CP-violation from Non-Unitary Leptonic Mixing
|
|
- Ευσέβιος Λιάπης
- 6 χρόνια πριν
- Προβολές:
Transcript
1 CP-volaton from Non-Untary Lptonc Mxng Jacobo Lópz Pavón IFT UAM/CSIC XLIIIrd Rncontrs d MORIOND Elctrowak Ssson La Thul, March 1-8, 008 S. Antusch, C. Bggo, E. Frnándz-Martínz and M.B. Gavla JHEP 0610:084,006 E. Fdz-Martnz, M.B. Gavla and O. Yasuda Phys.Ltt.B 649:47-435,007
2 Motvatons Nutrno masss and mxng vdnc of Physcs Byond th SM Typcal xplanatons nvolv Nw Physcs at hghr nrgs Ths NP oftn nducs dvatons from untarty of th PMNS at low nrgy W wll analyz th prsnt constrants on th mxng matrx wthout assumng untarty Study of CP volaton n th contxt of non-untarty
3 Usual Analyss 1 g g L = ( α / α αmαββ hc..) ( Wlαγ PLα hc..) ( Zαγ PLα hc..)... cosθ W l α CC W - α NC Z Dagonalzng α α L 1 g ( ) g ( = ) / m Wlαγ PU L α Zγ PL hc..... cosθ W U α = U Th mxng matrx s untary n th usual analyss wth 3 lght α
4 Th gnral da W - gγ PU L α l α cc sc s U= s c s s c c c s s s s c ss csc sc css cc δ δ δ δ δ α β 1 W - l α gγ PN L α N N N N N N N N N N 1 3 =
5 Effctv Lagrangan allowng non-untarty L 3 lght Assum NP at Λ >> Λ EW. In th flavor bass, 1 c g g = ( α / Kαββ αmαββ hc..) ( W lαγ PLα hc..) ( Zαγ PLα hc..)... cosθ W α = N α L 1 g g = ( / m) ( Wlαγ PLNα) ( Zγ PL( N N) j j) hc..... cosθ W unchangd N non-untary = δ j j
6 Th ffcts of non-untarty appar n th ntractons W - Z l α N α j ( NN) j W can bound untarty wth wak dcays α 1 = N α N α δ β α α β P = L= 0= = αβ β α ( L) ) N N β N α N * α β E N N α m N L * α β N β Zro Dstanc Effct
7 Constrants on Untarty from wak dcays W l α Z nvsbl unvrsalty tsts rar lpton dcays NN 0.994± < < < ± < < < ± % C.L. N s untary at % lvl
8 In th futur γ γ TESTS OF UNITARITY RARE LEPTON DECAYS NN < 10 6 NN < (MEG) (BABAR) γ NN < (Bll)
9 In th futur TESTS OF UNITARITY γ γ γ RARE LEPTON DECAYS NN < 10 NN < NN < (MEG) (BABAR) (Bll) ZERO-DISTANCE NF 4 ( NN ) < ( NN ) < NN <.6 10
10 In th futur TESTS OF UNITARITY γ γ γ RARE LEPTON DECAYS NN < 10 NN < NN < (MEG) (BABAR) (Bll) ZERO-DISTANCE NF 4 ( NN ) < ( NN ) < NN <.6 10
11 In th futur TESTS OF UNITARITY γ γ γ RARE LEPTON DECAYS NN < 10 NN < NN < (MEG) (BABAR) (Bll) ZERO-DISTANCE NF 4 ( NN ) < ( NN ) < NN <.6 10 PHASES phass apparanc xprmnts: NUFACTs, b-bams
12 If w paramtrz Can w masur th phass of N? E. Fdz-Martnz, M.B. Gavla, J. Lópz-Pavón and O.Yasuda hp-ph/ ph/ N = (1 η) U whr U U PMNS η η η * η = η η η * * η η η and η = η If Δ E ml Δ<< 1 SM * ( L = A O ) η η α β αβ αβ P αβ only dpnds on ηαβ
13 Can w masur th phass of N? E. Fdz-Martnz, M.B. Gavla, J. Lópz-Pavón and O.Yasuda hp-ph/ ph/ For nstanc, for two famls: Δ P αβ = sn ( θ)sn 4 η αβ sn( δ αβ )sn( θ)sn Δ 4 η αβ SM CP volatng ntrfrnc Zro dstanc ffct η αβ δ η αβ αβ Nw CP-volaton sgnals Δ =ΔmL E 1 j j
14 Whch s th bst channl???? < η 5 < η 3 < η 3 Δ sn θ sn 4 η snδ sn θ sn 4 η 31 P 3 3 Δ 31 P Ths s th bst channl to masur nw CP phass: P 8 η snδ sn( θ )sn Δ 3 13
15 Th CP phas δ can b probd N N 8 η snδ sn( θ )sn Δ Confuson btwn sgn sgn. Dgnracy δ δ 180º δ Δ 3σ a Nutrno Factory wth L = 130 Km
16 Th CP phas δ can b probd 3σ Prsnt bound from γ Snstvty to η Snstvty to δ For non-trval δ, on ordr of magntud mprovmnt for η
17 Conclusons Analyz nutrno data wthout assumng untarty. W startd th frst analyss and conclud that, at prsnt: -EW dcays confrms untarty at % lvl -Prsnt bounds on untarty ar strong nough to match th untarty analyss CP-asymmtry s a clan prob of th nw phass. Non-untary ffcts n typcal modls ar too small to b dtctd at prsnt xprmnts. Thy could b szabl n xtnsons/othrs modls wth M~ TV, ). -> kp trackng thm n th futur. Thy ar xcllnt sgnals of nw physcs.
18 Back-up slds
19 Constrants on untarty < 3 η < η < η < < 3 < 3 < 3 η < < η η η η η η
20 Lptonc Mxng Matrx Elmnts From Oscllatons N N N N N N N 1 3 = 1 3 N N N 1 3
21 CHOOZ: KamLAND: Δ 13 from KK SNO: P 0.1 N 0.9 N N lmnts from oscllatons: -row ( ) 4 ( ) cos( Δ ) ( ) cos( Δ ) P N N N N N P N N N N N N KamLANDCHOOZKK Δ j = Δm j L E SNO all N dtrmnd
22 Pˆ N lmnts from oscllatons: -row Atmosphrc KK: Δ 1 0 Δ j = Δm j L E 4 N N N N N N ( Δ ) cos 3 1. Dgnracy N N 1 3 N UNITARITY. 1, N N cannot b dsntangld
23 N lmnts from oscllatons only = OSCILLATIONS [ N N 1 N wthout untarty ? 1/ = ? ] < ? 3σ wth untarty OSCILLATIONS U < 0.0 = Gonzálz-García, Malton 07
24 Dcays W - l α ( W l ) Γ α ( NN ) αα ( NN ) ( NN ) l α W - γ Br l l β ( α lβγ ) ( NN ) βα ( NN ) ( NN ) m O MW αα ββ ( NN) j, j Z nvsbl unvrsalty tsts NN NN ( NN ) ( NN ) αα ββ
25 If w paramtrz Can w masur th phass of N? E. Fdz-Martnz, M.B. Gavla, J. Lópz-Pavón and O.Yasuda hp-ph/ ph/ N Normalzaton factors = (1 η) U whr U U PMNS η η η * η = η η η * * η η η and η = η O( η ) Standard ampltud If Δ E ml Δ<< 1 SM Aαα 1 η SM Aαβ αβ << 1 SM * ( L = A O ) η η α β αβ αβ P αβ only dpnds on ηαβ
26 Whch s th bst channl???? Constrants on untarty: η η η < η < η η η < η < η < η < < < < 90% C.L. η << η, η
27 Whch s th bst channl???? P P SM s c η c sn δ δ sn θ Δ η sn θ snδ Δ 4 η Δ =Δ mle<< 1 j j sn θ Δ s supprssd by th small paramtrs Δ 1 and 13 31
28 Our analyss wll also apply to non-standard or xotc nutrno ntractons. (Grossman, Gonzalz-Garca t al., Hubr t al., Ktazawa t al., Davdson t al. Blnnow t al...) Thy add 4-frmon xotc oprators whch affct producton or dtcton or propagaton n mattr Ψ Ψ Ψ Ψ
29 NSI nutrno ntractons vs NonUntarty SM NF: d l u α α d u convntonal-bams supr-bams NF: Mattr ffcts: α=β=
30 NSI nutrno ntractons vs NonUntarty Exotc Intractons Add nw ffctv 4-frmon oprators whch affcts to: Producton Dtcton d αd lα u u Mattr ffcts f f
31 NSI nutrno ntractons vs NonUntarty SM Exotc Intractons Exotc Intractons Non-Untarty
32 NSI nutrno ntractons vs NonUntarty Exotc Intractons Non-Untarty ε p αβ No rlatonshp btwn and ε d βα η αβ = η * βα If ε = ε p d* αβ βα P EXOTIC = P NON UNITARITY Our constrants apply to Exotc Intractons! If not Idm, barrng xtrm fn tund canclatons
33 Oscllaton Probablty n Mattr 1 L = Gnγ P Gn γ P nt 0 0 ff F L F n α L α α V CC V NC d dt = N E 0 0 ( N ) 1 * 1 * E ( NN ) ( NN ) ( VCC VNC )( NN ) VNC ( NN ) ( NN ) ( Vcc VNC ) ( NN ) VNC ( NN ) ( NN ) Effctv Evoluton 1. non-dagonal lmnts. NC ffcts do not dsappar
34 Mattr ffcts n Δ, Δ, AL Kpng only trms to scond ordr n 1 31 and and frst n η (sttng η = 0): αβ sn θ 13 sn θ 10 Δ AL 10 Δ 10 η < ~ αβ
35 Aproxmat xprsson for P Δ31 Δ1 3 sn θ13 3 sn θ1 P c s Δ1 Δ31 c13 sn θ1 sn θ3 sn θ13 cosδ η c sn θ sn δ δ Δ η sn θ snδ Δ 4 η s c ( ; ; η η ) P = P s c c s
36 Analyss of 3σ 3σ Th zro dstanc ffct domnats ovr CP volatng ntrfrnc trm - No nformaton on δ 3 η 10 - Snstvts to around
37 Som dtals about th NF W study a NF bam rsultng from th dcay of 50 GV muons: 10 - Assumng usful dcays/yar - 5 yars runnng wth ach polarty - 5 Kt Opra-lk dtctor -L=130 km snstvts and backgrounds = ( snstvts and backgrounds) hp-ph/
38 (NN ) and (N N) from dcays NN 1.00 ± < < < ± < < < ± % C.L. N = HV NN = H = 1 ε wth ε = ε N N = 1 V ε V = 1 ε ' ε ' j ε αβ αβ N N 1.00 ± 0.03 < 0.03 < 0.03 < ± 0.03 < 0.03 < 0.03 < ± 0.03 N s untary at % lvl
39 Low-nrgy thory..... cos / = h c P Z g h c P l W g h c M K L L W L c α α α α β αβ α β αβ α γ θ γ Aftr EWSB:..... ) ( cos 1 / = h c N N P Z g N P l W g m L j j L W L c γ θ γ α α M αβ dagonalzd untary transformaton K αβ dagonalzd and normalzd untary transf. rscalng N non-untary
40 CHOOZ: systmatc rror hp-x\ SNO: n n CC NC Som numbrs 1 N 0.9 N 0.1 Normalzaton flux ~.7% Enrgy ~ 1.1% w lt t vary % OPERA (NF): background: c-dcays / chargd currnt dcays ~ systmatc rror ~ 5% ffcncy ~ 0% hp-ph\ KK: Statstcs hp-x\ ZERO-DISTANCE EFFECT 40Kt Iron calormtr nar NUFACT 4 ( NN ) < Kt OPERA-lk nar NUFACT 3 ( NN ) <.9 10 NN <
41 (NN ) from dcays: G F W W dcays Z Invsbl Z Unvrsalty tsts ( NN ) αα l α ( NN ) ( NN ) ( N N ) j j j ( NN ) ( NN ) ( NN ) αα ( NN ) ββ Info on (NN ) aa G F s masurd n -dcay W N j 5 Fm Γ = N N 3 19π j N* j G j G F,xp GF = N N j j
42 Oscllaton Probablty n Vacuum d H dt = ^ = E δ = I fr j j j Effctv Evoluton E 0 0 E d * * t = U 0 E α α dt 0( * U) 1 N 0 E 0 N α 0 0 E 0 0 E 3 3 = I P = L= 0= = αβ β α ( L) ) N N β N α N * α β E N N α m N L * α β N β Zro Dstanc Effct
43 Non-untarty from s-saw L = LSM NRdNR -Y L H NR -M NR NR Intgrat out N R L ff = L SM 1 d = 5 1 d = 6 L L MΛ MΛ... T YY/M (L LH H) _ YY/M (L H) d(h L) d=5 oprator t gvs mass to d=6 oprator t rnormalss kntc nrgy Broncano, Gavla, Jnkns 0
44 masss byond th SM Tr-lvl ralzatons N R N R Havy frmon snglt N R dvatons from untarty (Ssaw I) Havy scalar trplt Δ t R t R Y t Y t M t no dvatons from untarty Havy frmon trplt t R dvatons from untarty Abada, Antusch, Bggo, Bonnt, Hamby, M.B.G.
45 addng nar dtctors E, 0 = NN Tst of zro-dstanc ffct: αβ αβ P αβ δ MINOS: (NN ) =1±0.05 BUGEY: (NN ) =1±0.04 NOMAD: (NN ) <0.09 (NN ) <0.013 KARMEN: (NN ) <0.05 N = ? ? < ? also all N dtrmnd
46 Numbr of vnts n v Φ α d ( E) ~ de P αβ ( E, L) σ β ( E) ε ( E) de producd and dtctd n CC dφ dφ ~ de de SM σ β ~ σ β NN ( NN ) αα SM α α ββ n v SM ( NN ) P ( E, L) ( NN ) ( E) ε SM dφα ( E) ~ de αα αβ ββ σ β E de Excptons: masurd flux lptonc producton mchansm dtcton va NC Pˆ αβ ( E, L) = N * α P L N β
47 In th futur γ γ TESTS OF UNITARITY RARE LEPTON DECAYS NN < NN < (MEGA) (BABAR) γ NN < (Bll)
Homework #6. A circular cylinder of radius R rotates about the long axis with angular velocity
Homwork #6 1. (Kittl 5.1) Cntrifug. A circular cylindr of radius R rotats about th long axis with angular vlocity ω. Th cylindr contains an idal gas of atoms of mass m at tmpratur. Find an xprssion for
Antonio Pich. IFIC, CSIC Univ. Valencia.
Antonio Pich IFIC, CSIC Univ. Valncia Antonio.Pich@ific.uv.s Topical Sminar on Frontir of Particl Physics 005: Havy Flavor Physics Bijing, August 13-17 005 Quarks Lptons Bosons up down lctron nutrino photon
Bridges of Low-E observables with Leptogenesis in mu-tau Reflection Symmetry
rdges of Low-E observables wth Leptogeness n mu-tau Reflecton Symmetry Y.H.Ahn (Academa Snca) Wth S.K.Kang, C.S.Km, T.P.Nguyen (hep-ph 0811.1458) Consequences of mu-tau reflecton Symmetry Connecton CP-volaton
Solar Neutrinos: Fluxes
Solar Neutrinos: Fluxes pp chain Sun shines by : 4 p 4 He + e + + ν e + γ Solar Standard Model Fluxes CNO cycle e + N 13 =0.707MeV He 4 C 1 C 13 p p p p N 15 N 14 He 4 O 15 O 16 e + =0.997MeV O17
One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF
One and two partcle densty matrces for sngle determnant HF wavefunctons One partcle densty matrx Gven the Hartree-Fock wavefuncton ψ (,,3,!, = Âϕ (ϕ (ϕ (3!ϕ ( 3 The electronc energy s ψ H ψ = ϕ ( f ( ϕ
Multi-dimensional Central Limit Theorem
Mult-dmensonal Central Lmt heorem Outlne () () () t as () + () + + () () () Consder a sequence of ndependent random proceses t, t, dentcal to some ( t). Assume t 0. Defne the sum process t t t t () t tme
Multi-dimensional Central Limit Theorem
Mult-dmensonal Central Lmt heorem Outlne () () () t as () + () + + () () () Consder a sequence of ndependent random proceses t, t, dentcal to some ( t). Assume t 0. Defne the sum process t t t t () t ();
General theorems of Optical Imaging systems
Gnral thorms of Optcal Imagng sstms Tratonal Optcal Imagng Topcs Imagng qualt harp: mags a pont sourc to a pont Dstorton fr: mags a shap to a smlar shap tgmatc Imagng Imags a pont sourc to a nfntl sharp
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων.
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 2015 ιδάσκων : Α. Μουχτάρης εύτερη Σειρά Ασκήσεων Λύσεις Ασκηση 1. 1. Consder the gven expresson for R 1/2 : R 1/2
Pairs of Random Variables
Pairs of Random Variabls Rading: Chaptr 4. 4. Homwork: (do at last 5 out of th following problms 4..4, 4..6, 4.., 4.3.4, 4.3.5, 4.4., 4.4.4, 4.5.3, 4.6.3, 4.6.7, 4.6., 4.7.9, 4.7., 4.8.3, 4.8.7, 4.9.,
Neutralino contributions to Dark Matter, LHC and future Linear Collider searches
Neutralno contrbutons to Dark Matter, LHC and future Lnear Collder searches G.J. Gounars Unversty of Thessalonk, Collaboraton wth J. Layssac, P.I. Porfyrads, F.M. Renard and wth Th. Dakonds for the γz
α & β spatial orbitals in
The atrx Hartree-Fock equatons The most common method of solvng the Hartree-Fock equatons f the spatal btals s to expand them n terms of known functons, { χ µ } µ= consder the spn-unrestrcted case. We
Some Geometric Properties of a Class of Univalent. Functions with Negative Coefficients Defined by. Hadamard Product with Fractional Calculus I
Itrtol Mthtcl Foru Vol 6 0 o 64 379-388 So otrc Proprts o Clss o Uvlt Fuctos wth Ntv Cocts Dd y Hdrd Product wth Frctol Clculus I Huss Jr Adul Huss Dprtt o Mthtcs d Coputr pplctos Coll o Sccs Uvrsty o
!!" #7 $39 %" (07) ..,..,.. $ 39. ) :. :, «(», «%», «%», «%» «%». & ,. ). & :..,. '.. ( () #*. );..,..'. + (# ).
1 00 3 !!" 344#7 $39 %" 6181001 63(07) & : ' ( () #* ); ' + (# ) $ 39 ) : : 00 %" 6181001 63(07)!!" 344#7 «(» «%» «%» «%» «%» & ) 4 )&-%/0 +- «)» * «1» «1» «)» ) «(» «%» «%» + ) 30 «%» «%» )1+ / + : +3
The Finite Element Method
Th Finit Elmnt Mthod Plan (D) Truss and Fram Elmnts Rad: Sctions 4.6 and 5.4 CONTENTS Rviw of bar finit lmnt in th local coordinats Plan truss lmnt Rviw of bam finit lmnt in th local coordinats Plan fram
Convection Derivatives February 17, E+01 1.E-01 1.E-02 1.E-03 1.E-04 1.E-05 1.E-06 1.E-07 1.E-08 1.E-09 1.E-10. Error
onvcton rvtvs brry 7, nt Volm Mtho or onvcton rvtvs Lrry rtto Mchncl ngnrng 69 omttonl l ynmcs brry 7, Otln Rv nmrcl nlyss bscs oncl rslts or son th sorc nlyss Introc nt-volm mtho or convcton Not n or
5 Haar, R. Haar,. Antonads 994, Dogaru & Carn Kerkyacharan & Pcard 996. : Haar. Haar, y r x f rt xβ r + ε r x β r + mr k β r k ψ kx + ε r x, r,.. x [,
4 Chnese Journal of Appled Probablty and Statstcs Vol.6 No. Apr. Haar,, 6,, 34 E-,,, 34 Haar.., D-, A- Q-,. :, Haar,. : O.6..,..,.. Herzberg & Traves 994, Oyet & Wens, Oyet Tan & Herzberg 6, 7. Haar Haar.,
Hadronic Tau Decays at BaBar
Hadronic Tau Decays at BaBar Swagato Banerjee Joint Meeting of Pacific Region Particle Physics Communities (DPF006+JPS006 Honolulu, Hawaii 9 October - 3 November 006 (Page: 1 Hadronic τ decays Only lepton
8.1 The Nature of Heteroskedasticity 8.2 Using the Least Squares Estimator 8.3 The Generalized Least Squares Estimator 8.
8.1 The Nature of Heteroskedastcty 8. Usng the Least Squares Estmator 8.3 The Generalzed Least Squares Estmator 8.4 Detectng Heteroskedastcty E( y) = β+β 1 x e = y E( y ) = y β β x 1 y = β+β x + e 1 Fgure
3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β
3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle
8.324 Relativistic Quantum Field Theory II
Lecture 8.3 Relatvstc Quantum Feld Theory II Fall 00 8.3 Relatvstc Quantum Feld Theory II MIT OpenCourseWare Lecture Notes Hon Lu, Fall 00 Lecture 5.: RENORMALIZATION GROUP FLOW Consder the bare acton
Statistical Inference I Locally most powerful tests
Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided
ELE 3310 Tutorial 11. Reflection of plane waves Wave impedance of the total field
L 0 Tuto Rfcton of pn wvs Wv mpdnc of th tot fd Rfcton of M wvs Rfcton tks pc whn n M wv hts on bound. Pt of th wv gts fctd, nd pt of t gts tnsmttd. Popgton dctons nd mptuds of th fctd nd tnsmttd wvs dpnd
The Standard Model. Antonio Pich. IFIC, CSIC Univ. Valencia
http://arxiv.org/pd/0705.464 The Standard Mode Antonio Pich IFIC, CSIC Univ. Vaencia Gauge Invariance: QED, QCD Eectroweak Uniication: SU() Symmetry Breaking: Higgs Mechanism Eectroweak Phenomenoogy Favour
CP Violation in B- and K-Meson Systems
iolation in - and -Mson ystms DPG Tagung, ipzig, 18.3. Outlin rnhard paan Tchnisch Univrsität Drsdn Motivation violation in th standard modl Typs o violation violation in th -ystm Comparison with -ystm
d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n 1
d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n1 x dx = 1 2 b2 1 2 a2 a b b x 2 dx = 1 a 3 b3 1 3 a3 b x n dx = 1 a n +1 bn +1 1 n +1 an +1 d dx d dx f (x) = 0 f (ax) = a f (ax) lim d dx f (ax) = lim 0 =
Section 8.3 Trigonometric Equations
99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.
ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?
Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least
16 Electromagnetic induction
Chatr : Elctromagntic Induction Elctromagntic induction Hint to Problm for Practic., 0 d φ or dφ 0 0.0 Wb. A cm cm 7 0 m, A 0 cm 0 cm 00 0 m B 0.8 Wb/m, B. Wb/m,, dφ d BA (B.A) BA 0.8 7 0. 00 0 80 0 8
Relativsitic Quantum Mechanics. 3.1 Dirac Equation Summary and notation 3.1. DIRAC EQUATION SUMMARY AND NOTATION. April 22, 2015 Lecture XXXIII
3.1. DIRAC EQUATION SUMMARY AND NOTATION April, 015 Lctur XXXIII Rlativsitic Quantum Mchanics 3.1 Dirac Equation Summary and notation W found that th two componnt spinors transform according to A = ± σ
α A G C T 國立交通大學生物資訊及系統生物研究所林勇欣老師
A G C T Juks and Cantor s (969) on-aramtr modl A T C G A G 0 0 0-3 C T A() A( t ) ( 3 ) ( ) A() A() ( 3 ) ( ) A( A( A( A( t ) A( 3 A( t ) ( ) A( A( Juks and Cantor s (969) on-aramtr modl A( A( t ) A( d
Self and Mutual Inductances for Fundamental Harmonic in Synchronous Machine with Round Rotor (Cont.) Double Layer Lap Winding on Stator
Sel nd Mutul Inductnces or Fundmentl Hrmonc n Synchronous Mchne wth Round Rotor (Cont.) Double yer p Wndng on Sttor Round Rotor Feld Wndng (1) d xs s r n even r Dene S r s the number o rotor slots. Dene
Dong Liu State Key Laboratory of Particle Detection and Electronics University of Science and Technology of China
Dong Liu State Key Laboratory of Particle Detection and Electronics University of Science and Technology of China ISSP, Erice, 7 Outline Introduction of BESIII experiment Motivation of the study Data sample
UNIT 13: TRIGONOMETRIC SERIES
UNIT : TRIGONOMETRIC SERIES UNIT STUCTURE. Larg Objctvs. Itroducto. Grgory s Srs.. Gral Thorm o Grgory s Srs. Summato of Trgoomtrc Srs.. CS Mthod.. Srs Basd o Gomtrc or Arthmtco-Gomtrc Srs.. Sum of a Srs
Το άτομο του Υδρογόνου
Το άτομο του Υδρογόνου Δυναμικό Coulomb Εξίσωση Schrödinger h e (, r, ) (, r, ) E (, r, ) m ψ θφ r ψ θφ = ψ θφ Συνθήκες ψ(, r θφ, ) = πεπερασμένη ψ( r ) = 0 ψ(, r θφ, ) =ψ(, r θφ+, ) π Επιτρεπτές ενέργειες
Section 7.6 Double and Half Angle Formulas
09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)
derivation of the Laplacian from rectangular to spherical coordinates
derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used
Vidyamandir Classes. Solutions to Revision Test Series - 2/ ACEG / IITJEE (Mathematics) = 2 centre = r. a
Per -.(D).() Vdymndr lsses Solutons to evson est Seres - / EG / JEE - (Mthemtcs) Let nd re dmetrcl ends of crcle Let nd D re dmetrcl ends of crcle Hence mnmum dstnce s. y + 4 + 4 6 Let verte (h, k) then
EGR 544 Communication Theory
EGR 544 Commucato hory 8. Spctral charactrstcs of Dgtally Modulats Sgals Z. Alyazcoglu Elctrcal ad Computr Egrg Dpartmt Cal Poly Pomoa Spctral charactrstcs of Dgtally Modulats Sgals Spctral charactrstcs
i i (3) Derive the fixed-point iteration algorithm and apply it to the data of Example 1.
Howor#3 urvval Aalyss Na: Huag Xw 黃昕蔚 Quso: uppos ha daa ( follow h odl ( ( > ad <
Faculdade de Engenharia. Transmission Lines ELECTROMAGNETIC ENGINEERING MAP TELE 2008/2009
Facudad d Ennharia Transmission ins EECTROMAGNETC ENGNEERNG MAP TEE 8/9 Transmission ins Facudad d Ennharia transmission ins wavuids supportin TEM wavs most common typs para-pat wavuids coaxia wavuids
' ( )* * +,,, ) - ". &!: &/#&$&0& &!& $#/&! 1 2!#&, #/&2!#&3 &"&!3, #&- &2!#&, "#4 $!&$3% 2!% #!.1 & &!" //! &-!!
..!! "#$% #&" 535.34 ' ( )* *,,, ) - ". &!: 1.4.7 &/#&$&& &!&11 5.7.1 $#/&! 1!#&, #/&!#&3 &"&!3, #&- &!#&, "#4 $!&$3%!% #!.1 & &!" //! &-!!% 3 #&$&/!: /&!&# &-!!%, "#&&# 56$.., //! &-!!% ).. &$ 13 .
Finite Field Problems: Solutions
Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The
Phasor Diagram of an RC Circuit V R
ESE Lecture 3 Phasor Dagram of an rcut VtV m snt V t V o t urrent s a reference n seres crcut KVL: V m V + V V ϕ I m V V m ESE Lecture 3 Phasor Dagram of an L rcut VtV m snt V t V t L V o t KVL: V m V
8.323 Relativistic Quantum Field Theory I
MIT OpenCourseWare http://ocwmtedu 8323 Relatvstc Quantum Feld Theory I Sprng 2008 For nformaton about ctng these materals or our Terms of Use, vst: http://ocwmtedu/terms 1 The Lagrangan: 8323 Lecture
A Class of Orthohomological Triangles
A Class of Orthohomologcal Trangles Prof. Claudu Coandă Natonal College Carol I Craova Romana. Prof. Florentn Smarandache Unversty of New Mexco Gallup USA Prof. Ion Pătraşcu Natonal College Fraţ Buzeşt
Cable Systems - Postive/Negative Seq Impedance
Cable Systems - Postive/Negative Seq Impedance Nomenclature: GMD GMR - geometrical mead distance between conductors; depends on construction of the T-line or cable feeder - geometric mean raduius of conductor
Quantum ElectroDynamics II
Quantum ElectroDynamcs II Dr.arda Tahr Physcs department CIIT, Islamabad Photon Coned by Glbert Lews n 1926. In Greek Language Phos meanng lght The Photons A What do you know about Photon? Photon Dscrete
Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.
Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. Περιοδικός πίνακας: α. Είναι µια ταξινόµηση των στοιχείων κατά αύξοντα
Formulas of Agrawal s Fiber-Optic Communication Systems NA n 2 ; n n. NA( )=n1 a
Formula o grawal Fiber-Oti Communiation Sytem Chater (ntroution) 8 / max m M / E nh N h M m 4 6.66. J e 9.6 / m log /mw SN / / /, NZ SN log / Z max N E Chater (Otial Fiber) Setion - (Geometrial Oti erition)
b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!
MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.
Durbin-Levinson recursive method
Durbin-Levinson recursive method A recursive method for computing ϕ n is useful because it avoids inverting large matrices; when new data are acquired, one can update predictions, instead of starting again
Lifting Entry 2. Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYLAND U N I V E R S I T Y O F
ifting Entry Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYAN 1 010 avid. Akin - All rights reserved http://spacecraft.ssl.umd.edu ifting Atmospheric
Exam Statistics 6 th September 2017 Solution
Exam Statstcs 6 th September 17 Soluto Maura Mezzett Exercse 1 Let (X 1,..., X be a raom sample of... raom varables. Let f θ (x be the esty fucto. Let ˆθ be the MLE of θ, θ be the true parameter, L(θ be
Relative Valuation. Relative Valuation. Relative Valuation. Υπολογισµός αξίας επιχείρησης µε βάση τρέχουσες αποτιµήσεις οµοειδών εταιρειών
Rlativ Valuatio Αρτίκης Γ. Παναγιώτης Rlativ Valuatio Rlativ Valuatio Υπολογισµός αξίας επιχείρησης µε βάση τρέχουσες αποτιµήσεις οµοειδών εταιρειών Ø Επιλογή οµοειδών επιχειρήσεων σε όρους κινδύνου, ανάπτυξης
Example Sheet 3 Solutions
Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note
Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =
Mock Eam 7 Mock Eam 7 Section A. Reference: HKDSE Math M 0 Q (a) ( + k) n nn ( )( k) + nk ( ) + + nn ( ) k + nk + + + A nk... () nn ( ) k... () From (), k...() n Substituting () into (), nn ( ) n 76n 76n
Matrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
Lifting Entry (continued)
ifting Entry (continued) Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion Planar state equations MARYAN 1 01 avid. Akin - All rights reserved http://spacecraft.ssl.umd.edu
Κύµατα παρουσία βαρύτητας
Κύµατα παουσία βαύτητας 8. Grait as in th ocan Sarantis Sofianos Dpt. of hsics, Unirsit of thns Was in th ocan Srfac grait as Short and long limit in grait as Wa charactristics Intrnal as Charactristic
Affine Weyl Groups. Gabriele Nebe. Summerschool GRK 1632, September Lehrstuhl D für Mathematik
Affine Weyl Groups Gabriele Nebe Lehrstuhl D für Mathematik Summerschool GRK 1632, September 2015 Crystallographic root systems. Definition A crystallographic root system Φ is a finite set of non zero
k k ΚΕΦΑΛΑΙΟ 1 G = (V, E) V E V V V G E G e = {v, u} E v u e v u G G V (G) E(G) n(g) = V (G) m(g) = E(G) G S V (G) S G N G (S) = {u V (G)\S v S : {v, u} E(G)} G v S v V (G) N G (v) = N G ({v}) x V (G)
V r,k j F k m N k+1 N k N k+1 H j n = 7 n = 16 Ṽ r ñ,ñ j Ṽ Ṽ j x / Ṽ W 2r V r D N T T 2r 2r N k F k N 2r Ω R 2 n Ω I n = { N: n} n N R 2 x R 2, I n Ω R 2 u R 2, I n x k+1 = x k + u k, u, x R 2,
Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz
Solutions to the Schrodinger equation atomic orbitals Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz ybridization Valence Bond Approach to bonding sp 3 (Ψ 2 s + Ψ 2 px + Ψ 2 py + Ψ 2 pz) sp 2 (Ψ 2 s + Ψ 2 px + Ψ 2 py)
ψ(x) ψ (x) =exp[iγ a Θ a ] ψ(x) =1+iΓ a Θ a ψ ±
CHPR III: SYMMRIS Sytrs OFo CD CD CD s b on local SU( c gag sytry In aton: global sytrs. Nöthr s hor L CD ( ( [γ D ] ( 4 Ga ν(g ν a ( (a 8 whr D g ( ( a( λ a an (. s Lt L CD b nvarant nr a global transoraton
PARTIAL NOTES for 6.1 Trigonometric Identities
PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot
Υπολογιστική Φυσική Στοιχειωδών Σωματιδίων
Υπολογιστική Φυσική Στοιχειωδών Σωματιδίων 4ο Εξάμηνο2004-2005 Διακριτική ικανότητα ανιχνευτή-υπόβαθρο- Υπολογισμός του σήματος Διδάσκοντες : Χαρά Πετρίδου Δημήτριος Σαμψωνίδης 18/4/2005 Υπολογ.Φυσική
a; b 2 R; a < b; f : [a; b] R! R y 2 R: y : [a; b]! R; ( y (t) = f t; y(t) ; a t b; y(a) = y : f (t; y) 2 [a; b]r: f 2 C ([a; b]r): y 2 C [a; b]; y(a) = y ; f y ỹ ỹ y ; jy ỹ j ky ỹk [a; b]; f y; ( y (t)
k k ΚΕΦΑΛΑΙΟ 1 G = (V, E) V E V V V G E G e = {v, u} E v u e v u G G V (G) E(G) n(g) = V (G) m(g) = E(G) G S V (G) S G N G (S) = {u V (G)\S v S : {v, u} E(G)} G v S v V (G) N G (v) = N G ({v}) x V (G)
TMA4115 Matematikk 3
TMA4115 Matematikk 3 Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet Trondheim Spring 2010 Lecture 12: Mathematics Marvellous Matrices Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet
From the finite to the transfinite: Λµ-terms and streams
From the finite to the transfinite: Λµ-terms and streams WIR 2014 Fanny He f.he@bath.ac.uk Alexis Saurin alexis.saurin@pps.univ-paris-diderot.fr 12 July 2014 The Λµ-calculus Syntax of Λµ t ::= x λx.t (t)u
Second Order Partial Differential Equations
Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y
Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in
Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that
TeSys contactors a.c. coils for 3-pole contactors LC1-D
References a.c. coils for 3-pole contactors LC1-D Control circuit voltage Average resistance Inductance of Reference (1) Weight Uc at 0 C ± 10 % closed circuit For 3-pole " contactors LC1-D09...D38 and
Right Rear Door. Let's now finish the door hinge saga with the right rear door
Right Rear Door Let's now finish the door hinge saga with the right rear door You may have been already guessed my steps, so there is not much to describe in detail. Old upper one file:///c /Documents
ΜΕΤΑΣΧΗΜΑΤΙΣΤΕΣ ΜΕΤΑΣΧΗΜΑΤΙΣΤΕΣ ΜΕΤΑΦΟΡΑΣ ΗΛΕΚΤΡΙΚΗΣ ΙΣΧΥΟΣ. Συσκευές οι οποίες μετασχηματίζουν το πλάτος της εναλλασόμενης τάσης
1 ΜΕΤΑΦΟΡΑΣ ΗΛΕΚΤΡΙΚΗΣ ΙΣΧΥΟΣ Συσκευές οι οποίες μετασχηματίζουν το πλάτος της εναλλασόμενης τάσης Μετασχηματιστές ανύψωσης: Χρησιμοποιούνται για τη μείωση των απωλειών γραμμής στα συστήματα μεταφοράς
Reminders: linear functions
Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U
Unit 3 Lecture Number 16
Slt/Sal Tos from Thory of Atom Collsons and Strosoy P. C. Dshmuh Dartmnt of Physs Indan Insttut of Thnology Madras Chnna 636 Unt 3 Ltur umbr 6 Eltron Gas n Hartr Fo and Random Phas Aroxmatons Frst, a short
Αέρια υψηλής Καθαρότητας 2000. Ο συνεργάτης σας για Αέρια, Εξοπλισµό και Υπηρεσίες
Αέρια υψηλής Καθαρότητας 2000 Ο συνεργάτης σας για Αέρια, Εξοπλισµό και Υπηρεσίες Αέρια Υψηλής Καθαρότητας από την MESSER Αέρια Υψηλής Καθαρότητας Το παρόν κεφάλαιο δείνει ένα πανόραµα των αερίων υψηλής
LIGHT UNFLAVORED MESONS (S = C = B = 0)
LIGHT UNFLAVORED MESONS (S = C = B = 0) For I = 1 (π, b, ρ, a): ud, (uu dd)/ 2, du; for I = 0 (η, η, h, h, ω, φ, f, f ): c 1 (uu + d d) + c 2 (s s) π ± I G (J P ) = 1 (0 ) Mass m = 139.57018 ± 0.00035
A/m
G anada Ltd. MTERI ROSS REFERENE Ferronics V G FTF T G FKF G F82F G G FF1G J G F52J K G F01H P G F21 Units Initial Permeability (µi) 15,000 15,000 10,000 10,000 5,000 5,000 1,500 1,500 850 850 125 125
ΗΥ537: Έλεγχος Πόρων και Επίδοση σε Ευρυζωνικά Δίκτυα,
ΗΥ537: Έλεγχος Πόρων και Επίδοση σε Ευρυζωνικά Δίκτυα Βασίλειος Σύρης Τμήμα Επιστήμης Υπολογιστών Πανεπιστήμιο Κρήτης Εαρινό εξάμηνο 2008 Economcs Contents The contet The basc model user utlty, rces and
MnZn. MnZn Ferrites with Low Loss and High Flux Density for Power Supply Transformer. Abstract:
MnZn JFE No. 8 5 6 p. 32 37 MnZn Ferrites with Low Loss and High Flux Density for Power Supply Transformer FUJITA Akira JFE Ph. D. FUKUDA Yutaka JFE NISHIZAWA Keitarou JFE TOGAWA Jirou MnZn Fe2O3 1 C NiO
ITU-R P (2009/10)
ITU-R.45-4 (9/) % # GHz,!"# $$ # ITU-R.45-4.. (IR) (ITU-T/ITU-R/ISO/IEC).ITU-R http://www.tu.t/itu-r/go/patets/e. (http://www.tu.t/publ/r-rec/e ) () ( ) BO BR BS BT F M RA S RS SA SF SM SNG TF V.ITU-R
IIT JEE (2013) (Trigonomtery 1) Solutions
L.K. Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 677 (+) PAPER B IIT JEE (0) (Trigoomtery ) Solutios TOWARDS IIT JEE IS NOT A JOURNEY, IT S A BATTLE, ONLY THE TOUGHEST WILL SURVIVE
Scratch Διδακτική του Προγραμματισμού. Παλαιγεωργίου Γιώργος
Scratch Διδακτική του Προγραμματισμού Παλαιγεωργίου Γιώργος Μάρτιος 2009 MIT Scratch Το Scratch είναι ένα πλούσιο σε οπτικοαουστικά μέσα προγραμματιστικό περιβάλλον στο οποίο οι αρχάριοι προγραμματιστές
CRASH COURSE IN PRECALCULUS
CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter
ΜΕΡΟΣ ΙΙI ΜΟΡΙΑΚΟ ΒΑΡΟΣ ΠΟΛΥΜΕΡΩΝ
ΜΕΡΟΣ ΙΙI ΜΟΡΙΑΚΟ ΒΑΡΟΣ ΠΟΛΥΜΕΡΩΝ ΓΕΝΙΚΕΣ ΠΑΡΑΤΗΡΗΣΕΙΣ ΕΠΙ ΡΑΣΗ Μ.Β ΣΤΙΣ Ι ΙΟΤΗΤΕΣ ΠΟΛΥΜΕΡΩΝ ΜΑΘΗΜΑΤΙΚΗ ΠΕΡΙΓΡΑΦΗ ΤΗΣ ΚΑΤΑΝΟΜΗΣ ΜΟΡΙΑΚΟΥ ΒΑΡΟΥΣ ΣΥΝΑΡΤΗΣΗ ΠΙΘΑΝΟΤΗΤΟΣ ( ΙΑΦΟΡΙΚΗ) Probablty Densty Functon
a; b 2 R; a < b; f : [a; b] R! R y 2 R: y : [a; b]! R; ( y (t) = f t; y(t) ; a t b; y(a) = y : f (t; y) 2 [a; b]r: f 2 C ([a; b]r): y 2 C [a; b]; y(a) = y ; f y ỹ ỹ y ; jy ỹ j ky ỹk [a; b]; f y; ( y (t)
A NEW FORM OF MULTIVARIATE GENERALIZED DOUBLE EXPONENTIAL FAMILY OF DISTRIBUTIONS OF KIND-2
Journal of Rlablty and Statstcal Studs; ISSN (Prnt: 0974-804, (Onln: 9-5666 Vol. 0, Issu (07: 79-0 A NEW FORM OF MULTIVARIATE GENERALIZED DOUBLE EXPONENTIAL FAMILY OF DISTRIBUTIONS OF KIND- G.S. Davd Sam
EE512: Error Control Coding
EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3
Derivation of Optical-Bloch Equations
Appendix C Derivation of Optical-Bloch Equations In this appendix the optical-bloch equations that give the populations and coherences for an idealized three-level Λ system, Fig. 3. on page 47, will be
CS348B Lecture 10 Pat Hanrahan, Spring 2002
Page 1 Reflecton Models I Today Types of eflecton models The BRDF and eflectance The eflecton equaton Ideal eflecton and efacton Fesnel effect Ideal dffuse Next lectue Glossy and specula eflecton models
Φυγόκεντρος αποθήκευσης Κανονική n 1k Αγωγή n 2k
Άσκηση 3. Τα παρακάτω δεδομένα δίνουν το πλήθος y των φυτών που διατήρησαν μια ιδιότητα όταν n φυτά βρέθηκαν κάτω από διαφορετικές συνθήκες. Ένας ποιοτικός παράγοντας (αγωγή) ήταν η αποθήκευση σε θερμοκρασία
ΠΕΡΙΟΔΙΚΟ ΣΥΣΤΗΜΑ ΤΩΝ ΣΤΟΙΧΕΙΩΝ (1) Ηλία Σκαλτσά ΠΕ ο Γυμνάσιο Αγ. Παρασκευής
ΠΕΡΙΟΔΙΚΟ ΣΥΣΤΗΜΑ ΤΩΝ ΣΤΟΙΧΕΙΩΝ (1) Ηλία Σκαλτσά ΠΕ04.01 5 ο Γυμνάσιο Αγ. Παρασκευής Όπως συμβαίνει στη φύση έτσι και ο άνθρωπος θέλει να πετυχαίνει σπουδαία αποτελέσματα καταναλώνοντας το λιγότερο δυνατό
ΜΕΛΕΤΗ ΤΗΣ ΜΑΚΡΟΧΡΟΝΙΑΣ ΠΑΡΑΜΟΡΦΩΣΗΣ ΤΟΥ ΦΡΑΓΜΑΤΟΣ ΚΡΕΜΑΣΤΩΝ ΜΕ ΒΑΣΗ ΑΝΑΛΥΣΗ ΓΕΩΔΑΙΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΜΕΤΑΒΟΛΩΝ ΣΤΑΘΜΗΣ ΤΑΜΙΕΥΤΗΡΑ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΜΕΛΕΤΗ ΤΗΣ ΜΑΚΡΟΧΡΟΝΙΑΣ ΠΑΡΑΜΟΡΦΩΣΗΣ ΤΟΥ ΦΡΑΓΜΑΤΟΣ ΚΡΕΜΑΣΤΩΝ ΜΕ ΒΑΣΗ ΑΝΑΛΥΣΗ ΓΕΩΔΑΙΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΜΕΤΑΒΟΛΩΝ ΣΤΑΘΜΗΣ ΤΑΜΙΕΥΤΗΡΑ ΔΙΔΑΚΤΟΡΙΚΗ
Math 6 SL Probability Distributions Practice Test Mark Scheme
Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry
Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1
Arithmetical applications of lagrangian interpolation Tanguy Rivoal Institut Fourier CNRS and Université de Grenoble Conference Diophantine and Analytic Problems in Number Theory, The 00th anniversary
! "#" "" $ "%& ' %$(%& % &'(!!")!*!&+ ,! %$( - .$'!"
! "#" "" $ "%& ' %$(%&!"#$ % &'(!!")!*!&+,! %$( -.$'!" /01&$23& &4+ $$ /$ & & / ( #(&4&4!"#$ %40 &'(!"!!&+ 5,! %$( - &$ $$$".$'!" 4(02&$ 4 067 4 $$*&(089 - (0:;
ΕΝΕΡΓΟΣ ΔΙΑΤΟΜΗ ΤΟΥ ΣΩΜΑΤΙΔΙΟΥ W
ΕΝΕΡΓΟΣ ΔΙΑΤΟΜΗ ΤΟΥ ΣΩΜΑΤΙΔΙΟΥ W ΧΡΥΣΑΝΘΗ ΜΟΝΗ Α.Ε.Μ. : 12679 ΗΜΕΡΟΜΗΝΙΑ: 17/05/11 Τι είναι και πότε ανακαλύφθηκε το μποζόνιο W Το μποζόνιο Wείναι ένα από τα στοιχειώδη σωμάτια που μεταδίδουν την ασθενή