomerase A CAAGACTGAATGGCTGGATG ATGGGGTAGGGACGCTCTCC Dio deiodinase, iodothyronine, type II CAGCTTCCTCCTAGATGCCTA CTGATTCAGGATTGGAGACGTG Elovl ELOVL family member 6, elongation of long chain fatty acids (yeast) CGAGAACGAAGCCATCCAATG GCAAGAGTCAGCGACCAGAGC Esrra estrogen related receptor, alpha GGAGGACGGCAGAAGTACAAA GCGACACCAGAGCGTTCAC Esrrg estrogen-related receptor gamma TCCCCGACAGTGACATCAAA GTGTGGAGAAGCCTGGAATA Fabp fatty acid binding protein 3, muscle and heart GGAATAGAGTTCGACGAGGTGA CTCCCTAGTTAGTGTTGTCTCCT Fabp fatty acid binding protein 4, adipocyte TGTGTGATGCCTTTGTGGGAACC CTTCACCTTCCTGTCGTCTGCGG Gpx glutathione peroxidase 1 GGTTTCCCGTGCAATCAGTT CCACCAGGTCGGACGTACTT Idh3a isocitrate dehydrogenase 3 (NAD+) alpha AGGACTGATTGGAGGTCTTGG ATCACAGCACTAAGCAGGAGG Idh3b isocitrate dehydrogenase 3 (NAD+) beta GCCGTCCATAAAGCCAACATC GAGCACCCGTCTCAAAAACTG Lep leptin GACACCAAAACCCTCATCAAGAC GGTGAAGCCCAGGAATGAAGT Lipe lipase, hormone sensitive AAGAGGCCAGGGAGGGCCTCAG TCCAGCCCCAGTGCCTGTTCC Mdh malate dehydrogenase 2, NAD (mitochondrial) GCCCAGGAAACCAGGAATG GATGGGGATGGTGGAGTTCA mt-atp ATP synthase 6, mitochondrial AGGATTCCCAATCGTTGTAGCC CCTTTTGGTGTGTGGATTAGCA mt-co cytochrome c oxidase II, mitochondrial TCTCCCCTCTCTACGCATTCTA ACGGATTGGAAGTTCTATTGGC mt-co cytochrome c oxidase III, mitochondrial TCCAAGTCCATGACCATTAACTG TATTGGTGAGTAGGCCAAGGG mt-nd NADH dehydrogenase 2, mitochondrial ATACTTCGTCACACAAGCAACA GGCCTAGTTTTATGGATAGGGCT Ndufa NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 4 CTGGAGCAGCACTGTATGTGA CTGGGCCTTCTTTCTTCAGTT Ndufab NADH dehydrogenase (ubiquinone) 1, alpha/beta subcomplex, 1 GGAATCAAGGACCGAGTTCTG TCCAAACTGTCTAAGCCCAGG Ndufb NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 6 TGGAAGAACATGGTCTTTAAGGC AAGCACATGAGAAACAGCGAA Ndufb NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 9 AAGGTGCTGCGGCTGTATAAG TACGGCTGAGGATGCTGATTC MATERIALS AND METHODS 59

86 MATERIALS AND METHODS Nrf nuclear respiratory factor 1 CCACGTTGGATGAGTACACG CTGAGCCTGGGTCATTTTGT Nrf2/ Gabpa GA repeat binding protein, alpha [Mus musculus CCGCTACACCGACTACGATT ACCTTCATCACCAACCCAAG Ppargc1a peroxisome proliferative activated receptor, gamma, coactivator 1 alpha GGAGCCGTGACCACTGACA TGGTTTGCTGCATGGTTC TG Ppargc1b peroxisome proliferative activated receptor, gamma, coactivator 1 beta AGTGGGTGCGGAGACACAGATG GTATGGAGGTGTGGTGGGTGGC Pprc peroxisome proliferative activated receptor, gamma, coactivator-related 1 TGGACGCCTCCCTTATATCCC TGTGAGCAGCGACATTTCATTC Ppara peroxisome proliferator activated receptor alpha AAGGCTATCCCAGGCTTTGC TTTAGAAGGCCAGGCCGATCTC Pparg peroxisome proliferator activated receptor gamma ATTGAGTGCCGAGTCTGTGGG AGCAAGGCACTTCTGAAACCG Prdm PR domain containing 16 [Mus musculus AAGATGGAAATCGGGGAGAGG CAGGAACACGCTACACGGATG Pref1/Dlk delta-like 1 homolog (Drosophila) CGTCCTCTTGCTCCTGCTGGC TCCCGTCCCAGCCATCCTTGC Retn resistin AAGAACCTTTCATTTCCCCTCCT GTCCAGCAATTTAAGCCAATGTT Rip140/ Nrip nuclear receptor interacting protein 1 TCCCCGACACGAAAAAGAAAG ACATCCATTCAAAAGCCCAGG Sdhb succinate dehydrogenase complex, subunit B, iron sulfur (Ip) TACCGATGGGACCCAGACA CGTGTGCACGCCAGAGTAT Sdhd succinate dehydrogenase complex, subunit D, integral membrane protein TGGTCAGACCCGCTTATGTG GAGCAGGGATTCAAGTACCCA Sod superoxide dismutase 2, mitochondrial AACGCCACCGAGGAGAAGTA AATATGTCCCCCACCATTGAAC Tfam transcription factor A, mitochondrial CCAGGAGGCAAAGGATGATTC CTTCGTCCAATTCAGCCATC Tfb1m transcription factor B1, mitochondrial AAGGACACTCGCTTTATCCCA CCATGAACAATTCGGAGTTTTCC Tfb2m transcription factor B2, mitochondrial TATAGAGCCGTTGCCTGATTCT GCCGCTTTCTTACATGCTATGTG Tnfa tumor necrosis factor CTTCTCATTCCTGCTTGTGGC ACTTGGTGGTTTGCTACGACG Ucp uncoupling protein 1 (mitochondrial, proton carrier) CACCTTCCCGCTGGACACTGC GATTTGCCTCTGAATGCCCGC Ucp uncoupling protein 2 (mitochondrial, proton carrier) GCATTGGCCTCTACGACTCTG AGCGGACCTTTACCACATCTG Ucp uncoupling protein 3 (mitochondrial, proton carrier) ACAGAGGGACTATGGATGCCT TGATGTCGTAGGTCACCATCT Uqcrc ubiquinol cytochrome c reductase core protein 2 AAAGTTGCCCCGAAGGTTAAA CAGAGAAGCAATCACCAAACCA Uqcrh ubiquinol-cytochrome c reductase hinge protein GGACTAGAGGACGAACGAAAGA GGCCTTTACACACTTCTCCAG Uqcrq ubiquinol-cytochrome c reductase, complex III subunit VII CCTACAGCTTGTCGCCCTTT GCCTTTGCTGAAATAGCTTGGG Primer design +% ' )% &, ' ( # *+- " ' $ & $ (! 60

87 - / $ % # 0 *$ $ $ &! # % $! $ % # $% Gene expression profiling # ## *$ $ * # + % %( %( $%# $, %!#! #%*! % #* & % $! #$- % $%# % % $, # % & % % # % $! % %!# $!# $ % % % $! %- # "& % % % ( % % $ %* %& # $! # % % % $ %*! $$& % / 0 $ $ # $ $ %.$%# )%, $$ / 0 ( $ $$ * $ & $ $ % %! $* % % $ + $$ )- % ( $%!, $$ & $ ( # # % & $ % / * %# )0- $ *, $$ $! $ %# % ( % % # )* & % * %# $ # $ / 0 ( % # % % MATERIALS AND METHODS % # # % $$, $! $ ( # * # + % & ## *$ / * %# )0- $ # ## *$ # $ % & $ $ # & $ & % $ $!# $- %& # $ $! $ # & & % $ 35 $ $- & $ * # + % %# % / * %# $- % # % ( $ % * # + % % ## * & # 26. & # & % ( * # + %, % ## * ( $ ( $ $% ( % $%#!% ' & % $ - & % % %% % 5 71 $!#! #% % # % % % %!# ## *- $$ $* % $ $, # % %, * # + % ( $ ## & % * 61

88 ! " 6* & $ $!! & & "! 5*0!$! $ & ' "! "!$ "! *! & & $ "!! " 3.4. Protein extraction and protein analysis by Western Blot Total protein extraction and quantification MATERIALS AND METHODS! $ %!! & &!!!!! " '! *!!!!!&!!! %!! (!!! $ " *!! %! $ "!! #! * " &! " &! 5 1 "! #! 5,1*04 (.! $! & "! " * " ) 1*!! ' * 2*! $! "! "!! 4/ * 3*!! "! ( "!!! " '! $!! $!" * %!!! $! 4*!!! $! $ 5* 62

89 ! & $ & '! &!!! "!! &!! * MATERIALS AND METHODS!! "! # &, -! Figura 7. Scheme of microarray assay. Image from extracted from GeneChip WT Terminal Labeling and Hybridization User Manual. 63

90 SDS-polyacrylamide gel electrophoresis $ ) $ $, ) 0 75/( MATERIALS AND METHODS & # " ) ( $ & $ " " &! (, $ $, & 5)0 38 -& " $ $ % " $ 3 * ' (3 ) 4 (6& 0 /8 & 3/8 & 4 (4 & 1 (1,.- $ + ) $ 2 5(3'0 ' 64

91 Western Blot " $ ' ' % "! % # -,, 4 # # # # 0,, 3,! *.1 % '., 4 +( # */ $ -, + ) ( MATERIALS AND METHODS! #!! * + ) "! % & $! % $ '! $ # % # % ( # $ 2, ( "!! $)2, * + ( 65

92 TABLE 2. LIST OF ANTIBODIES USED IN THIS STUDY MATERIALS AND METHODS Table 2. Antibodies used in this study. (*) PGC-1β antibody was generated by immunizing rabbits with a bacterially expressed protein having aminoacids of PGC-1β fused to GST Stripping of PVDF membranes 3.5. Mitochondrial DNA quantification $ % # # " "!# %" 66

93 0) ' #! 1///!! % ) 1)! ( 0) # %! ) 1) " ' "! + + %! ) 2 ) # " $ "! %! $!! ) 3)!! # #! ) 4 ) ' 0+ 0/ "! 2! 4 )1 1 * # ) 5) # " $ & *7/. 04! ) 6)! 4 $! # # # # 6/9 ) 7)! $! # %) 8) %' # *! #! MATERIALS AND METHODS 3.6. Mitochondrial activity Citrate synthase activity %, ' 1)2 )2 )0- $) &% $%, - % ) % &, % - $ # % " %!! %! " 2 )5)0)0) * $ $ #! & 0)!,/)14! ' 0 0/ 6)3-! & ) 67

94 3+ ) " %! "! " 2+6 " #, ( % " "! # % /+ 4+ " " # " " " 50 )!# " " %! "! " % "!' % " 41 " # " " ' +! # " ",! # " %! " + 5+! %!# " " " '! ( " % "! " " '+ 7+!" # "!+ 6+! %!" # " # "!!" ",31 0 # " '!!+ MATERIALS AND METHODS " "!' "! " $ " '!! ' ) + +! " "!# " "!' "! " $ " ' # " " % " * " $ " '! " ' $ " ) %!! " " " " "!' "!!+ $ " # " ) +! # * 21 1!, :.$- $/ ",&, " " 50 & ". /* 21 -! # + '+. /* 5 -! # + '+ 2+ " " " %!!% " 31 # "! " & "!" " " " " " # 41 0 % $ " $! "!" " " " +! %!!# " 5 # " 68

95 + # % #( $ # 0 #! ' # # 1 /. $ # 0! ' + $ # #! #! " # #! "! "$! # 04 1! # #! # 0. 1+! # #! # # '#! MATERIALS AND METHODS Respiratory chain complexes enzymatic activity Spectrophotometric techniques described by Degli [251] were used for performing in vitro redox assays to functionally dissect a single respiratory enzyme within the biological preparation. Mitochondria-enriched fractions were obtained from inguinal WAT as described in section All assays were performed using a UV-2401 PC (Shimadzu) spectrophotometer Complex I (NADH-ubiquinone oxidoreductase) enzymatic activity -$ $ '! $ # " 0 4,9,8,61 "!! # ' # # $ $ '! $ # " # % #( "$! " #! # #! ( "! # 67 3, "" ( " " # "! # + 5 ( $ $ 0 ( - 1* "( # # $ $ $ * " $ " # " ( " $ "! # " $ & #! # " "$ "#! # " # $! * 43! "* 4 * :,7, #! # 7 2, ( $ $ #, #! # -532, 69

96 * +%./&2 & & & $ * +% / & '/-, & MATERIALS AND METHODS.& " " /- 0 -, & /& $& 0 & 0 -, "! 0 1- & 1& 2& 3& ". " # " 4& 5& # $ & / & %! $ * ( + ( 0 1- % ( * + ) ( * % * 0 1- '. '. + '. ' * +% *. + * ( +% 70

97 Complex II (succinate dehydrogenase (ubiquinone)) enzymatic activity % $ ) " # # *) % $ $ " $ $ $ "$ $ # ) " # " $ ") # % $ %# ) - # * ( $ #% $ $ % " $ ' $ $ " % $ %!% $ %!% 0 1 ' % $ (. $ ) * " % $ ). 1 ) % $ "!% 0 $ # " $ 933, 5 ). 5 5 % ", 8 3 $ ## % # $ < " $ $ " $ 72 -.#% $ 0 1, 4 - $ " 4!% $# $ , 7-98 ' $ "- " " " # ) - ) %!%, 43 $ - $ " $ , ' # $ $ ## ) % "- $" /433 % "1- $ ) 0 1, 5 $ - $ " $ $ $ ## ) $" $ MATERIALS AND METHODS 4- $" $ $ " ' # #' $ 5 3 %$ # " $ ( " $ " #$ $$ $ ## ) - 6- $ " $%" 632 ' & $ # " ' # #%" %" 8 %$ ' $ ($%" ' #!% :- ;- $ " ( + ' " $ #%". *) $ " $ - #%" " $ 5 %$ #- 71

98 * # % #( / - 0 MATERIALS AND METHODS * - $ # / #! 0. - $ # /! 0 * $ # #! #! " / 822,3,3 0,3, / 0* # #! "! "$! # /3 0! # #! # / - 0*! # #! # # '#! Complex II + Complex III (Succinate-Cytochrome c oxidoreductase) enzymatic activity!! " #" "$! # ' /"$ # (! " ) ' / $, ( #!! $ # " ) ! # " & ( #! $ ( #! # *, ( #!, ( #! $! * 7 2 # "" $ " # ) 2+3 ) #! # 6 1,"$ # / 0* 3 & #!+ #! 3 $ #" #,421 + ( #! / 3 0* $!+!!! " + / 0* & " # # "" ( $!+ #! -322 $! #! # #! & " "& # 42 $ # "! # '! #! "# ## #

99 0' /.. 1 ' 1. -! 33. ' 2' 3' 4 '! 3! "! 5' " $ ' 6' # " # $ %! " %!! 0 ' & # + ), MATERIALS AND METHODS ) 33. & ) + # " $, * ) + # " & + (/ (/, (/ (/, +,& +/, + ),& Complex IV (Cytochrome c oxidase) enzymatic activity % " # " # %! # " # # # " ' 2 ( # ( #

100 2!! ' # * 2 1!, ) 8+1) " (' # " # * 2 1!, ) 8+1) " 3 6 1! 1+2! # " '" #!" " # " * % " + MATERIALS AND METHODS 2 + " " " %!!% " 3 1 # "! " & "!" "" " !" " " & ") '" #!" " + "! ) 3 +8 '" %!! $ 2! # "! # "% " "# % $ " !! ' # % " " # $ "" ) % %! #!! " " " % " " # $ "" + "! # " %! & ' $! 7 +! # " + "! # " %! & ' $! + 8+ " ') & " '" %! % ' " " # 2 # " + * " $ "'. - / * # " " "! ,2,2 / 6 6 1,2,2 /. /* " "!!# ".2 / 74

101 + *,' 3.7. Fatty acid oxidation assay ex vivo ) $, +% $ $ " ( -1 % -0 % " + 3,( # -0 " $ #. ( $ & (. &.! + $ $ #,(.. MATERIALS AND METHODS Figure 8. Schematic representation of radiolabeled palmitate oxidation. One molecule of [1-14 C] palmitate enters β-oxidation cycle and after one round of oxidation one radiolabeled Acetyl-CoA molecule is produced. This Acetyl-CoA molecule is directly used as an energy source within the TCA cycle. During TCA cycle 14 CO 2 is liberated and dissolved in the medium as bicarbonate. After medium acidification, 14 CO 2 is released and trapped with a CO 2 chelator. $ $ ( & ) ( /(2 (-( ' -0 +, 75

102 ##( -!. / MATERIALS AND METHODS 2, 3,! * 24,: 3 " $ # # &! # 5 1,: ; "#!!, 4, 25 # " $#, 5, & "#!! # , # #! # # " # " & # "# $! ## #! % #! # #, 6,! + # # ' ",! #$! & " #! # $ $" 7, % $ & " $"# # 21, 8, $# & " "#! $# "" % " "#! # -3 10, 4,8,3, ##( ' # "" ( 229,6 * 5,86 * 3,81 * 3 2,2: * 2,1: * 3 6 * 6 - $ " $ $! 8,4 2, # '! # #! # ##( $# ) #, 3, 3 * 6; 3 / # " $# & " $"# # 8,5, 76

103 . ' -+! ",'0 +'0 " '! ' /',/ 0 ' $ ". 2* ' 1' " % $! # $ 3+ "! & "! # ". 2* - ' 2' & ' 3' $! ( 4)' 4',+' $ # "!! ' +'0 "! 0,,' " # $ ',-' ',. ' # " ' MATERIALS AND METHODS 77

104 MATERIALS AND METHODS Figure 9. Schematic representation of fatty acid oxidation assay ex vivo Study of insulin-stimulated phosphorylation of AKT! " 78

105 ,& $ - & $ " " &.& $ " 2+5 & /& $! " & " # % $ $ ) ( )&! 0& " $ ", & 1& $ ' %, ' %. ' % / ' % $ 2& " $ # " & MATERIALS AND METHODS Figure 10. Illustration of anatomical location of Caudal Vena Cava (Image property of Drs. Kenneth S. Latimer and Ashley L. Ayoob 2000) Serological parameters.&4 &,& (.&,&1&,) 0 & $ $ ( ) '3+* & 79

106 MATERIALS AND METHODS 2*5*1* '! " " % " " +! -.) %!! ' * '! " " " + ' &' "! " ) % " " ' & &! -.) ' & "! % " " ' +!# ' +" # 3+ ( " # # " ) %!# " 44/ *!! " 44/! " ' " " '. " " "! * ' ) # $ " " 1//, %! #!!!" *!" %! % # " #!" # "!# " %! " & 23/ - # $!.! " 2*5*2* "!" " "!!! ' '( "!" " " ' '!"!" &! -. & (! "!" "!" +2+ &' & * "! &! -.) ' &!# ' +" # ( " #!# " ' " 44/ *!! " "!" " " "! *!" 1//!" *!" %! % # " #!" # "!*! %! " & 23/ - # $!.! " " "! ( ' " "! # " ' " ( ' -. ' "! ' +!' " "! -.* ' + " #! ' ' + &! -. % " " ' & ) -. % " 3+ " ' " # # " % " ' " 44/ *!! " 44/! " " "! * 0, %! #!!!" * % # " #!" # "!*!!# " %! & 23/ - # $!.! " " " * 2*5*4*!# " " "!# " % "! # ' #!! ' #! " " # &!'!" 80

107 !! "# ' " ( " ' " " " " '! " &"#! " # " % " " " $ + # " ( " " " " "!#! *!!!!! " ' $ #! # " ' "!# " 1 *7*4 * " "!"!!!!!! "!#!!" #!!# " "! "!" " ( #! 3 " %!" #!9 -!",.!# -:,.,2/3* #!# $! % #! " +!!! '! "! " $ * #!# # " - '.* Histological analysis MATERIALS AND METHODS!" '!!! "!!#!( # "! # % * "!" ' ( "!!#!!" % " " &',!! % ' "!! " " $! "! " " % "# '!!* % " 6// 74 8 " * 6/8 " 3 " * '!* " 0//8 ( 738 ( 5/8 3/8 * 81

108 MATERIALS AND METHODS " &!!" #& # " ' (! 6 $# ", " &!!" #& # " 2119 #! 6 $# ", " &!!" 86 9 #! 6 $# ", " &!!" 719 #! 6 $# ", " &!!" 6 19 #! 6 $# ", " &!!" ) & #!! 6 $# ", 3, # & # # ' ( " ", " &!! "!$ # & #! $ # & #! & "!, 4, (! # " " # " &!!" 6 19 #! 6 $# ", " &!!" 719 #! 6 $# ", " &!! " & # 86 9 #, 86 9 # & " ' $ # # $ & "!, " &!!" #& # " 2119 #! 6 $# ", " &!!" #& # " ' (! 6 $# ", 5, $ # Cell culture procedures of 3T3-L1 cells 2876 *!! #!" % # #! $ (#! # # (" (, " $" # " " #$ ( &! $! # $- &!! & " ( #! #! $ #$!, Cell culture media for 3T3-L1 fibroblasts!! # $ + 2,2. " $ (!$% # 0 " $ # & # 219 /%.%0 &!!$ # # - # ( # /21111 $ #". * :. " #! # ( #! 0, 82

109 $ # $ + # 32; /%.%0 # %!$ / 0* # ( # * 2,7 5 - " $#( -3- # ( ' # / 0 / "" % 2,3 /%.%0 # 0* 2,47 ' # " / "" % # "$! " / "" % 3; /&.%0 # 0,! # # $ + # 32; /%.%0 * 3 # # - # "$,! ) $ + # 42; /%.%0 * 32; /%.%0 # ( "$ ' 3 # # - # ( #, Resurrection of frozen 3T3-L1 cell stocks from liquid nitrogen! $! + 3,!( % " &!! %! $ #! $ # 5 91 $ # # " &! # &, 4, # # #!( #$ & " #! "!! # 32 " &!!! # $ " &! "#! $# $" (, 5, " &! # # $ #! # $ 5 91 # ; $!" #!* & 4 $ & " "! # #! %! "! (! $, MATERIALS AND METHODS T3-L1 fibroblasts subculturing protocol! $! + 3, 4, (! & "! " & # " # $! " / 0 2,7 '! "" /#!( "! % #! 0 & " "#! $# 5, ' "" % $!( '! "" & "! % " &! $# " $ # (! & " ##, 6, * 32!! # $ &! # # " "! # ( # ##, 7, 5 ' 32 ". 4 &! # & $ #$! " #!! # " &! "#! $# $" (, 8, " &! $ # # 5 91 * : 7; $, #( $ 7; & " %!( T3-L1 fibroblasts differentiation protocol! (! " $ # $ * & "# $ # " " #! - #! 83

110 %! # (#! #!! $ # " $ MATERIALS AND METHODS Figure 11. Scheme of protocol for adipocyte differentiation Preparation of 3T3-L1 fibroblast cells for freezing +$ $,$ # *$/! +*!$ -$!! $. $ # /! +/ $ /$ /,** $ 0$ % " -**$*** & $ 1 $! ' + & (# 2$,. # sirna transfection of 3T3-L1 adipocytes 84

111 dsrna shrna or mirna Dicing Dicer Slicing OH P RISC P Asymmetric assembly OH Small RNA 7mG Target mrna substrate MATERIALS AND METHODS...A A A A Figure 12. Mechanism of RNA silencing in different systems. Long dsrna and mirna precursors are processed to sirna/mirna duplexes by the RNase-III-like enzyme Dicer. These short dsrnas are subsequently unwound and assembled into effector complexes, RISCs, which can direct RNA cleavage, mediate translational repression. Image and text extracted from [252]. " ( # #! '!%&!&! "% 85

112 TABLE 3. sirnas used in this study Transfection of adhered 3T3-L1 adipocytes. Optimization protocol. MATERIALS AND METHODS $! " / % * +& % * % % 0.7 μl/cm 2 Dharmafect 1.4 μl/cm 2 Dharmafect sirna 25 nm sirna 100 nm sirna 25 nm sirna 100 nm Tube 1 DharmaFECT µl 2.8 µl 5.6 µl 5.6 µl OptiMEM 77.2 µl 77.2 µl 74.4 µl 74.4 µl Tube 2 sirna 5 μm 5 µl 20 µl 5 µl 20 µl OptiMEM 75 µl 60 µl 75 µl 60 µl +%! " ". %, % * +# % * /! " " % +) % - % 1) ) %.% * /)! % /%, 0( * /&+-.2 % + 0% # " - 1& Transfection of 3T3-L1 adipocytes on suspension. Optimization protocol. $ * +! #.) ' %.) ) * +& 86

113 & 0 0(. $ " 3(" " $ # " " " " " " ' " # ' " (! &! "./ (" '.' " ' MATERIALS AND METHODS / ' " # $ $ 2 " ' 0'. " / % '!.3 " # $ $ " '! " / - 1' '--- ) " # ' 2 ' " 04,.3(/ 2 61 ' / 3' % " $ 15(4/ "! ' sirna transfection of 3T3-L1 adipocytes to knockdown PGC-1 PGC-1 (. (. (. (. # ' " &! "./ (" ' 87

114 .) #!! ) MATERIALS AND METHODS /)! # $ % %!! 2!! # ) 0)!. #! /' ) "!.3- # $ %! %! # ) "! #! /-! 1) 5--! 242)--- + # $) 2) #! 04,.3*/1 26! ) / 3) '! # %!.!! 15*4/!! # ATP production measurement! #! 0 0*. %!! % )! %! "!! ) % %! ' # )! % ( " %* #! ' # " % % &! $ %.--- % + #! ) # % ) % #!! # " ) 88

115 3.14. ROS production measurement - #!.( 2 %! $ $! #! #! * #!& +!$ " %!) 1 *! &! "!" 47 +$ $ $! 2 * $!! # 2 3*! "! 30! 36/ ( $!$ 4* " $!!! $ * 5* MATERIALS AND METHODS Oxygen consumption! & "! * #!!!!$ +! %! & & 2 2 "! &! "! " & & &.* % -! % '!!, ( !! "!!!!! " ( 2-2.!!! #!! &! 2 (! 3*1 2 *3* #!& +!$ "!!! % $ " $ ) 89

116 MATERIALS AND METHODS.' " 0 4, " " " &! # $ # # $ 0 4, ' # & & # ". " # $ 0 48 & " " "! & " # $ % ' /' "! " &.'2 * &! + " " " % 0 4, " 0 ' " & "! $ $ % & 1 ' 2' " &! $ $ % ' 3' # $ "! 2 0 ' 4' ' # $ $! 0 (1 ' 5' & # ' # $ 0 (1 ' 6' $ '.- ' ' Fatty acid oxidation assay in vitro $ # $ $ 0 '4' # "./(" $ " & " " *. ) &.- 7 ( $ * " " 4/ * "! $

117 !! 2'., ' -+ " #, '0 +'0 #! ' " ' -'.' $! ' # # ' & 2-+ ( #!! ) # # ' #!,, +5 - ' /',!! " & 3+ - ' MATERIALS AND METHODS 0'!! &.++ -! ' 1' # # " ' % % $ # % " ' 2' 3' % $ # " " ' +'0! # " 0 4' %! # $, /' 91

118 3.17. Statistical analysis MATERIALS AND METHODS 92

119 4.RESULTS

120

121 4.1. Generation of a mouse model lacking PGC-1β specifically in adipocytes Ppargc1b expression in white adipocytes &!! ) %! " +1 )! & " $ "!!#!#!! " #! ) " %! "!!# * % $ ) "!! & " $!) ) 201/*!!!" ' '"!) # " #! # " " "!! '"!) # $ "!!# $! # "#. 16/*! + '" # "!, -* " $ # " " " #" " " " &!! % ) '"! %! " '!!" $! " % " ' # " " " $ +",, -) % + " ( '". 7 6/), -) " "! ' &!! "# '"!. 244/ * " # " " " &!! %! "# '"!) ", # 1-* RESULTS Figure 1. mrna expression of Ppargc1b, Atgl and Pref1 in adipocytes and SVF isolated by collagenase digestion from inguinal WAT. mrna expression was assessed by real-time quantitative PCR. Results are expressed as means ± SEM (n=4-5 animals). * indicates statistical significance between adipocytes and SVF. * P 0.05; ** P " " "!"# ' " $ #" &!! # '" % #! '"!) %! " "# * '"!! $ " " " &!! ) ' "! " " " #!! "# '" )! # " ) $!! # '" "# ", # 2-)!! " " $! '"! " "# " " +1 # ' " " "!! " #! " # "! "# '"!, * *!" # " -* 95

122 fl fl fl " "! ff Figure 2. mrna expression of Ppargc1b, PPARg and Pref1 during differentiation of 3T3-L1 cells. mrna expression was assessed by real-time quantitative PCR. A Representative experiment out of 3 is shown in this figure Generation of a PGC1β-FAT-KO mouse model to study the role of PGC-1β in WAT RESULTS $!&) &) & & (% $! # # % # # ', $! &) % " + % & ' (!! # ' ( ' )& & ( ' ( % & & ) & & #! $ Efficiency of Ppargc1b gene disruption in adipose tissues $! # % # * 96

123 & BAT Ret. WAT Ing. WAT Gon. WAT Thymus Wt KO Wt KO Wt KO Wt KO Wt KO Wt alelle (3372 bp) KO alelle (626 bp) Figure 3. Recombination of Ppargc1b gene in different tissues of Wt and PGC1β-FAT-KO mice. The recombination was assessed by PCR using genomic DNA of BAT, several WAT depots and thymus. Primer forward and reverse were situated upstream and downstream respectively the loxp regions flanking exons 4 and 5 of the Ppargc1b gene. Amplification of the Wt allele yields a band of 3372 bp, while the recombined allele yields a shorter band of 626 bp. ' ' * & "! % " " " #! % $ % " " & Effect of Ppargc1b gene disruption on PGC-1β mrna levels # " # % " *' ' #! $ '! & RESULTS & # (+, -% +,.)& 97

124 A Ppargc1b mrna expression (a.u.) ,2 0.0 BAT ** ** Ing. WAT B Ppargc1b mrna expression (a.u.) Thymus Testis Spleen Brain Liver Soleus Lungs MΦ Kidney Wt KO Heart Figure 4. Ppargc1b mrna levels in tissues of male mice fed a chow diet and housed at 21ºC. The expression of PGC-1β mrna in (A) adipose tissues and (B) non-adipose tissues of PGC1β-FAT-KO mice and Wt littermates was assessed by real-time quantitative PCR. MΦ stands for macrophages. Results are expressed as means ± SEM (n=4-7 animals/group, ** P 0.01). RESULTS! '! " &!!!!!! $ " % " # &! &!! $! &! " ) )!! $!& * " %!! (! ' $ "! # &! "!&! "! ( % &! *! %! $ &!'!! $! $!!! &'! % % $ ) ) )* "!! "!!! % & )!!! " ' $!! &! ( Figure 5. Expression of (A) (B) Atgl and (C) Pref1 was assessed by real-time quantitative PCR in white adipocytes and SVF isolated from inguinal WAT of Wt and PGC1β-FAT-KO mice fed a standard diet and housed at 21ºC. Results are expressed as means ± SEM (n=4-5 animals/group). * Indicates statistical significance between Wt and PGC1β-FAT- KO mice; # indicates statistical significance between adipocytes and SVF. *, # P 0.05; **, ## P

125 Effect of Ppargc1b gene disruption on PGC-1β protein levels! # % # "! " ' # )/ $ ) ) %& )/ #! 1'! )/! )/ $ "! # %!,/12- (3*! ) $ " / + )/ ( " )/ ) ) ' #! )/! ' #! ' )/ BAT Wt KO WAT Wt KO Muscle Wt KO PGC-1β α-tubulin Figure 6. Western Blot analysis of PGC-1β protein levels in interscapular BAT, retroperitoneal WAT and gastrocnemius muscle of Wt and PGC1β-FAT-KO mice fed a chow diet and housed at 21ºC. α-tubulin protein was detected as a loading control Physiological characterization of PGC1β-FAT-KO mice housed at 21ºC RESULTS & )/ # # % ) ) /! 0/.! " % % ( % # # 99

126 A Weight (g) Wt KO Time (weeks) B Weight (g) Gon. WAT Ing. WAT Figure 7. (A) Body weight and (B) tissue weight of wild type and PGC1β-FAT-KO male mice fed chow diet and housed at 21ºC. Results are expressed as means ± SEM (n=4-5 animals/group). * Indicates statistical significance between Wt and PGC1β-FAT-KO mice. ** P ** Ret. WAT BAT Liver Wt KO Brain Heart Thymus Spleen Lung Kidney Gastroc. RESULTS " & & $!! # # (! # & # #! #! ' # # & & $ #!!! & &! # % Wild type Inguinal WAT PGC1β-FAT-KO Wild type Interscapular BAT PGC1β-FAT-KO 200 μm 200 μm 100 μm 100 μm, +*! % + ( +)$ # $ " & & & & #!, +* % 100

127 2.0 Interscapular BAT Wt KO mrna expression (a.u.) ** * * * 0.0 Ppargc1b Ppargc1a Cebpa Figure 9. mrna expression levels in BAT of mice housed 21ºC and fed a chow diet assessed by quantitative PCR. Results are expressed as means ± SEM (n=4-5 animals/group). * Indicates statistical significance between Wt and PGC1β-FAT-KO mice. * P 0.05; ** P Study of the cellular process regulated by PGC-1β in white adipose tissue Pparg Cox4i Gene expression profile analysis of retroperitoneal WAT from PGC1β-FAT-KO mice housed at 30ºC Cox5a Atp5o Uqcrh Ucp1 $ ' '! #! % # (. +* ) " &! # "! & # % # & ' ' %,! ', & ', ',! # & % #! $ # & " # $!', # %! ', # #! # & RESULTS # ',, %!. - 0 # - +0 ',- +! ' ' '! 101

128 TABLE 1. LIST OF UP-REGULATED GENES IN PGC1β-FAT-KO MICE IN THE MICROARRAY ANALYSIS RESULTS Entrez ID Symbol Gene Name logfc P.Value St6galnac5 ST6 (alpha-n-acetyl-neuraminyl-2,3-beta-galactosyl-1,3)-n-acetylgalactosaminide alpha-2,6-sialyltransferase E Pon1 paraoxonase E Cyp2f2 cytochrome P450, family 2, subfamily f, polypeptide E Bcl6 B-cell leukemia/lymphoma E Rasd1 RAS, dexamethasone-induced E Gpr64 G protein-coupled receptor E Sult1e1 sulfotransferase family 1E, member E Lrrn4 leucine rich repeat neuronal E Wnt2b wingless related MMTV integration site 2b E Upk3b uroplakin 3B E Rny1 RNA, Y3 small cytoplasmic (associated with Ro protein); RNA, Y1 small cytoplasmic, Ro-associated E Mpz myelin protein zero E Gpm6a glycoprotein m6a E Uchl1 ubiquitin carboxy-terminal hydrolase L E Inmt indolethylamine N-methyltransferase E Pkhd1l1 polycystic kidney and hepatic disease 1-like E Gulp1 GULP, engulfment adaptor PTB domain containing E Myt1l myelin transcription factor 1-like E Fmod fibromodulin E Cpxm2 carboxypeptidase X 2 (M14 family) E Scn3b sodium channel, voltage-gated, type III, beta E Bhlhe41 basic helix-loop-helix family, member e E Sctr secretin receptor; similar to Sctr protein E Dbp D site albumin promoter binding protein E Penk preproenkephalin E Rspo1 R-spondin homolog (Xenopus laevis) E Tmeff1 transmembrane protein with EGF-like and two follistatin-like domains E Cnn1 calponin E Hsd11b1 hydroxysteroid 11-beta dehydrogenase E Gpc3 glypican E Ctxn1 cortexin E Cldn1 claudin E Plp1 proteolipid protein (myelin) E Aebp1 AE binding protein E Amotl2 angiomotin-like E Emp2 epithelial membrane protein E

129 Tmem106c transmembrane protein 106C E Spock2 sparc/osteonectin, cwcv and kazal-like domains proteoglycan E Flrt2 fibronectin leucine rich transmembrane protein E Osr1 odd-skipped related 1 (Drosophila) E Tagln transgelin E Cdc42ep5 CDC42 effector protein (Rho GTPase binding) E Drp2 dystrophin related protein E Ctif CBP80/20-dependent translation initiation factor E Nr1d1 nuclear receptor subfamily 1, group D, member E Snora44 small nucleolar RNA, H/ACA box E Tspan12 tetraspanin E Rnu73b U73B small nuclear RNA; U73A small nuclear RNA E Acsm5 acyl-coa synthetase medium-chain family member E Gdap10 ganglioside-induced differentiation-associated-protein E-02 Table 1. List of the first 50 up-regulated genes obtained in a microarray analysis comparing mrna expression levels in retroperitoneal WAT from wild type and PGC1β-FAT-KO mice housed at 30ºC and fed a standard diet. Genes are listed in descending order of logarithm of fold change. TABLE 2. LIST OF UP-REGULATED GENES IN PGC1β-FAT-KO MICE IN THE MICROARRAY ANALYSIS Entrez ID Symbol Gene Name logfc P.Value Fabp3 acid binding protein 3, muscle and heart E Cpt1b carnitine palmitoyltransferase 1b, muscle E Cidea cell death-inducing DNA fragmentation factor, alpha subunit-like effector A E Cox7a1 cytochrome c oxidase, subunit VIIa E Cish cytokine inducible SH2-containing protein E Mup6 major urinary protein E Cox8b cytochrome c oxidase, subunit VIIIb E Chchd10 coiled-coil-helix-coiled-coil-helix domain containing E Cideb cell death-inducing DNA fragmentation factor, alpha subunit-like effector B E Cabc1 aarf domain containing kinase E Prl3d1 prolactin family 3, subfamily d, member E Hsd11b2 hydroxysteroid 11-beta dehydrogenase E Slc5a7 solute carrier family 5 (choline transporter), member E Pdk4 pyruvate dehydrogenase kinase, isoenzyme E Kng2 kininogen E Gys2 glycogen synthase E Orm2 orosomucoid E Paqr9 progestin and adipoq receptor family member IX E-02 RESULTS 103

130 RESULTS Pla2g2e phospholipase A2, group IIE E Ms4a6c membrane-spanning 4-domains, subfamily A, member 6C E Ppara peroxisome proliferator activated receptor alpha E Mest mesoderm specific transcript E D3Bwg0562e DNA segment, Chr 3, Brigham & Women's Genetics 0562 expressed E Oas2 2'-5' oligoadenylate synthetase E Ptgr2 prostaglandin reductase E Aco2 aconitase 2, mitochondrial E Slc1a1 solute carrier family 1 (neuronal/epithelial high affinity glutamate transporter, system Xag), member E Cycs cytochrome c, somatic E Pank1 pantothenate kinase E Oxtr oxytocin receptor E Idh3b isocitrate dehydrogenase 3 (NAD+) beta E Adrb2 adrenergic receptor, beta E Sdhd succinate dehydrogenase complex, subunit D, integral membrane protein E Otop1 otopetrin E Olfr1335 olfactory receptor E Rtp4 receptor transporter protein E Ifi44 interferon-induced protein E Elovl6 ELOVL family member 6, elongation of long chain fatty acids (yeast) E Ppif peptidylprolyl isomerase F (cyclophilin F) E Ldhb lactate dehydrogenase B E Oas1g 2'-5' oligoadenylate synthetase 1G E Pgk1 phosphoglycerate kinase E Olfr320 olfactory receptor E Sdf2l1 stromal cell-derived factor 2-like E Ndufb9 NADH dehydrogenase (ubiquinone) 1 beta subcomplex, E Cox5a cytochrome c oxidase, subunit Va E Ncan neurocan E Sucla2 succinate-coenzyme A ligase, ADP-forming, beta subunit E Ms4a4a membrane-spanning 4-domains, subfamily A, member 4A E Tk1 thymidine kinase E-02 Table 2. List of the first 50 down-regulated genes obtained in a microarray analysis comparing mrna expression levels in retroperitoneal WAT from wild type and PGC1β-FAT-KO mice housed at 30ºC and fed a standard diet. Genes are listed in descending order of logarithm of fold change. Mitochondrial genes are highlighted in dark color. 104

131 ! " # # # $ TABLE 3. GENE ENRICHEMENT ANALYSIS OF UP-REGULATED GENES Category GO Term # genes P.Value GOTERM_BP_FAT GO: ~tube development E-05 GOTERM_BP_FAT GO: ~tissue morphogenesis E-05 GOTERM_BP_FAT GO: ~regulation of transcription, DNA-dependent E-05 GOTERM_BP_FAT GO: ~regulation of RNA metabolic process E-05 GOTERM_BP_FAT GO: ~epithelial tube morphogenesis E-04 GOTERM_BP_FAT GO: ~skeletal system development E-04 GOTERM_BP_FAT GO: ~embryonic skeletal system development E-04 GOTERM_BP_FAT GO: ~metanephros development E-04 GOTERM_BP_FAT GO: ~regulation of transcription E-04 GOTERM_BP_FAT GO: ~embryonic morphogenesis E-04 GOTERM_BP_FAT GO: ~tube morphogenesis E-04 GOTERM_BP_FAT GO: ~embryonic skeletal system morphogenesis E-04 GOTERM_BP_FAT GO: ~epithelium development E-04 GOTERM_BP_FAT GO: ~transcription E-04 GOTERM_BP_FAT GO: ~urogenital system development E-04 GOTERM_CC_FAT GO: ~proteinaceous extracellular matrix E-04 GOTERM_CC_FAT GO: ~extracellular matrix E-04 GOTERM_MF_FAT GO: ~transcription regulator activity E-05 GOTERM_MF_FAT GO: ~sequence-specific DNA binding E-04 GOTERM_MF_FAT GO: ~RNA polymerase II transcription factor activity, enhancer E-04 binding GOTERM_MF_FAT GO: ~transcription factor activity E-04 RESULTS Table 3. Gene enrichment analysis of up-regulated genes in WAT from PGC1β-FAT- KO mice using DAVID bioinformatics source (GOTERM_CC_FAT, cellular component; GOTERM_BP_FAT, biological process; GOTERM_MF_FAT, molecular function). An EASE Score threshold of was used in the analysis. TABLE 4. GENE ENRICHEMENT ANALYSIS OF DOWN-REGULATED GENES Category GO Term # genes P.Value GOTERM_BP_FAT GO: ~generation of precursor metabolites and energy E-47 GOTERM_BP_FAT GO: ~electron transport chain E-29 GOTERM_BP_FAT GO: ~acetyl-CoA metabolic process E-21 GOTERM_BP_FAT GO: ~cellular respiration E-20 GOTERM_BP_FAT GO: ~oxidation reduction E

132 RESULTS GOTERM_BP_FAT GO: ~energy derivation by oxidation of organic compounds E-18 GOTERM_BP_FAT GO: ~coenzyme metabolic process E-16 GOTERM_BP_FAT GO: ~tricarboxylic acid cycle E-16 GOTERM_BP_FAT GO: ~acetyl-CoA catabolic process E-16 GOTERM_BP_FAT GO: ~aerobic respiration E-15 GOTERM_BP_FAT GO: ~coenzyme catabolic process E-15 GOTERM_BP_FAT GO: ~cofactor metabolic process E-15 GOTERM_BP_FAT GO: ~cofactor catabolic process E-14 GOTERM_BP_FAT GO: ~oxidative phosphorylation E-07 GOTERM_BP_FAT GO: ~glycolysis E-07 GOTERM_BP_FAT GO: ~glucose metabolic process E-07 GOTERM_BP_FAT GO: ~hexose catabolic process E-06 GOTERM_BP_FAT GO: ~glucose catabolic process E-06 GOTERM_BP_FAT GO: ~monosaccharide catabolic process E-06 GOTERM_BP_FAT GO: ~hexose metabolic process E-06 GOTERM_BP_FAT GO: ~cellular carbohydrate catabolic process E-06 GOTERM_BP_FAT GO: ~alcohol catabolic process E-06 GOTERM_BP_FAT GO: ~monosaccharide metabolic process E-06 GOTERM_BP_FAT GO: ~carbohydrate catabolic process E-05 GOTERM_BP_FAT GO: ~respiratory electron transport chain E-05 GOTERM_BP_FAT GO: ~ATP synthesis coupled electron transport E-04 GOTERM_BP_FAT GO: ~acetyl-CoA biosynthetic process E-04 GOTERM_BP_FAT GO: ~purine nucleoside triphosphate metabolic process E-04 GOTERM_CC_FAT GO: ~mitochondrion E-38 GOTERM_CC_FAT GO: ~mitochondrial part E-35 GOTERM_CC_FAT GO: ~organelle inner membrane E-34 GOTERM_CC_FAT GO: ~mitochondrial inner membrane E-33 GOTERM_CC_FAT GO: ~mitochondrial envelope E-32 GOTERM_CC_FAT GO: ~mitochondrial membrane E-31 GOTERM_CC_FAT GO: ~organelle envelope E-28 GOTERM_CC_FAT GO: ~envelope E-28 GOTERM_CC_FAT GO: ~respiratory chain E-26 GOTERM_CC_FAT GO: ~organelle membrane E-22 GOTERM_CC_FAT GO: ~mitochondrial lumen E-06 GOTERM_CC_FAT GO: ~mitochondrial matrix E-06 GOTERM_CC_FAT GO: ~mitochondrial membrane part E-05 GOTERM_CC_FAT GO: ~mitochondrial respiratory chain E-04 GOTERM_CC_FAT GO: ~proton-transporting ATP synthase complex E-04 GOTERM_CC_FAT GO: ~respiratory chain complex I E-04 GOTERM_CC_FAT GO: ~NADH dehydrogenase complex E-04 GOTERM_CC_FAT GO: ~mitochondrial respiratory chain complex I E

133 GOTERM_MF_FAT GO: ~hydrogen ion transmembrane transporter activity E-10 GOTERM_MF_FAT GO: ~monovalent inorganic cation transmembrane transporter E-10 activity GOTERM_MF_FAT GO: ~inorganic cation transmembrane transporter activity E-08 GOTERM_MF_FAT GO: ~iron ion binding E-07 GOTERM_MF_FAT GO: ~4 iron. 4 sulfur cluster binding E-07 GOTERM_MF_FAT GO: ~NADH dehydrogenase activity E-07 GOTERM_MF_FAT GO: ~NADH dehydrogenase (quinone) activity E-07 GOTERM_MF_FAT GO: ~NADH dehydrogenase (ubiquinone) activity E-07 GOTERM_MF_FAT GO: ~oxidoreductase activity. acting on NADH or NADPH E-06 quinone or similar compound as acceptor GOTERM_MF_FAT GO: ~iron-sulfur cluster binding E-06 GOTERM_MF_FAT GO: ~metal cluster binding E-06 GOTERM_MF_FAT GO: ~NAD or NADH binding E-05 GOTERM_MF_FAT GO: ~cytochrome-c oxidase activity E-05 GOTERM_MF_FAT GO: ~oxidoreductase activity. acting on heme group of donors E-05 oxygen as acceptor GOTERM_MF_FAT GO: ~heme-copper terminal oxidase activity E-05 GOTERM_MF_FAT GO: ~oxidoreductase activity. acting on heme group of E-05 donors GOTERM_MF_FAT GO: ~oxidoreductase activity. acting on NADH or NADPH E-05 GOTERM_MF_FAT GO: ~cofactor binding E-04 GOTERM_MF_FAT GO: ~electron carrier activity E-04 GOTERM_MF_FAT GO: ~2'-5'-oligoadenylate synthetase activity E-04 GOTERM_MF_FAT GO: ~coenzyme binding E-04 RESULTS Table 4. Gene enrichment analysis of down-regulated genes in WAT from PGC1β-FAT- KO mice using DAVID bioinformatics source (GOTERM_CC_FAT, cellular component; GOTERM_BP_FAT, biological process; GOTERM_MF_FAT, molecular function). An EASE Score threshold of was used in the analysis.! " &# " # %!!!$ 107

134 Expression of genes in retroperitoneal WAT by real-time quantitative PCR * $ ' ' % & + ' )! " ( #! % ' #!!! $ $ $ ) ) * -! -,+( RESULTS Figure 10. mrna expression levels of genes involved in oxidative phosphorylation in retroperitoneal WAT from Wt and KO mice housed at thermoneutrality and fed a chow diet. mrna levels were determined by quantitative RT-PCR. Results are expressed as means ± SEM (n=5-8 animals/group, * P 0.05** P 0.01).! " " " *.+' * / + %. *. %! ) ) - ( 108

135 Figure 11. mrna expression levels of genes involved in TCA cycle in retroperitoneal WAT from Wt and KO mice housed at thermoneutrality and fed a chow diet. mrna levels were determined by quantitative RT-PCR. Results are expressed as means ± SEM (n=5-8 animals/group, ** P 0.01). # & '&! '# & ' & &! $ & $' &! "! # '! & ' % & % "! % '#! % % $ ( # # & '# %! %( # %(! & ( '# (! $ #! "!!!!!!! $ ' %( % $ RESULTS Figure 12. mrna expression levels of genes involved in lipid metabolism in retroperitoneal WAT from Wt and KO mice housed at thermoneutrality and fed a chow diet. mrna levels were determined by quantitative RT-PCR. Results are expressed as means ± SEM (n=5-8 animals/group, * P 0.05** P 0.01). 109

136 ! $ " " $ " ' # # % % ( Gene expression analysis of PGC-1β target genes in subcutaneous WAT and interscapular BAT of PGC1β-FAT-KO mice $ ' # # # ),!!! '!! (! ' $ # %& % )! " (! ' $ $ ' %! ) ), *!,- +( RESULTS mrna expression (a.u.) Ndufab1 Interscapular BAT * ** ** ** ** Ndufb9 Sdhb Uqcrh Cyc1 * ** ** Cox5a Cox5b Cox7a1 Atp5o Atp5b Mdh2 Aco2 Idh3a Fabp3 Cpt1b Cidea Figure 13. mrna expression levels of mitochondrial genes involved in OxPhos, TCA or lipid metabolism in inguinal WAT of Wt and PGC1β-FAT-KO mice housed at thermoneutrality and fed a regular chow diet were determined by real-time quantitative RT-PCR. Results are expressed as mean ± SEM, n=5 8 animals/ group, *P 0.05 **P ** ** ** ** OxPhos TCA Lipid Metab. ** Wt * KO **! # #! %( # %!! % '! ' # %& % ) $ )! % ),,! $ # % '! # 110

137 Figure 14. mrna expression levels of mitochondrial genes involved in OxPhos, TCA or lipid metabolism in interscapular BAT of Wt and PGC1β-FAT-KO mice housed at thermoneutrality and fed a regular chow diet were determined by real-time quantitative RT-PCR. Results are expressed as mean ± SEM, n=5 8 animals/group, *P 0.05 **P Western Blot analysis of proteins coded by PGC-1β target genes in WAT of PGC1β- FAT-KO mice $!!! &) " % " & & ) ' )*(% β RESULTS α Figure 15. Western Blot analysis of proteins involved in OxPhos and TCA cycle in retroperitoneal WAT from Wt and PGC1β-FAT-KO mice fed a chow diet and housed at 30ºC. α-tubulin protein was used for loading control. 111

138 Analysis of mitochondrial function in WAT of PGC1β-FAT-KO mice! $! # "! # $ $ #! ( # " % &% # ' #! % * + " %' # % & % $ ( %& $! % ' $ ( $ " # % ' " % $ " % # $ " # % ( %' % $ ) ) # % ( RESULTS Figure 16. Citrate synthase activity was measured spectrophotometrically in protein extracts of inguinal WAT from Wt and PGC1β-FAT-KO mice fed a chow diet and housed at thermoneutrality. Results are expressed as means ± SEM (n=5-8 animals/group, ** P 0.01). # ' # % " % % &%! *!,.+( " % % $ * '! % # &% " % $ #! " % $! ), $ "! ( 112

139 Figure 17. (A) NADH-ubiquinone oxidoreductase (B) succinate dehydrogenase (C) Succinate-Cytochrome c oxidoreductase and (D) Cytochrome c oxidase activity were measured spectrophotometrically in inguinal WAT protein extracts from Wt and PGC1β-FAT-KO mice fed a chow diet and housed at thermoneutrality. Results are expressed as means ± SEM (n=5-8 animals/group, ** P 0.01). " $ #% " &! RESULTS Figure 18. Palmitate oxidation was assessed in inguinal WAT explants dissected from mice housed at 30 C and fed a HFD for 9 months. Tissue samples were incubated in KRB buffer containing [1-14 C] palmitate and the utilization of palmitate was monitored by the production of 14 CO CO 2 esults are expressed as means ± SEM (n=7-12 animals/group). 113

140 Effect of PGC-1β deficiency on mitochondrial biogenesis in WAT "!! " " *, '! ' " " "!! % $ "' "!!#!) $ ( "!!"# ' % " " % "! "!!# # *, "! " $! " # &"!" %! " $!" " " "" " *,!!+ " ) " "! ' #! "!" " "!!! "!! " " # " " ) # " ' "!! # * *!# " $ * * & "! "! " " ' " % " *,! "!!# ) RESULTS Figure 19. Relative mitochondrial DNA copy number was determined by quantitative RT-PCR. DNA isolated from inguinal WAT from mice housed at 30ºC and fed a chow diet was used to determine ratio between mtco2 (mtdna) and Rip140 (ndna) relative copy number. Results are expressed as means ± SEM (n=6-8 animals/group).! % " " "! "! " " ' " ) *,!!!! "! #!" %!# " &!! & * * ' *" ) "!" '( " &!! $! "!!! " ' "!!#!" " "! *, # "!#! "! " # # " " " % "' * *, ) 114

141 Figure 20. mrna expression levels of genes coded in mitochondrial genome in retroperitoneal WAT from Wt and KO mice housed at thermoneutrality and fed a chow diet. mrna levels were determined by quantitative RT-PCR. Results are expressed as means ± SEM (n=5-8 animals/group). & "! " (+ # '! " ( % $ ' ) * ) * & ) * ) *! ( ( + ' RESULTS Figure 21. mrna expression of well-established regulators of mitochondrial gene expression assessed in retroperitoneal WAT from Wt and KO mice housed at thermoneutrality and fed a chow diet. mrna levels were determined by quantitative RT-PCR. Results are expressed as means ± SEM (n=5-8 animals/ group, ** P 0.01). 115

142 4.3. Effects of PGC-1β knocdown in cultured 3T3-L1 adipocytes Lipid-based sirna transfection of 3T3-L1 adipocytes # &!!! % * * $. &!!! *.! "!! # # "! ( $! ".*! "! & $ *. 0 0*. $! &! ) 0 0*.!! $ *! ' &! &) 0 0*. " & & &!!!! # & "! * * "! &! -! &)! )-)!!! " 0 0*. &! &! "! ( $ "!!!! ( "!& " ) RESULTS #!!!! $ *.!! 0 0*. $ "! "! & $!!! " ( " # "! # "! # #! "! *. $!! &!!!" 0 0*. &! $! & " $!!!!!! )! #!, -!! %! ", -)!! #!,! -!! + / & #!!!!! "!, " % 116

143 A! B C 1.5 Gapdh sicontrol: mrna expression (a.u.) Figure 22. (A) Image of 3T3-L1 adipocytes transfected with sicontrol. (B) Image of 3T3-L1 adipocytes transfected with siglo (red staining). (C) Knockdown of Gapdh was assayed via qpcr in triplicate. Knockdown of specific genes in 3T3-L1 adipocytes was assayed 48 hours post-transfection using 100 nm nontargeting sirna (sicontrol), 100 nm transfection indicator siglo and 100 nm sirna targeted to Gapdh (sigapdh). Transfection reagent was used at a concentration of 1.4 μl/cm 2. Transfection was carried out on attached adipocytes (classical transfection). Results are expressed as means ± SEM (n=3). "!! # '( $!! RESULTS A B 0.0 sicontrol: Figure 23. (A) Image of 3T3-L1 adipocytes transfected with sicontrol. (B) Image of 3T3-L1 adipocytes transfected with siglo (red staining). (C) Knockdown of Gapdh was assayed via qpcr in triplicate. Knockdown of specific genes in 3T3-L1 adipocytes was assayed 48 hours post-transfection using 100 nm nontargeting sirna (sicontrol), 100 nm transfection indicator siglo and 100 nm sirna tartgeted to Gapdh (sigapdh). Transfection reagent was used at a concentration of 1.4 μl/cm 2. Transfection was carried on adipocytes in suspension. Results are expressed as means ± SEM (n=3). C mrna expression (a.u.) Gapdh ** 117

144 Optimization of the conditions for sirna transfection of 3T3-L1 adipocytes % " # " $ & + & + ( '+- *) ) ($! & + *) ) $ RESULTS 118

145 A! fi# "! " μ! " " B! fi# "! " $ μ! " " RESULTS Figure 24. 3T3-L1 adipocytes transfected in suspension with siglo red. Uptake of the fluorescent-labeled molecule siglo was assayed at 48 hours post transfection of adipocytes. Brightfield and fluorescent images of adipocytes transfected with (A) 0.7 μl/cm 2 or (B) 1.4 μl/cm 2 of DharmaFECT in combination with two concentrations of siglo (25 nm and 100 nm). Nuclei were co-stained with DAPI. 119

146 "!" "! " "! % " #! " " " $ " & +0 % * " % & " % "!" "% " "! -!!. " " -! +0.* " " #! " %! " "!" % ) # ' " " '"! % "!, 1 "! " " 13 0//! * ' %! % $!"! " * & ") " &!! " " ' ( " " $! " +" "! " *! " "!# "! $ #! ' " * RESULTS Figure 25. Knockdown of specific genes in 3T3-L1 adipocytes was assayed 48 hours post-transfection using the non-targeting sirna (sicontrol), the sirna tartgeted to Gapdh (sigapdh) and the sirna targeted to Ppargc1b (sipgc-1β). Transfection was carried out on adipocytes in suspension using two concentrations of sirna (25 nm and 100 nm). mrna levels of (A) Gapdh and (B) Ppargc1b were assayed via qpcr in triplicate. Results are expressed as means ± SEM. " " " (! " " ) % & "! " " " "! " " %!" $! % " 51 #!*!" "! " # " " $ " ") " $ " " % *!! %!" "! " *! "!#!" " " " "! " " 120

147 A mrna expression (a.u.) sicont: sigapdh: sipgc-1β: Gapdh ** ** h 72 h B mrna expression (a.u.) sicont: sigapdh: sipgc-1β: Ppargc1b * ** h 72 h Figure 26. Knockdown of specific genes in 3T3-L1 adipocytes was assayed 48 hours or 72 hours posttransfection using the non-targeting sirna (sicontrol), the sirna tartgeted to Gapdh (sigapdh) and the sirna targeted to PGC-1β (sipgc-1β). Transfection was carried out on adipocytes in suspension using 100 nm sirna. mrna levels of (A) Gapdh and (B) PGC-1β were assayed by qpcr in triplicate. Results are expressed as means ± SEM Analysis of mitochondrial gene expression in 3T3-L1 adipocytes lacking PGC-1β 0 0). % # # # ). (! ' " # #! ). % ' # ). # ). ). ).!! % 0 0). % ( % $ " *. --' /1 -+( ' "!!!! " "! '!! ).! %! $ 0 0) RESULTS ).! & ) % )! " (! & ( &! $ ). )., 0) % % ' #!! "!! ( 121

148 mrna expression (a.u.) 4 Ppargc1a 3 Ppargc1b ** ** ** ** 1 ** ** ** ** sipgc-1β: sicont: + + sipgc-1α: DMSO Rosiglit. DMSO Rosiglit Figure 27. 3T3-L1 adipocytes were transfected with sirnas targeting PGC-1β and/or PGC-1α and then treated with vehicle or 1 μm Rosiglitazone for 48 hours. Transfection was carried out on adipocytes in suspension using 100 nm sirna. mrna levels of PGC-1β and PGC-1α were assayed by qpcr. Results are expressed as means ± SEM of 3-4 experiments with triplicates. * Indicates statistical significance of the comparison between control adipocytes (sicont) and adipocytes in which any of the PGCs have been knocked down; * P 0.05 ** P RESULTS $ $ ' " & " (, & & & & & & & &! &! &! * $ & ) & & *& ) - / *' # $ " & " # (, & ' & " (, (, $ # " " " $ & " # #.,& "! $ "(, " " ' $ (, # " $ &! (, $ ' (, $ % " # (, # ' (, $ (, % & # #! + - ( " ( " % ' # & (, # # $ $ % ' "! & $! ( ' $& $ " ( & & & & " " " % & $ (,! # #! # $ ' (, % ( # " $ & " 122

149 Ndufb9 Ndufab1 Ndufa9 Sdhb Uqcrh Cycs Cyc1 Cox4i1 Cox5a Cox7a1 Atp5o Atp5b Aco2 Idh3b Mdh2 Cs RESULTS α β Figure 28. 3T3-L1 adipocytes were transfected with sirnas targeting PGC-1β and/or PGC-1α and then treated with vehicle or 1 μm Rosiglitazone for 48 hours. Transfection was carried out on adipocytes in suspension using 100 nm sirna. mrna levels of OxPhos and TCA cycle genes were assayed by qpcr. Results are expressed as means ± SEM of 3-4 experiments with triplicates. * Indicates statistical significance of the comparison between control adipocytes (sicont) and adipocytes in which any of the PGCs have been knocked down; * P 0.05 ** P Study of the role of PGC-1β in fatty acid re-esterification in 3T3-L1 adipocytes 123

150 mrna expression (a.u.) mrna expression (a.u.) "&! "& $ " % $ % "& "&! " $ % $ % $ "& "& "&!"& RESULTS Ppara ** ** ** 2 1 Acadm Fabp Atgl 0 sicont: sipgc-1α: sipgc-1β: DMSO Rosiglit Lipe DMSO Rosiglit Pepck DMSO Rosiglit. - - Figure 29. 3T3-L1 adipocytes were transfected with sirnas targeting PGC-1β and/or PGC-1α and then treated with vehicle or 1 μm Rosiglitazone for 48 hours. Transfection was carried out on adipocytes in suspension using 100 nm sirna. mrna levels of lipid metabolism genes were assayed by qpcr. Results are expressed as means ± SEM of 3-4 experiments with triplicates. * Indicates statistical significance of the comparison between control adipocytes (sicont) and adipocytes in which any of the PGCs have been knocked down; * P 0.05 ** P

151 Assessment of mitochondrial function in 3T3-L1 adipocytes lacking PGC-1β $! $! "! "! ( $!"!!!!& %! ( %& "! ( # "! "!! ) &! &'! "! $!! $! ( *.! "! " &!! $!! 2 / $! #! ) ' Fatty acid oxidation "!! '! "! ( $ "! &! "!! "! (!! %! )! *!! (! "!! '! * % %! " & ( $! &! / ( $ "! $!! /! *!! ( $!!!!!! '!!! )!! ( *. *.! "! " & "!!!! '! )! " "! (!!! *.!!!& * %!! "! #! 0 0 *.,/1 0 -) # $! $ ) #! (! &! * % &! " (! "! &! #!& "!! #! ) " ( $ * & *. + *. " "! & "! / "! )! & "! * %!!!&! #!&( " "! & $!! *. *.!!! "!! %!!! 0 0 *. ) RESULTS Palmitate oxidation CO 2 trapped (a.u.) 1,5 1,0 0,5 0,0 sicont: sipgc-1α: sipgc-1β: ** ** ** DMSO ## ** ** ** Rosiglit. Figure 30. 3T3-L1 adipocytes were transfected with sirnas targeting PGC-1β and/or PGC-1α and then treated with DMSO or 1 μm Rosiglitazone for 72 hours. Transfection was carried out on adipocytes in suspension using 100 nm sirna. Cells were incubated at 37ºC in medium containing [1-14 C] palmitate and the utilization of palmitate was monitored by the production of 14 CO CO 2 trapped in hyamine hydroxide was quantified by liquid scintillation counting. Results are expressed as mean ± SEM of 3 independent experiments with triplicates. * Indicates statistical significance of the comparison between control adipocytes (sicontrol) and adipocytes in which any of the PGCs have been knocked down; * P 0.05 ** P # Indicates statistical significance of comparison between vehicleand rosiglitazone-treated cells; # P 0.05 ## P

152 Respirometry ( '+ '+ # # ' $ ',,' + #,,' + # ' # #! # & $ % '+! '+ # % % '+ " # "# RESULTS %! " # # & # ' # # $ ) *% # &,+! "! # # # # # $ & % # '+ " # & " %!!!!! # '+ & #,,' + #! " # & % $ ' % '+ & '+ 126

153 sicont: sipgc-1α: sipgc-1β: Oxygen consumption rate (a.u.) DMSO Basal Rosiglit. Figure 31. 3T3-L1 adipocytes were transfected with sirnas targeting PGC-1β and/or PGC-1α and then treated with DMSO or 1 μm Rosiglitazone for 72 hours. Transfection was carried out on adipocytes in suspension using 100 nm sirna. Basal and maximal (CCCP) cell respiration rates were measured in 3T3-L1 adipocytes using a Clark-type oxygen electrode. Results are expressed as mean ± SEM of 4 independent experiments with triplicates. * Indicates statistical significance of the comparison between control adipocytes (sicont) and adipocytes in which any of the PGCs have been knocked down; * P 0.05 ** P # Indicates statistical significance of comparison between vehicle- and rosiglitazone-treated cells; # P 0.05 ## P * DMSO CCCP ## * * Rosiglit Measurement of ATP levels " " " "! % &) + + & ) #"! " " "$ &!!" + *(% $ $ &) &) " " & # & "! " "! % RESULTS 127

154 0 sicont: sipgc-1α: sipgc-1β: DMSO Rosiglit. Figure 32. 3T3-L1 adipocytes were transfected with sirnas targeting PGC-1β and/or PGC-1α and then treated with DMSO or 1 μm Rosiglitazone for 72 hours. Transfection was carried out on adipocytes in suspension using 100 nm sirna. ATP production was assessed by measuring the light emitted in the reaction of intracellular ATP with the enzyme luciferase. Results are expressed as mean ± SEM of 4 independent experiments with triplicates ROS production pg ATP/cell RESULTS! $! "!!! &! % "! $ *-!!! %! "! ( $ "!! # %&. "!! #!$ # *! &! ) $ (!!!! #!& '&!! &!!! ( $! # % *-! " $!$ *-!!! &! ) %!( $ "! % #! %! '& %! #! ) % # +, $! & " &!!(! % +, $ " &! ' + " / /,)! &! "!! #!! %! $! "! %! '& #!! "! "!!!! % &!!! #!!! %! $!! ) 128

155 Figure 33. 3T3-L1 adipocytes were transfected with sirnas targeting PGC-1β and/or PGC-1α and then treated with DMSO or 1 μm Rosiglitazone for 72 hours. Transfection was carried out on adipocytes in suspension using 100 nm sirna. (A) Production of oxidant species was detected by measuring fluorescence emitted by the oxidation of the molecule Carboxy-H 2 DCFDA. Hydrogen peroxide was used as positive control. mrna levels of (B) Glutathione peroxidase 1 (Gpx1) and (C) catalase (Cat) were assayed by qpcr. Results are expressed as mean ± SEM of 3 independent experiments with triplicates. * Indicates statistical significance of the comparison between control adipocytes (sicontrol) and adipocytes in which any of the PGCs have been knocked down; * P 0.05.!!! $ '! $ %! '! $ "! & 4.4. Effect of PGC-1β deletion on oxidative capacity of rosiglitazone in white adipose tissue RESULTS Effects of the lack of PGC-1β in WAT on rosiglitazone-induced expression of mitochondrial genes!! " &! " %!! % (! $ )*! )*! $ ' ) * ) #! %! ' # ' #! &! #! ' )! " % &! $ % *(+ ) # % '! # %! " ) ) ) * ( %' $ ) ) * # " & 129

156 Figure 34. Expression levels of Ppargc1b gene in retroperitoneal WAT from wild type and PGC1β-FAT- KO male littermates housed at thermoneutrality that have been subjected to vehicle or rosiglitazone treatment for 21 days after a period of 8 weeks of feeding with a high fat diet. Gene expression was determined by real-time quantitative PCR. Results are expressed as means ± SEM (n=5-7 animals/group). * indicates statistical significance of the comparison between wild type and PGC1β-FAT-KO mice. ** P # " %! & )*'$ ( % ( % " & )* %(!! RESULTS Figure 35. Expression levels of OxPhos genes in retroperitoneal WAT from wild type and PGC1β-FAT- KO male littermates housed at thermoneutrality that have been subjected to vehicle or rosiglitazone treatment for 21 days after a period of 8 weeks of feeding with a high fat diet. Gene expression was determined by real-time quantitative PCR. Results are expressed as means ± SEM (n=5-7 animals/group). * indicates statistical significance of the comparison between wild type and PGC1β-FAT-KO mice. # indicates statistical significance of the comparison between vehicle- and rosiglitazone-treated groups. *# P 0.05; **## P

157 $! ('! $ $ ) ' - %,! # + # " '! " ( % "', # 34-*! & " "!! %! # " * ' " " &!! "" &!!) "! +1 $ " "! " " % "! " ( " +1 & #! " ( + " # + # " Figure 36. Expression levels of TCA cycle genes in retroperitoneal WAT from wild type and PGC1β-FAT- KO male littermates housed at thermoneutrality that have been subjected to vehicle or rosiglitazone treatment for 21 days after a period of 8 weeks of feeding with a high fat diet. Gene expression was determined by real-time quantitative PCR. Results are expressed as means ± SEM (n=5-7 animals/group). * indicates statistical significance of the comparison between wild type and PGC1β-FAT-KO mice. # indicates statistical significance of the comparison between vehicle- and rosiglitazone-treated groups. *# P 0.05; **## P RESULTS #!"#! $! & " " #! "!!#.240/) #!.241/* % & " $ " #" " " +1 # + # " ""' & " " % '! ' " " " ' '!!*! $ " # 35) $! ""' + & " %! '! " ( " " "* " # $ " "! " ( + # " ) " " (' " " "! " + " + &!" " ) " ""'! " ""'!!! " #" " * $ " '! " ( " * "!" " ' ) " +1 &!!! "! " " " " #" ( " ""'! " " # &!! %! # " ' " 1 ) " " " ' + "! + 1 $ # "' "!% #! " ""'!# " * "!!!! & "!! "! # " $!! " " "' " & (! "! " #!!!# "!!#!"! +1"! " ( + # &! $ $ " & " $ "! * 131

158 Figure 37. mrna expression levels of lipid oxidation genes in retroperitoneal WAT from wild type and PGC1β-FAT-KO male littermates housed at thermoneutrality that had been subjected to vehicle or rosiglitazone treatment for 21 days after a period of 8 weeks of feeding with a high fat diet. Gene expression was determined by real-time quantitative PCR. Results are expressed as means ± SEM (n=5-7 animals/group). * indicates statistical significance of the comparison between wild type and PGC1β- FAT-KO mice. # indicates statistical significance of the comparison between vehicle- and rosiglitazonetreated groups. *# P 0.05; **## P RESULTS Effect of the lack of PGC-1β on rosiglitazone-dependent induction of TCA cycle and OxPhos protein levels in WAT Vehicle Wt KO Rosiglitazone Wt KO ACO2 CYCS COX4I1 NDUFB9 α Figure 38. Levels of mitochondrial proteins encoded by PGC-1β target genes were determined by Western Blot analysis in retroperitoneal WAT of Wt and PGC1β-FAT-KO mice housed at thermoneutrality that had been subjected to vehicle or rosiglitazone treatment for 21 days after a period of 8 weeks of feeding with a high fat diet. α-tubulin protein was detected for loading control. 132

159 Role of PGC-1β on rosiglitazone-induced lipogenesis and adipogenesis! $!! ( #!(! #!!!! $!! "! " &!" &! "!! " #!!!!! "!! * * 1 "!! #! '!! $!! & *1! '!!!( $ "!! "!!! # "! & & #! #! ) "! (! %!,! (! (!!"! - $!& 1 # (!!! "!! ' *1 + " mrna expression (a.u.) Ret. WAT # # ## # Wt + Vehicle KO + Vehicle # Wt + Rosiglitazone KO + Rosiglitazone RESULTS 0.0 Pparg Lipe Atgl Fabp4 Adipoq Lep Retn Tnfa Figure 39. mrna expression levels of genes coding for lipases and adipokines in retroperitoneal WAT from wild type and PGC1β-FAT-KO male littermates housed at thermoneutrality that have had subjected to vehicle or rosiglitazone treatment for 21 days after a period of 8 weeks of feeding with a high fat diet. Gene expression was determined by real-time quantitative PCR. Results are expressed as means ± SEM (n=5-7 animals/group). * indicates statistical significance of the comparison between wild type and PGC1β-FAT-KO mice. # indicates statistical significance of the comparison between vehicle- and rosiglitazone-treated groups. *# P 0.05; **## P Contribution of PGC-1β to rosiglitazone-enhancement of mitochondrial function!! &!, -! #!& $ & "!! "!! $!!!! '!!!(! #!& $!! %!! 133

160 $ " # # $,! $ # ' " (! # " (! " # ) Figure 40. Citrate synthase activity was measured spectrophotometrically in protein extracts of retroperitoneal WAT from Wt and PGC1β-FAT-KO mice housed at thermoneutrality that had been subjected to vehicle or rosiglitazone treatment for 21 days after a period of 8 weeks of feeding with a high fat diet. Results are expressed as means ± SEM (n=5-7 animals/group). * indicates statistical significance of the comparison between wild type and PGC1β-FAT-KO mice. # indicates statistical significance of the comparison between vehicle- and rosiglitazone-treated groups. *# P 0.05; **## P RESULTS Influence of PGC-1β on the transcriptional regulation of antioxidant enzymes "! ( # *! " #! # # % #(! $ # " "" # & #! " #! "*! # % '( " " -.* & ( ' # % "#! ""* $!(* # + / & %!*! "$ #"! ' " 2* "$! ' " $ # " 3* $ $! # 3 $ $ # * # " "! #! # # # ' " "("# # ' "#! "" -! % & / & %!* ", #, 2 " &! $ # % #( # ' #! "! #!( * # " # ' # # "! "$ #" "$ "# # # " #! $ '! "" #! "! $ # ' # % $ # *, (#, " 2! "$ # # ' # "#! ""+ 134

161 Figure 41. Expression levels of genes related to oxidative stress in retroperitoneal WAT from wild type and PGC1β-FAT-KO male littermates housed at thermoneutrality that have been subjected to vehicle or rosiglitazone treatment for 21 days after a period of 8 weeks of feeding with a high fat diet. Gene expression was determined by real-time quantitative PCR. Results are expressed as means ± SEM (n=5-7 animals/group). * indicates statistical significance of the comparison between wild type and PGC1β- FAT-KO mice. # indicates statistical significance of the comparison between vehicle- and rosiglitazonetreated groups. *# P 0.05; **## P Study of the contribution of PGC-1β to rosiglitazone-induced mitochondriogenesis $& $! $ $ $ # " % $ $ "! & RESULTS Figure 42. Relative mtdna content analyzed in retroperitoneal WAT from Wt and PGC1β-FAT-KO mice housed at thermoneutrality that have been subjected to vehicle or rosiglitazone treatment for 21 days after a period of 8 weeks of feeding with a high fat diet. Results are expressed as means ± SEM (n=5-7 animals/group). # indicates statistical significance of the comparison between vehicle- and rosiglitazonetreated groups. ## P

162 (+ % ( " % # ' " # ( + ( & % ( $ % & # " $! ( (+ $ % + # & & " " $ & $ & ' mrna expression (a.u.) Ret. WAT # Wt + Vehicle KO + Vehicle Wt + Rosiglitazone KO + Rosiglitazone 0.0 Ppargc1a Ppcrc1 Esrra Nrf1 Nrf2 Tfam RESULTS Figure 43. mrna expression of well-established regulators of mitochondrial gene expression assessed in retroperitoneal WAT from Wt and KO mice housed at thermoneutrality that have been subjected to vehicle or rosiglitazone treatment for 21 days after a period of 8 weeks of feeding with a high fat diet. Results are expressed as means ± SEM (n=5-7 animals/group. # indicates statistical significance of the comparison between vehicle- and rosiglitazone-treated groups. *# P 0.05; **## P Effect of adipose PGC-1β deficiency on glucose homeostasis and insulin sensitivity Effect of the lack of PGC-1β in body adiposity of mice fed a chow diet! "! +( ( " $ $ $ & " $ % $ + $ " ' "! & +! " " $ + ) * $! + 136

163 A Weight (g) Wt KO Time (weeks) B Weight (g) Gon. WAT Ing. WAT Ret. WAT ** BAT Liver Gastroc. Wt KO Kidney Figure 44. (A) Body weight and (B) tissue weight of 21 weeks-old mice housed at 30ºC and fed a chow diet. Results are expressed as means ± SEM (n=5-7 animals/group). * Indicates statistical significance between Wt and PGC1β-FAT-KO mice; ** P 0,01. $! "!& &" '! " & " $! "! " " $! Wild type Inguinal WAT PGC1β-FAT-KO Wild type Interscapular BAT PGC1β-FAT-KO RESULTS 100 μm 100 μm 100 μm 100 μm Figure 45. Histological sections of inguinal WAT and interscapular BAT stained with hematoxylin/eosin from mice housed at 30ºC and fed a chow diet. & & " $ ' &' Ucp1 mrna expression (a.u.) BAT Wt KO Figure 46. Ucp1 mrna expression in BAT from mice housed at 30ºC and fed a chow diet. mrna expression was assessed by quantitative PCR. Results are expressed as means ± SEM (n=5-7 animals/group). 137

164 Effect of the lack of PGC-1β in white adipose tissue on glucose homeostasis ) ' (% $ "% & &! " " &) A Glucose (mg/dl) GTT Wildtype PGC1β-FAT-KO B AUC (a.u.) Wt KO Time (min) RESULTS Figure 47. (A) Glucose tolerance test (GTT) was performed on 16h-fasted mice. Blood Glucose levels were measured at 0, 15, 30, 60, 90 and 120 minutes after an intraperitoneal injection of glucose (2 g/ kg). (B) Area under the curve of GTT associated curves. Results are expressed as means ± SEM (n=5-7 animals/group). "# " "$ ' + % "$ & ) & " $ " % $ % 138

165 Figure 48. (A) Insulin tolerance test (ITT) was performed on 5h-fasted mice. Blood Glucose levels were measured at 0, 15, 30, 60, 90 and 120 minutes after an intraperitoneal injection of insulin (0.9 U/kg). (B) Area under the curve of ITT associated curves. Results are expressed as means ± SEM (n=5-7 animals/ group) Effect of the lack of PGC-1β in body adiposity upon rosiglitazone treatment!! ' ) " ) * # %! ( ' # )* $ (!! # & "! "! " )* & )! $ (! $ # "! # $! $ % %! RESULTS ' % # %! # * ) ) $ # # % # " (! % " ( # " ' % #!! # ) ) * # ' %! " ' # 139

166 RESULTS Figure 49. (A) Body weight of wild type and PGC1β-FAT-KO male littermates fed a high fat diet since age 6 weeks and housed at thermoneutrality. (B) Tissue weight of major adipose depots and liver from wild type and PGC1β-FAT-KO male littermates housed at thermoneutrality that have been subjected to vehicle or rosiglitazone treatment for 21 days after a period of 8 weeks of feeding with a high fat diet. Results are expressed as means ± SEM (n=5-7 animals/group). # indicates statistical significance of the comparison between vehicle- and rosiglitazone-treated groups. # P "$ % $#! "! "$ Figure 50. Histological sections of inguinal WAT stained with hematoxylin/eosin from wild type and PGC1β-FAT-KO male littermates housed at thermoneutrality that have been subjected to vehicle or rosiglitazone treatment for 21 days after a period of 8 weeks of feeding with a high fat diet. 140

167 Figure 51. Histological sections of interscapular BAT stained with hematoxylin/eosin from wild type and PGC1β-FAT-KO male littermates housed at thermoneutrality that have been subjected to vehicle or rosiglitazone treatment for 21 days after a period of 8 weeks of feeding with a high fat diet Effect of adipose deletion of PGC-1β on glucose homeostasis upon rosiglitazone treatment ' % ' (! # # %!! & * )!! $! ' $ &! % " " #% #! # RESULTS A Glucose (mg/dl) # ## GTT Wt + Vehic. KO + Vehic. Wt + Rosig. KO + Rosig. B AUC (a.u.) Time (min) 0.0 Wt KO Wt KO Vehic. Rosig. Figure 52. (A) Glucose tolerance test (GTT) was performed on 16h-fasted mice. Blood Glucose levels were measured at 0, 15, 30, 60, 90 and 120 minutes after an intraperitoneal injection of glucose (2 g/kg). (B) Area under the curve of GTT associated curves. Results are expressed as means ± SEM (n=5-7 animals/ group). # indicates statistical significance of the comparison between vehicle- and rosiglitazone-treated groups. # P 0.05; ## P

Supplementary Table 1. Primer sequences used for RT-qPCR validation of the microarray data. Primer. direction. Forward

Supplementary Table 1. Primer sequences used for RT-qPCR validation of the microarray data. Primer. direction. Forward Supplementary Table 1. Primer sequences used for RT-qPCR validation of the microarray data Gene Glyceraldehyde 3-phosphate dehydrogenase (Gapdh) Cell death-inducing DFFAlike effector a (Cidea) Peroxisome

Διαβάστε περισσότερα

Supplementary figures for MED13 dependent signaling from the heart confers leanness by enhancing metabolism in adipose tissue and liver.

Supplementary figures for MED13 dependent signaling from the heart confers leanness by enhancing metabolism in adipose tissue and liver. Supplementary figures for MED13 dependent signaling from the heart confers leanness by enhancing metabolism in adipose tissue and liver. Content: Figure S1. Cardiac overexpression of MED13 increases metabolic

Διαβάστε περισσότερα

ΙΩΑΝΝΗΣ ΚΛΑΓΚΑΣ. Χημικός, MSc ΔΙΔΑΚΤΟΡΙΚΗ ΔΙΑΤΡΙΒΗ ΥΠΟΒΛΗΘΗΚΕ ΣΤΗΝ ΙΑΤΡΙΚΗ ΣΧΟΛΗ ΤΟΥ ΑΡΙΣΤΟΤΕΛΕΙΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΘΕΣΣΑΛΟΝΙΚΗΣ

ΙΩΑΝΝΗΣ ΚΛΑΓΚΑΣ. Χημικός, MSc ΔΙΔΑΚΤΟΡΙΚΗ ΔΙΑΤΡΙΒΗ ΥΠΟΒΛΗΘΗΚΕ ΣΤΗΝ ΙΑΤΡΙΚΗ ΣΧΟΛΗ ΤΟΥ ΑΡΙΣΤΟΤΕΛΕΙΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΙΑΤΡΙΚΗ ΣΧΟΛΗ ΤΟΜΕΑΣ ΦΥΣΙΟΛΟΓΙΑΣ ΦΑΡΜΑΚΟΛΟΓΙΑΣ B ΕΡΓΑΣΤΗΡΙΟ ΦΑΡΜΑΚΟΛΟΓΙΑΣ ΔΙΕΥΘΥΝΤΗΣ: ΚΑΘΗΓΗΤΗΣ ΓΙΩΡΓΟΣ ΚΑΡΑΚΙΟΥΛΑΚΗΣ ΠΑΝΕΠ. ΕΤΟΣ 2008-2009 ΑΡΙΘΜ. 2376 Η ΕΠΙΔΡΑΣΗ

Διαβάστε περισσότερα

Cellular Physiology and Biochemistry

Cellular Physiology and Biochemistry Original Paper 2016 The Author(s). 2016 Published The Author(s) by S. Karger AG, Basel Published online: November 25, 2016 www.karger.com/cpb Published by S. Karger AG, Basel 486 www.karger.com/cpb Accepted:

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΙΣ «ΚΛΙΝΙΚΕΣ ΚΑΙ ΚΛΙΝΙΚΟΕΡΓΑΣΤΗΡΙΑΚΕΣ ΙΑΤΡΙΚΕΣ ΕΙΔΙΚΟΤΗΤΕΣ»

ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΙΣ «ΚΛΙΝΙΚΕΣ ΚΑΙ ΚΛΙΝΙΚΟΕΡΓΑΣΤΗΡΙΑΚΕΣ ΙΑΤΡΙΚΕΣ ΕΙΔΙΚΟΤΗΤΕΣ» ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ ΤΜΗΜΑ ΙΑΤΡΙΚΗΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΙΣ «ΚΛΙΝΙΚΕΣ ΚΑΙ ΚΛΙΝΙΚΟΕΡΓΑΣΤΗΡΙΑΚΕΣ ΙΑΤΡΙΚΕΣ ΕΙΔΙΚΟΤΗΤΕΣ» ΑΡΝΗΤΙΚΗ ΡΥΘΜΙΣΗ ΤΗΣ ΜΕΤΑΒΙΒΑΣΗΣ ΤΟΥ ΣΗΜΑΤΟΣ ΤΗΣ

Διαβάστε περισσότερα

ΥΠΕΡΙΝΣΟΥΛΙΝΑΙΜΙΑ ΚΑΙ ΑΝΤΙΣΤΑΣΗ ΣΤΗΝ ΙΝΣΟΥΛΙΝΗ ΣΕ ΠΑΧΥΣΑΡΚΑ ΠΑΙΔΙΑ ΚΑΙ ΕΦΗΒΟΥΣ ΜΕ ΠΡΩΙΜΗ ΑΔΡΕΝΑΡΧΗ

ΥΠΕΡΙΝΣΟΥΛΙΝΑΙΜΙΑ ΚΑΙ ΑΝΤΙΣΤΑΣΗ ΣΤΗΝ ΙΝΣΟΥΛΙΝΗ ΣΕ ΠΑΧΥΣΑΡΚΑ ΠΑΙΔΙΑ ΚΑΙ ΕΦΗΒΟΥΣ ΜΕ ΠΡΩΙΜΗ ΑΔΡΕΝΑΡΧΗ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΙΑΤΡΙΚΗ ΣΧΟΛΗ ΤΟΜΕΑΣ ΒΙΟΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΠΡΟΛΗΠΤΙΚΗΣ ΙΑΤΡΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΒΙΟΧΗΜΕΙΑΣ ΔΙΕΥΘΥΝΤΡΙΑ: Η ΚΑΘΗΓΗΤΡΙΑ Ν. ΒΑΒΑΤΣΗ-ΧΡΙΣΤΑΚΗ ΠΑΝΕΠ. ΕΤΟΣ 2009-2010 Αριθμ.2456

Διαβάστε περισσότερα

Κυτταρική Επικοινωνία Cell Communication

Κυτταρική Επικοινωνία Cell Communication Κυτταρική Επικοινωνία Cell Communication Η μοίρα του κυττάρου ρυθμίζεται από εξωτερικά σήματα (από το περιβάλλον και άλλα κύτταρα) survival division differentiation apoptosis Είδη κυτταρικής επικοινωνίας

Διαβάστε περισσότερα

Abstract... I. Zusammenfassung... II. 1 Aim of the work Introduction Short overview of Chinese hamster ovary cell lines...

Abstract... I. Zusammenfassung... II. 1 Aim of the work Introduction Short overview of Chinese hamster ovary cell lines... III Contents I II III Abstract... I Zusammenfassung... II Contents... III 1 Aim of the work... 1 2 Introduction... 2 2.1 Short overview of Chinese hamster ovary cell lines... 2 2.2 Unspecific mutations:

Διαβάστε περισσότερα

Contents Part I Psychoneuroimmunology and Systems Biology Mechanisms 1 From Psychoneuroimmunology to Personalized, Systems, and Dynamical Medicine

Contents Part I Psychoneuroimmunology and Systems Biology Mechanisms 1 From Psychoneuroimmunology to Personalized, Systems, and Dynamical Medicine Contents Part I Psychoneuroimmunology and Systems Biology Mechanisms 1 From Psychoneuroimmunology to Personalized, Systems, and Dynamical Medicine... 3 1.1 Psychoneuroimmunology (PNI) and Systems Biology...

Διαβάστε περισσότερα

MANAGING AUTHORITY OF THE OPERATIONAL PROGRAMME EDUCATION AND INITIAL VOCATIONAL TRAINING ΘΕΡΜΟΡΥΘΜΙΣΗ. ΘΑΝΑΣΗΣ ΤΖΙΑΜΟΥΡΤΑΣ, Ph.D., C.S.C.

MANAGING AUTHORITY OF THE OPERATIONAL PROGRAMME EDUCATION AND INITIAL VOCATIONAL TRAINING ΘΕΡΜΟΡΥΘΜΙΣΗ. ΘΑΝΑΣΗΣ ΤΖΙΑΜΟΥΡΤΑΣ, Ph.D., C.S.C. MANAGING AUTHORITY OF THE OPERATIONAL PROGRAMME EDUCATION AND INITIAL VOCATIONAL TRAINING ΘΕΡΜΟΡΥΘΜΙΣΗ ΘΑΝΑΣΗΣ ΤΖΙΑΜΟΥΡΤΑΣ, Ph.D., C.S.C.S Ισοζύγιο θερμότητας Σύνολο μηχανισμών που αφορούν τη δυσχέρανση

Διαβάστε περισσότερα

Υγεία και Άσκηση Ειδικών Πληθυσμών ΜΚ0958

Υγεία και Άσκηση Ειδικών Πληθυσμών ΜΚ0958 Υγεία και Άσκηση Ειδικών Πληθυσμών ΜΚ0958 Διάλεξη 8-9: Παχυσαρκία και Άσκηση Υπεύθυνη Μαθήματος: Χ. Καρατζαφέρη Διδάσκοντες: Χ. Καρατζαφέρη, Γ. Σακκάς, Α. Καλτσάτου 2013-2014 Διάλεξη 8-9 ΤΕΦΑΑ, ΠΘ Σύνδεση

Διαβάστε περισσότερα

Μελέτη της αντιμεταλλαξιγόνου δράσης φλαβονοειδών του φυτού Lotus Edulis με τη μέθοδο Ames test

Μελέτη της αντιμεταλλαξιγόνου δράσης φλαβονοειδών του φυτού Lotus Edulis με τη μέθοδο Ames test ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ ΤΜΗΜΑ ΒΙΟΧΗΜΕΙΑΣ & ΒΙΟΤΕΧΝΟΛΟΓΙΑΣ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ Μελέτη της αντιμεταλλαξιγόνου δράσης φλαβονοειδών του φυτού Lotus Edulis με τη μέθοδο Ames test Επιμέλεια

Διαβάστε περισσότερα

Αξιοποίηση Φυσικών Αντιοξειδωτικών στην Εκτροφή των Αγροτικών

Αξιοποίηση Φυσικών Αντιοξειδωτικών στην Εκτροφή των Αγροτικών Ζώων για Παραγωγή Προϊόντων Ποιότητας» 1 Αξιοποίηση Φυσικών Αντιοξειδωτικών στην Εκτροφή των Αγροτικών Ζώων για Παραγωγή Προϊόντων Ποιότητας Γεωπονικό Πανεπιστήμιο Αθηνών Εργαστήριο Ζωοτεχνίας MIS 380231

Διαβάστε περισσότερα

Supplemental Table 1. Oligonucleotides used to identify H-RAS, K-RAS and N-RAS mutations and PTEN gene expression.

Supplemental Table 1. Oligonucleotides used to identify H-RAS, K-RAS and N-RAS mutations and PTEN gene expression. Supplemental Table 1. Oligonucleotides used to identify H-RAS, K-RAS and N-RAS mutations and PTEN gene expression. Gene Exon Forward primer Reverse primer Temp ( C) HRAS 2-3 ATGACGGAATATAAGCTGGT ATGGCAAACACACACAGGAA

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Φαρμακολογία ΙI. Κυκλοφορικό Διδάσκοντες: Μ. Μαρσέλος, Μ. Κωνσταντή, Π. Παππάς, Κ.

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Φαρμακολογία ΙI. Κυκλοφορικό Διδάσκοντες: Μ. Μαρσέλος, Μ. Κωνσταντή, Π. Παππάς, Κ. ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Φαρμακολογία ΙI Κυκλοφορικό Διδάσκοντες: Μ. Μαρσέλος, Μ. Κωνσταντή, Π. Παππάς, Κ. Αντωνίου Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

ΜΟΡΙΑΚΕΣ ΜΕΘΟΔΟΙ ΚΡΙΤΗΡΙΑ ΕΠΙΛΟΓΗΣ ΑΞΙΟΛΟΓΗΣΗ

ΜΟΡΙΑΚΕΣ ΜΕΘΟΔΟΙ ΚΡΙΤΗΡΙΑ ΕΠΙΛΟΓΗΣ ΑΞΙΟΛΟΓΗΣΗ - - ό ό : Ω ί ό ί ώ.. ά ή ί ός ή ς ύ ί ί ή έ ώ ό. ή ς ά ς ής ό ός ά ς ή έ ός ή ς ί ής ί ς. ό έ ώ - ώ ή ής ή ς- ί ά ά ς ί ς. ά ί ί έ έ ά ύ ή, ό ί ά, ό ό ά έ ά ής ί ύ George Wald ή ί έ ς ί ύ ό ς ί ς ά έ

Διαβάστε περισσότερα

Η ΦΛΕΓΜΟΝΩ ΗΣ ΑΝΤΙ ΡΑΣΗ ΤΟΥ ΓΑΣΤΡΙΚΟΥ ΒΛΕΝΝΟΓΟΝΟΥ ΣΤΗ ΛΟΙΜΩΞΗ ΜΕ ΕΛΙΚΟΒΑΚΤΗΡΙ ΙΟ ΤΟΥ ΠΥΛΩΡΟΥ ΠΡΙΝ ΚΑΙ ΜΕΤΑ ΤΗ ΘΕΡΑΠΕΙΑ

Η ΦΛΕΓΜΟΝΩ ΗΣ ΑΝΤΙ ΡΑΣΗ ΤΟΥ ΓΑΣΤΡΙΚΟΥ ΒΛΕΝΝΟΓΟΝΟΥ ΣΤΗ ΛΟΙΜΩΞΗ ΜΕ ΕΛΙΚΟΒΑΚΤΗΡΙ ΙΟ ΤΟΥ ΠΥΛΩΡΟΥ ΠΡΙΝ ΚΑΙ ΜΕΤΑ ΤΗ ΘΕΡΑΠΕΙΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ ΤΜΗΜΑ ΙΑΤΡΙΚΗΣ ΤΟΜΕΑΣ ΥΓΕΙΑΣ ΕΡΓΑΣΤΗΡΙΑΚΟΣ ΙΕΥΘΥΝΤΗΣ: Ο ΚΑΘΗΓΗΤΗΣ ΓΕΩΡΓΙΟΣ ΚΑΡΚΑΒΕΛΑΣ ΠΑΝΕΠ. ΕΤΟΣ 2008-2009 Αριθµ. 2084 Η ΦΛΕΓΜΟΝΩ ΗΣ ΑΝΤΙ

Διαβάστε περισσότερα

Μελέτη της έκφρασης του ογκοκατασταλτικού γονιδίου Cyld στον καρκίνο του μαστού

Μελέτη της έκφρασης του ογκοκατασταλτικού γονιδίου Cyld στον καρκίνο του μαστού Σχολή Θετικών Επιστημών Τμήμα Βιολογίας Πρόγραμμα Μεταπτυχιακών Σπουδών Κατεύθυνση: Εφαρμοσμένη γενετική και βιοτεχνολογία ΜΕΤΑΠΤΥΧΙΑΚΗ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ Μελέτη της έκφρασης του ογκοκατασταλτικού γονιδίου

Διαβάστε περισσότερα

Table S1: Inpatient Diet Composition

Table S1: Inpatient Diet Composition Table S1: Inpatient Diet Composition Diet Components (% of Energy) Inpatient Period Baseline Intervention Protein 15.1 ± 0.0 15.0 ± 0.1 Total fat 30.0 ± 0.0 30.0 ± 0.1 Saturated fat 8.6 ± 0.8 8.4 ± 0.9

Διαβάστε περισσότερα

abs acces acces Sample test results. Actual results may vary. Antioxidants B-Vitamins Minerals Order Today At Results Overview

abs acces acces Sample test results. Actual results may vary. Antioxidants B-Vitamins Minerals Order Today At  Results Overview Order Today At www.accesalabs. Antioxidants B-Vitamins Minerals Vitamin C Pyridoxine - Biotin Vitamin A / Carotenoids Vitamin E / Tocopher α-lipoic A Co T ami B1 cer R bo a n - B2 N acin - B3 Results Overview

Διαβάστε περισσότερα

Supplementary Table 1. Primers used for RT-qPCR analysis of striatal and nigral tissue.

Supplementary Table 1. Primers used for RT-qPCR analysis of striatal and nigral tissue. Supplementary Table 1. Primers used for RT-qPCR analysis of striatal and nigral tissue. Gene Forward Primer (5-3 ) Reverse Primer (5-3 ) Dopaminergic Markers TH CTG GCC ATT GAT GTA CTG GA ACA CAC ATG GGA

Διαβάστε περισσότερα

Acknowledgements... 3 Contents... I Figures... VII Tables... IX Abbreviations... X

Acknowledgements... 3 Contents... I Figures... VII Tables... IX Abbreviations... X I Acknowledgements... 3... I Figures... VII Tables... IX Abbreviations... X Amino acids... XII Nucleobases... XII 1 Introduction... 1 1.1 Polyketides and non-ribosomal peptides... 1 1.2 Polyketide synthases...

Διαβάστε περισσότερα

Διευθυντής Τμήμα: Διαβήτη-Παχυσαρκίας-Μεταβολισμού Ιδιωτικό Νοσοκομείο Metropolitan

Διευθυντής Τμήμα: Διαβήτη-Παχυσαρκίας-Μεταβολισμού Ιδιωτικό Νοσοκομείο Metropolitan 1 Διευθυντής Τμήμα: Διαβήτη-Παχυσαρκίας-Μεταβολισμού Ιδιωτικό Νοσοκομείο Metropolitan Νεώτερες γνώσεις για το λιπώδη ιστό 2 Τιμητική αμοιβή (Honorarium): - ΑSTRA ΖENECA - BOEHRINGER INGELHEIM - ELPEN -

Διαβάστε περισσότερα

TABLE OF CONTENTS Page

TABLE OF CONTENTS Page TABLE OF CONTENTS Page Acknowledgements... VI Declaration... VII List of abbreviations... VIII 1. INTRODUCTION... 1 2. BASIC PRINCIPLES... 3 2.1. Hereditary Colorectal Cancer... 3 2.1.1. Differential diagnosis...

Διαβάστε περισσότερα

Ο ΡΟΛΟΣ ΤΩΝ ΚΑΝΝΑΒΙΝΟΕΙ ΩΝ ΚΑΤΑ ΤΗΝ ΕΜΒΡΥΪΚΗ ΑΝΑΠΤΥΞΗ

Ο ΡΟΛΟΣ ΤΩΝ ΚΑΝΝΑΒΙΝΟΕΙ ΩΝ ΚΑΤΑ ΤΗΝ ΕΜΒΡΥΪΚΗ ΑΝΑΠΤΥΞΗ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ ΤΜΗΜΑ ΙΑΤΡΙΚΗΣ Πρόγραµµα Μεταπτυχιακών Σπουδών Εφαρµογές στις Βασικές Ιατρικές Επιστήµες Εργαστήριο Ανατοµικής-Ιστολογίας-Εµβρυολογίας ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ Ο ΡΟΛΟΣ ΤΩΝ ΚΑΝΝΑΒΙΝΟΕΙ

Διαβάστε περισσότερα

Ινσουλίνη και γήρανση

Ινσουλίνη και γήρανση Ινσουλίνη και γήρανση Γεώργιος Δ. Δημητριάδης Καθηγητής Παθολογίας Διευθυντής Β Προπαιδευτικής Παθολογικής Κλινικής, Μονάδας Έρευνας και Διαβητολογικού Κέντρου Πανεπιστημίου Αθηνών, ΠΓΝΑ Αττικόν Πρόεδρος

Διαβάστε περισσότερα

High mobility group 1 HMG1

High mobility group 1 HMG1 Vol. 29, pp.705 ~ 711, 2001 High mobility group 1 HMG1 13 12 20 anti-neutrophil cytoplasmic antibodies, ANCA ANCA 1982 Davies 1980 1 high mobility group HMG1 HMG2 30 kd high mobility group HMGHMG HMG1

Διαβάστε περισσότερα

Κυτταρική Επικοινωνία Cell Communication

Κυτταρική Επικοινωνία Cell Communication Κυτταρική Επικοινωνία Cell Communication Κυτταρική Επικοινωνία Είναι η ικανότητα του κυττάρου να αποκρίνεται σε εξωτερικά σήματα (σήματα από το περιβάλλον του ή άλλα κύτταρα) Τα σήματα αυτά μπορεί να είναι

Διαβάστε περισσότερα

ΚΥΤΤΑΡΙΚΟΣ ΘΑΝΑΤΟΣ ΚΑΙ ΑΝΑΓΕΝΝΗΣΗ Β-ΚΥΤΤΑΡΟΥ ΝΕΟΤΕΡΑ ΔΕΔΟΜΕΝΑ ΓΙΑ ΤΗ ΘΕΡΑΠΕΙΑ ΤΟΥ ΣΑΚΧΑΡΩΔΗ ΔΙΑΒΗΤΗ

ΚΥΤΤΑΡΙΚΟΣ ΘΑΝΑΤΟΣ ΚΑΙ ΑΝΑΓΕΝΝΗΣΗ Β-ΚΥΤΤΑΡΟΥ ΝΕΟΤΕΡΑ ΔΕΔΟΜΕΝΑ ΓΙΑ ΤΗ ΘΕΡΑΠΕΙΑ ΤΟΥ ΣΑΚΧΑΡΩΔΗ ΔΙΑΒΗΤΗ ΚΥΤΤΑΡΙΚΟΣ ΘΑΝΑΤΟΣ ΚΑΙ ΑΝΑΓΕΝΝΗΣΗ Β-ΚΥΤΤΑΡΟΥ ΝΕΟΤΕΡΑ ΔΕΔΟΜΕΝΑ ΓΙΑ ΤΗ ΘΕΡΑΠΕΙΑ ΤΟΥ ΣΑΚΧΑΡΩΔΗ ΔΙΑΒΗΤΗ ΚΑΛΛΙΟΠΗ ΚΩΤΣΑ ΕΠΙΚ. ΚΑΘΗΓΗΤΡΙΑ ΕΝΔΟΚΡΙΝΟΛΟΓΙΑΣ ΙΑΤΡΙΚΗ ΣΧΟΛΗ Α.Π.Θ ΤΜΗΜΑ ΕΝΔΟΚΡΙΝΟΛΟΓΙΑΣ-ΔΙΑΒΗΤΟΛΟΓΙΚΟ

Διαβάστε περισσότερα

SABiosciences PCR Array Catalog #: PAHS-021 SA+ SCF 4h stimulaton AVG(Ct) Position Unigene Refseq Symbol Description shcontr shcontr-4h shgskβ A01

SABiosciences PCR Array Catalog #: PAHS-021 SA+ SCF 4h stimulaton AVG(Ct) Position Unigene Refseq Symbol Description shcontr shcontr-4h shgskβ A01 SABiosciences PCR Array Catalog #: PAHS-021 SA+ SCF 4h stimulaton AVG(Ct) Position Unigene Refseq Symbol Description shcontr shcontr-4h shgskβ A01 Hs.1274 NM_006129 BMP1 Bone morphogenetic protein 1 25.25

Διαβάστε περισσότερα

Chapter 1. Fingolimod attenuates ceramide induced blood-brain barrier dysfunction in multiple sclerosis by targeting reactive astrocytes

Chapter 1. Fingolimod attenuates ceramide induced blood-brain barrier dysfunction in multiple sclerosis by targeting reactive astrocytes Chapter 1 Fingolimod attenuates ceramide induced blood-brain barrier dysfunction in multiple sclerosis by targeting reactive astrocytes 1 1 1 1 CHAPTER SUMMARY FINGOLIMOD ATTENUATES CERAMIDE PRODUCTION

Διαβάστε περισσότερα

CPT. Tsuchiya. beta. quantitative RT PCR QIAGEN IGFBP. Fect Transfection Reagent sirna. RT PCR RNA Affymetrix GeneChip Expression Array

CPT. Tsuchiya. beta. quantitative RT PCR QIAGEN IGFBP. Fect Transfection Reagent sirna. RT PCR RNA Affymetrix GeneChip Expression Array 7 PTEN p Tsuchiya DNA Hepatocyte nuclear factor beta HNF beta HNFbeta IGFBP GLUT G Pase MODY maturity onset diabetes of the young Tsuchiya HNFbeta HNFbeta HNFbeta sirna CPT HNFbeta HNFbeta TOVG KOC ESMCAS

Διαβάστε περισσότερα

Debashish Sahay. To cite this version: HAL Id: tel

Debashish Sahay. To cite this version: HAL Id: tel Identification of genes activated and biological markers involved in lysophosphatidic acid (LPA)-induced breast cancer metastasis through its receptor LPA1 Debashish Sahay To cite this version: Debashish

Διαβάστε περισσότερα

ΕΠΙΔΡΑΣΗ ΤΩΝ ΜΑΚΡΟΘΡΕΠΤΙΚΩΝ ΣΥΣΤΑΤΙΚΩΝ ΣΤΗΝ ΑΝΤΙΣΤΑΣΗ ΣΤΗΝ ΙΝΣΟΥΛΙΝΗ ΚΑΙ ΤΙΣ ΑΠΑΙΤΗΣΕΙΣ ΣΕ ΙΝΣΟΥΛΙΝΗ

ΕΠΙΔΡΑΣΗ ΤΩΝ ΜΑΚΡΟΘΡΕΠΤΙΚΩΝ ΣΥΣΤΑΤΙΚΩΝ ΣΤΗΝ ΑΝΤΙΣΤΑΣΗ ΣΤΗΝ ΙΝΣΟΥΛΙΝΗ ΚΑΙ ΤΙΣ ΑΠΑΙΤΗΣΕΙΣ ΣΕ ΙΝΣΟΥΛΙΝΗ ΕΠΙΔΡΑΣΗ ΤΩΝ ΜΑΚΡΟΘΡΕΠΤΙΚΩΝ ΣΥΣΤΑΤΙΚΩΝ ΣΤΗΝ ΑΝΤΙΣΤΑΣΗ ΣΤΗΝ ΙΝΣΟΥΛΙΝΗ ΚΑΙ ΤΙΣ ΑΠΑΙΤΗΣΕΙΣ ΣΕ ΙΝΣΟΥΛΙΝΗ ΠΗΝΕΛΟΠΗ ΔΟΥΒΟΓΙΑΝΝΗ Κ Λ Ι Ν Ι Κ Η Δ Ι Α Ι Τ Ο Λ Ο Γ Ο Σ - Δ Ι ΑΤ Ρ Ο Φ Ο Λ Ο Γ Ο Σ M S C, R D Περίληψη

Διαβάστε περισσότερα

Βιοδείκτες οξειδωτικού στρες

Βιοδείκτες οξειδωτικού στρες ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΔΠΜΣ Ιατρική Χημεία Βιοδείκτες οξειδωτικού στρες Αλέξανδρος Δ. Τσελέπης, MD, PhD Καθηγητής Βιοχημείας Κλινικής Χημείας Generation of superoxide ( O 2 ) and H 2 O 2 from O 2 in vascular

Διαβάστε περισσότερα

Science of Sericulture

Science of Sericulture Science of Sericulture 2012 38 1 0065-0069 ISSN 0257-4799 CN 32-1115 /S E-mail CYKE@ chinajournal. net. cn 215123 25 0 ~ 24 h GSH GSSG GSH + 2GSSG GSH /GSSG S- GST TPX 23% GR 57% GSH TPX GST GSSG 61% GSH

Διαβάστε περισσότερα

encouraged to use the Version of Record that, when published, will replace this version. The most /BCJ BIOCHEMICAL JOURNAL

encouraged to use the Version of Record that, when published, will replace this version. The most /BCJ BIOCHEMICAL JOURNAL Biochemical Journal: this is an Accepted Manuscript, not the final Version of Record. You are encouraged to use the Version of Record that, when published, will replace this version. The most up-to-date

Διαβάστε περισσότερα

ΣΙΣΛΟ ΜΔΛΔΣΗ ΔΠΙΠΔΓΑ ΑΝΣΙΠΟΝΔΚΣΙΝΗ ΣΟΝ ΟΡΟ ΠΑΙΓΙΩΝ ΚΑΙ ΔΦΗΒΩΝ ΜΔ ΠΑΥΤΑΡΚΙΑ. ΤΥΔΣΙΗ ΜΔ ΣΗ ΤΣΑΗ ΣΟΤ ΩΜΑΣΟ ΚΑΙ ΣΗΝ

ΣΙΣΛΟ ΜΔΛΔΣΗ ΔΠΙΠΔΓΑ ΑΝΣΙΠΟΝΔΚΣΙΝΗ ΣΟΝ ΟΡΟ ΠΑΙΓΙΩΝ ΚΑΙ ΔΦΗΒΩΝ ΜΔ ΠΑΥΤΑΡΚΙΑ. ΤΥΔΣΙΗ ΜΔ ΣΗ ΤΣΑΗ ΣΟΤ ΩΜΑΣΟ ΚΑΙ ΣΗΝ ΣΙΣΛΟ ΜΔΛΔΣΗ ΔΠΙΠΔΓΑ ΑΝΣΙΠΟΝΔΚΣΙΝΗ ΣΟΝ ΟΡΟ ΠΑΙΓΙΩΝ ΚΑΙ ΔΦΗΒΩΝ ΜΔ ΠΑΥΤΑΡΚΙΑ. ΤΥΔΣΙΗ ΜΔ ΣΗ ΤΣΑΗ ΣΟΤ ΩΜΑΣΟ ΚΑΙ ΣΗΝ ΑΝΣΙΣΑΗ ΣΗΝ ΙΝΟΤΛΙΝΗ. Υπνβάιιεηαη πξνο έγθξηζε ζηνλ Τνκέα Υγείαο ηνπ Παηδηνύ ηνπ Ιαηξηθνύ

Διαβάστε περισσότερα

5- CACGAAACTACCTTCAACTCC-3 beta actin-r 5- CATACTCCTGCTTGCTGATC-3 GAPDH-F GAPDH-R

5- CACGAAACTACCTTCAACTCC-3 beta actin-r 5- CATACTCCTGCTTGCTGATC-3 GAPDH-F GAPDH-R Table S1 Primers used in this work LncPPARδ-F 5- AGGATCCCAAGGCAGAAGTT -3 LncPPARδ-R 5- GAATAGAAAGGCGGGAAAGG -3 PPARδ-F 5- CACCCAGTGTCCTTCCATCT -3 PPARδ-R 5- CAGAATTGGGTGTGCTGCTT -3 ADRP-F 5- ACAACCGAGTGTGGTGACTC

Διαβάστε περισσότερα

Supporting Information. Multigenerational Disruption of Thyroid Endocrine System in Marine Medaka

Supporting Information. Multigenerational Disruption of Thyroid Endocrine System in Marine Medaka Supporting Information Multigenerational Disruption of Thyroid Endocrine System in Marine Medaka after A Life-Cycle Exposure to Perfluorobutane Sulfonate (PFBS) Lianguo Chen,, Chenyan Hu #, Mirabelle M.

Διαβάστε περισσότερα

Hepatic Stellate Cells: Multifunctional mesenchymal cells of the Liver

Hepatic Stellate Cells: Multifunctional mesenchymal cells of the Liver Nagoya Med. J., 137 Hepatic Stellate Cells: Multifunctional mesenchymal cells of the Liver KAZUO IKEDA Department of Anatomy and Cell Biology, Graduate School of Medical Sciences, Nagoya City University

Διαβάστε περισσότερα

http / / cjbmb. bjmu. edu. cn Chinese Journal of Biochemistry and Molecular Biology Aβ42 Alzheimer's disease AD insulin degrading enzyme IDE.

http / / cjbmb. bjmu. edu. cn Chinese Journal of Biochemistry and Molecular Biology Aβ42 Alzheimer's disease AD insulin degrading enzyme IDE. ISSN 1007-7626 CN 11-3870 / Q http / / cjbmb bjmu edu cn Chinese Journal of Biochemistry and Molecular Biology 2013 1 29 1 70 ~ 75 PPARγ IDE TNF-α Aβ42 430030 metformin MET MET β- β-amyloid Aβ Alzheimer's

Διαβάστε περισσότερα

EΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΕΙΔΙΚΟΣ ΛΟΓΑΡΙΑΣΜΟΣ ΚΟΝΔΥΛΙΩΝ ΕΡΕΥΝΑΣ ΓΡΑΜΜΑΤΕΙΑ ΕΠΙΤΡΟΠΗΣ ΕΡΕΥΝΩΝ ΑΝΑΡΤΗΤΕΑ ΣΤΟ ΔΙΑΔΙΚΤΥΟ

EΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΕΙΔΙΚΟΣ ΛΟΓΑΡΙΑΣΜΟΣ ΚΟΝΔΥΛΙΩΝ ΕΡΕΥΝΑΣ ΓΡΑΜΜΑΤΕΙΑ ΕΠΙΤΡΟΠΗΣ ΕΡΕΥΝΩΝ ΑΝΑΡΤΗΤΕΑ ΣΤΟ ΔΙΑΔΙΚΤΥΟ EΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΕΙΔΙΚΟΣ ΛΟΓΑΡΙΑΣΜΟΣ ΚΟΝΔΥΛΙΩΝ ΕΡΕΥΝΑΣ ΓΡΑΜΜΑΤΕΙΑ ΕΠΙΤΡΟΠΗΣ ΕΡΕΥΝΩΝ ΑΝΑΡΤΗΤΕΑ ΣΤΟ ΔΙΑΔΙΚΤΥΟ Αριθμ. Πρωτ.:29418/2012 Πρόσκληση εκδήλωσης ενδιαφέροντος 29418/2012

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΗΛΕΚΤΡΟΟΠΤΙΚΗΣ & ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΛΙΚΩΝ Μελέτη Επίδρασης Υπεριώδους Ακτινοβολίας σε Λεπτά

Διαβάστε περισσότερα

encouraged to use the Version of Record that, when published, will replace this version. The most /BCJ

encouraged to use the Version of Record that, when published, will replace this version. The most /BCJ Biochemical Journal: this is an Accepted Manuscript, not the final Version of Record. You are encouraged to use the Version of Record that, when published, will replace this version. The most up-to-date

Διαβάστε περισσότερα

Identification of Fish Species using DNA Method

Identification of Fish Species using DNA Method 5 * * * Identification of Fish Species using DNA Method Yuumi KAWASHIMA*, Takayuki KATAYAMA* and Yukihiko YAMAZAKI* *Central Customs Laboratory, Ministry of Finance 6-3-5, Kashiwanoha, Kashiwa, Chiba 277-0882,

Διαβάστε περισσότερα

Εθνικό Μετσόβιο Πολυτεχνείο ΑΝΑΠΤΥΞΗ ΤΕΧΝΙΚΗΣ ΜΕΤΡΗΣΗΣ ΕΚΚΡΙΣΗΣ ΠΡΩΤΕΪΝΩΝ ΚΟΝΤΑ ΣΤΗ ΚΥΤΤΑΡΙΚΗ ΕΠΙΦΑΝΕΙΑ

Εθνικό Μετσόβιο Πολυτεχνείο ΑΝΑΠΤΥΞΗ ΤΕΧΝΙΚΗΣ ΜΕΤΡΗΣΗΣ ΕΚΚΡΙΣΗΣ ΠΡΩΤΕΪΝΩΝ ΚΟΝΤΑ ΣΤΗ ΚΥΤΤΑΡΙΚΗ ΕΠΙΦΑΝΕΙΑ Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Μηχανολόγων Μηχανικών ΕΡΓΑΣΤΗΡΙΟ ΕΜΒΙΟΜΗΧΑΝΙΚΗΣ ΚΑΙ ΣΥΣΤΗΜΙΚΗΣ ΒΙΟΛΟΓΙΑΣ ΤΟΜΕΑΣ ΜΗΧΑΝΟΛΟΓΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ ΚΑΙ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΑΝΑΠΤΥΞΗ ΤΕΧΝΙΚΗΣ ΜΕΤΡΗΣΗΣ

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΓΕΩΠΟΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΒΙΟΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΕΠΙΣΤΗΜΗΣ ΤΡΟΦΙΜΩΝ. Πτυχιακή εργασία

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΓΕΩΠΟΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΒΙΟΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΕΠΙΣΤΗΜΗΣ ΤΡΟΦΙΜΩΝ. Πτυχιακή εργασία ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΓΕΩΠΟΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΒΙΟΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΕΠΙΣΤΗΜΗΣ ΤΡΟΦΙΜΩΝ Πτυχιακή εργασία ΜΕΛΕΤΗ ΠΟΛΥΦΑΙΝΟΛΩΝ ΚΑΙ ΑΝΤΙΟΞΕΙΔΩΤΙΚΗΣ ΙΚΑΝΟΤΗΤΑΣ ΣΟΚΟΛΑΤΑΣ Αναστασία Σιάντωνα Λεμεσός

Διαβάστε περισσότερα

ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΓΕΩΡΓΙΚΩΝ ΠΡΟΪΟΝΤΩΝ

ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΓΕΩΡΓΙΚΩΝ ΠΡΟΪΟΝΤΩΝ ΤΕΧΝΟΛΟΓΙΚΟ ΙΔΡΥΜΑ ΚΑΛΑΜΑΤΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΑΣ ΓΕΩΠΟΝΙΑΣ ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΓΕΩΡΓΙΚΩΝ ΠΡΟΪΟΝΤΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΣΥΓΧΡΟΝΕΣ ΜΕΘΟΔΟΙ ΑΝΙΧΝΕΥΣΗΣ - ΧΑΡΑΚΤΗΡΙΣΜΟΥ ΜΙΚΡΟΟΡΓΑΝΙΣΜΩΝ ΣΙΩΡΟΣ ΒΑΣΙΛΕΙΟΣ ΚΑΛΑΜΑΤΑ 2008

Διαβάστε περισσότερα

Αθήνα, 15 Οκτωβρίου 2014 Αρ. Πρωτ.: 2988

Αθήνα, 15 Οκτωβρίου 2014 Αρ. Πρωτ.: 2988 ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΓΕΝΙΚΗ ΓΡΑΜΜΑΤΕΙΑ ΕΡΕΥΝΑΣ & ΤΕΧΝΟΛΟΓΙΑΣ Αθήνα, 15 Οκτωβρίου 2014 Αρ. Πρωτ.: 2988 Θέμα: Έγκριση πρόσκλησης εκδήλωσης ενδιαφέροντος με απευθείας ανάθεση

Διαβάστε περισσότερα

Christopher Stephen Inchley, 2015

Christopher Stephen Inchley, 2015 Christopher Stephen Inchley, 2015 Series of dissertations submitted to the Faculty of Medicine, University of Oslo No. 2009 ISBN 978-82-8264-990-2 All rights reserved. No part of this publication may be

Διαβάστε περισσότερα

Ο ρόλος του λιπώδους ιστού

Ο ρόλος του λιπώδους ιστού Ο ρόλος του λιπώδους ιστού Γιώργος Βαλσαμάκης Ενδοκρινολόγος Eπιστημονικός συνεργάτης Ενδοκρινολογικήs Μονάδαs Β Μαιευτικής και Γυναικολογικής κλινικής Αρεταίειο Νοσοκομείο Θέματα συζήτησης Α. Ο λιπώδης

Διαβάστε περισσότερα

Lclat Agpat Lpcat Agpat Lpcat Lpcat Lpcat Lpgat Awat1 N.D. Mboat Awat2 N.D.

Lclat Agpat Lpcat Agpat Lpcat Lpcat Lpcat Lpgat Awat1 N.D. Mboat Awat2 N.D. Supplemental Table I. The gene expression of 7 acyltransferases in MOVAS-1 cells. Gene Name (pg)/18s(ng) Gene Name (pg)/18s(ng) Acat1 19.53 Gpat 9.75 Acat. Lclat1 1.5 Agpat1 3.31 Lpcat1 8.15 Agpat.16 Lpcat.

Διαβάστε περισσότερα

Human angiogenin is a potent cytotoxin in the absence of ribonuclease inhibitor

Human angiogenin is a potent cytotoxin in the absence of ribonuclease inhibitor Human angiogenin is a potent cytotoxin in the absence of ribonuclease inhibitor SYDNEY P. THOMAS, 1 TRISH T. HOANG, 2 VALERIE T. RESSLER, 4 and RONALD T. RAINES 2,3,4 1 Graduate Program in Cell & Molecular

Διαβάστε περισσότερα

Επιγενετικοί παράγοντες και αύξηση σωματικού βάρους

Επιγενετικοί παράγοντες και αύξηση σωματικού βάρους Επιγενετικοί παράγοντες και αύξηση σωματικού βάρους Αναστάσιος Μόρτογλου, Ενδοκρινολόγος Δντης τομέα Ενδοκρινολογίας, Διαβήτου και Μεταβολισμού Ιατρικού Κέντρου Αθηνών 9 ο Πανελλήνιο Συνέδριο Παχυσαρκίας

Διαβάστε περισσότερα

Structural and Biochemical Studies of Cotranslational Protein Transport across the Endoplasmic Reticulum

Structural and Biochemical Studies of Cotranslational Protein Transport across the Endoplasmic Reticulum Structural and Biochemical Studies of Cotranslational Protein Transport across the Endoplasmic Reticulum Inaugural-Dissertation zur Erlangung des akademischen Grades Doktor der Naturwissenschaften - Dr.

Διαβάστε περισσότερα

ΕΦΑΡΜΟΓΗ ΕΥΤΕΡΟΒΑΘΜΙΑ ΕΠΕΞΕΡΓΑΣΜΕΝΩΝ ΥΓΡΩΝ ΑΠΟΒΛΗΤΩΝ ΣΕ ΦΥΣΙΚΑ ΣΥΣΤΗΜΑΤΑ ΚΛΙΝΗΣ ΚΑΛΑΜΙΩΝ

ΕΦΑΡΜΟΓΗ ΕΥΤΕΡΟΒΑΘΜΙΑ ΕΠΕΞΕΡΓΑΣΜΕΝΩΝ ΥΓΡΩΝ ΑΠΟΒΛΗΤΩΝ ΣΕ ΦΥΣΙΚΑ ΣΥΣΤΗΜΑΤΑ ΚΛΙΝΗΣ ΚΑΛΑΜΙΩΝ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΚΡΗΤΗΣ ΤΜΗΜΑ ΦΥΣΙΚΩΝ ΠΟΡΩΝ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΕΦΑΡΜΟΓΗ ΕΥΤΕΡΟΒΑΘΜΙΑ ΕΠΕΞΕΡΓΑΣΜΕΝΩΝ ΥΓΡΩΝ ΑΠΟΒΛΗΤΩΝ ΣΕ ΦΥΣΙΚΑ ΣΥΣΤΗΜΑΤΑ ΚΛΙΝΗΣ ΚΑΛΑΜΙΩΝ ΕΠΙΜΕΛΕΙΑ: ΑΡΜΕΝΑΚΑΣ ΜΑΡΙΝΟΣ ΧΑΝΙΑ

Διαβάστε περισσότερα

NES: normalized enrichment score (analyzed using KEGG pathway gene sets in the GSEA software); FDR:

NES: normalized enrichment score (analyzed using KEGG pathway gene sets in the GSEA software); FDR: Supplementary table1. List of gene sets with simultaneously altered the enrichment upon SAP18 overexpression and knockdown. Gene sets enriched by SAP18 and reduced by shsap18 SAP18 against LacZ shsap18

Διαβάστε περισσότερα

Supplementary Table 1. Construct List with key Biophysical Properties of the expression

Supplementary Table 1. Construct List with key Biophysical Properties of the expression SPINE Benchmark Target ID Well Code Tag (N or C) Fusion MW (kda) Fusion pi Cleavage site Prot MW (Da) Prot pi 1 A1 OPPF 2585 N-His6 21.75 6.41 Protease 3C 19.77 5.43 2 B1 OPPF 2586 N-His6 15.6 6.27 Protease

Διαβάστε περισσότερα

IL - 13 /IL - 18 ELISA PCR RT - PCR. IL - 13 IL - 18 mrna. 13 IL - 18 mrna IL - 13 /IL Th1 /Th2

IL - 13 /IL - 18 ELISA PCR RT - PCR. IL - 13 IL - 18 mrna. 13 IL - 18 mrna IL - 13 /IL Th1 /Th2 344 IL - 13 /IL - 18 1 2 1 2 1 2 1 2 1 2 3 1 2 13 18 IL - 13 /IL - 18 10% / OVA /AL OH 3 5% 16 ~ 43 d 44 d ELISA BALF IL - 13 IL - 18 PCR RT - PCR IL - 13 IL - 18 mrna IL - 13 mrna 0. 01 IL - 18 mrna 0.

Διαβάστε περισσότερα

Optimizing Microwave-assisted Extraction Process for Paprika Red Pigments Using Response Surface Methodology

Optimizing Microwave-assisted Extraction Process for Paprika Red Pigments Using Response Surface Methodology 2012 34 2 382-387 http / /xuebao. jxau. edu. cn Acta Agriculturae Universitatis Jiangxiensis E - mail ndxb7775@ sina. com 212018 105 W 42 2 min 0. 631 TS202. 3 A 1000-2286 2012 02-0382 - 06 Optimizing

Διαβάστε περισσότερα

Η Επiδραση της Οξείας Αερόβιας Άσκησης και Προπόνησης στη Μιτοχονδριακή Βιογένεση Μυρσίνη Κολυφά 1 & Βασίλης Μούγιος 2

Η Επiδραση της Οξείας Αερόβιας Άσκησης και Προπόνησης στη Μιτοχονδριακή Βιογένεση Μυρσίνη Κολυφά 1 & Βασίλης Μούγιος 2 Επισκόπησης Αναζητήσεις στη Φυσική Αγωγή & τον Αθλητισμό τόμος 8 (2), 152 164 Δημοσιεύτηκε: 30 Σεπτεμβίου 2010 Inquiries in Sport & Physical Education Volume 8 (2), 152-164 Released: September 30, 2010

Διαβάστε περισσότερα

Τι το νεότερο στη φαρμακευτική θεραπεία; Παραμένουν οι στατίνες ως φάρμακα επιλογής;

Τι το νεότερο στη φαρμακευτική θεραπεία; Παραμένουν οι στατίνες ως φάρμακα επιλογής; Τι το νεότερο στη φαρμακευτική θεραπεία; Παραμένουν οι στατίνες ως φάρμακα επιλογής; Άννα Ταυρίδου,, PhD Εργαστήριο Φαρμακολογίας, Τμήμα Ιατρικής, ημοκρίτειο Πανεπιστήμιο Θράκης Υπάρχει ανάγκη για καινούργια

Διαβάστε περισσότερα

NOVEL INTEGRAL MEMBRANE PROTEINS OF THE INNER NUCLEAR MEMBRANE

NOVEL INTEGRAL MEMBRANE PROTEINS OF THE INNER NUCLEAR MEMBRANE NOVEL INTEGRAL MEMBRANE PROTEINS OF THE INNER NUCLEAR MEMBRANE CHARACTERIZATION OF LUMA NATIVE LAP 2β COMPLEXES Inauguraldissertation zur Erlangung der Doktorwürde des Fachbereichs Biologie Chemie Pharmazie

Διαβάστε περισσότερα

ΤΠΟΚΤΣΣΑΡΙΚΟΙ ΜΗΧΑΝΙΜΟΙ ΠΡΟΑΡΜΟΓΗ ΣΟ ΔΙΑΒΗΣΙΚΟ ΜΤΟΚΑΡΔΙΟ: ΜΙΑ ΕΝΑΛΛΑΚΣΙΚΗ ΜΟΡΦΗ ΕΝΔΟΓΕΝΟΤ ΚΑΡΔΙΟΠΡΟΣΑΙΑ

ΤΠΟΚΤΣΣΑΡΙΚΟΙ ΜΗΧΑΝΙΜΟΙ ΠΡΟΑΡΜΟΓΗ ΣΟ ΔΙΑΒΗΣΙΚΟ ΜΤΟΚΑΡΔΙΟ: ΜΙΑ ΕΝΑΛΛΑΚΣΙΚΗ ΜΟΡΦΗ ΕΝΔΟΓΕΝΟΤ ΚΑΡΔΙΟΠΡΟΣΑΙΑ ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΣΜΗΜΑ ΒΙΟΛΟΓΙΑ ΤΠΟΚΤΣΣΑΡΙΚΟΙ ΜΗΧΑΝΙΜΟΙ ΠΡΟΑΡΜΟΓΗ ΣΟ ΔΙΑΒΗΣΙΚΟ ΜΤΟΚΑΡΔΙΟ: ΜΙΑ ΕΝΑΛΛΑΚΣΙΚΗ ΜΟΡΦΗ ΕΝΔΟΓΕΝΟΤ ΚΑΡΔΙΟΠΡΟΣΑΙΑ Αντιγόνη Λάζου Καιηγθτρια Φυσιολογίας Σεμινάρια

Διαβάστε περισσότερα

Supplemental tables and figures

Supplemental tables and figures Supplemental tables and figures Supplemental Table S1. Demographic and clinical parameters by quartiles of white Variables blood cell count. WBC quartiles( 1 9 cells/l) Q1(.6-5.3, n=2587) Q2(5.4-6.3, n=263)

Διαβάστε περισσότερα

Effects of conjugated linoleic acid isomers on glucose consumption of insulin-resistant adipocytes

Effects of conjugated linoleic acid isomers on glucose consumption of insulin-resistant adipocytes 38 1 2014 2 Journal of Nanchang UniversityNatural Science Vol. 38 No. 1 Feb. 2014 1006-0464201401-0086-05 1 2 1 1 1* 1. 330047 2. 225009 2 c9 t11-cla t10 c12-cla 3T3-L1 5 10 20 μmol L - 1 c9 t11-cla t10

Διαβάστε περισσότερα

Supplementary Information for. The effect of standardized food intake on the association between BMI and 1 H-NMR metabolites

Supplementary Information for. The effect of standardized food intake on the association between BMI and 1 H-NMR metabolites Supplementary Information for The effect of standardized food intake on the association between BMI and 1 H-NMR metabolites Bianca A.M. Schutte 1*, Erik B. van den Akker 1,2, Joris Deelen 1, Ondine van

Διαβάστε περισσότερα

A strategy for the identification of combinatorial bioactive compounds. contributing to the holistic effect of herbal medicines

A strategy for the identification of combinatorial bioactive compounds. contributing to the holistic effect of herbal medicines 1 2 Supplementary information 3 4 A strategy for the identification of combinatorial bioactive compounds contributing to the holistic effect of herbal medicines 5 6 Fang Long 1, Hua Yang 1, Yanmin Xu,

Διαβάστε περισσότερα

Guo_Fig. S1. Atg7 +/+ Atg7 -/- FBP_M+6 DHAP_M+3. Glucose Uptake Rate G6P_M+6. nmol/ul cell/hr

Guo_Fig. S1. Atg7 +/+ Atg7 -/- FBP_M+6 DHAP_M+3. Glucose Uptake Rate G6P_M+6. nmol/ul cell/hr Guo_Fig. S1 A C D nmol/ul cell/hr nmol/ul cell/hr Glucose Uptake Rate.3.2.1 *. Lactate Secretion Rate.4.3.2.1. Atg7-/- B Glucose G3P Lac Glucose G6P FBP 3-PG Pyr DHAP cycle Carbon from labeled glucose

Διαβάστε περισσότερα

Supplementary Materials: Detection of 191 Taxifolin Metabolites and Their Distribution in Rats Using HPLC-ESI-IT-TOF-MS n

Supplementary Materials: Detection of 191 Taxifolin Metabolites and Their Distribution in Rats Using HPLC-ESI-IT-TOF-MS n S1 of S26 Supplementary Materials: Detection of 191 Taxifolin Metabolites and Their Distribution in Rats Using HPLC-ESI-IT-TF-MS n Ping Yang, Feng Xu, Hong-Fu Li, Yi-Wang, Feng-Chun Li, Ming-Ying Shang,

Διαβάστε περισσότερα

2 0 1 2 2 Journal of Shanghai Normal University Natural Sciences Feb. 2 0 1 2 SNAT2. HEK293T Western blot SNAT2 - HA Q 31 A 1000-5137 2012 01-0083-06

2 0 1 2 2 Journal of Shanghai Normal University Natural Sciences Feb. 2 0 1 2 SNAT2. HEK293T Western blot SNAT2 - HA Q 31 A 1000-5137 2012 01-0083-06 4 1 1 Vol 41 No 1 2 0 1 2 2 Journal of Shanghai Normal University Natural Sciences Feb 2 0 1 2 SNAT2 - HA * 200234 SNAT2 - SNAT2 PCR HA SNAT2 C pbk - CMVΔ 1098-1300 - SNAT2 - HA HEK293T Western blot SNAT2

Διαβάστε περισσότερα

Στην φυσιολογική κατάσταση τα επίπεδα σακχάρου αίματος μεταβάλλονται σε

Στην φυσιολογική κατάσταση τα επίπεδα σακχάρου αίματος μεταβάλλονται σε 07 Ρύθµιση του µεταβολισµού της γλυκόζης και των λιπιδίων στο ήπαρ ΕΥΤΥΧΙΑ Γ. ΚΟΥΚΚΟΥ Επιμελήτρια Α, Τμήμα Ενδοκρινολογίας, Διαβήτου & Μεταβολισμού Νοσοκομείο-Μαιευτήριο «Έλενα Βενιζέλου», Αθήνα Στην φυσιολογική

Διαβάστε περισσότερα

Salmonella produce microrna-like RNA fragment Sal-1 in the infected cells to. facilitate intracellular survival

Salmonella produce microrna-like RNA fragment Sal-1 in the infected cells to. facilitate intracellular survival Salmonella produce microrna-like RNA fragment Sal-1 in the infected cells to facilitate intracellular survival Hongwei Gu 1,2*, Chihao Zhao 1,2*, Tianfu Zhang 1,2*, Hongwei Liang 1,2, Xiao-Ming Wang 1,

Διαβάστε περισσότερα

rp, ribosomal protein 60S rp mrna rpl30 rps14 RT-PCR mrna nonsense-mediated mrna decay smg-2 smg-2 mrna rp rpl-1 rpl-1

rp, ribosomal protein 60S rp mrna rpl30 rps14 RT-PCR mrna nonsense-mediated mrna decay smg-2 smg-2 mrna rp rpl-1 rpl-1 rp, ribosomal protein 60S 47 rpl 40S 32 rps rp mrna rpl30 rps14 rpl12 rpl3 rps13 rp mrna nonsense-mediated mrna decay (NMD) C. elegans smg-2 smg-2 mrna 50 rp 7 rp 4 rpl 4 rp NMD mrna 6 rp mrna rp mrna

Διαβάστε περισσότερα

Προφορικές & Αναρτημένες Ανακοινώσεις 3 ης Συνάντησης Βιοχημείας & Φυσιολογίας της Άσκησης

Προφορικές & Αναρτημένες Ανακοινώσεις 3 ης Συνάντησης Βιοχημείας & Φυσιολογίας της Άσκησης 1 Προφορικές & Αναρτημένες Ανακοινώσεις 3 ης Συνάντησης Βιοχημείας & Φυσιολογίας της Άσκησης Oral & Poster Presentations of the 3 rd Meeting of Biochemistry & Exercise Physiology Προφορικές - Oral 3884

Διαβάστε περισσότερα

Σύμφωνα με την Αμερικάνικη Εθνική Επιτροπή πρόληψης, διάγνωσης, εκτίμησης

Σύμφωνα με την Αμερικάνικη Εθνική Επιτροπή πρόληψης, διάγνωσης, εκτίμησης 34 Σακχαρώδης διαβήτης - αρτηριακή υπέρταση Γ. ΠΙΑΔΙΤΗΣ Δ/ντής Ενδοκρινολογικού Τμήματος - Κέντρου Διαβήτη Γ.Κ.Ν.Α. «Γ. Γεννηματάς» Σύμφωνα με την Αμερικάνικη Εθνική Επιτροπή πρόληψης, διάγνωσης, εκτίμησης

Διαβάστε περισσότερα

19 Ενδοκρινολόγος. Φάρµακα που στοχεύουν το β- κύτταρο ΕΥΡΥΔΙΚΗ ΠΑΠΑΔΟΠΟΥΛΟΥ ΕΙΣΑΓΩΓΗ ΜΗΧΑΝΙΣΜΟΣ ΔΡΑΣΗΣ

19 Ενδοκρινολόγος. Φάρµακα που στοχεύουν το β- κύτταρο ΕΥΡΥΔΙΚΗ ΠΑΠΑΔΟΠΟΥΛΟΥ ΕΙΣΑΓΩΓΗ ΜΗΧΑΝΙΣΜΟΣ ΔΡΑΣΗΣ Φάρµακα που στοχεύουν το β- κύτταρο ΕΥΡΥΔΙΚΗ ΠΑΠΑΔΟΠΟΥΛΟΥ 19 Ενδοκρινολόγος ΕΙΣΑΓΩΓΗ Οι σουλφονυλουρίες είναι η πρώτη κατηγορία υπογλυκαιμικών φαρμάκων που χορηγήθηκαν για την αντιμετώπιση του διαβήτη

Διαβάστε περισσότερα

Inflammatory Mechanisms in Obesity-induced Insulin Resistance

Inflammatory Mechanisms in Obesity-induced Insulin Resistance ISSN 1007-7626 CN 11-3870 / Q http / / cjbmb bjmu edu cn Chinese Journal of Biochemistry and Molecular Biology 2012 8 28 8 692 ~ 699 1 * 2 1 041000 2 475004 2 R589 2 Inflammatory Mechanisms in Obesity-induced

Διαβάστε περισσότερα

HDL HDL S1P. Micro Channel array Flow Analyzer (MC-FAN) ex vivo S1P S1P HDL MC-FAN HDL HDL S1P. Owen HDL S1P S1P HDL ELISA M (1) mean ±S.D.

HDL HDL S1P. Micro Channel array Flow Analyzer (MC-FAN) ex vivo S1P S1P HDL MC-FAN HDL HDL S1P. Owen HDL S1P S1P HDL ELISA M (1) mean ±S.D. HDL HDL - S1P S1P S1P β HDL β HDL HDL MM S1P Owen 2 M HDLM S1P S1P S1P M HDL HDLM S1P ELISA M HDL S1P M HDL (1) M HDLM HDLM M HDL 75gOGTT M 75gOGTT M HDL LDL CRP C- HbA1c 75gOGTT 75gOGTT M M M HDL LDL

Διαβάστε περισσότερα

Ινσουλίνη και καρδιά. Ηλιάδης Φώτης Λέκτορας Α.Π.Θ.

Ινσουλίνη και καρδιά. Ηλιάδης Φώτης Λέκτορας Α.Π.Θ. Ινσουλίνη και καρδιά Ηλιάδης Φώτης Λέκτορας Α.Π.Θ. Επίδραση ινσουλίνης στο ήπαρ, στους μυς και στον λιπώδη ιστό : Διατήρηση ευγλυκαιμίας Nature 2001;414:799 806 Ινσουλίνη? Λειτουργικότητα Μορφολογία Βιωσιμότητα

Διαβάστε περισσότερα

Πρόσκληση υποβολής προσφοράς

Πρόσκληση υποβολής προσφοράς Αθήνα, 5 Μαρτίου 2014 Πρόσκληση υποβολής προσφοράς από φυσικά ή νομικά πρόσωπα για την προμήθεια υλικών στην Πράξη «ΘΑΛΗΣ Εθνικό Ίδρυμα Ερευνών Βιοσύνθεση και Γενετική Επιλογή Κυκλικών Πεπτιδίων με Εν

Διαβάστε περισσότερα

Supplementary Information Titles

Supplementary Information Titles Supplementary Information Titles Journal: Nature Neuroscience Article Title: Corresponding Author: Wnt-mediated activation of NeuroD1 and retroelements during Tomoko Kuwabara adult neurogenesis Supplementary

Διαβάστε περισσότερα

Effects of soothing liver and invigorating spleen recipes of TCM on hepatic inflammatory cytokines of rats with nonalcoholic steatosishepatitis

Effects of soothing liver and invigorating spleen recipes of TCM on hepatic inflammatory cytokines of rats with nonalcoholic steatosishepatitis 33 2 Vol. 33 No. 2 2012 4 Journal of Jinan University Medicine Edition Apr. 2012 TNF-α IL-6 IL-1 1 2 1 3 2 2 2 1. 510630 2. 510632 3. 510630 NASH TNF-α 6 IL-6 1 IL-1 NASH NASH 16 HE O ELISA TNF-α IL-6

Διαβάστε περισσότερα

Table of contents. 1. Introduction... 4

Table of contents. 1. Introduction... 4 Table of contents 0. Motivation.... 1 1. Introduction... 4 2. Inclusion compounds of [Al(OH)(bdc)] n and [V(O)(bdc)] n... 11 2.1 [(η 5 -C 5 H 5 ) 2 Fe] 0.5 @MIL-53(Al) and [(η 5 -C 5 H 5 ) 2 Co] 0.25 @MIL-53(Al)

Διαβάστε περισσότερα

Chemistry 506: Allied Health Chemistry 2. Chapter 14: Carboxylic Acids and Esters. Functional Groups with Single & Double Bonds to Oxygen

Chemistry 506: Allied Health Chemistry 2. Chapter 14: Carboxylic Acids and Esters. Functional Groups with Single & Double Bonds to Oxygen Chemistry 506 Dr. Hunter s Class Chapter 14. Chemistry 506: Allied Health Chemistry 2 1 Chapter 14: Carboxylic Acids and Esters Functional Groups with Single & Double Bonds to Oxygen Introduction to General,

Διαβάστε περισσότερα

9-amino-(9-deoxy)cinchona alkaloids-derived novel chiral phase-transfer catalysts

9-amino-(9-deoxy)cinchona alkaloids-derived novel chiral phase-transfer catalysts Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is The Royal Society of Chemistry 2014 9-amino-(9-deoxy)cinchona alkaloids-derived novel chiral phase-transfer

Διαβάστε περισσότερα

Cinnamaldehyde Prevents Endothelial Dysfunction Induced by High Glucose by Activating Nrf2

Cinnamaldehyde Prevents Endothelial Dysfunction Induced by High Glucose by Activating Nrf2 www.karger.com/cpb 315 Accepted: Wang et al.: March Cinnamaldehyde 11, 2015 Prevents Endothelial Dysfunction 1421-9778/15/0361-0315$39.50/0 Under High Glucose Original Paper This is an Open Access article

Διαβάστε περισσότερα

Mouse Gene 2.0 ST Array Shn3. Runx2 Shn3. Runx2 Shn3 Runx2. adult. (Schnurri, Shn)3/Hivep3. Runx2 Shn/Hivep. ST2 BMP-2 Shn3

Mouse Gene 2.0 ST Array Shn3. Runx2 Shn3. Runx2 Shn3 Runx2. adult. (Schnurri, Shn)3/Hivep3. Runx2 Shn/Hivep. ST2 BMP-2 Shn3 adult (Schnurri, Shn)3/Hivep3 Runx2 Shn/Hivep Shn3 Shn3 Shn3 Shn3 Shn1 Shn2 Shn3 gain-of-function loss-of-function Shn3 in vivo mimic MC3T3-E1 ST-2 ATDC5 C3H10T1/2 ALP RT-PCR alcian blue RT-PCR Affymetrix

Διαβάστε περισσότερα

Single-site association results for 136 SCARB1 genotyped variants with HDL-C.

Single-site association results for 136 SCARB1 genotyped variants with HDL-C. Table S9. Single-site association results for 136 SCARB1 genotyped variants with HDL-C. SNP Name a SNP ID b Chr12 Position c Location Amino Acid Change RegDB Score d MA, MAF Genotype Genotype Count Adjusted

Διαβάστε περισσότερα

Other-recent-faces of GPCR and G-protein signaling

Other-recent-faces of GPCR and G-protein signaling Ανασκόπηση ΙΙΙ Υποδοχείς 3: GPCRs βιολογική (και φαρµακολογική) σηµασία των GPCRs κατηγορίες πρωτεϊνών G κατηγορίες τελεστών-ενζύµων και 2α µηνύµατα το Ca 2+ και το NO ως 2α µηνύµατα βασικές κυτταρικές

Διαβάστε περισσότερα

Yuji MATSUZAWA. Osaka University Graduate School of Medicine, Suita 565-0871 ABSTRACT

Yuji MATSUZAWA. Osaka University Graduate School of Medicine, Suita 565-0871 ABSTRACT Yuji MATSUZAWA Osaka University Graduate School of Medicine, Suita 6-871 ABSTRACT The metabolic syndrome, which clusters insulin resistance, dyslipidemia, and hypertension in each individual is a common

Διαβάστε περισσότερα

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΙΑΤΡΙΚΗ ΣΧΟΛΗ. ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥ ΩΝ «Ιατρική Ερευνητική Μεθοδολογία» ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΙΑΤΡΙΚΗ ΣΧΟΛΗ. ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥ ΩΝ «Ιατρική Ερευνητική Μεθοδολογία» ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΙΑΤΡΙΚΗ ΣΧΟΛΗ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥ ΩΝ «Ιατρική Ερευνητική Μεθοδολογία» ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ Νόσος Pompe: Νεότερα κλινικά, γενετικά, διαγνωστικά και θεραπευτικά

Διαβάστε περισσότερα

Fe II aq Fe III oxide electron transfer and Fe exchange: effect of organic carbon

Fe II aq Fe III oxide electron transfer and Fe exchange: effect of organic carbon Supplementary materials Fe II aq Fe III oxide electron transfer and Fe exchange: effect of organic carbon Timothy Pasakarnis, A Michael L. McCormick, B Gene F. Parkin, A Aaron Thompson C and Michelle M.

Διαβάστε περισσότερα

Πειραματικός Διαβήτης

Πειραματικός Διαβήτης Πειραματικός Διαβήτης Δέσποινα Ν. Περρέα Αναπληρώτρια Καθηγήτρια Ιατρικής Σχολής Πανεπιστημίου Αθηνών Διευθύντρια Εργαστηρίου Πειραματικής Χειρουργικής και Χειρουργικής Έρευνας «Ν.Σ. Χρηστέας» ΤΡΩΚΤΙΚΑ

Διαβάστε περισσότερα

ΜΕΤΑΠΤΥΧΙΑΚΗ ΕΡΕΥΝΗΤΙΚΗ ΔΙΑΤΡΙΒΗ

ΜΕΤΑΠΤΥΧΙΑΚΗ ΕΡΕΥΝΗΤΙΚΗ ΔΙΑΤΡΙΒΗ ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ ΤΡΟΦΙΜΩΝ ΕΡΓΑΣΤΗΡΙΟ ΠΟΙΟΤΙΚΟΥ ΕΛΕΓΧΟΥ & ΥΓΙΕΙΝΗΣ ΤΡΟΦΙΜΩΝ ΚΑΙ ΠΟΤΩΝ Π.Μ.Σ. «ΕΠΙΣΤΗΜΗ & ΤΕΧΝΟΛΟΓΙΑ ΤΡΟΦΙΜΩΝ & ΔΙΑΤΡΟΦΗ ΤΟΥ ΑΝΘΡΩΠΟΥ» Η ΕΠΙΔΡΑΣΗ

Διαβάστε περισσότερα

MANAGING AUTHORITY OF THE OPERATIONAL PROGRAMME EDUCATION AND INITIAL VOCATIONAL TRAINING

MANAGING AUTHORITY OF THE OPERATIONAL PROGRAMME EDUCATION AND INITIAL VOCATIONAL TRAINING MINISTRY OF NATIONAL EDUCATION AND RELIGIOUS AFFAIRS MANAGING AUTHORITY OF THE OPERATIONAL PROGRAMME EDUCATION AND INITIAL VOCATIONAL TRAINING EUROPEAN COMMUNITY Co financing European Social Fund (E.S.F.)

Διαβάστε περισσότερα

Feedback Regulation of Adipocytokines in Proliferation and Differentiation of Adipocyte

Feedback Regulation of Adipocytokines in Proliferation and Differentiation of Adipocyte ISSN 1007-7626 CN 11-3870 / Q http / / cjbmb bjmu edu cn Chinese Journal of Biochemistry and Molecular Biology 2011 3 27 3 212 ~ 217 * 100191 2 R589 2 Feedback Regulation of Adipocytokines in Proliferation

Διαβάστε περισσότερα