Vol.4-DCC-8 No.8 Vol.4-MUS-5 No.8 4// 3 3 Hanning (T ) 3 Hanning 3T (y(t)w(t)) dt =.5 T y (t)dt. () STRAIGHT F 3 TANDEM-STRAIGHT[] 3 F F 3 [] F []. :
|
|
- Γάδ Αντωνοπούλου
- 6 χρόνια πριν
- Προβολές:
Transcript
1 Vol.4-DCC-8 No.8 Vol.4-MUS-5 No.8 4//,a) Vocoder (F) F F. PSOLA [] sinusoidal model [] phase vocoder Vocoder [3] (F) F 3 [4], [5], [6], [7], [8], [9] [], [], [], [3], [4] [5], [6] [7], [8], University of Yamanashi, Yamanashi 4 85, Japan a) mmorise@yamanashi.ac.jp [9] STRAIGHT[] [] TANDEM-STRAIGHT[] WORLD[3] * [] [] F F [] SNR F F. * c 4 Information Processing Society of Japan
2 Vol.4-DCC-8 No.8 Vol.4-MUS-5 No.8 4// 3 3 Hanning (T ) 3 Hanning 3T (y(t)w(t)) dt =.5 T y (t)dt. () STRAIGHT F 3 TANDEM-STRAIGHT[] 3 F F 3 [] F []. : F [3] Hanning nω (ω = π/t n ) nω Hz nω Hz. : F P s (ω) = 3 ω 3 P (ω + λ)dλ, () ω ω 3 P (ω) ω /3 ω.3 3: c 4 Information Processing Society of Japan
3 3 [] nt nt sinc sinc 3 sinc consistent sampling [4] fs Hz fs / Hz * consistent sampling DA/AD DA/AD nω Hz AD nω Hz Hanning -3 db F ±ω Hz q P l (ω) = exp ( q log(p (ω)) + q log (P (ω + ω )P (ω ω ))), Hz ±ω * (3) Hz P l (ω) P l (ω) = exp (F [l s (τ)l q (τ)p s (τ)]), (4) l s (τ) = sin(πf τ), (5) πf τ ( ) πτ l q (τ) = q + q cos, (6) T p s (τ) = F [log (P s (ω))], (7) l s (τ) l q (τ) q q F[] F [] q.8 q.9 3. TANDEM-STRAIGHT F 3. E f σ f (n) = = N K N n= K k= σ f (n), (8) ( P e (k, n) K Vol.4-DCC-8 No.8 Vol.4-MUS-5 No.8 4// K l= P e (l, n)), (9) P e (k, n) = log (P l (k, n)) log (P t (k)), () P l (k, n) k n P t (k) c 4 Information Processing Society of Japan 3
4 K FFT N E f E t = K σ t (k) = N K k= N n= σ t (k), () ( P e (k, n) N N m= P e (k, m)). () E t E f E t 3. TANDEM-STRAIGHT [3] 3 F (Standard F) P t (k) 48 khz s ms N, FFT TANDEM-STRAIGHT F 4 Hz 3 4,96 K,48 F Standard F Hz Hz 3.3 : SNR db 6 db. db SNR Standard F: Hz SNR (db) SNR Standard F Hz 3 SNR E f E t SNR Standard F TANDEM-STRAIGHT SNR 45 db TANDEM-STRAIGHT 3.4 : F Vol.4-DCC-8 No.8 Vol.4-MUS-5 No.8 4// F %.% SNR 6 db 4 5 STRAIGHT F ±3% TANDEM- TANDEM- STRAIGHT F TANDEM-STRAIGHT c 4 Information Processing Society of Japan 4
5 Vol.4-DCC-8 No.8 Vol.4-MUS-5 No.8 4// Standard F: Hz.5.5 Standard F: Hz SNR (db) 3 SNR Standard F Hz.5.5 F estimation error (%) 4 F Standard F Hz *3 3.5 SNR 45 db TANDEM-STRAIGHT F SNR 45 db TANDEM-STRAIGHT 4. Cheap- *3 TANDEM-STRAIGHT F Trick F F TANDEM-STRAIGHT F STRAIGHT [] JSPS 4373 c 4 Information Processing Society of Japan 5
6 Standard F: Hz F estimation error (%) 5 F Standard F Hz H5/A8 [] Moulines, E. and Charpentier, F.: Pitch-synchronous waveform processing techniques for text-to-speech synthesis using diphones, Speech Communication, Vol. 9, No. 5-6, pp (99). [] McAulay, R. and Quatieri, T.: Speech analysis/synthesis based on a sinusoidal representation, IEEE Trans. Acoustics, Speech, and Signal Processing), Vol. 34, No. 4, pp (986). [3] Dudley, H.: Remaking speech, J. Acoust. Soc. Am., Vol., No., pp (939). [4] Noll, A. M.: Short-time spectrum and cepstrum techniques for vocal pitch detection, J. Acoust. Soc. Am., Vol. 36, No., pp (964). [5] Oppenheim, A. V.: Speech analysis-synthesis system based on homomorphic filtering, J. Acoust. Soc. Am., Vol. 45, No., pp (969). [6] Atal, B. S. and Hanauer, S. L.: Speech analysis and synthesis by linear prediction of the speech wave, J. Acoust. Soc. Am., Vol. 5, No. B, pp (969). [7] El-Jaroudi, A. and Makhoul, J.: Discrete all-pole modeling, IEEE Trans. on Signal Processing, Vol. 39, No., pp (99). [8] Badeau, R. and David, B.: Weighted maximum likelihood autoregressive and moving average spectrum modeling, in Proc. ICASSP 8, pp (9). Vol.4-DCC-8 No.8 Vol.4-MUS-5 No.8 4// [9] Campedel-Oudot, M., Cappé, O. and Moulines, E.: Estimation of the spectral envelope of voiced sounds using a penalized likelihood approach, IEEE Trans. on Speech and Audio Processing, Vol. 9, No. 5, pp (). [] Kawahara, H., Masuda-Katsuse, I. and de Cheveigné, A.: Restructuring speech representations using a pitch-adaptive time-frequency smoothing and an instantaneous-frequency-based F extraction, Speech Communication, Speech Communication, Vol. 7, pp (999). [] Kawahara, H., Morise, M., Takahashi, T., Nisimura, R., Irino, T. and Banno, H.: TANDEM-STRAIGHT: A temporally stable power spectral representation for periodic signals and applications to interference-free spectrum, f, and aperiodicity estimation, in Proc. ICASSP 8, pp (8). [] Kawahara, H. and Morise, M.: Technical foundations of TANDEM-STRAIGHT, a speech analysis, modification and synthesis framework, SADHANA - Academy Proceedings in Engineering Sciences, Vol. 36, pp (). [3] Morise, M.: An attempt to develop a singing synthesizer by collaborative creation, in Proc. SMAC 3, pp (3). [4] Nakano, T. and Goto, M.: A spectral envelope estimation method based on F-adaptive multi-frame integration analysis, in Proc. SAPA-SCALE, pp. 6 (). [5] Banno, H., Hata, H., Morise, M., Takahashi, T., Irino, T. and Kawahara, H.: Implementation of realtime STRAIGHT speech manipulation system, Acoust. Sci. & Tech., Vol. 8, No. 3, pp (7). [6] Morise, M., Onishi, M., Kawahara, H. and Katayose, H.: v.morish 9: A morphing-based singing design interface for vocal melodies, Lecture Notes in Computer Science, Vol. LNCS 579, pp (9). [7] Zen, H., Tokuda, K. and Black, A. W.: Statistical parametric speech synthesis, Speech Communication, Vol. 5, No., pp (9). [8] Zen, H., Senior, A. and Schuster, M.: Statistical parametric speech synthesis using deep neural networks, in Proc. ICASSP 3, pp (3). [9] Toda, T. and Tokuda, K.: Statistical approach to vocal tract transfer function estimation based on factor analyzed trajectory HMM, in Proc. ICASSP 8, pp (8). [] Kawahara, H., Nisimura, R., Irino, T., Morise, M., Takahashi, T. and Banno, H.: Temporally variable multi-aspect auditory morphing enabling extrapolation without objective and perceptual breakdown, in Proc. ICASSP9, pp (9). [] Morise, M.:, a spectral envelope estimator for high-quality speech synthesis, Speech Communication (4). [] Kawahara, H., Morise, M., Banno, H., Nisimura, R. and Irino, T.: Excitation source analysis for high-quality speech manipulation systems based on an interferencefree representation of group delay with minimum phase response compensation, pp. xxx xxx (4). [3] Mathews, M. V., Miller, J. E. and David, E. E.: Pitch synchronous analysis of voiced sounds, J. Acoust. Soc. Am., Vol. 33, pp (96). [4] Unser, M.: Sampling 5 years after Shannon, Proc. of the IEEE, Vol. 88, pp (). c 4 Information Processing Society of Japan 6
SNR F0 [2], [3], [4] F0 F0 F0 F0 F0 TUSK F0 TUSK F0 6 TUSK 6 F0 2. F0 F0 [5] [6] [7] p[8] Cepstrum [9], [10] [11] [12] [13] F0 [14] F0 [15] DIO[16] [1
1,a) 2 F0 TUSK F0 F0 F0 F0 TUSK TUSK F0 Prototype of a framework for overviewing the performance of F0 estimators Morise Masanori 1,a) Kawahara Hideki 2 Abstract: This article represents a framework for
VOCODER VOCODER Vocal
Vol.1-MUS-95 No.3 1/6/ VOCODER 1,a) 1,b) 1,c) 1,d) VOCODER VOCODER Vocal VOCODER Cross synthesis VOCODER which preserves linguistic information and characteristic timbre of musical instruments and animal
: TANDEM-STRAIGHT. Make singing voice tangible: TANDEM-STRAIGHT and temporally variable morphing as substrate. Hideki Kawahara 1 and Masanori Morise 2
Vol.1-MUS-86 No.6 1/7/8 1. : TANDEM-STRAIGHT 1 STRAIGHT TANDEM-STRAIGHT STRAIGHT TANDEM-STRAIGHT SNR 3 db Make singing voice tangible: TANDEM-STRAIGHT and temporally variable morphing as substrate Hideki
Signal processing for handling singing voice texture
1 TANDEM-STRAIGHT Signal processing for handling singing voice texture Hideki Kawahara 1 Singers explore vocal expressions to the limit. Conventional speech processing algorithms, which were designed to
Fourier transform, STFT 5. Continuous wavelet transform, CWT STFT STFT STFT STFT [1] CWT CWT CWT STFT [2 5] CWT STFT STFT CWT CWT. Griffin [8] CWT CWT
1,a) 1,2,b) Continuous wavelet transform, CWT CWT CWT CWT CWT 100 1. Continuous wavelet transform, CWT [1] CWT CWT CWT [2 5] CWT CWT CWT CWT CWT Irino [6] CWT CWT CWT CWT CWT 1, 7-3-1, 113-0033 2 NTT,
LSP (Line Spectrum Pair, LSF: Line Spectrum Frequencies) [19] [20] LSP CODE [21], [22] VOCODER [23] 2. 3 STRAIGHT VOCODER STRAIGHT [24] STRAIGHT [25]
一般社団法人 電子情報通信学会 信学技報 THE INSTITUTE OF ELECTRONICS, IEICE Technical Report INFORMATION AND COMMUNICATION ENGINEERS EA2017-4 (2017-07) [ ]VOCODER 640-8510 930 E-mail: kawahara@sys.wakayama-u.ac.jp 80 VOCODER
MIDI [8] MIDI. [9] Hsu [1], [2] [10] Salamon [11] [5] Song [6] Sony, Minato, Tokyo , Japan a) b)
1,a) 1,b) 1,c) 1. MIDI [1], [2] U/D/S 3 [3], [4] 1 [5] Song [6] 1 Sony, Minato, Tokyo 108 0075, Japan a) Emiru.Tsunoo@jp.sony.com b) AkiraB.Inoue@jp.sony.com c) Masayuki.Nishiguchi@jp.sony.com MIDI [7]
1,a) 1,b) 2 3 Sakriani Sakti 1 Graham Neubig 1 1. A Study on HMM-Based Speech Synthesis Using Rich Context Models
HMM 1,a 1,b 3 Sakriani Sakti 1 Graham Neubig 1 1 Hidden Markov Model HMM HMM HMM HMM HMM A Study on HMM-Based Speech Synthesis Using Rich Context Models Shinnosuke Takamichi 1,a Toda Tomoki 1,b Shiga Yoshinori
An Automatic Modulation Classifier using a Frequency Discriminator for Intelligent Software Defined Radio
C IEEJ Transactions on Electronics, Information and Systems Vol.133 No.5 pp.910 915 DOI: 10.1541/ieejeiss.133.910 a) An Automatic Modulation Classifier using a Frequency Discriminator for Intelligent Software
E-mail: {kameoka,sagayama}@hil.t.u-tokyo.ac.jp, m.goto@aist.go.jp GUI
E-mail: {kameoka,sagayama}@hil.t.u-tokyo.ac.jp, m.goto@aist.go.jp GUI Selective Amplifier of Periodic and Non-periodic Components in Concurrent Audio Signals with Spectral Control Envelopes Hirokazu Kameoka
3: A convolution-pooling layer in PS-CNN 1: Partially Shared Deep Neural Network 2.2 Partially Shared Convolutional Neural Network 2: A hidden layer o
Sound Source Identification based on Deep Learning with Partially-Shared Architecture 1 2 1 1,3 Takayuki MORITO 1, Osamu SUGIYAMA 2, Ryosuke KOJIMA 1, Kazuhiro NAKADAI 1,3 1 2 ( ) 3 Tokyo Institute of
Ψηφιακή Επεξεργασία Φωνής
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Επεξεργασία Φωνής Ενότητα 4η: Γραμμική Πρόβλεψη: Ανάλυση και Σύνθεση Στυλιανού Ιωάννης Τμήμα Επιστήμης Υπολογιστών CS578- Speech Signal Processing Lecture
Ψηφιακή Επεξεργασία Φωνής
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Επεξεργασία Φωνής Διάλεξη: Προσαρμόσιμο Αρμονικό Μοντέλο Παρουσίαση: Gilles Degottex Στυλιανού Ιωάννης Τμήμα Επιστήμης Υπολογιστών A Full-Band Adaptive Harmonic
Ψηφιακή Επεξεργασία Φωνής
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Επεξεργασία Φωνής Ενότητα 5η: Ημιτονοειδής Ανάλυση και Τροποποίηση Φωνής Στυλιανού Ιωάννης Τμήμα Επιστήμης Υπολογιστών CS578- Speech Signal Processing Lecture
Ψηφιακή Επεξεργασία Φωνής
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Επεξεργασία Φωνής Ενότητα 7η: Βελτίωση Σήματος Φωνής Στυλιανού Ιωάννης Τμήμα Επιστήμης Υπολογιστών CS578- Speech Signal Processing Lecture 8: Speech Enhancement
Non-negative Matrix Factorization, NMF [5] NMF. [1 3] Bregman [4] Harmonic-Temporal Clustering, HTC [2,3] 1,2,b) NTT
1,a) 1,2,b) 1. [1 3] Bregman [4] Harmonic-Temporal Clustering, HTC [2,3] 1 7-3-1 113-0033 2 NTT 3-1 243-0198 a) Tomohio Naamura@ipc.i.u-toyo.ac.jp b) ameoa@hil.t.u-toyo.ac.jp/ameoa.hiroazu@lab.ntt.co.jp
Buried Markov Model Pairwise
Buried Markov Model 1 2 2 HMM Buried Markov Model J. Bilmes Buried Markov Model Pairwise 0.6 0.6 1.3 Structuring Model for Speech Recognition using Buried Markov Model Takayuki Yamamoto, 1 Tetsuya Takiguchi
F0 Estimation of Melody and Bass Lines in Real-world Musical Audio Signals
99-MUS-31-16, Vol.99, No.68, August 1999. 31 16 goto@etl.go.jp CD EM F0 Estimation o Melody and Bass Lines in Real-world Musical Audio Signals Masataka Goto Electrotechnical Laboratory 1-1-4 Umezono, Tsukuba,
Re-Pair n. Re-Pair. Re-Pair. Re-Pair. Re-Pair. (Re-Merge) Re-Merge. Sekine [4, 5, 8] (highly repetitive text) [2] Re-Pair. Blocked-Repair-VF [7]
Re-Pair 1 1 Re-Pair Re-Pair Re-Pair Re-Pair 1. Larsson Moffat [1] Re-Pair Re-Pair (Re-Pair) ( ) (highly repetitive text) [2] Re-Pair [7] Re-Pair Re-Pair n O(n) O(n) 1 Hokkaido University, Graduate School
Voice Conversion based on Non-negative Matrix Factorization with Segment Features in Noisy Environments
THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE. NMF 657 8501 1 1 657 8501 1 1 E-ail: {fujii,aihara}@e.cs.scitec.kobe-u.ac.jp, {takigu,ariki}@kobe-u.ac.jp
(hidden Markov model: HMM) FUNDAMENTALS OF SPEECH SYNTHESIS BASED ON HMM. Keiichi Tokuda. Department of Computer Science
HMM 466-8555 (hidden Markov model: HMM) HMM HMM HMM HMM FUNDAMENTALS OF SPEECH SYNTHESIS BASED ON HMM Keiichi Tokuda Department of Computer Science Nagoya Institute of Technology Gokiso-cho, Shouwa-ku,
Sinsy: HMM. Sinsy An HMM-based singing voice synthesis system which can realize your wish I want this person to sing my song
. Sinsy: HMM 2 (hidden Markov model; HMM) 2009 2 HMM : Sinsy Sinsy 70 Sinsy Sinsy An HMM-based singing voice synthesis system which can realize your wish I want this person to sing my song Keiichiro Oura,
Estimation, Evaluation and Guarantee of the Reverberant Speech Recognition Performance based on Room Acoustic Parameters
Vol.21-SLP-83 No.9 21/1/29 1 Estimation, Evaluation and Guarantee of the Reverberant Speech Recognition Performance based on Room Acoustic Parameters Takanobu Nishiura 1 We study on estimation, evaluation
Retrieval of Seismic Data Recorded on Open-reel-type Magnetic Tapes (MT) by Using Existing Devices
No. 3 + 1,**- Technical Research Report, Earthquake Research Institute, University of Tokyo, No. 3, pp. + 1,,**-. MT * ** *** Retrieval of Seismic Data Recorded on Open-reel-type Magnetic Tapes (MT) by
Ψηφιακή Επεξεργασία Φωνής
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Επεξεργασία Φωνής Ενότητα 8η: Αναγνώριση Ομιλητή Στυλιανού Ιωάννης Τμήμα Επιστήμης Υπολογιστών CS578- Speech Signal Processing Lecture 9: Speaker Recognition
[5] F 16.1% MFCC NMF D-CASE 17 [5] NMF NMF 3. [5] 1 NMF Deep Neural Network(DNN) FUSION 3.1 NMF NMF [12] S W H 1 Fig. 1 Our aoustic event detect
NMF 1 1,a) 1 AED NMF DNN IEEE D-CASE 2012 20% DNN NMF 1. Computational Auditory Scene Analysis: CASA [1] [2] [3] [4] [5] Non-negative Matrxi Factorization (NMF) NMF 2. CASA IEEE 1 Dept. Computer Science
Sampling Basics (1B) Young Won Lim 9/21/13
Sampling Basics (1B) Copyright (c) 2009-2013 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any
v.connect 2 v.connect : A Singing Synthesis System Enabling Users to Control Vocal Tones Makoto Ogawa, 1 Syunji Yazaki 1 and Kôki Abe 1 VOCALOID
v.connect 1 1 1 VOCALOID UTAU WORLD Vorbis v.connect 2 1.7 2.2 v.connect : A Singing Synthesis System Enabling Users to Control Vocal Tones Makoto Ogawa, 1 Syunji Yazaki 1 and Kôki Abe 1 Since the release
CSJ. Speaker clustering based on non-negative matrix factorization using i-vector-based speaker similarity
i-vector 1 1 1 1 i-vector CSJ i-vector Speaker clustering based on non-negative matrix factorization using i-vector-based speaker similarity Fukuchi Yusuke 1 Tawara Naohiro 1 Ogawa Tetsuji 1 Kobayashi
Speech Recognition using Phase Information based on Long-Term Analysis
THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE. 441 8580 1 1 E-mail: {kyama,sueyoshi,nakagawa}@slp.cs.tut.ac.jp MFCC Liu 2 1 1 90% MFCC 20% Abstract Speech
Research on mode-locked optical fiber laser
2003 6 20 Research on mode-locked optical fiber laser 1 36303 Abstract- For future ultrahigh-speed optical communications, an ultrashort optical pulse train at a high repetitionrate will be indispensable.
Ψηφιακή Επεξεργασία Φωνής
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Επεξεργασία Φωνής Ενότητα 1η: Ψηφιακή Επεξεργασία Σήματος Στυλιανού Ιωάννης Τμήμα Επιστήμης Υπολογιστών CS578- Speech Signal Processing Lecture 1: Discrete-Time
[2] REVERB 8 [3], [4] [5] [20] [6], [7], [8], [9], [10] [11] REVERB 8 *1 [9] LDA *2 MLLT (SAT) [8] (basis fmllr) [12] (DNN) [10] DNN [11] [13] [14] Ka
: REVERB 1,a) 1 2 REVERB 8 REVERB REVERB 6.76% 18.60% 68.8% 61.5% REVERB Effectiveness of dereverberation techniques and system combination approach for various reverberant environments: REVERB challenge
ΠΡΟΗΓΜΕΝΑ ΣΥΣΤΗΜΑΤΑ ΜΕΤΑΦΟΡΩΝ
ΠΡΟΗΓΜΕΝΑ ΣΥΣΤΗΜΑΤΑ ΜΕΤΑΦΟΡΩΝ Ενότητα 4: Time and Frequency Analysis Διδάσκων: Γεώργιος Στεφανίδης Πολυτεχνική Σχολή Τμήμα Πολιτικών Μηχανικών Σκοποί ενότητας Για την περιγραφή ενός συστήματος κρίσιμο
Singing Information Processing: Music Information Processing for Singing Voices
: 1 1 1 1 Singing Information Processing: Music Information Processing for Singing Voices Masataka Goto, 1 Takeshi Saitou, 1 Tomoyasu Nakano 1 and Hiromasa Fujihara 1 This paper introduces our research
BCI On Feature Extraction from Multi-Channel Brain Waves Used for Brain Computer Interface
BCI On Feature Extraction from Multi-Channel Brain Waves Used for Brain Computer Interface Hiroya SAITO Kenji NAKAYAMA Akihiro HIRANO Graduate School of Natural Science and Technology,Kanazawa Univ. E-mail:
A study of geometric dependency of cepstrum on vocal tract length
THE INSTITUTE OF ELECTRONICS, INFORMTION ND COMMUNICTION ENGINEERS TECHNICL REPORT OF IEICE 277 882 5 5 3 33 7 3 E-mail: {dsk saito,matsuura,asakawa,mine,hirose}gavotu-tokyoacjp n (VTLN) VTLN ĉ = c n 8
1181 (real-timespeechdriven) 1 1 ( ) D FAP FAP (voiceactivationdetectionvad) D FaceGen 3- D XfaceEd MPEG-4 1 FAP 66 FAP ( ) FAP 84
ISSN1000-0054 CN11-2223/N ( ) 2011 51 9 JTsinghuaUniv(Sci& Tech) 2011Vol.51 No.9 5/33 1180-1186 ( 710129) [1-2] 2 [1] MPEG-4 3-D MOS MOS 3.42 3.50 TP391 1000-0054(2011)09-1180-07 A Real-timespeechdriventalkingavatar
( ) (Harmonic-Temporal Clustering; HTC) [1], [2] ( ) ( ) [4] HTC. (Non-negative Matrix Factorization; NMF) [3] [5], [6] [7], [8]
1 1 1 1, Product of ExpertsPoE) 1. ) Harmonic-Temporal Clustering; HTC) [1], [] ) ) HTC Non-negative Matrix Factorization; NMF) [3] 1 Graduate School of Information Science and Technology, The University
Probability and Random Processes (Part II)
Probability and Random Processes (Part II) 1. If the variance σ x of d(n) = x(n) x(n 1) is one-tenth the variance σ x of a stationary zero-mean discrete-time signal x(n), then the normalized autocorrelation
Spectrum Representation (5A) Young Won Lim 11/3/16
Spectrum (5A) Copyright (c) 2009-2016 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later
BandPass (4A) Young Won Lim 1/11/14
BandPass (4A) Copyright (c) 22 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version.2 or any later version
το προφίλ της γάστρας, η ίσαλος σχεδίασης, η καμπύλη εμβαδών εγκαρσίων τομών και η κατανομή του κέντρου βάρους των εγκαρσίων τομών κατά μήκος του
6.1. Εργασίες προς απόκτηση ακαδημαϊκού τίτλου Τ1. Γρηγορόπουλου, Γ.Ι. (1981), "Παραγωγή, φασματική ανάλυση και κατανομή μεγίστων τυχαίου κυματισμού", διπλωματική εργασία στην Εφαρμοσμένη και Πειραματική
Higher-Order Correlation Analysis of Pitch Fluctuations in Sustained Normal Vowels by the Method of Surrogate Data
a) Higher-Order Correlation Analysis of Pitch Fluctuations in Sustained Normal Vowels by the Method of Surrogate Data Isao TOKUDA a), Takaya MIYANO, and Kazuyuki AIHARA 2 3 3 2 3 1. [1] [3] Department
Συνδυασμένη Οπτική-Ακουστική Ανάλυση Ομιλίας
Ομάδα Όρασης Υπολογιστών, Επικοινωνίας Λόγου και Επεξεργασίας Σήματος Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχαν. και Μηχαν. Υπολ. http://cvsp.cs.ntua.gr Συνδυασμένη Οπτική-Ακουστική ή Ανάλυση
Περιεχόµενα. ΕΠΛ 422: Συστήµατα Πολυµέσων. Μέθοδοι συµπίεσης ηχητικών. Βιβλιογραφία. Κωδικοποίηση µε βάση την αντίληψη.
Περιεχόµενα ΕΠΛ 422: Συστήµατα Πολυµέσων Συµπίεση Ήχου Μέθοδοι συµπίεσης ηχητικών σηµάτων DPCM Συµπίεση σηµάτων οµιλίας Κωδικοποίηση µε βάση την αντίληψη Χαρακτηριστικά και εφαρµογές Ψυχοακουστική (psychoacoustics)
Query by Phrase (QBP) (Music Information Retrieval, MIR) QBH QBP / [1, 2] [3, 4] Query-by-Humming (QBH) QBP MIDI [5, 6] [8 10] [7]
Query by Phrase: a 2 2 Query by Phrase QBP QBP GaP-NMF GaP-NMF GaP-NMF QBP. Music Information Retrieval MIR [ 2] [3 4]Query-by-Humming QBH MIDI [5 6] [7] Waseda University 2 National Institute of Advanced
Ερευνητική+Ομάδα+Τεχνολογιών+ Διαδικτύου+
Ερευνητική+Ομάδα+Τεχνολογιών+ Διαδικτύου+ Ερευνητικές,Δραστηριότητες,και, Ενδιαφέροντα,, Τμήμα,Μηχανικών,Η/Υ,&,Πληροφορικής, Τομέας,Λογικού,των,Υπολογιστών, Εργαστήριο,Γραφικών,,Πολυμέσων,και,Γεωγραφικών,
ΣΧΟΛΗ Σχολή Τεχνολογικών Εφαρμογών ΤΜΗΜΑ Ηλεκτρονικών Μηχανικών Τ.Ε. ΕΠΙΠΕΔΟ ΣΠΟΥΔΩΝ Προπτυχιακό ΚΩΔΙΚΟΣ ΜΑΘΗΜΑΤΟΣ ΕΞΑΜΗΝΟ ΣΠΟΥΔΩΝ 5
ΣΧΟΛΗ Σχολή Τεχνολογικών Εφαρμογών ΤΜΗΜΑ Ηλεκτρονικών Μηχανικών Τ.Ε. ΕΠΙΠΕΔΟ ΣΠΟΥΔΩΝ Προπτυχιακό ΚΩΔΙΚΟΣ ΜΑΘΗΜΑΤΟΣ ΕΞΑΜΗΝΟ ΣΠΟΥΔΩΝ 5 ΤΙΤΛΟΣ ΜΑΘΗΜΑΤΟΣ Ψηφιακή Επεξεργασία Σήματος ΑΥΤΟΤΕΛΕΙΣ ΔΙΔΑΚΤΙΚΕΣ ΔΡΑΣΤΗΡΙΟΤΗΤΕΣ
Stabilization of stock price prediction by cross entropy optimization
,,,,,,,, Stabilization of stock prediction by cross entropy optimization Kazuki Miura, Hideitsu Hino and Noboru Murata Prediction of series data is a long standing important problem Especially, prediction
Assignment 1 Solutions Complex Sinusoids
Assignment Solutions Complex Sinusoids ECE 223 Signals and Systems II Version. Spring 26. Eigenfunctions of LTI systems. Which of the following signals are eigenfunctions of LTI systems? a. x[n] =cos(
Feasible Regions Defined by Stability Constraints Based on the Argument Principle
Feasible Regions Defined by Stability Constraints Based on the Argument Principle Ken KOUNO Masahide ABE Masayuki KAWAMATA Department of Electronic Engineering, Graduate School of Engineering, Tohoku University
Μουσική Πληροφορική. Αλέξανδρος Ελευθεριάδης Αναπ. Καθηγητής Τµήµα Πληροφορικής και Τηλεπικοινωνιών Εθνικό και Καποδιστριακό Πανεπιστήµιο Αθηνών
Μουσική Πληροφορική [Διάλεξη 2 (DSP)] Αλέξανδρος Ελευθεριάδης Αναπ. Καθηγητής Τµήµα Πληροφορικής και Τηλεπικοινωνιών Εθνικό και Καποδιστριακό Πανεπιστήµιο Αθηνών eleft@di.uoa.gr, (2) 727-52 4. Μη Γραµµική
Nov Journal of Zhengzhou University Engineering Science Vol. 36 No FCM. A doi /j. issn
2015 11 Nov 2015 36 6 Journal of Zhengzhou University Engineering Science Vol 36 No 6 1671-6833 2015 06-0056 - 05 C 1 1 2 2 1 450001 2 461000 C FCM FCM MIA MDC MDC MIA I FCM c FCM m FCM C TP18 A doi 10
Fundamentals of Signals, Systems and Filtering
Fundamentals of Signals, Systems and Filtering Brett Ninness c 2000-2005, Brett Ninness, School of Electrical Engineering and Computer Science The University of Newcastle, Australia. 2 c Brett Ninness
Scrub Nurse Robot: SNR. C++ SNR Uppaal TA SNR SNR. Vain SNR. Uppaal TA. TA state Uppaal TA location. Uppaal
Scrub Nurse Robot: SNR SNR SNR SNR Uppaal Uppaal timed automatonta SNR C++ Uppaal TA SNR SNR 1 1SNR3 SNR SNR C++ SNR Uppaal TA Vain Uppaal TA TA state Uppaal TA location TRON (Testing Realtime Systems
1 (forward modeling) 2 (data-driven modeling) e- Quest EnergyPlus DeST 1.1. {X t } ARMA. S.Sp. Pappas [4]
212 2 ( 4 252 ) No.2 in 212 (Total No.252 Vol.4) doi 1.3969/j.issn.1673-7237.212.2.16 STANDARD & TESTING 1 2 2 (1. 2184 2. 2184) CensusX12 ARMA ARMA TU111.19 A 1673-7237(212)2-55-5 Time Series Analysis
Εξάλειψη αντήχησης από ηχητικά σήματα με υποκειμενικά / ψυχοακουστικά κριτήρια
Εξάλειψη αντήχησης από ηχητικά σήματα με υποκειμενικά / ψυχοακουστικά κριτήρια Θωμάς Ζαρούχας Διπλ. Ηλ/γος Μηχανικός thozar@wcl.ee.upatras.gr Παναγιώτης Χατζηαντωνίου Δρ. Ηλ/γος Μηχανικός hagianto@wcl.ee.upatras.gr
Detection and Recognition of Traffic Signal Using Machine Learning
1 1 1 Detection and Recognition of Traffic Signal Using Machine Learning Akihiro Nakano, 1 Hiroshi Koyasu 1 and Hitoshi Maekawa 1 To improve road safety by assisting the driver, traffic signal recognition
Speeding up the Detection of Scale-Space Extrema in SIFT Based on the Complex First Order System
(MIRU2008) 2008 7 SIFT 572-8572 26-12 599-8531 1-1 E-mail: umemoto@ipc.osaka-pct.ac.jp, kise@cs.osakafu-u.ac.jp SIFT 1 ANN 3 1 SIFT 1 Speeding up the Detection of Scale-Space Extrema in SIFT Based on the
A Method of Trajectory Tracking Control for Nonminimum Phase Continuous Time Systems
IIC-11-8 A Method of Trajectory Tracking Control for Nonminimum Phase Continuous Time Systems Takayuki Shiraishi, iroshi Fujimoto (The University of Tokyo) Abstract The purpose of this paper is achievement
ΔΙΠΛΩΜΑΤΙΚΕΣ ΕΡΓΑΣΙΕΣ
ΔΙΠΛΩΜΑΤΙΚΕΣ ΕΡΓΑΣΙΕΣ ΤΜ. ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ 2018-2019 Επιβλέπουσα: Μπίμπη Ματίνα Ανάλυση της πλατφόρμας ανοιχτού κώδικα Home Assistant Το Home Assistant είναι μία πλατφόρμα ανοιχτού
Ένα µοντέλο Ισοδύναµης Χωρητικότητας για IEEE Ασύρµατα Δίκτυα. Εµµανουήλ Καφετζάκης
Ένα µοντέλο Ισοδύναµης Χωρητικότητας για IEEE 802.11 Ασύρµατα Δίκτυα. Εµµανουήλ Καφετζάκης mkafetz@iit.demokritos.gr Το κίνητρο µας-συνεισφορά Η ασύρµατη δικτύωση λαµβάνει ευρείας αποδοχής. Το πρότυπο
Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1
Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 A Brief History of Sampling Research 1915 - Edmund Taylor Whittaker (1873-1956) devised a
Vocal Dynamics Controller:
Vocal Dynamics Controller:. F ),) F F 2 F F EM 2 ),2),3) 2 F 4) F Vocal Dynamics Controller 2 Vocal Dynamics Controller: A note-by-note editing and synthesizing interface for F dynamics in singing voices
Acoustic Signal Adjustment by Considering Musical Expressive Intention Using a Performance Intension Function
1,a) 2 MOS Acoustic Signal Adjustment by Considering Musical Expressive Intention Using a Performance Intension Function Yuma Koizumi 1,a) Katunobu Itou 2 Abstract: We propose an estimation method for
ΑΝΤΩΝΙΑΔΗΣ ΝΙΚΟΛΑΟΣ & 1991 Υποτροφία του Κοινωφελούς Ιδρύματος "Αλ. Σ. Ωνάσης" για μεταπτυχιακές σπουδές.
ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ N. Σιμεντζή 4 471 00 Αρτα Τηλ.: (26810) 24536 (οικία) (26810) 50345 (εργασία) Φαξ: (26810) 50340 E-mail: nadon@teiep.gr Προσωπικά Στοιχεία ΑΝΤΩΝΙΑΔΗΣ ΝΙΚΟΛΑΟΣ Ημερομηνία Γέννησης: 4
Ψηφιακή Επεξεργασία Φωνής
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Επεξεργασία Φωνής Ενότητα 2η: Παραγωγή και Ταξινόμηση Σημάτων Φωνής Στυλιανού Ιωάννης Τμήμα Επιστήμης Υπολογιστών CS578- Speech Signal Processing Lecture
ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 3, Νέα Κτίρια ΣΗΜΜΥ Ανάλυση Επικοινωνιακών Σημάτων κατά Fourier
ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 3, Νέα Κτίρια ΣΗΜΜΥ Ανάλυση Επικοινωνιακών Σημάτων κατά Fourier 2.2: Μετασχηματισμός Fourier (Fourier Transform, FT) 2.3: Ιδιότητες του
Digital Signal Octave Codes (0B)
Digital Signal Aliasing and Folding Frequencies Copyright (c) 2009-2017 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation
ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. του Φοιτητή του Τμήματος Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών της Πολυτεχνικής Σχολής του Πανεπιστημίου Πατρών
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΗΛΕΚΤΡΟΝΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΕΝΣΎΡΜΑΤΗΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΣ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ του Φοιτητή του Τμήματος Ηλεκτρολόγων
Optimization, PSO) DE [1, 2, 3, 4] PSO [5, 6, 7, 8, 9, 10, 11] (P)
( ) 1 ( ) : : (Differential Evolution, DE) (Particle Swarm Optimization, PSO) DE [1, 2, 3, 4] PSO [5, 6, 7, 8, 9, 10, 11] 2 2.1 (P) (P ) minimize f(x) subject to g j (x) 0, j = 1,..., q h j (x) = 0, j
EM Baum-Welch. Step by Step the Baum-Welch Algorithm and its Application 2. HMM Baum-Welch. Baum-Welch. Baum-Welch Baum-Welch.
Baum-Welch Step by Step the Baum-Welch Algorithm and its Application Jin ichi MURAKAMI EM EM EM Baum-Welch Baum-Welch Baum-Welch Baum-Welch, EM 1. EM 2. HMM EM (Expectationmaximization algorithm) 1 3.
Supplementary Appendix
Supplementary Appendix Measuring crisis risk using conditional copulas: An empirical analysis of the 2008 shipping crisis Sebastian Opitz, Henry Seidel and Alexander Szimayer Model specification Table
Analysis of prosodic features in native and non-native Japanese using generation process model of fundamental frequency contours
THE INSTITUTE O ELECTRONICS, INORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT O IEICE. 277 8562 5 1 5 113 3 7 3 1 6 817 17 8 E-mail: {hiran,wtgu,hirose,mine}@gavo.t.u-tokyo.ac.jp, goh@kawai.com
Summary of the model specified
Program: HLM 7 Hierarchical Linear and Nonlinear Modeling Authors: Stephen Raudenbush, Tony Bryk, & Richard Congdon Publisher: Scientific Software International, Inc. (c) 2010 techsupport@ssicentral.com
Διάλεξη 6. Fourier Ανάλυση Σημάτων. (Επανάληψη Κεφ. 10.0-10.2 Κεφ. 10.3, 10.5-7) Ανάλυση σημάτων. Τι πρέπει να προσέξουμε
University of Cyprus Biomedical Imaging & Applied Optics Διάλεξη (Επανάληψη Κεφ. 10.0-10. Κεφ. 10.3, 10.5-7) Ανάλυση σημάτων Τι πρέπει να προσέξουμε Επαρκής ψηφιοποίηση στο χρόνο (Nyquist) Αναδίπλωση (aliasing)
070-A
764 070-A543-50 www.tektronix.com Copyright Tektronix Japan, Ltd. All rights reserved. 141 0001 5 9 31 TektronixTek Tektronix, Inc. i v ix xi 1 11 12 12 12 13 19 110 110 2 21 21 22 23 24 24 26 211
Anomaly Detection with Neighborhood Preservation Principle
27 27 Workshop on Information-Based Induction Sciences (IBIS27) Tokyo, Japan, November 5-7, 27. Anomaly Detection with Neighborhood Preservation Principle Tsuyoshi Idé Abstract: We consider a task of anomaly
Παραμετρική ανάλυση του συντελεστή ανάκλασης από στρωματοποιημένο πυθμένα δύο στρωμάτων με επικλινή διεπιφάνεια 1
4 93 Παραμετρική ανάλυση του συντελεστή ανάκλασης από στρωματοποιημένο πυθμένα δύο στρωμάτων με επικλινή διεπιφάνεια Π. Παπαδάκης,a, Γ. Πιπεράκης,b & Μ. Καλογεράκης,,c Ινστιτούτο Υπολογιστικών Μαθηματικών
ΕΥΡΕΣΗ ΤΟΥ ΔΙΑΝΥΣΜΑΤΟΣ ΘΕΣΗΣ ΚΙΝΟΥΜΕΝΟΥ ΡΟΜΠΟΤ ΜΕ ΜΟΝΟΦΘΑΛΜΟ ΣΥΣΤΗΜΑ ΟΡΑΣΗΣ
ΕΥΡΕΣΗ ΤΟΥ ΔΙΑΝΥΣΜΑΤΟΣ ΘΕΣΗΣ ΚΙΝΟΥΜΕΝΟΥ ΡΟΜΠΟΤ ΜΕ ΜΟΝΟΦΘΑΛΜΟ ΣΥΣΤΗΜΑ ΟΡΑΣΗΣ Νικόλαος Κυριακούλης *, Ευάγγελος Καρακάσης, Αντώνιος Γαστεράτος, Δημήτριος Κουλουριώτης, Σπυρίδων Γ. Μουρούτσος Δημοκρίτειο
Area Location and Recognition of Video Text Based on Depth Learning Method
21 6 2016 12 Vol 21 No 6 JOURNAL OF HARBIN UNIVERSITY OF SCIENCE AND TECHNOLOGY Dec 2016 1 1 1 2 1 150080 2 130300 Gabor RBM OCR DOI 10 15938 /j jhust 2016 06 012 TP391 43 A 1007-2683 2016 06-0061- 06
1 n-gram n-gram n-gram [11], [15] n-best [16] n-gram. n-gram. 1,a) Graham Neubig 1,b) Sakriani Sakti 1,c) 1,d) 1,e)
1,a) Graham Neubig 1,b) Sakriani Sakti 1,c) 1,d) 1,e) 1. [11], [15] 1 Nara Institute of Science and Technology a) akabe.koichi.zx8@is.naist.jp b) neubig@is.naist.jp c) ssakti@is.naist.jp d) tomoki@is.naist.jp
μ μ μ s t j2 fct T () = a() t e π s t ka t e e j2π fct j2π fcτ0 R() = ( τ0) xt () = α 0 dl () pt ( lt) + wt () l wt () N 2 (0, σ ) Time-Delay Estimation Bias / T c 0.4 0.3 0.2 0.1 0-0.1-0.2-0.3 In-phase
Elements of Information Theory
Elements of Information Theory Model of Digital Communications System A Logarithmic Measure for Information Mutual Information Units of Information Self-Information News... Example Information Measure
Q L -BFGS. Method of Q through full waveform inversion based on L -BFGS algorithm. SUN Hui-qiu HAN Li-guo XU Yang-yang GAO Han ZHOU Yan ZHANG Pan
3 2015 12 GLOBAL GEOLOGY Vol. 3 No. Dec. 2015 100 5589 2015 0 1106 07 L BFGS Q 130026 Q 2D L BFGS Marmousi Q L BFGS P631. 3 A doi 10. 3969 /j. issn. 1005589. 2015. 0. 02 Method of Q through full waveform
HDD. Point to Point. Fig. 1: Difference of time response by location of zero.
Trajectory Tracking Control using Two-degree-of-freedom Control Based on Zero-Phase-Minimum-Phase Function Factorization for Nonminimum-Phase Continuous-Time System T. Shiraishi and H. Fujimoto (The University
{takasu, Conditional Random Field
DEIM Forum 2016 C8-6 CRF 700 8530 3 1 1 700 8530 3 1 1 101 8430 2-1-2 E-mail: pobp52cw@s.okayama-u.ac.jp, ohta@de.cs.okayama-u.ac.jp, {takasu, adachi}@nii.ac.jp Conditional Random Field 1. Conditional
Άσκηση 10, σελ. 119. Για τη μεταβλητή x (άτυπος όγκος) έχουμε: x censored_x 1 F 3 F 3 F 4 F 10 F 13 F 13 F 16 F 16 F 24 F 26 F 27 F 28 F
Άσκηση 0, σελ. 9 από το βιβλίο «Μοντέλα Αξιοπιστίας και Επιβίωσης» της Χ. Καρώνη (i) Αρχικά, εισάγουμε τα δεδομένα στο minitab δημιουργώντας δύο μεταβλητές: τη x για τον άτυπο όγκο και την y για τον τυπικό
Χαρακτηρισµός Νεοπλασµάτων στη Μαστογραφία από το Σχήµα της Παρυφής µε χρήση Νευρωνικών ικτύων
Χαρακτηρισµός Νεοπλασµάτων στη Μαστογραφία από το Σχήµα της Παρυφής µε χρήση Νευρωνικών ικτύων Χ. Γεωργίου 1 (xgeorgio@hol.gr),. Κάβουρας 2 (cavouras@hol.gr), Ν. ηµητρόπουλος 3, Σ. Θεοδωρίδης 1 (stheodor@di.uoa.gr)
Vol. 31,No JOURNAL OF CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb
Ξ 31 Vol 31,No 1 2 0 0 1 2 JOURNAL OF CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb 2 0 0 1 :025322778 (2001) 0120016205 (, 230026) : Q ( m 1, m 2,, m n ) k = m 1 + m 2 + + m n - n : Q ( m 1, m 2,, m
CorV CVAC. CorV TU317. 1
30 8 JOURNAL OF VIBRATION AND SHOCK Vol. 30 No. 8 2011 1 2 1 2 2 1. 100044 2. 361005 TU317. 1 A Structural damage detection method based on correlation function analysis of vibration measurement data LEI
Maxima SCORM. Algebraic Manipulations and Visualizing Graphs in SCORM contents by Maxima and Mashup Approach. Jia Yunpeng, 1 Takayuki Nagai, 2, 1
Maxima SCORM 1 2, 1 Muhammad Wannous 1 3, 4 2, 4 Maxima Web LMS MathML HTML5 Flot jquery JSONP JavaScript SCORM SCORM Algebraic Manipulations and Visualizing Graphs in SCORM contents by Maxima and Mashup
Τιμοκατάλογος λιανικής
Τιμοκατάλογος λιανικής 2013 Γ. Σεφέρη 28 - Κωνσταντινοπολίτικα 54 352 - Τηλ & Fax: 2310-322155 - www.apopsissound.gr T 1 Περιγραφή Τιμή Headphone design: Semi-open Headphone impedance: 600 ohms Frequency
Echo path identification for stereophonic acoustic echo cancellation without pre-processing
Echo path identification for stereophonic acoustic echo cancellation without pre-processing Yuusuke MIZUNO Takuya NUNOME Akihiro HIRANO Kenji NAKAYAMA Division of Electronics and Computer Science Graduate
Bundle Adjustment for 3-D Reconstruction: Implementation and Evaluation
3 2 3 2 3 undle Adjustment or 3-D Reconstruction: Implementation and Evaluation Yuuki Iwamoto, Yasuyuki Sugaya 2 and Kenichi Kanatani We describe in detail the algorithm o bundle adjustment or 3-D reconstruction
7AAC63-90 SINGLE-PHASE MOTORS PERMANENT CAPACITOR 7AACC SINGLE-PHASE MOTORS CAP START - CAP RUN. squirrel cage induction motors 7AACC63-100
7AAC63-90 SINGLE-PHASE MOTORS PERMANENT CAPACITOR squirrel cage induction motors 7AACC63-100 SINGLE-PHASE MOTORS CAP START - CAP RUN Electric Motors Division WELLINGBOROUGH 7AACC63-100 EXICO LIMITED, 16
6.003: Signals and Systems. Modulation
6.003: Signals and Systems Modulation May 6, 200 Communications Systems Signals are not always well matched to the media through which we wish to transmit them. signal audio video internet applications
JOURNAL OF APPLIED SCIENCES Electronics and Information Engineering. Cyclic MUSIC DOA TN (2012)
30 01 3 JOURNAL OF APPLIED SCIENCES Electronics and Information Engineering Vol. 30 No. Mar. 01 DOI: 10.3969/j.issn.055-897.01.0.007 DOA 1, 1 1. 150001. 15007 DOA DOA. Cyclic MUSIC.. DOA TN911.7 055-89701)0-0146-05
: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM
2008 6 Chinese Journal of Applied Probability and Statistics Vol.24 No.3 Jun. 2008 Monte Carlo EM 1,2 ( 1,, 200241; 2,, 310018) EM, E,,. Monte Carlo EM, EM E Monte Carlo,. EM, Monte Carlo EM,,,,. Newton-Raphson.