Cubic Γ-n normed linear spaces

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Cubic Γ-n normed linear spaces"

Transcript

1 Malaya Journal of Maemaik, Vol. 6, No. 3, , 18 hps://doi.org/1.6637/mjm63/8 Cubic Γ-n normed linear spaces P. R. Kavyasree1 * and B. Surender Reddy Absrac This paper is aimed o propose he noion of cubic Γ-n-normed linear spaces based on he heory of cubic n-normed linear space, fuzzy n-normed linear space, inerval valued fuzzy n-normed linear space and cubic ses. The concep of convergence and Cauchy sequences in cubic Γ-n-normed linear space are inroduced and we provide some resuls on i. Also, his paper inroduces he noion of compleeness in cubic Γ-n-normed linear Keywords Cubic Γ-n-normed linear space, cubic n-normed linear space, inerval valued fuzzy n-normed linear space, cubic ses. AMS Subjec Classificaion 46-XX, 46S4, 3E7. 1, Deparmen of Mahemaics, Osmania Universiy, Hyderabad-57, India. *Corresponding auhor: 1 kavyasree.anu@gmail.com; bsrmahou@osmania.ac.in Aricle Hisory: Received 8 March 18; Acceped 1 Sepember 18 Conens 1 Inroducion Preliminaries Main Resuls References Inroducion A significan heory on -normed space was iniially inroduced by Gahler []. Consequenly, Misak [9], Kim and Cho, Malceski [8], Hendra Gunwan and Mashadi [3] ook an effor in developing his heory o a grea exen. Zadeh [17] in 1965, firs inroduced he noion of fuzzy ses. This inroducion laid foundaion for he developmen of various srucures in mahemaics. This heory has a wide range of applicaions in several branches of mahemaics such as logic se heory, group heory, real analysis, measure heory, opology ec. Fuzzy groups, fuzzy rings, fuzzy semigroup, fuzzy opology, fuzzy norm and so on are few ineresing opics emerged afer he developmen of fuzzy ses. Fuzzy conceps also play a vial role in image processing, Paern recogniion, medical diagnosis, neural nework heory on so on. Laer on, he noion of inerval-valued fuzzy ses was inroduced by Zadeh [18] in 1975, as an exension of fuzzy ses, ha is, fuzzy ses wih inerval valued membership funcions. Kasaras and Liu [7] inroduced he conceps of fuzzy vecor and fuzzy opological vecor spaces. In sudying fuzzy opological vecor spaces, c 18 MJM. Kasaras in 1984 [6], firs inroduced he noion of fuzzy norm on a linear In [1] Vijayabalaji inroduced he noion of fuzzy n-normed linear space as a generalisaion of n-normed space by Gunwan and Mashadi. The concep of inuionisic n-normed linear space, inerval valued fuzzy linear space and inerval valued fuzzy n-normed linear space are discussed in [14], [13]. Jun e al.[4] have inroduced a noiceable heory of cubic ses which comprises of inerval-valued fuzzy se and a fuzzy se. A deailed heory of cubic linear space can be found in [16], [15]. The concep of Γ-ring was inroduced by Nobusawa [11] more general han a ring. Barnes [1] gave he definiion of Γ-ring as a generalisaion of a ring and he has developed some oher conceps of Γ-rings such as Γ-homomorphism, prime and primary ideals, m-sysems ec. The noion of Γ-vecor spaces was inroduced by Sabur Uddin and Payer Ahamed [1]. Inspired by he above heories Vijayabalaji [5] consruced -normed and n-normed lef Γ-linear space as a generalisaion of n-normed linear He also inroduced he noion of n-funcional in n-normed lef Γ-linear Inspiried by he above heory we inroduce he noion of cubic Γ-n-normed linear space and also define convergen and cauchy sequences in cubic Γ-n-normed linear. Preliminaries Definiion.1. Le M and Γ be wo addiive abelian groups. Suppose ha here is a mapping from M Γ M M (send-

2 Cubic Γ-n normed linear spaces 644/647 Example.7. Le V = R, be a lef Γ-linear space over a division Γ ring = R. Le Γ = Z be an addiive abelian group and define k.,...,.k on V by ing (x, α, y) ino xαy) such ha (1) (x + y)αz = xαz + yαz () x(α + β )z = xαz + xβ z (3) xα(y + z) = xαy + xαz (4) (xαy)β z = xα(yβ z) where x, y, z M and α, β Γ. Then M is called a Γ-ring. kδ1 γv1, δ γv,..., δn γvn k =... de(δi γvki ) k1 Definiion.. A subse A of he Γ-ring M is a lef (righ) ideal of M if A is an addiive abelian subgroup of M and MΓA = {cαa c M, α Γ, a A} (AΓM = {aαc a A, α Γ, c M}) is conained in A. If A is boh a lef and a righ ideal of M, hen we say ha A is an ideal or wo sided ideal of M. kn Then (V, k.,...,.k) is called an n-normed lef Γ-linear space over. Definiion.8. A sequence {δn γvn } in an n-normed lef Γlinear space (V, k.,...,.k) is said o converge o δ γv V if lim kδ1 γv1, δ γv,..., δn 1 γvn 1, δn γvn δ γvk =. n Definiion.9. A sequence {δn γvn } in an n-normed lef Γlinear space (V, k.,...,.k) is called a cauchy sequence if Definiion.3. Le M be a Γ-ring. Then M is called a division Γ-ring if i has an ideniy elemen and is only non zero ideal is iself. lim kδ1 γv1, δ γv,..., δn 1 γvn 1, δn γvn δk γvk k =. Definiion.4. Le (V, +) be an abelian group. Le be a division Γ-ring wih ideniy 1 and le ϕ : Γ V V, where we denoe ϕ(δ, γ, v) by (δ γv). Then V is called a lef Γ-vecor space over, if for all δ1, δ, v1, v V and β, γ Γ, he following hold (1) δ1 γ(v1 + v ) = δ1 γv1 + δ γv () (δ1 + δ )γv1 = δ1 γv1 + δ γv (3) (δ1 β δ )γv1 = δ1 β (δ γv1 ) (4) 1γv1 = v1 for some γ Γ We call he elemens v of V are vecors and he elemens δ of are scalars. We also call δ γv he scalar muliple of v by δ. Similarly, we can also define righ Γ-vecor space over. Definiion.5. Le V be a lef Γ- linear space over. A real valued funcion k.,.k : V V [, ) saisfying he following properies. (1) kδ1 γv1, δ γv k = if and only if v1 and v are linearly Γ dependen over () kδ1 γv1, δ γv = kδ γv, δ1 γv1 (3) kδ1 γv1, αδ γv k = α kδ1 γv1, δ γv k for any α Γ (4) kδ1 γv1, δ γv +δ3 γv3 k kδ1 γv1, δ γv k+kδ1 γv1, δ3 γv3 k for all δ1, δ, δ3, v1, v, v3 V, γ Γ. is called -norm on lef Γ-linear space V and he pair ( V,.,. ) is called an -normed lef Γ-linear space over. Definiion.6. Le V be a lef Γ- linear space over. A real valued funcion on V n saisfying he following four properies: (1) kδ1 γv1, δ γv,..., δn γvn k = if any only if v1,v,..., vn are linearly Γ-dependen over () kδ1 γv1, δ γv,..., δn γvn k is invarian under any permuaion of v1, v,...,vn (3) kδ1 γv1, δ γv,..., αδn γvn k = α kδ1 γv1, δ γv,..., δn γvn k, for any α Γ (4) kδ1 γv1, δ γv,..., δn 1 γvn 1, δ γy + δ γzk kδ1 γv1,..., δn 1 γvn 1, δ γyk + kδ1 γv1,..., δn 1 γvn 1, δ γzk for all δ1, δ,..., δn, δn, δ, δ, v1, v,..., vn, y, z V, γ Γ is called an n-norm on lef Γ-linear space V and he pair (V, k.,...,.k) is called an n-normed lef Γ-linear space over. Definiion.1. An n-normed lef Γ-linear space is said o be complee if every cauchy sequence in i is convergen. Definiion.11. An inerval number on [, 1], say a, is a closed sub inerval of [, 1], ha is a = [a, a+ ], where a a+ 1. Le D[, 1] denoe he family of all closed subinervals of [, 1], ha is, D[, 1] = {a = [a, a+ ] : a a+ and a, a+ [, 1]}. Definiion.1. Le X be a se. A mapping A : X D[, 1] is called an inerval valued fuzzy se (briefly, an i-v fuzzy se) of X, where A(x) = [A (x), A+ (x)], for all x X, and A and A+ are fuzzy ses in X such ha A (x) A+ (x) for all x X. Definiion.13. Le X be a nonempy se. A cubic se A in a se X is a srucure A ={hx, µ A (x), λ (x)i : x X} which is briefly denoed by A =hµ A, λ i where µ A = [µa, µa+ ] is an inerval valued fuzzy se (briefly, IVF) in X and λ : X [, 1] is a fuzzy se in X. Definiion.14. Le V be a linear space over a field F, (V, µ) be an inerval-valued fuzzy linear space and (V, η) be a fuzzy linear space of V. A cubic se A = hµ, ηi in V is called a cubic linear space of V if i saisfies for all x, y V and α, β F: (a) µ(αx β y) min{µ(x), µ(y)}, (b) η(αx β y) max{η(x), η(y)}. Definiion.15. A binary operaion : [, 1] [, 1] [, 1] is a coninuous -norm if saisfies he following condiions: (1) is commuaive and associaive. () is coninuous. (3) a 1 = a for all a [, 1]. (4) a b c d whenever a c and b d and a, b, c, d [, 1]. Definiion.16. A binary operaion : [, 1] [, 1] [, 1] is a coninuous -co-norm if saisfies he following condiions: (1) is commuaive and associaive. () is coninuous. (3) a = a, for all a [, 1]. (4) a b c d whenever a c and b d and a, b, c, d [, 1]. 644

3 Cubic Γ-n normed linear spaces 645/647 r < 1, here exiss an ineger n N such ha N(δ1 γv1, δ γv,..., δn γvn δ γv,) < r and N(δ1 γv1, δ γv,..., δn γvn δ γv,) > 1 r for all n n 3. Main Resuls : V n [, ) Le V be a lef Γ- linear space over. Le N [, 1] and N : X n [, ) [, 1] be a fuzzy se and an inervalvalued fuzzy se respecively. A srucure C = (V, N, N) is a cubic Γ-n-normed linear space (or) briefly cubic Γ-n- NLS if i saisfies he following properies: (1) N(δ1 γv1, δ γv,..., δn γvn,) >. () N(δ1 γv1, δ γv,..., δn γvn,) = if and only if v1, v,..., vn are linearly dependen. (3) N(δ1 γv1, δ γv,..., δn γvn,) is invarian under any permuaion of v1, v,..., vn. (4) N(δ1 γv1, δ γv,..., cδn γvn,) = N(δ1 γv1, δ γv,..., δn γvn, c ), if c 6=, c Γ. Theorem 3.. In a cubic Γ n-nls C = (V, N, N) a sequence {δn γvn } converges o δ γv if and only if N(δ1 γv1, δ γv,..., δn γvn δ γv,) and N(δ1 γv1, δ γv,..., δn γvn δ γv,) 1, as n Proof. Fix >. Suppose {δn γvn } converges o δ γv. Then for a given r, < r < 1, here exiss an ineger n N such ha N(δ1 γv1, δ γv,..., δn γvn δ γv,) < r and N(δ1 γv1, δ γv,..., δn γvn δ γv,) > 1 r. Thus N(δ1 γv1, δ γv,..., δn γvn δ γv,) < r and 1 N(δ1 γv1, (5) N(δ1 γv1, δ γv,..., δn γvn +δn γvn, s+) N(δ1 γv1, δ γv, δ γv,..., δn γvn δ γv,) < r and hence N(δ1 γv1, δ γv,...,..., δn γvn, s) N(δ1 γv1, δ γv,..., δn γvn,). δn γvn δ γv,) and (6) N(δ1 γv1, δ γv,..., δn γvn,) is lef coninuous and nonn(δ1 γv1, δ γv,..., δn γvn δ γv,) 1, as n. increasing funcion of R such ha conversely, if for each >, N(δ1 γv1, δ γv,..., δn γvn δ γv,) and N(δ1 γv1, δ γv,..., δn γvn δ γv,) 1, as lim N(δ1 γv1, δ γv,..., δn γvn,) =. n, hen for every r, < r < 1, here exiss an ineger n such ha N(δ1 γv1, δ γv,..., δn γvn δ γv,) < r and (7) N(δ1 γv1, δ γv,..., δn γvn,) >. 1 N(δ1 γv1, δ γv,..., δn γvn δ γv,) < r for all n n. (8) N(δ1 γv1, δ γv,..., δn γvn,) = 1 if and only if v1, v,..., vn Thus N(δ1 γv1, δ γv,..., δn γvn δ γv,) < r and N(δ1 γv1, are linearly dependen. δ γv,..., δn γvn δ γv,) > 1 r for all n n. Hence {δn γvn } (9) N(δ1 γv1, δ γv,..., δn γvn,) is invarian under any perconverges o δ γv in C = (V, N, N). muaion of v1, v,..., vn. (1) N(δ1 γv1, δ γv,..., cδn γvn,) = N(δ1 γv1, δ γv,..., Definiion 3.3. A sequence {δn γvn } in a cubic Γ-n-NLS C = δn γvn, c ), if c 6=, c Γ. (V, N, N) is said o be cauchy sequence if given ε >, wih (11) N(δ1 γv1, δ γv,..., δn γvn + δn γvn, s + ) N(δ1 γv1, < ε < 1, > here exiss an ineger n N such ha δ γv,..., δn γvn, s) N(δ1 γv1, δ γv,..., δn γvn,). N(δ1 γv1, δ γv,..., δn γvn δk γvk,) < ε and N(δ1 γv1, (1) N(δ1 γv1, δ γv,..., δn γvn,) is lef coninuous and non- δ γv,..., δn γvn δk γvk,) > 1 ε for all n, k n. decreasing funcion of R such ha Theorem 3.4. In a cubic Γ-n-NLS C = (V, N, N) every conlim N(δ1 γv1, δ γv,..., δn γvn,) = 1. vergen sequence is a cauchy sequence. Example Le (V, k.,...,.k) be an n-normed lef Γ-linear space over. Define a b = min{a, b} and a b = max{a, b} for a, b [, 1]. Also define N(δ1 γv1, δ γv,..., δn γvn,) = kδ1 γv1, δ γv,..., δn γvn k + kδ1 γv1, δ γv,..., δn γvn k and N(δ1 γv1, δ γv,..., δn γvn,) =. + kδ1 γv1, δ γv,..., δn γvn k Then C = (V, N, N) is a cubic Γ-n-normed linear Noion of Convergen sequence and Cauchy sequence in a cubic Γ-n-normed linear space Definiion 3.1. A sequence {δn γvn } in C = (V, N, N) a cubic Γ-n-NLS is said o converge o δ γv if given r >, >, < Proof. Le {δn γvn } be a convergen sequence in C = (V, N, N). Suppose {δn γvn } converges o δ γv. Le > and ε (, 1). Choose r (, 1) such ha r r < ε and (1 r) (1 r) > 1 ε. Since {δn γvn } converges o δ γv, we have an ineger n N 3 N(δ1 γv1, δ γv,..., δn γvn δ γv, ) < r and N(δ1 γv1, δ γv,..., δn γvn δ γv, ) > 1 r for all n n. Now, N(δ1 γv1, δ γv,..., δn γvn δk γvk,) = N(δ1 γv1, δ γv,..., δn γvn δ γv + δ γv δk γvk, + ) N(δ1 γv1, δ γv,..., δn γvn δ γv, ) N(δ1 γv1, δ γv,..., δn γvn δ γv, ) < r r f orall n, k n < ε f orall n, k n. Also, N(δ1 γv1, δ γv,..., δn γvn δk γvk,) = N(δ1 γv1, δ γv,..., δn γvn δ γv + δ γv δk γvk, + ) N(δ1 γv1, δ γv,..., δn γvn δ γv, ) N(δ1 γv1, δ γv,..., δn γvn δ γv, ) > (1 r) (1 r) f orall n, k n 645

4 Cubic Γ-n normed linear spaces 646/647 δ γv. We need o prove ha {δn γvn } converges o δ γv. Le > and ε (, 1). Choose r (, 1) suchha r r < ε and (1 r) (1 r) > 1 ε. Given ha {δn γvn } is a cauchy sequence, here exiss an ineger n N 3 N(δ1 γv1, δ γv,..., δn γvn δk γvk, ) < r and N(δ1 γv1, δ γv,..., δn γvn δk γvk, ) > 1 r for all n, k n. Also since {δn γvnk } converges o δ γv, here is a posiive ik > n 3 N(δ1 γv1, δ γv,..., δn γvik δ γv, ) < r and N(δ1 γv1, δ γv,..., δn γvik -δ γv, ) > 1 r Now, N(δ1 γv1, δ γv,..., δn γvn δ γv,) = N(δ1 γv1, δ γv,..., δn γvn δn γvik + δn γvik δ γv, + ) N(δ1 γv1,..., δn γvn δn γvik, ) N(δ1 γv1,..., δn γvik δ γv, ) < r r < ε. Also N(δ1 γv1, δ γv,..., δn γvn δ γv,) = N(δ1 γv1, δ γv,..., δn γvn δn γvik + δn γvik δ γv + ) N(δ1 γv1,..., δn γvn δn γvik, ) N(δ1 γv1,..., δn γvik δ γv, ) > (1 r) (1 r) > 1 ε. Therefore {δn γvn } converges o δ γv in C = (V, N, N) and hence i is complee. > 1 ε f orall n, k n Therefore {δn γvn } is a cauchy sequence in C = (V, N, N). Definiion 3.5. A cubic Γ-n-NLS C = (V, N, N) is said o be complee if every cauchy sequence in i is convergen. Remark 3.6. The following example shows ha here may exis cauchy sequence in cubic Γ-n-NLS C = (V, N, N) which is no convergen. Example 3.7. Consider a cubic Γ-n-NLS C = (V, N, N) as in he previous example Le {δn γvn } be a sequence in C = (V, N, N) hen (a) {δn γvn } is a cauchy sequence in (V, k.,...,.k) if and only if {δn γvn } is a cauchy sequence in C = (V, N, N). (b) {δn γvn } is a convergen sequence in (V, k.,...,.k) if and only if {δn γvn } is convergen in C = (V, N, N). Proof. (a) {δn γvn } is a cauchy sequence in (V, k.,...,.k) lim kδ1 γv1, δ γv,..., δn γvn δk γvk k = lim N(δ1 γv1, δ γv,..., δn γvn δk γvk ) kδ1 γv1,δ γv,...,δn γvn δk γvk k +kδ1 γv1,δ γv,...,δn γvn δk γvk k = and = lim N(δ1 γv1, δ γv,..., δn γvn δk γvk ) = +kδ γv,δ γv,...,δ =1 n γvn δk γvk k 1 1 N(δ1 γv1, δ γv,..., δn γvn δk γvk,) and N(δ1 γv1, δ γv,..., δn 1 γvn 1, δn γvn δk γvk,) 1 as n, k N(δ1 γv1, δ γv,..., δn γvn δk γvk,) < r and N(δ1 γv1, δ γv,..., δn γvn δk γvk,) > 1 r, r (, 1), n, k n {δn γvn } is a cauchy sequence in C (b) {δn γvn } is a convergen sequence in (V, k.,...,.k) lim kδ1 γv1, δ γv,..., δn γvn δ γvk = Acknowledgmen This work is financially suppored by Council of Scienific and Indusrial Research(CSIR). References [1] n lim N(δ1 γv1, δ γv,..., δn γvn δ γv) [] = = and lim N(δ1 γv1, δ γv,..., δn γvn δ γv) [3] kδ1 γv1,δ γv,...,δn γvn δ γvk +kδ1 γv1,δ γv,...,δn γvn δ γvk [4] = +kδ γv,δ γv,...,δn γvn δ γvk = N(δ1 γv1, δ γv,..., δn γvn δ γv,) and N(δ1 γv1, δ γv,..., δn γvn δ γv,) 1 as n N(δ1 γv1, δ γv,..., δn γvn δ γv,) < r and N(δ1 γv1, δ γv,..., δn γvn δ γv,) > 1 r, r (, 1), n n {δn γvn } is a convergen sequence in C Thus if here exiss an n-normed lef Γ-linear space (V, k.,...,.k) which is no complee, hen he cubic Γ-n norm induced by such a crisp n-norm k.,...,.k on an incomplee n-normed lef Γ linear space V is an incomplee cubic Γ-n normed linear [5] [6] [7] [8] [9] Theorem 3.8. A cubic Γ-n-NLS C = (V, N, N) in which every cauchy sequence has a convergen subsequence is complee. [1] Proof. Le {δn γvn } be a cauchy sequence in C = (V, N, N) and {δn γvnk } be a subsequence of {δn γvn } ha converges o 646 W.Barnes, On he Γ-rings of Nobusawa, Pacific Journal of Mahemaics, 18 (1966), S Gahler, Lineare -normiere raume,mah. Nachr., 8(1965), H. Gunawan and Mashadi, On n-normed spaces, In. J. Mah. Mah. Sci., 7(1)(1), YB Jun, CS Kim, and MS Kang, Cubic subalgebras and ideals of bck/bci-algebras, Far Eas Journal of Mahemaical Sciences 44(1), S Kalaiselvan and S Sivaramakrishnan. S. vijayabalaji, n-normed lef Γ-linear space, Inernaional Journal of Applied Engineering Research, 1(7)(15), A. K. Kasaras, Fuzzy opological vecor spaces, Fuzzy ses and sysems, 1 (1984), A. K. Kasaras and Dar B Liu, Fuzzy vecor spaces and fuzzy opological vecor spaces, Journal of Mahemaical Analysis and Applicaions, 58(1977), A. Malcheski, Srong convex n-normed spaces, Ma. Bilen, 1(1997), A. Misiak, n-inner produc spaces, Mah. Nachr, 14(1989), AL Narayanan and S Vijayabalaji, Fuzzy n-normed linear space, Inernaional Journal of Mahemaics and Mahemaical Sciences, 4(5),

5 Cubic Γ-n normed linear spaces 647/647 [11] [1] [13] [14] [15] [16] [17] [18] Nobuo Nobusawa, On a generalizaion of he ring heory, Osaka Journal of Mahemaics, 1(1964), Md. Sabur Uddin and Payer Ahmed, Gamma vecor spaces and heir generalizaion, Inernaional Archive of Applied Sciences and Technology, (11), S Vijayabalaji, S Ania Shanhi and N Thillaigovindan, Inerval valued fuzzy n-normed linear space, Journal of Fundamenal Sciences, 4(8), S Vijayabalaji, N Thillaigovindan and Young-Bae Jun, Inuiionisic fuzzy n-normed linear space, Bullein of he Korean Mahemaical Sociey, 44(7), S Vijayabalaji, Cubic n- Normed Linear Space, Lamber Academic Publishers, 17. S Vijayabalaji and S Sivaramakrishnan, A cubic se heoreical approach o linear space, Absrac and Applied Analysis, Hindawi, 15. L A Zadeh, Informaion and conrol, Fuzzy ses, 8(1965), L A Zadeh, The concep of a linguisic variable and is applicaion o approximae reasoning, Informaion sciences, 8(3)(1975), ????????? ISSN(P): Malaya Journal of Maemaik ISSN(O): ????????? 647

On Strong Product of Two Fuzzy Graphs

On Strong Product of Two Fuzzy Graphs Inernaional Journal of Scienific and Research Publicaions, Volume 4, Issue 10, Ocober 014 1 ISSN 50-3153 On Srong Produc of Two Fuzzy Graphs Dr. K. Radha* Mr.S. Arumugam** * P.G & Research Deparmen of

Διαβάστε περισσότερα

Homomorphism in Intuitionistic Fuzzy Automata

Homomorphism in Intuitionistic Fuzzy Automata International Journal of Fuzzy Mathematics Systems. ISSN 2248-9940 Volume 3, Number 1 (2013), pp. 39-45 Research India Publications http://www.ripublication.com/ijfms.htm Homomorphism in Intuitionistic

Διαβάστε περισσότερα

Intuitionistic Fuzzy Ideals of Near Rings

Intuitionistic Fuzzy Ideals of Near Rings International Mathematical Forum, Vol. 7, 202, no. 6, 769-776 Intuitionistic Fuzzy Ideals of Near Rings P. K. Sharma P.G. Department of Mathematics D.A.V. College Jalandhar city, Punjab, India pksharma@davjalandhar.com

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

Necessary and sufficient conditions for oscillation of first order nonlinear neutral differential equations

Necessary and sufficient conditions for oscillation of first order nonlinear neutral differential equations J. Mah. Anal. Appl. 321 (2006) 553 568 www.elsevier.com/locae/jmaa Necessary sufficien condiions for oscillaion of firs order nonlinear neural differenial equaions X.H. ang a,, Xiaoyan Lin b a School of

Διαβάστε περισσότερα

A Note on Intuitionistic Fuzzy. Equivalence Relation

A Note on Intuitionistic Fuzzy. Equivalence Relation International Mathematical Forum, 5, 2010, no. 67, 3301-3307 A Note on Intuitionistic Fuzzy Equivalence Relation D. K. Basnet Dept. of Mathematics, Assam University Silchar-788011, Assam, India dkbasnet@rediffmail.com

Διαβάστε περισσότερα

( ) ( ) ( ) Fourier series. ; m is an integer. r(t) is periodic (T>0), r(t+t) = r(t), t Fundamental period T 0 = smallest T. Fundamental frequency ω

( ) ( ) ( ) Fourier series. ; m is an integer. r(t) is periodic (T>0), r(t+t) = r(t), t Fundamental period T 0 = smallest T. Fundamental frequency ω Fourier series e jm when m d when m ; m is an ineger. jm jm jm jm e d e e e jm jm jm jm r( is periodi (>, r(+ r(, Fundamenal period smalles Fundamenal frequeny r ( + r ( is periodi hen M M e j M, e j,

Διαβάστε περισσότερα

A Note on Characterization of Intuitionistic Fuzzy Ideals in Γ- Near-Rings

A Note on Characterization of Intuitionistic Fuzzy Ideals in Γ- Near-Rings International Journal of Computational Science and Mathematics. ISSN 0974-3189 Volume 3, Number 1 (2011), pp. 61-71 International Research Publication House http://www.irphouse.com A Note on Characterization

Διαβάστε περισσότερα

Homomorphism and Cartesian Product on Fuzzy Translation and Fuzzy Multiplication of PS-algebras

Homomorphism and Cartesian Product on Fuzzy Translation and Fuzzy Multiplication of PS-algebras Annals of Pure and Applied athematics Vol. 8, No. 1, 2014, 93-104 ISSN: 2279-087X (P), 2279-0888(online) Published on 11 November 2014 www.researchmathsci.org Annals of Homomorphism and Cartesian Product

Διαβάστε περισσότερα

SOME PROPERTIES OF FUZZY REAL NUMBERS

SOME PROPERTIES OF FUZZY REAL NUMBERS Sahand Communications in Mathematical Analysis (SCMA) Vol. 3 No. 1 (2016), 21-27 http://scma.maragheh.ac.ir SOME PROPERTIES OF FUZZY REAL NUMBERS BAYAZ DARABY 1 AND JAVAD JAFARI 2 Abstract. In the mathematical

Διαβάστε περισσότερα

Congruence Classes of Invertible Matrices of Order 3 over F 2

Congruence Classes of Invertible Matrices of Order 3 over F 2 International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and

Διαβάστε περισσότερα

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

Commutative Monoids in Intuitionistic Fuzzy Sets

Commutative Monoids in Intuitionistic Fuzzy Sets Commutative Monoids in Intuitionistic Fuzzy Sets S K Mala #1, Dr. MM Shanmugapriya *2 1 PhD Scholar in Mathematics, Karpagam University, Coimbatore, Tamilnadu- 641021 Assistant Professor of Mathematics,

Διαβάστε περισσότερα

J. of Math. (PRC) u(t k ) = I k (u(t k )), k = 1, 2,, (1.6) , [3, 4] (1.1), (1.2), (1.3), [6 8]

J. of Math. (PRC) u(t k ) = I k (u(t k )), k = 1, 2,, (1.6) , [3, 4] (1.1), (1.2), (1.3), [6 8] Vol 36 ( 216 ) No 3 J of Mah (PR) 1, 2, 3 (1, 4335) (2, 4365) (3, 431) :,,,, : ; ; ; MR(21) : 35A1; 35A2 : O17529 : A : 255-7797(216)3-591-7 1 d d [x() g(, x )] = f(, x ),, (11) x = ϕ(), [ r, ], (12) x(

Διαβάστε περισσότερα

Homomorphism of Intuitionistic Fuzzy Groups

Homomorphism of Intuitionistic Fuzzy Groups International Mathematical Forum, Vol. 6, 20, no. 64, 369-378 Homomorphism o Intuitionistic Fuzz Groups P. K. Sharma Department o Mathematics, D..V. College Jalandhar Cit, Punjab, India pksharma@davjalandhar.com

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

( ) ( t) ( 0) ( ) dw w. = = β. Then the solution of (1.1) is easily found to. wt = t+ t. We generalize this to the following nonlinear differential

( ) ( t) ( 0) ( ) dw w. = = β. Then the solution of (1.1) is easily found to. wt = t+ t. We generalize this to the following nonlinear differential Periodic oluion of van der Pol differenial equaion. by A. Arimoo Deparmen of Mahemaic Muahi Iniue of Technology Tokyo Japan in Seminar a Kiami Iniue of Technology January 8 9. Inroducion Le u conider a

Διαβάστε περισσότερα

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p) Uppsala Universitet Matematiska Institutionen Andreas Strömbergsson Prov i matematik Funktionalanalys Kurs: F3B, F4Sy, NVP 2005-03-08 Skrivtid: 9 14 Tillåtna hjälpmedel: Manuella skrivdon, Kreyszigs bok

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

Nonlinear Analysis: Modelling and Control, 2013, Vol. 18, No. 4,

Nonlinear Analysis: Modelling and Control, 2013, Vol. 18, No. 4, Nonlinear Analysis: Modelling and Conrol, 23, Vol. 8, No. 4, 493 58 493 Exisence and uniqueness of soluions for a singular sysem of higher-order nonlinear fracional differenial equaions wih inegral boundary

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

1. Introduction and Preliminaries.

1. Introduction and Preliminaries. Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.yu/filomat Filomat 22:1 (2008), 97 106 ON δ SETS IN γ SPACES V. Renuka Devi and D. Sivaraj Abstract We

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER ORDINAL ARITHMETIC JULIAN J. SCHLÖDER Abstract. We define ordinal arithmetic and show laws of Left- Monotonicity, Associativity, Distributivity, some minor related properties and the Cantor Normal Form.

Διαβάστε περισσότερα

Solution Series 9. i=1 x i and i=1 x i.

Solution Series 9. i=1 x i and i=1 x i. Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x

Διαβάστε περισσότερα

Appendix. The solution begins with Eq. (2.15) from the text, which we repeat here for 1, (A.1)

Appendix. The solution begins with Eq. (2.15) from the text, which we repeat here for 1, (A.1) Aenix Aenix A: The equaion o he sock rice. The soluion egins wih Eq..5 rom he ex, which we reea here or convenience as Eq.A.: [ [ E E X, A. c α where X u ε, α γ, an c α y AR. Take execaions o Eq. A. as

Διαβάστε περισσότερα

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X.

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X. Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequalit for metrics: Let (X, d) be a metric space and let x,, z X. Prove that d(x, z) d(, z) d(x, ). (ii): Reverse triangle inequalit for norms:

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS FUMIE NAKAOKA AND NOBUYUKI ODA Received 20 December 2005; Revised 28 May 2006; Accepted 6 August 2006 Some properties of minimal closed sets and maximal closed

Διαβάστε περισσότερα

Anti-aliasing Prefilter (6B) Young Won Lim 6/8/12

Anti-aliasing Prefilter (6B) Young Won Lim 6/8/12 ni-aliasing Prefiler (6B) Copyrigh (c) Young W. Lim. Permission is graned o copy, disribue and/or modify his documen under he erms of he GNU Free Documenaion License, Version. or any laer version published

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Some new generalized topologies via hereditary classes. Key Words:hereditary generalized topological space, A κ(h,µ)-sets, κµ -topology.

Some new generalized topologies via hereditary classes. Key Words:hereditary generalized topological space, A κ(h,µ)-sets, κµ -topology. Bol. Soc. Paran. Mat. (3s.) v. 30 2 (2012): 71 77. c SPM ISSN-2175-1188 on line ISSN-00378712 in press SPM: www.spm.uem.br/bspm doi:10.5269/bspm.v30i2.13793 Some new generalized topologies via hereditary

Διαβάστε περισσότερα

Fractional Colorings and Zykov Products of graphs

Fractional Colorings and Zykov Products of graphs Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is

Διαβάστε περισσότερα

Approximation of the Lerch zeta-function

Approximation of the Lerch zeta-function Approximaion of he Lerch zea-funcion Ramūna Garunkši Deparmen of Mahemaic and Informaic Vilniu Univeriy Naugarduko 4 035 Vilniu Lihuania ramunagarunki@mafvul Abrac We conider uniform in parameer approximaion

Διαβάστε περισσότερα

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions International Journal of Computational Science and Mathematics. ISSN 0974-89 Volume, Number (00), pp. 67--75 International Research Publication House http://www.irphouse.com Coefficient Inequalities for

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

Cyclic or elementary abelian Covers of K 4

Cyclic or elementary abelian Covers of K 4 Cyclic or elementary abelian Covers of K 4 Yan-Quan Feng Mathematics, Beijing Jiaotong University Beijing 100044, P.R. China Summer School, Rogla, Slovenian 2011-06 Outline 1 Question 2 Main results 3

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

Concrete Mathematics Exercises from 30 September 2016

Concrete Mathematics Exercises from 30 September 2016 Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)

Διαβάστε περισσότερα

On the Galois Group of Linear Difference-Differential Equations

On the Galois Group of Linear Difference-Differential Equations On the Galois Group of Linear Difference-Differential Equations Ruyong Feng KLMM, Chinese Academy of Sciences, China Ruyong Feng (KLMM, CAS) Galois Group 1 / 19 Contents 1 Basic Notations and Concepts

Διαβάστε περισσότερα

Generating Set of the Complete Semigroups of Binary Relations

Generating Set of the Complete Semigroups of Binary Relations Applied Mathematics 06 7 98-07 Published Online January 06 in SciRes http://wwwscirporg/journal/am http://dxdoiorg/036/am067009 Generating Set of the Complete Semigroups of Binary Relations Yasha iasamidze

Διαβάστε περισσότερα

Managing Production-Inventory Systems with Scarce Resources

Managing Production-Inventory Systems with Scarce Resources Managing Producion-Invenory Sysems wih Scarce Resources Online Supplemen Proof of Lemma 1: Consider he following dynamic program: where ḡ (x, z) = max { cy + E f (y, z, D)}, (7) x y min(x+u,z) f (y, z,

Διαβάστε περισσότερα

A Simple Version of the Lucas Model

A Simple Version of the Lucas Model Aricle non publié May 11, 2007 A Simple Version of he Lucas Model Mazamba Tédie Absrac This discree-ime version of he Lucas model do no include he physical capial. We inregrae in he uiliy funcion he leisure

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

Linear singular perturbations of hyperbolic-parabolic type

Linear singular perturbations of hyperbolic-parabolic type BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Number 4, 3, Pages 95 11 ISSN 14 7696 Linear singular perurbaions of hyperbolic-parabolic ype Perjan A. Absrac. We sudy he behavior of soluions

Διαβάστε περισσότερα

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018 Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

Mean-Variance Analysis

Mean-Variance Analysis Mean-Variance Analysis Jan Schneider McCombs School of Business University of Texas at Austin Jan Schneider Mean-Variance Analysis Beta Representation of the Risk Premium risk premium E t [Rt t+τ ] R1

Διαβάστε περισσότερα

Parametrized Surfaces

Parametrized Surfaces Parametrized Surfaces Recall from our unit on vector-valued functions at the beginning of the semester that an R 3 -valued function c(t) in one parameter is a mapping of the form c : I R 3 where I is some

Διαβάστε περισσότερα

Positive solutions for a multi-point eigenvalue. problem involving the one dimensional

Positive solutions for a multi-point eigenvalue. problem involving the one dimensional Elecronic Journal of Qualiaive Theory of Differenial Equaions 29, No. 4, -3; h://www.mah.u-szeged.hu/ejqde/ Posiive soluions for a muli-oin eigenvalue roblem involving he one dimensional -Lalacian Youyu

Διαβάστε περισσότερα

Uniform Convergence of Fourier Series Michael Taylor

Uniform Convergence of Fourier Series Michael Taylor Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula

Διαβάστε περισσότερα

The one-dimensional periodic Schrödinger equation

The one-dimensional periodic Schrödinger equation The one-dmensonal perodc Schrödnger equaon Jordan Bell jordan.bell@gmal.com Deparmen of Mahemacs, Unversy of Torono Aprl 23, 26 Translaons and convoluon For y, le τ y f(x f(x y. To say ha f : C s unformly

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

UNIT - I LINEAR ALGEBRA. , such that αν V satisfying following condition

UNIT - I LINEAR ALGEBRA. , such that αν V satisfying following condition UNIT - I LINEAR ALGEBRA Definition Vector Space : A non-empty set V is said to be vector space over the field F. If V is an abelian group under addition and if for every α, β F, ν, ν 2 V, such that αν

Διαβάστε περισσότερα

Oscillation criteria for two-dimensional system of non-linear ordinary differential equations

Oscillation criteria for two-dimensional system of non-linear ordinary differential equations Elecronic Journal of Qualiaive Theory of Differenial Equaions 216, No. 52, 1 17; doi: 1.14232/ejqde.216.1.52 hp://www.mah.u-szeged.hu/ejqde/ Oscillaion crieria for wo-dimensional sysem of non-linear ordinary

Διαβάστε περισσότερα

16. 17. r t te 2t i t 1. 18 19 Find the derivative of the vector function. 19. r t e t cos t i e t sin t j ln t k. 31 33 Evaluate the integral.

16. 17. r t te 2t i t 1. 18 19 Find the derivative of the vector function. 19. r t e t cos t i e t sin t j ln t k. 31 33 Evaluate the integral. SECTION.7 VECTOR FUNCTIONS AND SPACE CURVES.7 VECTOR FUNCTIONS AND SPACE CURVES A Click here for answers. S Click here for soluions. Copyrigh Cengage Learning. All righs reserved.. Find he domain of he

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

12. Radon-Nikodym Theorem

12. Radon-Nikodym Theorem Tutorial 12: Radon-Nikodym Theorem 1 12. Radon-Nikodym Theorem In the following, (Ω, F) is an arbitrary measurable space. Definition 96 Let μ and ν be two (possibly complex) measures on (Ω, F). We say

Διαβάστε περισσότερα

F19MC2 Solutions 9 Complex Analysis

F19MC2 Solutions 9 Complex Analysis F9MC Solutions 9 Complex Analysis. (i) Let f(z) = eaz +z. Then f is ifferentiable except at z = ±i an so by Cauchy s Resiue Theorem e az z = πi[res(f,i)+res(f, i)]. +z C(,) Since + has zeros of orer at

Διαβάστε περισσότερα

DIRECT PRODUCT AND WREATH PRODUCT OF TRANSFORMATION SEMIGROUPS

DIRECT PRODUCT AND WREATH PRODUCT OF TRANSFORMATION SEMIGROUPS GANIT J. Bangladesh Math. oc. IN 606-694) 0) -7 DIRECT PRODUCT AND WREATH PRODUCT OF TRANFORMATION EMIGROUP ubrata Majumdar, * Kalyan Kumar Dey and Mohd. Altab Hossain Department of Mathematics University

Διαβάστε περισσότερα

Bounding Nonsplitting Enumeration Degrees

Bounding Nonsplitting Enumeration Degrees Bounding Nonsplitting Enumeration Degrees Thomas F. Kent Andrea Sorbi Università degli Studi di Siena Italia July 18, 2007 Goal: Introduce a form of Σ 0 2-permitting for the enumeration degrees. Till now,

Διαβάστε περισσότερα

A General Note on δ-quasi Monotone and Increasing Sequence

A General Note on δ-quasi Monotone and Increasing Sequence International Mathematical Forum, 4, 2009, no. 3, 143-149 A General Note on δ-quasi Monotone and Increasing Sequence Santosh Kr. Saxena H. N. 419, Jawaharpuri, Badaun, U.P., India Presently working in

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1 Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the

Διαβάστε περισσότερα

Reservoir modeling. Reservoir modelling Linear reservoirs. The linear reservoir, no input. Starting up reservoir modeling

Reservoir modeling. Reservoir modelling Linear reservoirs. The linear reservoir, no input. Starting up reservoir modeling Reservoir modeling Reservoir modelling Linear reservoirs Paul Torfs Basic equaion for one reservoir:) change in sorage = sum of inflows minus ouflows = Q in,n Q ou,n n n jus an ordinary differenial equaion

Διαβάστε περισσότερα

Jordan Journal of Mathematics and Statistics (JJMS) 4(2), 2011, pp

Jordan Journal of Mathematics and Statistics (JJMS) 4(2), 2011, pp Jordan Journal of Mathematics and Statistics (JJMS) 4(2), 2011, pp.115-126. α, β, γ ORTHOGONALITY ABDALLA TALLAFHA Abstract. Orthogonality in inner product spaces can be expresed using the notion of norms.

Διαβάστε περισσότερα

F A S C I C U L I M A T H E M A T I C I

F A S C I C U L I M A T H E M A T I C I F A S C I C U L I M A T H E M A T I C I Nr 46 2011 C. Carpintero, N. Rajesh and E. Rosas ON A CLASS OF (γ, γ )-PREOPEN SETS IN A TOPOLOGICAL SPACE Abstract. In this paper we have introduced the concept

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max

Διαβάστε περισσότερα

Oscillation Criteria for Nonlinear Damped Dynamic Equations on Time Scales

Oscillation Criteria for Nonlinear Damped Dynamic Equations on Time Scales Oscillaion Crieria for Nonlinear Damped Dynamic Equaions on ime Scales Lynn Erbe, aher S Hassan, and Allan Peerson Absrac We presen new oscillaion crieria for he second order nonlinear damped delay dynamic

Διαβάστε περισσότερα

On a four-dimensional hyperbolic manifold with finite volume

On a four-dimensional hyperbolic manifold with finite volume BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Numbers 2(72) 3(73), 2013, Pages 80 89 ISSN 1024 7696 On a four-dimensional hyperbolic manifold with finite volume I.S.Gutsul Abstract. In

Διαβάστε περισσότερα

Lecture 12 Modulation and Sampling

Lecture 12 Modulation and Sampling EE 2 spring 2-22 Handou #25 Lecure 2 Modulaion and Sampling The Fourier ransform of he produc of wo signals Modulaion of a signal wih a sinusoid Sampling wih an impulse rain The sampling heorem 2 Convoluion

Διαβάστε περισσότερα

6.003: Signals and Systems

6.003: Signals and Systems 6.3: Signals and Sysems Modulaion December 6, 2 Communicaions Sysems Signals are no always well mached o he media hrough which we wish o ransmi hem. signal audio video inerne applicaions elephone, radio,

Διαβάστε περισσότερα

The challenges of non-stable predicates

The challenges of non-stable predicates The challenges of non-stable predicates Consider a non-stable predicate Φ encoding, say, a safety property. We want to determine whether Φ holds for our program. The challenges of non-stable predicates

Διαβάστε περισσότερα

Space-Time Symmetries

Space-Time Symmetries Chapter Space-Time Symmetries In classical fiel theory any continuous symmetry of the action generates a conserve current by Noether's proceure. If the Lagrangian is not invariant but only shifts by a

Διαβάστε περισσότερα

ΕΡΓΑΣΙΑ ΜΑΘΗΜΑΤΟΣ: ΘΕΩΡΙΑ ΒΕΛΤΙΣΤΟΥ ΕΛΕΓΧΟΥ ΦΙΛΤΡΟ KALMAN ΜΩΥΣΗΣ ΛΑΖΑΡΟΣ

ΕΡΓΑΣΙΑ ΜΑΘΗΜΑΤΟΣ: ΘΕΩΡΙΑ ΒΕΛΤΙΣΤΟΥ ΕΛΕΓΧΟΥ ΦΙΛΤΡΟ KALMAN ΜΩΥΣΗΣ ΛΑΖΑΡΟΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΘΕΩΡΗΤΙΚΗ ΠΛΗΡΟΦΟΡΙΚΗ ΚΑΙ ΘΕΩΡΙΑ ΣΥΣΤΗΜΑΤΩΝ & ΕΛΕΓΧΟΥ ΕΡΓΑΣΙΑ ΜΑΘΗΜΑΤΟΣ: ΘΕΩΡΙΑ ΒΕΛΤΙΣΤΟΥ ΕΛΕΓΧΟΥ ΦΙΛΤΡΟ KALMAN ΜΩΥΣΗΣ

Διαβάστε περισσότερα

Tridiagonal matrices. Gérard MEURANT. October, 2008

Tridiagonal matrices. Gérard MEURANT. October, 2008 Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

Roman Witu la 1. Let ξ = exp(i2π/5). Then, the following formulas hold true [6]:

Roman Witu la 1. Let ξ = exp(i2π/5). Then, the following formulas hold true [6]: Novi Sad J. Math. Vol. 43 No. 1 013 9- δ-fibonacci NUMBERS PART II Roman Witu la 1 Abstract. This is a continuation of paper [6]. We study fundamental properties applications of the so called δ-fibonacci

Διαβάστε περισσότερα

A summation formula ramified with hypergeometric function and involving recurrence relation

A summation formula ramified with hypergeometric function and involving recurrence relation South Asian Journal of Mathematics 017, Vol. 7 ( 1): 1 4 www.sajm-online.com ISSN 51-151 RESEARCH ARTICLE A summation formula ramified with hypergeometric function and involving recurrence relation Salahuddin

Διαβάστε περισσότερα

= e 6t. = t 1 = t. 5 t 8L 1[ 1 = 3L 1 [ 1. L 1 [ π. = 3 π. = L 1 3s = L. = 3L 1 s t. = 3 cos(5t) sin(5t).

= e 6t. = t 1 = t. 5 t 8L 1[ 1 = 3L 1 [ 1. L 1 [ π. = 3 π. = L 1 3s = L. = 3L 1 s t. = 3 cos(5t) sin(5t). Worked Soluion 95 Chaper 25: The Invere Laplace Tranform 25 a From he able: L ] e 6 6 25 c L 2 ] ] L! + 25 e L 5 2 + 25] ] L 5 2 + 5 2 in(5) 252 a L 6 + 2] L 6 ( 2)] 6L ( 2)] 6e 2 252 c L 3 8 4] 3L ] 8L

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

Fuzzifying Tritopological Spaces

Fuzzifying Tritopological Spaces International Mathematical Forum, Vol., 08, no. 9, 7-6 HIKARI Ltd, www.m-hikari.com https://doi.org/0.988/imf.08.88 On α-continuity and α-openness in Fuzzifying Tritopological Spaces Barah M. Sulaiman

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

SOME INTUITIONISTIC FUZZY MODAL OPERATORS OVER INTUITIONISTIC FUZZY IDEALS AND GROUPS

SOME INTUITIONISTIC FUZZY MODAL OPERATORS OVER INTUITIONISTIC FUZZY IDEALS AND GROUPS IFSCOM016 1 Proceeding Book No. 1 pp. 84-90 (016) ISBN: 978-975-6900-54-3 SOME INTUITIONISTIC FUZZY MODAL OPERATORS OVER INTUITIONISTIC FUZZY IDEALS AND GROUPS SINEM TARSUSLU(YILMAZ), GÖKHAN ÇUVALCIOĞLU,

Διαβάστε περισσότερα

5. Choice under Uncertainty

5. Choice under Uncertainty 5. Choice under Uncertainty Daisuke Oyama Microeconomics I May 23, 2018 Formulations von Neumann-Morgenstern (1944/1947) X: Set of prizes Π: Set of probability distributions on X : Preference relation

Διαβάστε περισσότερα

Lecture 13 - Root Space Decomposition II

Lecture 13 - Root Space Decomposition II Lecture 13 - Root Space Decomposition II October 18, 2012 1 Review First let us recall the situation. Let g be a simple algebra, with maximal toral subalgebra h (which we are calling a CSA, or Cartan Subalgebra).

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

On Annihilator of Fuzzy Subsets of Modules

On Annihilator of Fuzzy Subsets of Modules International Journal of Algebra, Vol. 3, 2009, no. 10, 483-488 On Annihilator of Fuzzy Subsets of Modules Helen K. Saikia 1 and Mrinal C. Kalita 2 1 Department of Mathematics, Gauhati university, Guwahati-781014,

Διαβάστε περισσότερα