CP-violation from Non-Unitary Leptonic Mixing

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "CP-violation from Non-Unitary Leptonic Mixing"

Transcript

1 CP-volaton from Non-Untary Lptonc Mxng Jacobo Lópz Pavón IFT UAM/CSIC XLIIIrd Rncontrs d MORIOND Elctrowak Ssson La Thul, March 1-8, 008 S. Antusch, C. Bggo, E. Frnándz-Martínz and M.B. Gavla JHEP 0610:084,006 E. Fdz-Martnz, M.B. Gavla and O. Yasuda Phys.Ltt.B 649:47-435,007

2 Motvatons Nutrno masss and mxng vdnc of Physcs Byond th SM Typcal xplanatons nvolv Nw Physcs at hghr nrgs Ths NP oftn nducs dvatons from untarty of th PMNS at low nrgy W wll analyz th prsnt constrants on th mxng matrx wthout assumng untarty Study of CP volaton n th contxt of non-untarty

3 Usual Analyss 1 g g L = ( α / α αmαββ hc..) ( Wlαγ PLα hc..) ( Zαγ PLα hc..)... cosθ W l α CC W - α NC Z Dagonalzng α α L 1 g ( ) g ( = ) / m Wlαγ PU L α Zγ PL hc..... cosθ W U α = U Th mxng matrx s untary n th usual analyss wth 3 lght α

4 Th gnral da W - gγ PU L α l α cc sc s U= s c s s c c c s s s s c ss csc sc css cc δ δ δ δ δ α β 1 W - l α gγ PN L α N N N N N N N N N N 1 3 =

5 Effctv Lagrangan allowng non-untarty L 3 lght Assum NP at Λ >> Λ EW. In th flavor bass, 1 c g g = ( α / Kαββ αmαββ hc..) ( W lαγ PLα hc..) ( Zαγ PLα hc..)... cosθ W α = N α L 1 g g = ( / m) ( Wlαγ PLNα) ( Zγ PL( N N) j j) hc..... cosθ W unchangd N non-untary = δ j j

6 Th ffcts of non-untarty appar n th ntractons W - Z l α N α j ( NN) j W can bound untarty wth wak dcays α 1 = N α N α δ β α α β P = L= 0= = αβ β α ( L) ) N N β N α N * α β E N N α m N L * α β N β Zro Dstanc Effct

7 Constrants on Untarty from wak dcays W l α Z nvsbl unvrsalty tsts rar lpton dcays NN 0.994± < < < ± < < < ± % C.L. N s untary at % lvl

8 In th futur γ γ TESTS OF UNITARITY RARE LEPTON DECAYS NN < 10 6 NN < (MEG) (BABAR) γ NN < (Bll)

9 In th futur TESTS OF UNITARITY γ γ γ RARE LEPTON DECAYS NN < 10 NN < NN < (MEG) (BABAR) (Bll) ZERO-DISTANCE NF 4 ( NN ) < ( NN ) < NN <.6 10

10 In th futur TESTS OF UNITARITY γ γ γ RARE LEPTON DECAYS NN < 10 NN < NN < (MEG) (BABAR) (Bll) ZERO-DISTANCE NF 4 ( NN ) < ( NN ) < NN <.6 10

11 In th futur TESTS OF UNITARITY γ γ γ RARE LEPTON DECAYS NN < 10 NN < NN < (MEG) (BABAR) (Bll) ZERO-DISTANCE NF 4 ( NN ) < ( NN ) < NN <.6 10 PHASES phass apparanc xprmnts: NUFACTs, b-bams

12 If w paramtrz Can w masur th phass of N? E. Fdz-Martnz, M.B. Gavla, J. Lópz-Pavón and O.Yasuda hp-ph/ ph/ N = (1 η) U whr U U PMNS η η η * η = η η η * * η η η and η = η If Δ E ml Δ<< 1 SM * ( L = A O ) η η α β αβ αβ P αβ only dpnds on ηαβ

13 Can w masur th phass of N? E. Fdz-Martnz, M.B. Gavla, J. Lópz-Pavón and O.Yasuda hp-ph/ ph/ For nstanc, for two famls: Δ P αβ = sn ( θ)sn 4 η αβ sn( δ αβ )sn( θ)sn Δ 4 η αβ SM CP volatng ntrfrnc Zro dstanc ffct η αβ δ η αβ αβ Nw CP-volaton sgnals Δ =ΔmL E 1 j j

14 Whch s th bst channl???? < η 5 < η 3 < η 3 Δ sn θ sn 4 η snδ sn θ sn 4 η 31 P 3 3 Δ 31 P Ths s th bst channl to masur nw CP phass: P 8 η snδ sn( θ )sn Δ 3 13

15 Th CP phas δ can b probd N N 8 η snδ sn( θ )sn Δ Confuson btwn sgn sgn. Dgnracy δ δ 180º δ Δ 3σ a Nutrno Factory wth L = 130 Km

16 Th CP phas δ can b probd 3σ Prsnt bound from γ Snstvty to η Snstvty to δ For non-trval δ, on ordr of magntud mprovmnt for η

17 Conclusons Analyz nutrno data wthout assumng untarty. W startd th frst analyss and conclud that, at prsnt: -EW dcays confrms untarty at % lvl -Prsnt bounds on untarty ar strong nough to match th untarty analyss CP-asymmtry s a clan prob of th nw phass. Non-untary ffcts n typcal modls ar too small to b dtctd at prsnt xprmnts. Thy could b szabl n xtnsons/othrs modls wth M~ TV, ). -> kp trackng thm n th futur. Thy ar xcllnt sgnals of nw physcs.

18 Back-up slds

19 Constrants on untarty < 3 η < η < η < < 3 < 3 < 3 η < < η η η η η η

20 Lptonc Mxng Matrx Elmnts From Oscllatons N N N N N N N 1 3 = 1 3 N N N 1 3

21 CHOOZ: KamLAND: Δ 13 from KK SNO: P 0.1 N 0.9 N N lmnts from oscllatons: -row ( ) 4 ( ) cos( Δ ) ( ) cos( Δ ) P N N N N N P N N N N N N KamLANDCHOOZKK Δ j = Δm j L E SNO all N dtrmnd

22 Pˆ N lmnts from oscllatons: -row Atmosphrc KK: Δ 1 0 Δ j = Δm j L E 4 N N N N N N ( Δ ) cos 3 1. Dgnracy N N 1 3 N UNITARITY. 1, N N cannot b dsntangld

23 N lmnts from oscllatons only = OSCILLATIONS [ N N 1 N wthout untarty ? 1/ = ? ] < ? 3σ wth untarty OSCILLATIONS U < 0.0 = Gonzálz-García, Malton 07

24 Dcays W - l α ( W l ) Γ α ( NN ) αα ( NN ) ( NN ) l α W - γ Br l l β ( α lβγ ) ( NN ) βα ( NN ) ( NN ) m O MW αα ββ ( NN) j, j Z nvsbl unvrsalty tsts NN NN ( NN ) ( NN ) αα ββ

25 If w paramtrz Can w masur th phass of N? E. Fdz-Martnz, M.B. Gavla, J. Lópz-Pavón and O.Yasuda hp-ph/ ph/ N Normalzaton factors = (1 η) U whr U U PMNS η η η * η = η η η * * η η η and η = η O( η ) Standard ampltud If Δ E ml Δ<< 1 SM Aαα 1 η SM Aαβ αβ << 1 SM * ( L = A O ) η η α β αβ αβ P αβ only dpnds on ηαβ

26 Whch s th bst channl???? Constrants on untarty: η η η < η < η η η < η < η < η < < < < 90% C.L. η << η, η

27 Whch s th bst channl???? P P SM s c η c sn δ δ sn θ Δ η sn θ snδ Δ 4 η Δ =Δ mle<< 1 j j sn θ Δ s supprssd by th small paramtrs Δ 1 and 13 31

28 Our analyss wll also apply to non-standard or xotc nutrno ntractons. (Grossman, Gonzalz-Garca t al., Hubr t al., Ktazawa t al., Davdson t al. Blnnow t al...) Thy add 4-frmon xotc oprators whch affct producton or dtcton or propagaton n mattr Ψ Ψ Ψ Ψ

29 NSI nutrno ntractons vs NonUntarty SM NF: d l u α α d u convntonal-bams supr-bams NF: Mattr ffcts: α=β=

30 NSI nutrno ntractons vs NonUntarty Exotc Intractons Add nw ffctv 4-frmon oprators whch affcts to: Producton Dtcton d αd lα u u Mattr ffcts f f

31 NSI nutrno ntractons vs NonUntarty SM Exotc Intractons Exotc Intractons Non-Untarty

32 NSI nutrno ntractons vs NonUntarty Exotc Intractons Non-Untarty ε p αβ No rlatonshp btwn and ε d βα η αβ = η * βα If ε = ε p d* αβ βα P EXOTIC = P NON UNITARITY Our constrants apply to Exotc Intractons! If not Idm, barrng xtrm fn tund canclatons

33 Oscllaton Probablty n Mattr 1 L = Gnγ P Gn γ P nt 0 0 ff F L F n α L α α V CC V NC d dt = N E 0 0 ( N ) 1 * 1 * E ( NN ) ( NN ) ( VCC VNC )( NN ) VNC ( NN ) ( NN ) ( Vcc VNC ) ( NN ) VNC ( NN ) ( NN ) Effctv Evoluton 1. non-dagonal lmnts. NC ffcts do not dsappar

34 Mattr ffcts n Δ, Δ, AL Kpng only trms to scond ordr n 1 31 and and frst n η (sttng η = 0): αβ sn θ 13 sn θ 10 Δ AL 10 Δ 10 η < ~ αβ

35 Aproxmat xprsson for P Δ31 Δ1 3 sn θ13 3 sn θ1 P c s Δ1 Δ31 c13 sn θ1 sn θ3 sn θ13 cosδ η c sn θ sn δ δ Δ η sn θ snδ Δ 4 η s c ( ; ; η η ) P = P s c c s

36 Analyss of 3σ 3σ Th zro dstanc ffct domnats ovr CP volatng ntrfrnc trm - No nformaton on δ 3 η 10 - Snstvts to around

37 Som dtals about th NF W study a NF bam rsultng from th dcay of 50 GV muons: 10 - Assumng usful dcays/yar - 5 yars runnng wth ach polarty - 5 Kt Opra-lk dtctor -L=130 km snstvts and backgrounds = ( snstvts and backgrounds) hp-ph/

38 (NN ) and (N N) from dcays NN 1.00 ± < < < ± < < < ± % C.L. N = HV NN = H = 1 ε wth ε = ε N N = 1 V ε V = 1 ε ' ε ' j ε αβ αβ N N 1.00 ± 0.03 < 0.03 < 0.03 < ± 0.03 < 0.03 < 0.03 < ± 0.03 N s untary at % lvl

39 Low-nrgy thory..... cos / = h c P Z g h c P l W g h c M K L L W L c α α α α β αβ α β αβ α γ θ γ Aftr EWSB:..... ) ( cos 1 / = h c N N P Z g N P l W g m L j j L W L c γ θ γ α α M αβ dagonalzd untary transformaton K αβ dagonalzd and normalzd untary transf. rscalng N non-untary

40 CHOOZ: systmatc rror hp-x\ SNO: n n CC NC Som numbrs 1 N 0.9 N 0.1 Normalzaton flux ~.7% Enrgy ~ 1.1% w lt t vary % OPERA (NF): background: c-dcays / chargd currnt dcays ~ systmatc rror ~ 5% ffcncy ~ 0% hp-ph\ KK: Statstcs hp-x\ ZERO-DISTANCE EFFECT 40Kt Iron calormtr nar NUFACT 4 ( NN ) < Kt OPERA-lk nar NUFACT 3 ( NN ) <.9 10 NN <

41 (NN ) from dcays: G F W W dcays Z Invsbl Z Unvrsalty tsts ( NN ) αα l α ( NN ) ( NN ) ( N N ) j j j ( NN ) ( NN ) ( NN ) αα ( NN ) ββ Info on (NN ) aa G F s masurd n -dcay W N j 5 Fm Γ = N N 3 19π j N* j G j G F,xp GF = N N j j

42 Oscllaton Probablty n Vacuum d H dt = ^ = E δ = I fr j j j Effctv Evoluton E 0 0 E d * * t = U 0 E α α dt 0( * U) 1 N 0 E 0 N α 0 0 E 0 0 E 3 3 = I P = L= 0= = αβ β α ( L) ) N N β N α N * α β E N N α m N L * α β N β Zro Dstanc Effct

43 Non-untarty from s-saw L = LSM NRdNR -Y L H NR -M NR NR Intgrat out N R L ff = L SM 1 d = 5 1 d = 6 L L MΛ MΛ... T YY/M (L LH H) _ YY/M (L H) d(h L) d=5 oprator t gvs mass to d=6 oprator t rnormalss kntc nrgy Broncano, Gavla, Jnkns 0

44 masss byond th SM Tr-lvl ralzatons N R N R Havy frmon snglt N R dvatons from untarty (Ssaw I) Havy scalar trplt Δ t R t R Y t Y t M t no dvatons from untarty Havy frmon trplt t R dvatons from untarty Abada, Antusch, Bggo, Bonnt, Hamby, M.B.G.

45 addng nar dtctors E, 0 = NN Tst of zro-dstanc ffct: αβ αβ P αβ δ MINOS: (NN ) =1±0.05 BUGEY: (NN ) =1±0.04 NOMAD: (NN ) <0.09 (NN ) <0.013 KARMEN: (NN ) <0.05 N = ? ? < ? also all N dtrmnd

46 Numbr of vnts n v Φ α d ( E) ~ de P αβ ( E, L) σ β ( E) ε ( E) de producd and dtctd n CC dφ dφ ~ de de SM σ β ~ σ β NN ( NN ) αα SM α α ββ n v SM ( NN ) P ( E, L) ( NN ) ( E) ε SM dφα ( E) ~ de αα αβ ββ σ β E de Excptons: masurd flux lptonc producton mchansm dtcton va NC Pˆ αβ ( E, L) = N * α P L N β

47 In th futur γ γ TESTS OF UNITARITY RARE LEPTON DECAYS NN < NN < (MEGA) (BABAR) γ NN < (Bll)

Homework #6. A circular cylinder of radius R rotates about the long axis with angular velocity

Homework #6. A circular cylinder of radius R rotates about the long axis with angular velocity Homwork #6 1. (Kittl 5.1) Cntrifug. A circular cylindr of radius R rotats about th long axis with angular vlocity ω. Th cylindr contains an idal gas of atoms of mass m at tmpratur. Find an xprssion for

Διαβάστε περισσότερα

Antonio Pich. IFIC, CSIC Univ. Valencia.

Antonio Pich. IFIC, CSIC Univ. Valencia. Antonio Pich IFIC, CSIC Univ. Valncia Antonio.Pich@ific.uv.s Topical Sminar on Frontir of Particl Physics 005: Havy Flavor Physics Bijing, August 13-17 005 Quarks Lptons Bosons up down lctron nutrino photon

Διαβάστε περισσότερα

Bridges of Low-E observables with Leptogenesis in mu-tau Reflection Symmetry

Bridges of Low-E observables with Leptogenesis in mu-tau Reflection Symmetry rdges of Low-E observables wth Leptogeness n mu-tau Reflecton Symmetry Y.H.Ahn (Academa Snca) Wth S.K.Kang, C.S.Km, T.P.Nguyen (hep-ph 0811.1458) Consequences of mu-tau reflecton Symmetry Connecton CP-volaton

Διαβάστε περισσότερα

Solar Neutrinos: Fluxes

Solar Neutrinos: Fluxes Solar Neutrinos: Fluxes pp chain Sun shines by : 4 p 4 He + e + + ν e + γ Solar Standard Model Fluxes CNO cycle e + N 13 =0.707MeV He 4 C 1 C 13 p p p p N 15 N 14 He 4 O 15 O 16 e + =0.997MeV O17

Διαβάστε περισσότερα

One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF

One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF One and two partcle densty matrces for sngle determnant HF wavefunctons One partcle densty matrx Gven the Hartree-Fock wavefuncton ψ (,,3,!, = Âϕ (ϕ (ϕ (3!ϕ ( 3 The electronc energy s ψ H ψ = ϕ ( f ( ϕ

Διαβάστε περισσότερα

Multi-dimensional Central Limit Theorem

Multi-dimensional Central Limit Theorem Mult-dmensonal Central Lmt heorem Outlne () () () t as () + () + + () () () Consder a sequence of ndependent random proceses t, t, dentcal to some ( t). Assume t 0. Defne the sum process t t t t () t tme

Διαβάστε περισσότερα

Multi-dimensional Central Limit Theorem

Multi-dimensional Central Limit Theorem Mult-dmensonal Central Lmt heorem Outlne () () () t as () + () + + () () () Consder a sequence of ndependent random proceses t, t, dentcal to some ( t). Assume t 0. Defne the sum process t t t t () t ();

Διαβάστε περισσότερα

General theorems of Optical Imaging systems

General theorems of Optical Imaging systems Gnral thorms of Optcal Imagng sstms Tratonal Optcal Imagng Topcs Imagng qualt harp: mags a pont sourc to a pont Dstorton fr: mags a shap to a smlar shap tgmatc Imagng Imags a pont sourc to a nfntl sharp

Διαβάστε περισσότερα

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων.

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων. Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 2015 ιδάσκων : Α. Μουχτάρης εύτερη Σειρά Ασκήσεων Λύσεις Ασκηση 1. 1. Consder the gven expresson for R 1/2 : R 1/2

Διαβάστε περισσότερα

Pairs of Random Variables

Pairs of Random Variables Pairs of Random Variabls Rading: Chaptr 4. 4. Homwork: (do at last 5 out of th following problms 4..4, 4..6, 4.., 4.3.4, 4.3.5, 4.4., 4.4.4, 4.5.3, 4.6.3, 4.6.7, 4.6., 4.7.9, 4.7., 4.8.3, 4.8.7, 4.9.,

Διαβάστε περισσότερα

Neutralino contributions to Dark Matter, LHC and future Linear Collider searches

Neutralino contributions to Dark Matter, LHC and future Linear Collider searches Neutralno contrbutons to Dark Matter, LHC and future Lnear Collder searches G.J. Gounars Unversty of Thessalonk, Collaboraton wth J. Layssac, P.I. Porfyrads, F.M. Renard and wth Th. Dakonds for the γz

Διαβάστε περισσότερα

α & β spatial orbitals in

α & β spatial orbitals in The atrx Hartree-Fock equatons The most common method of solvng the Hartree-Fock equatons f the spatal btals s to expand them n terms of known functons, { χ µ } µ= consder the spn-unrestrcted case. We

Διαβάστε περισσότερα

Some Geometric Properties of a Class of Univalent. Functions with Negative Coefficients Defined by. Hadamard Product with Fractional Calculus I

Some Geometric Properties of a Class of Univalent. Functions with Negative Coefficients Defined by. Hadamard Product with Fractional Calculus I Itrtol Mthtcl Foru Vol 6 0 o 64 379-388 So otrc Proprts o Clss o Uvlt Fuctos wth Ntv Cocts Dd y Hdrd Product wth Frctol Clculus I Huss Jr Adul Huss Dprtt o Mthtcs d Coputr pplctos Coll o Sccs Uvrsty o

Διαβάστε περισσότερα

!!" #7 $39 %" (07) ..,..,.. $ 39. ) :. :, «(», «%», «%», «%» «%». & ,. ). & :..,. '.. ( () #*. );..,..'. + (# ).

!! #7 $39 % (07) ..,..,.. $ 39. ) :. :, «(», «%», «%», «%» «%». & ,. ). & :..,. '.. ( () #*. );..,..'. + (# ). 1 00 3 !!" 344#7 $39 %" 6181001 63(07) & : ' ( () #* ); ' + (# ) $ 39 ) : : 00 %" 6181001 63(07)!!" 344#7 «(» «%» «%» «%» «%» & ) 4 )&-%/0 +- «)» * «1» «1» «)» ) «(» «%» «%» + ) 30 «%» «%» )1+ / + : +3

Διαβάστε περισσότερα

The Finite Element Method

The Finite Element Method Th Finit Elmnt Mthod Plan (D) Truss and Fram Elmnts Rad: Sctions 4.6 and 5.4 CONTENTS Rviw of bar finit lmnt in th local coordinats Plan truss lmnt Rviw of bam finit lmnt in th local coordinats Plan fram

Διαβάστε περισσότερα

Convection Derivatives February 17, E+01 1.E-01 1.E-02 1.E-03 1.E-04 1.E-05 1.E-06 1.E-07 1.E-08 1.E-09 1.E-10. Error

Convection Derivatives February 17, E+01 1.E-01 1.E-02 1.E-03 1.E-04 1.E-05 1.E-06 1.E-07 1.E-08 1.E-09 1.E-10. Error onvcton rvtvs brry 7, nt Volm Mtho or onvcton rvtvs Lrry rtto Mchncl ngnrng 69 omttonl l ynmcs brry 7, Otln Rv nmrcl nlyss bscs oncl rslts or son th sorc nlyss Introc nt-volm mtho or convcton Not n or

Διαβάστε περισσότερα

5 Haar, R. Haar,. Antonads 994, Dogaru & Carn Kerkyacharan & Pcard 996. : Haar. Haar, y r x f rt xβ r + ε r x β r + mr k β r k ψ kx + ε r x, r,.. x [,

5 Haar, R. Haar,. Antonads 994, Dogaru & Carn Kerkyacharan & Pcard 996. : Haar. Haar, y r x f rt xβ r + ε r x β r + mr k β r k ψ kx + ε r x, r,.. x [, 4 Chnese Journal of Appled Probablty and Statstcs Vol.6 No. Apr. Haar,, 6,, 34 E-,,, 34 Haar.., D-, A- Q-,. :, Haar,. : O.6..,..,.. Herzberg & Traves 994, Oyet & Wens, Oyet Tan & Herzberg 6, 7. Haar Haar.,

Διαβάστε περισσότερα

Hadronic Tau Decays at BaBar

Hadronic Tau Decays at BaBar Hadronic Tau Decays at BaBar Swagato Banerjee Joint Meeting of Pacific Region Particle Physics Communities (DPF006+JPS006 Honolulu, Hawaii 9 October - 3 November 006 (Page: 1 Hadronic τ decays Only lepton

Διαβάστε περισσότερα

8.1 The Nature of Heteroskedasticity 8.2 Using the Least Squares Estimator 8.3 The Generalized Least Squares Estimator 8.

8.1 The Nature of Heteroskedasticity 8.2 Using the Least Squares Estimator 8.3 The Generalized Least Squares Estimator 8. 8.1 The Nature of Heteroskedastcty 8. Usng the Least Squares Estmator 8.3 The Generalzed Least Squares Estmator 8.4 Detectng Heteroskedastcty E( y) = β+β 1 x e = y E( y ) = y β β x 1 y = β+β x + e 1 Fgure

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

8.324 Relativistic Quantum Field Theory II

8.324 Relativistic Quantum Field Theory II Lecture 8.3 Relatvstc Quantum Feld Theory II Fall 00 8.3 Relatvstc Quantum Feld Theory II MIT OpenCourseWare Lecture Notes Hon Lu, Fall 00 Lecture 5.: RENORMALIZATION GROUP FLOW Consder the bare acton

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

ELE 3310 Tutorial 11. Reflection of plane waves Wave impedance of the total field

ELE 3310 Tutorial 11. Reflection of plane waves Wave impedance of the total field L 0 Tuto Rfcton of pn wvs Wv mpdnc of th tot fd Rfcton of M wvs Rfcton tks pc whn n M wv hts on bound. Pt of th wv gts fctd, nd pt of t gts tnsmttd. Popgton dctons nd mptuds of th fctd nd tnsmttd wvs dpnd

Διαβάστε περισσότερα

The Standard Model. Antonio Pich. IFIC, CSIC Univ. Valencia

The Standard Model. Antonio Pich. IFIC, CSIC Univ. Valencia http://arxiv.org/pd/0705.464 The Standard Mode Antonio Pich IFIC, CSIC Univ. Vaencia Gauge Invariance: QED, QCD Eectroweak Uniication: SU() Symmetry Breaking: Higgs Mechanism Eectroweak Phenomenoogy Favour

Διαβάστε περισσότερα

CP Violation in B- and K-Meson Systems

CP Violation in B- and K-Meson Systems iolation in - and -Mson ystms DPG Tagung, ipzig, 18.3. Outlin rnhard paan Tchnisch Univrsität Drsdn Motivation violation in th standard modl Typs o violation violation in th -ystm Comparison with -ystm

Διαβάστε περισσότερα

d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n 1

d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n 1 d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n1 x dx = 1 2 b2 1 2 a2 a b b x 2 dx = 1 a 3 b3 1 3 a3 b x n dx = 1 a n +1 bn +1 1 n +1 an +1 d dx d dx f (x) = 0 f (ax) = a f (ax) lim d dx f (ax) = lim 0 =

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

16 Electromagnetic induction

16 Electromagnetic induction Chatr : Elctromagntic Induction Elctromagntic induction Hint to Problm for Practic., 0 d φ or dφ 0 0.0 Wb. A cm cm 7 0 m, A 0 cm 0 cm 00 0 m B 0.8 Wb/m, B. Wb/m,, dφ d BA (B.A) BA 0.8 7 0. 00 0 80 0 8

Διαβάστε περισσότερα

Relativsitic Quantum Mechanics. 3.1 Dirac Equation Summary and notation 3.1. DIRAC EQUATION SUMMARY AND NOTATION. April 22, 2015 Lecture XXXIII

Relativsitic Quantum Mechanics. 3.1 Dirac Equation Summary and notation 3.1. DIRAC EQUATION SUMMARY AND NOTATION. April 22, 2015 Lecture XXXIII 3.1. DIRAC EQUATION SUMMARY AND NOTATION April, 015 Lctur XXXIII Rlativsitic Quantum Mchanics 3.1 Dirac Equation Summary and notation W found that th two componnt spinors transform according to A = ± σ

Διαβάστε περισσότερα

α A G C T 國立交通大學生物資訊及系統生物研究所林勇欣老師

α A G C T 國立交通大學生物資訊及系統生物研究所林勇欣老師 A G C T Juks and Cantor s (969) on-aramtr modl A T C G A G 0 0 0-3 C T A() A( t ) ( 3 ) ( ) A() A() ( 3 ) ( ) A( A( A( A( t ) A( 3 A( t ) ( ) A( A( Juks and Cantor s (969) on-aramtr modl A( A( t ) A( d

Διαβάστε περισσότερα

Self and Mutual Inductances for Fundamental Harmonic in Synchronous Machine with Round Rotor (Cont.) Double Layer Lap Winding on Stator

Self and Mutual Inductances for Fundamental Harmonic in Synchronous Machine with Round Rotor (Cont.) Double Layer Lap Winding on Stator Sel nd Mutul Inductnces or Fundmentl Hrmonc n Synchronous Mchne wth Round Rotor (Cont.) Double yer p Wndng on Sttor Round Rotor Feld Wndng (1) d xs s r n even r Dene S r s the number o rotor slots. Dene

Διαβάστε περισσότερα

Dong Liu State Key Laboratory of Particle Detection and Electronics University of Science and Technology of China

Dong Liu State Key Laboratory of Particle Detection and Electronics University of Science and Technology of China Dong Liu State Key Laboratory of Particle Detection and Electronics University of Science and Technology of China ISSP, Erice, 7 Outline Introduction of BESIII experiment Motivation of the study Data sample

Διαβάστε περισσότερα

UNIT 13: TRIGONOMETRIC SERIES

UNIT 13: TRIGONOMETRIC SERIES UNIT : TRIGONOMETRIC SERIES UNIT STUCTURE. Larg Objctvs. Itroducto. Grgory s Srs.. Gral Thorm o Grgory s Srs. Summato of Trgoomtrc Srs.. CS Mthod.. Srs Basd o Gomtrc or Arthmtco-Gomtrc Srs.. Sum of a Srs

Διαβάστε περισσότερα

Το άτομο του Υδρογόνου

Το άτομο του Υδρογόνου Το άτομο του Υδρογόνου Δυναμικό Coulomb Εξίσωση Schrödinger h e (, r, ) (, r, ) E (, r, ) m ψ θφ r ψ θφ = ψ θφ Συνθήκες ψ(, r θφ, ) = πεπερασμένη ψ( r ) = 0 ψ(, r θφ, ) =ψ(, r θφ+, ) π Επιτρεπτές ενέργειες

Διαβάστε περισσότερα

Section 7.6 Double and Half Angle Formulas

Section 7.6 Double and Half Angle Formulas 09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

Vidyamandir Classes. Solutions to Revision Test Series - 2/ ACEG / IITJEE (Mathematics) = 2 centre = r. a

Vidyamandir Classes. Solutions to Revision Test Series - 2/ ACEG / IITJEE (Mathematics) = 2 centre = r. a Per -.(D).() Vdymndr lsses Solutons to evson est Seres - / EG / JEE - (Mthemtcs) Let nd re dmetrcl ends of crcle Let nd D re dmetrcl ends of crcle Hence mnmum dstnce s. y + 4 + 4 6 Let verte (h, k) then

Διαβάστε περισσότερα

EGR 544 Communication Theory

EGR 544 Communication Theory EGR 544 Commucato hory 8. Spctral charactrstcs of Dgtally Modulats Sgals Z. Alyazcoglu Elctrcal ad Computr Egrg Dpartmt Cal Poly Pomoa Spctral charactrstcs of Dgtally Modulats Sgals Spctral charactrstcs

Διαβάστε περισσότερα

i i (3) Derive the fixed-point iteration algorithm and apply it to the data of Example 1.

i i (3) Derive the fixed-point iteration algorithm and apply it to the data of Example 1. Howor#3 urvval Aalyss Na: Huag Xw 黃昕蔚 Quso: uppos ha daa ( follow h odl ( ( > ad <

Διαβάστε περισσότερα

Faculdade de Engenharia. Transmission Lines ELECTROMAGNETIC ENGINEERING MAP TELE 2008/2009

Faculdade de Engenharia. Transmission Lines ELECTROMAGNETIC ENGINEERING MAP TELE 2008/2009 Facudad d Ennharia Transmission ins EECTROMAGNETC ENGNEERNG MAP TEE 8/9 Transmission ins Facudad d Ennharia transmission ins wavuids supportin TEM wavs most common typs para-pat wavuids coaxia wavuids

Διαβάστε περισσότερα

' ( )* * +,,, ) - ". &!: &/#&$&0& &!& $#/&! 1 2!#&, #/&2!#&3 &"&!3, #&- &2!#&, "#4&#3 $!&$3% 2!% #!.1 & &!" //! &-!!

' ( )* * +,,, ) - . &!: &/#&$&0& &!& $#/&! 1 2!#&, #/&2!#&3 &&!3, #&- &2!#&, #4&#3 $!&$3% 2!% #!.1 & &! //! &-!! ..!! "#$% #&" 535.34 ' ( )* *,,, ) - ". &!: 1.4.7 &/#&$&& &!&11 5.7.1 $#/&! 1!#&, #/&!#&3 &"&!3, #&- &!#&, "#4&#3 $!&$3%!% #!.1 & &!" //! &-!!% 3 #&$&/!: /&!&# &-!!%, "#&&# 56$.., //! &-!!% ).. &$ 13 .

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

Phasor Diagram of an RC Circuit V R

Phasor Diagram of an RC Circuit V R ESE Lecture 3 Phasor Dagram of an rcut VtV m snt V t V o t urrent s a reference n seres crcut KVL: V m V + V V ϕ I m V V m ESE Lecture 3 Phasor Dagram of an L rcut VtV m snt V t V t L V o t KVL: V m V

Διαβάστε περισσότερα

8.323 Relativistic Quantum Field Theory I

8.323 Relativistic Quantum Field Theory I MIT OpenCourseWare http://ocwmtedu 8323 Relatvstc Quantum Feld Theory I Sprng 2008 For nformaton about ctng these materals or our Terms of Use, vst: http://ocwmtedu/terms 1 The Lagrangan: 8323 Lecture

Διαβάστε περισσότερα

A Class of Orthohomological Triangles

A Class of Orthohomological Triangles A Class of Orthohomologcal Trangles Prof. Claudu Coandă Natonal College Carol I Craova Romana. Prof. Florentn Smarandache Unversty of New Mexco Gallup USA Prof. Ion Pătraşcu Natonal College Fraţ Buzeşt

Διαβάστε περισσότερα

Cable Systems - Postive/Negative Seq Impedance

Cable Systems - Postive/Negative Seq Impedance Cable Systems - Postive/Negative Seq Impedance Nomenclature: GMD GMR - geometrical mead distance between conductors; depends on construction of the T-line or cable feeder - geometric mean raduius of conductor

Διαβάστε περισσότερα

Quantum ElectroDynamics II

Quantum ElectroDynamics II Quantum ElectroDynamcs II Dr.arda Tahr Physcs department CIIT, Islamabad Photon Coned by Glbert Lews n 1926. In Greek Language Phos meanng lght The Photons A What do you know about Photon? Photon Dscrete

Διαβάστε περισσότερα

Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.

Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. Περιοδικός πίνακας: α. Είναι µια ταξινόµηση των στοιχείων κατά αύξοντα

Διαβάστε περισσότερα

Formulas of Agrawal s Fiber-Optic Communication Systems NA n 2 ; n n. NA( )=n1 a

Formulas of Agrawal s Fiber-Optic Communication Systems NA n 2 ; n n. NA( )=n1 a Formula o grawal Fiber-Oti Communiation Sytem Chater (ntroution) 8 / max m M / E nh N h M m 4 6.66. J e 9.6 / m log /mw SN / / /, NZ SN log / Z max N E Chater (Otial Fiber) Setion - (Geometrial Oti erition)

Διαβάστε περισσότερα

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds! MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.

Διαβάστε περισσότερα

Durbin-Levinson recursive method

Durbin-Levinson recursive method Durbin-Levinson recursive method A recursive method for computing ϕ n is useful because it avoids inverting large matrices; when new data are acquired, one can update predictions, instead of starting again

Διαβάστε περισσότερα

Lifting Entry 2. Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYLAND U N I V E R S I T Y O F

Lifting Entry 2. Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYLAND U N I V E R S I T Y O F ifting Entry Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYAN 1 010 avid. Akin - All rights reserved http://spacecraft.ssl.umd.edu ifting Atmospheric

Διαβάστε περισσότερα

Exam Statistics 6 th September 2017 Solution

Exam Statistics 6 th September 2017 Solution Exam Statstcs 6 th September 17 Soluto Maura Mezzett Exercse 1 Let (X 1,..., X be a raom sample of... raom varables. Let f θ (x be the esty fucto. Let ˆθ be the MLE of θ, θ be the true parameter, L(θ be

Διαβάστε περισσότερα

Relative Valuation. Relative Valuation. Relative Valuation. Υπολογισµός αξίας επιχείρησης µε βάση τρέχουσες αποτιµήσεις οµοειδών εταιρειών

Relative Valuation. Relative Valuation. Relative Valuation. Υπολογισµός αξίας επιχείρησης µε βάση τρέχουσες αποτιµήσεις οµοειδών εταιρειών Rlativ Valuatio Αρτίκης Γ. Παναγιώτης Rlativ Valuatio Rlativ Valuatio Υπολογισµός αξίας επιχείρησης µε βάση τρέχουσες αποτιµήσεις οµοειδών εταιρειών Ø Επιλογή οµοειδών επιχειρήσεων σε όρους κινδύνου, ανάπτυξης

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) = Mock Eam 7 Mock Eam 7 Section A. Reference: HKDSE Math M 0 Q (a) ( + k) n nn ( )( k) + nk ( ) + + nn ( ) k + nk + + + A nk... () nn ( ) k... () From (), k...() n Substituting () into (), nn ( ) n 76n 76n

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

Lifting Entry (continued)

Lifting Entry (continued) ifting Entry (continued) Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion Planar state equations MARYAN 1 01 avid. Akin - All rights reserved http://spacecraft.ssl.umd.edu

Διαβάστε περισσότερα

Κύµατα παρουσία βαρύτητας

Κύµατα παρουσία βαρύτητας Κύµατα παουσία βαύτητας 8. Grait as in th ocan Sarantis Sofianos Dpt. of hsics, Unirsit of thns Was in th ocan Srfac grait as Short and long limit in grait as Wa charactristics Intrnal as Charactristic

Διαβάστε περισσότερα

Affine Weyl Groups. Gabriele Nebe. Summerschool GRK 1632, September Lehrstuhl D für Mathematik

Affine Weyl Groups. Gabriele Nebe. Summerschool GRK 1632, September Lehrstuhl D für Mathematik Affine Weyl Groups Gabriele Nebe Lehrstuhl D für Mathematik Summerschool GRK 1632, September 2015 Crystallographic root systems. Definition A crystallographic root system Φ is a finite set of non zero

Διαβάστε περισσότερα

k k ΚΕΦΑΛΑΙΟ 1 G = (V, E) V E V V V G E G e = {v, u} E v u e v u G G V (G) E(G) n(g) = V (G) m(g) = E(G) G S V (G) S G N G (S) = {u V (G)\S v S : {v, u} E(G)} G v S v V (G) N G (v) = N G ({v}) x V (G)

Διαβάστε περισσότερα

V r,k j F k m N k+1 N k N k+1 H j n = 7 n = 16 Ṽ r ñ,ñ j Ṽ Ṽ j x / Ṽ W 2r V r D N T T 2r 2r N k F k N 2r Ω R 2 n Ω I n = { N: n} n N R 2 x R 2, I n Ω R 2 u R 2, I n x k+1 = x k + u k, u, x R 2,

Διαβάστε περισσότερα

Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz

Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz Solutions to the Schrodinger equation atomic orbitals Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz ybridization Valence Bond Approach to bonding sp 3 (Ψ 2 s + Ψ 2 px + Ψ 2 py + Ψ 2 pz) sp 2 (Ψ 2 s + Ψ 2 px + Ψ 2 py)

Διαβάστε περισσότερα

ψ(x) ψ (x) =exp[iγ a Θ a ] ψ(x) =1+iΓ a Θ a ψ ±

ψ(x) ψ (x) =exp[iγ a Θ a ] ψ(x) =1+iΓ a Θ a ψ ± CHPR III: SYMMRIS Sytrs OFo CD CD CD s b on local SU( c gag sytry In aton: global sytrs. Nöthr s hor L CD ( ( [γ D ] ( 4 Ga ν(g ν a ( (a 8 whr D g ( ( a( λ a an (. s Lt L CD b nvarant nr a global transoraton

Διαβάστε περισσότερα

PARTIAL NOTES for 6.1 Trigonometric Identities

PARTIAL NOTES for 6.1 Trigonometric Identities PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot

Διαβάστε περισσότερα

Υπολογιστική Φυσική Στοιχειωδών Σωματιδίων

Υπολογιστική Φυσική Στοιχειωδών Σωματιδίων Υπολογιστική Φυσική Στοιχειωδών Σωματιδίων 4ο Εξάμηνο2004-2005 Διακριτική ικανότητα ανιχνευτή-υπόβαθρο- Υπολογισμός του σήματος Διδάσκοντες : Χαρά Πετρίδου Δημήτριος Σαμψωνίδης 18/4/2005 Υπολογ.Φυσική

Διαβάστε περισσότερα

a; b 2 R; a < b; f : [a; b] R! R y 2 R: y : [a; b]! R; ( y (t) = f t; y(t) ; a t b; y(a) = y : f (t; y) 2 [a; b]r: f 2 C ([a; b]r): y 2 C [a; b]; y(a) = y ; f y ỹ ỹ y ; jy ỹ j ky ỹk [a; b]; f y; ( y (t)

Διαβάστε περισσότερα

k k ΚΕΦΑΛΑΙΟ 1 G = (V, E) V E V V V G E G e = {v, u} E v u e v u G G V (G) E(G) n(g) = V (G) m(g) = E(G) G S V (G) S G N G (S) = {u V (G)\S v S : {v, u} E(G)} G v S v V (G) N G (v) = N G ({v}) x V (G)

Διαβάστε περισσότερα

TMA4115 Matematikk 3

TMA4115 Matematikk 3 TMA4115 Matematikk 3 Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet Trondheim Spring 2010 Lecture 12: Mathematics Marvellous Matrices Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet

Διαβάστε περισσότερα

From the finite to the transfinite: Λµ-terms and streams

From the finite to the transfinite: Λµ-terms and streams From the finite to the transfinite: Λµ-terms and streams WIR 2014 Fanny He f.he@bath.ac.uk Alexis Saurin alexis.saurin@pps.univ-paris-diderot.fr 12 July 2014 The Λµ-calculus Syntax of Λµ t ::= x λx.t (t)u

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that

Διαβάστε περισσότερα

TeSys contactors a.c. coils for 3-pole contactors LC1-D

TeSys contactors a.c. coils for 3-pole contactors LC1-D References a.c. coils for 3-pole contactors LC1-D Control circuit voltage Average resistance Inductance of Reference (1) Weight Uc at 0 C ± 10 % closed circuit For 3-pole " contactors LC1-D09...D38 and

Διαβάστε περισσότερα

Right Rear Door. Let's now finish the door hinge saga with the right rear door

Right Rear Door. Let's now finish the door hinge saga with the right rear door Right Rear Door Let's now finish the door hinge saga with the right rear door You may have been already guessed my steps, so there is not much to describe in detail. Old upper one file:///c /Documents

Διαβάστε περισσότερα

ΜΕΤΑΣΧΗΜΑΤΙΣΤΕΣ ΜΕΤΑΣΧΗΜΑΤΙΣΤΕΣ ΜΕΤΑΦΟΡΑΣ ΗΛΕΚΤΡΙΚΗΣ ΙΣΧΥΟΣ. Συσκευές οι οποίες μετασχηματίζουν το πλάτος της εναλλασόμενης τάσης

ΜΕΤΑΣΧΗΜΑΤΙΣΤΕΣ ΜΕΤΑΣΧΗΜΑΤΙΣΤΕΣ ΜΕΤΑΦΟΡΑΣ ΗΛΕΚΤΡΙΚΗΣ ΙΣΧΥΟΣ. Συσκευές οι οποίες μετασχηματίζουν το πλάτος της εναλλασόμενης τάσης 1 ΜΕΤΑΦΟΡΑΣ ΗΛΕΚΤΡΙΚΗΣ ΙΣΧΥΟΣ Συσκευές οι οποίες μετασχηματίζουν το πλάτος της εναλλασόμενης τάσης Μετασχηματιστές ανύψωσης: Χρησιμοποιούνται για τη μείωση των απωλειών γραμμής στα συστήματα μεταφοράς

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

Unit 3 Lecture Number 16

Unit 3 Lecture Number 16 Slt/Sal Tos from Thory of Atom Collsons and Strosoy P. C. Dshmuh Dartmnt of Physs Indan Insttut of Thnology Madras Chnna 636 Unt 3 Ltur umbr 6 Eltron Gas n Hartr Fo and Random Phas Aroxmatons Frst, a short

Διαβάστε περισσότερα

Αέρια υψηλής Καθαρότητας 2000. Ο συνεργάτης σας για Αέρια, Εξοπλισµό και Υπηρεσίες

Αέρια υψηλής Καθαρότητας 2000. Ο συνεργάτης σας για Αέρια, Εξοπλισµό και Υπηρεσίες Αέρια υψηλής Καθαρότητας 2000 Ο συνεργάτης σας για Αέρια, Εξοπλισµό και Υπηρεσίες Αέρια Υψηλής Καθαρότητας από την MESSER Αέρια Υψηλής Καθαρότητας Το παρόν κεφάλαιο δείνει ένα πανόραµα των αερίων υψηλής

Διαβάστε περισσότερα

LIGHT UNFLAVORED MESONS (S = C = B = 0)

LIGHT UNFLAVORED MESONS (S = C = B = 0) LIGHT UNFLAVORED MESONS (S = C = B = 0) For I = 1 (π, b, ρ, a): ud, (uu dd)/ 2, du; for I = 0 (η, η, h, h, ω, φ, f, f ): c 1 (uu + d d) + c 2 (s s) π ± I G (J P ) = 1 (0 ) Mass m = 139.57018 ± 0.00035

Διαβάστε περισσότερα

A/m

A/m G anada Ltd. MTERI ROSS REFERENE Ferronics V G FTF T G FKF G F82F G G FF1G J G F52J K G F01H P G F21 Units Initial Permeability (µi) 15,000 15,000 10,000 10,000 5,000 5,000 1,500 1,500 850 850 125 125

Διαβάστε περισσότερα

ΗΥ537: Έλεγχος Πόρων και Επίδοση σε Ευρυζωνικά Δίκτυα,

ΗΥ537: Έλεγχος Πόρων και Επίδοση σε Ευρυζωνικά Δίκτυα, ΗΥ537: Έλεγχος Πόρων και Επίδοση σε Ευρυζωνικά Δίκτυα Βασίλειος Σύρης Τμήμα Επιστήμης Υπολογιστών Πανεπιστήμιο Κρήτης Εαρινό εξάμηνο 2008 Economcs Contents The contet The basc model user utlty, rces and

Διαβάστε περισσότερα

MnZn. MnZn Ferrites with Low Loss and High Flux Density for Power Supply Transformer. Abstract:

MnZn. MnZn Ferrites with Low Loss and High Flux Density for Power Supply Transformer. Abstract: MnZn JFE No. 8 5 6 p. 32 37 MnZn Ferrites with Low Loss and High Flux Density for Power Supply Transformer FUJITA Akira JFE Ph. D. FUKUDA Yutaka JFE NISHIZAWA Keitarou JFE TOGAWA Jirou MnZn Fe2O3 1 C NiO

Διαβάστε περισσότερα

ITU-R P (2009/10)

ITU-R P (2009/10) ITU-R.45-4 (9/) % # GHz,!"# $$ # ITU-R.45-4.. (IR) (ITU-T/ITU-R/ISO/IEC).ITU-R http://www.tu.t/itu-r/go/patets/e. (http://www.tu.t/publ/r-rec/e ) () ( ) BO BR BS BT F M RA S RS SA SF SM SNG TF V.ITU-R

Διαβάστε περισσότερα

IIT JEE (2013) (Trigonomtery 1) Solutions

IIT JEE (2013) (Trigonomtery 1) Solutions L.K. Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 677 (+) PAPER B IIT JEE (0) (Trigoomtery ) Solutios TOWARDS IIT JEE IS NOT A JOURNEY, IT S A BATTLE, ONLY THE TOUGHEST WILL SURVIVE

Διαβάστε περισσότερα

Scratch Διδακτική του Προγραμματισμού. Παλαιγεωργίου Γιώργος

Scratch Διδακτική του Προγραμματισμού. Παλαιγεωργίου Γιώργος Scratch Διδακτική του Προγραμματισμού Παλαιγεωργίου Γιώργος Μάρτιος 2009 MIT Scratch Το Scratch είναι ένα πλούσιο σε οπτικοαουστικά μέσα προγραμματιστικό περιβάλλον στο οποίο οι αρχάριοι προγραμματιστές

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

ΜΕΡΟΣ ΙΙI ΜΟΡΙΑΚΟ ΒΑΡΟΣ ΠΟΛΥΜΕΡΩΝ

ΜΕΡΟΣ ΙΙI ΜΟΡΙΑΚΟ ΒΑΡΟΣ ΠΟΛΥΜΕΡΩΝ ΜΕΡΟΣ ΙΙI ΜΟΡΙΑΚΟ ΒΑΡΟΣ ΠΟΛΥΜΕΡΩΝ ΓΕΝΙΚΕΣ ΠΑΡΑΤΗΡΗΣΕΙΣ ΕΠΙ ΡΑΣΗ Μ.Β ΣΤΙΣ Ι ΙΟΤΗΤΕΣ ΠΟΛΥΜΕΡΩΝ ΜΑΘΗΜΑΤΙΚΗ ΠΕΡΙΓΡΑΦΗ ΤΗΣ ΚΑΤΑΝΟΜΗΣ ΜΟΡΙΑΚΟΥ ΒΑΡΟΥΣ ΣΥΝΑΡΤΗΣΗ ΠΙΘΑΝΟΤΗΤΟΣ ( ΙΑΦΟΡΙΚΗ) Probablty Densty Functon

Διαβάστε περισσότερα

a; b 2 R; a < b; f : [a; b] R! R y 2 R: y : [a; b]! R; ( y (t) = f t; y(t) ; a t b; y(a) = y : f (t; y) 2 [a; b]r: f 2 C ([a; b]r): y 2 C [a; b]; y(a) = y ; f y ỹ ỹ y ; jy ỹ j ky ỹk [a; b]; f y; ( y (t)

Διαβάστε περισσότερα

A NEW FORM OF MULTIVARIATE GENERALIZED DOUBLE EXPONENTIAL FAMILY OF DISTRIBUTIONS OF KIND-2

A NEW FORM OF MULTIVARIATE GENERALIZED DOUBLE EXPONENTIAL FAMILY OF DISTRIBUTIONS OF KIND-2 Journal of Rlablty and Statstcal Studs; ISSN (Prnt: 0974-804, (Onln: 9-5666 Vol. 0, Issu (07: 79-0 A NEW FORM OF MULTIVARIATE GENERALIZED DOUBLE EXPONENTIAL FAMILY OF DISTRIBUTIONS OF KIND- G.S. Davd Sam

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

Derivation of Optical-Bloch Equations

Derivation of Optical-Bloch Equations Appendix C Derivation of Optical-Bloch Equations In this appendix the optical-bloch equations that give the populations and coherences for an idealized three-level Λ system, Fig. 3. on page 47, will be

Διαβάστε περισσότερα

CS348B Lecture 10 Pat Hanrahan, Spring 2002

CS348B Lecture 10 Pat Hanrahan, Spring 2002 Page 1 Reflecton Models I Today Types of eflecton models The BRDF and eflectance The eflecton equaton Ideal eflecton and efacton Fesnel effect Ideal dffuse Next lectue Glossy and specula eflecton models

Διαβάστε περισσότερα

Φυγόκεντρος αποθήκευσης Κανονική n 1k Αγωγή n 2k

Φυγόκεντρος αποθήκευσης Κανονική n 1k Αγωγή n 2k Άσκηση 3. Τα παρακάτω δεδομένα δίνουν το πλήθος y των φυτών που διατήρησαν μια ιδιότητα όταν n φυτά βρέθηκαν κάτω από διαφορετικές συνθήκες. Ένας ποιοτικός παράγοντας (αγωγή) ήταν η αποθήκευση σε θερμοκρασία

Διαβάστε περισσότερα

ΠΕΡΙΟΔΙΚΟ ΣΥΣΤΗΜΑ ΤΩΝ ΣΤΟΙΧΕΙΩΝ (1) Ηλία Σκαλτσά ΠΕ ο Γυμνάσιο Αγ. Παρασκευής

ΠΕΡΙΟΔΙΚΟ ΣΥΣΤΗΜΑ ΤΩΝ ΣΤΟΙΧΕΙΩΝ (1) Ηλία Σκαλτσά ΠΕ ο Γυμνάσιο Αγ. Παρασκευής ΠΕΡΙΟΔΙΚΟ ΣΥΣΤΗΜΑ ΤΩΝ ΣΤΟΙΧΕΙΩΝ (1) Ηλία Σκαλτσά ΠΕ04.01 5 ο Γυμνάσιο Αγ. Παρασκευής Όπως συμβαίνει στη φύση έτσι και ο άνθρωπος θέλει να πετυχαίνει σπουδαία αποτελέσματα καταναλώνοντας το λιγότερο δυνατό

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΤΗΣ ΜΑΚΡΟΧΡΟΝΙΑΣ ΠΑΡΑΜΟΡΦΩΣΗΣ ΤΟΥ ΦΡΑΓΜΑΤΟΣ ΚΡΕΜΑΣΤΩΝ ΜΕ ΒΑΣΗ ΑΝΑΛΥΣΗ ΓΕΩΔΑΙΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΜΕΤΑΒΟΛΩΝ ΣΤΑΘΜΗΣ ΤΑΜΙΕΥΤΗΡΑ

ΜΕΛΕΤΗ ΤΗΣ ΜΑΚΡΟΧΡΟΝΙΑΣ ΠΑΡΑΜΟΡΦΩΣΗΣ ΤΟΥ ΦΡΑΓΜΑΤΟΣ ΚΡΕΜΑΣΤΩΝ ΜΕ ΒΑΣΗ ΑΝΑΛΥΣΗ ΓΕΩΔΑΙΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΜΕΤΑΒΟΛΩΝ ΣΤΑΘΜΗΣ ΤΑΜΙΕΥΤΗΡΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΜΕΛΕΤΗ ΤΗΣ ΜΑΚΡΟΧΡΟΝΙΑΣ ΠΑΡΑΜΟΡΦΩΣΗΣ ΤΟΥ ΦΡΑΓΜΑΤΟΣ ΚΡΕΜΑΣΤΩΝ ΜΕ ΒΑΣΗ ΑΝΑΛΥΣΗ ΓΕΩΔΑΙΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΜΕΤΑΒΟΛΩΝ ΣΤΑΘΜΗΣ ΤΑΜΙΕΥΤΗΡΑ ΔΙΔΑΚΤΟΡΙΚΗ

Διαβάστε περισσότερα

Math 6 SL Probability Distributions Practice Test Mark Scheme

Math 6 SL Probability Distributions Practice Test Mark Scheme Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry

Διαβάστε περισσότερα

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1 Arithmetical applications of lagrangian interpolation Tanguy Rivoal Institut Fourier CNRS and Université de Grenoble Conference Diophantine and Analytic Problems in Number Theory, The 00th anniversary

Διαβάστε περισσότερα

! "#" "" $ "%& ' %$(%& % &'(!!")!*!&+ ,! %$( - .$'!"

! #  $ %& ' %$(%& % &'(!!)!*!&+ ,! %$( - .$'! ! "#" "" $ "%& ' %$(%&!"#$ % &'(!!")!*!&+,! %$( -.$'!" /01&$23& &4+ $$ /$ & & / ( #(&4&4!"#$ %40 &'(!"!!&+ 5,! %$( - &$ $$$".$'!" 4(02&$ 4 067 4 $$*&(089 - (0:;

Διαβάστε περισσότερα

ΕΝΕΡΓΟΣ ΔΙΑΤΟΜΗ ΤΟΥ ΣΩΜΑΤΙΔΙΟΥ W

ΕΝΕΡΓΟΣ ΔΙΑΤΟΜΗ ΤΟΥ ΣΩΜΑΤΙΔΙΟΥ W ΕΝΕΡΓΟΣ ΔΙΑΤΟΜΗ ΤΟΥ ΣΩΜΑΤΙΔΙΟΥ W ΧΡΥΣΑΝΘΗ ΜΟΝΗ Α.Ε.Μ. : 12679 ΗΜΕΡΟΜΗΝΙΑ: 17/05/11 Τι είναι και πότε ανακαλύφθηκε το μποζόνιο W Το μποζόνιο Wείναι ένα από τα στοιχειώδη σωμάτια που μεταδίδουν την ασθενή

Διαβάστε περισσότερα