CP Violation in B- and K-Meson Systems
|
|
- Ἀπολλώς Καλογιάννης
- 6 χρόνια πριν
- Προβολές:
Transcript
1 iolation in - and -Mson ystms DPG Tagung, ipzig, Outlin rnhard paan Tchnisch Univrsität Drsdn Motivation violation in th standard modl Typs o violation violation in th -ystm Comparison with -ystm Dtrmination o /, δ -Factoris Dtrmination o sinβ, sinα, R Conclusion and Outlook
2 -iolation in th tandard Modl tandard modl: Origin o -iolation: Higgs-ctor!! Quark-Mass-Mixing matrix! Cabibbo obayashi Maskawa CM Matrix CM matrix: d' s' b' ud cd us cs ub cb d s b complx td ts tb unitary 4 paramtrs: 3 ral Eulr angls, 1 Phas Rlats mass ignstats to wak ignstats charactrizd by J Jarlskog invariant Im max 6 * * J ik jk j! i! J J M CM small Too small to xplain mattr-antimattr asymmtry in th univrso1 8
3 Origin o -iolation? tandard Modl: Phas o CM-matrix d' ud us ub d Tst tandard Modl: dtrmin phas s' cd cs cb s Tst unitarity o CM matrix b' td ts tb b Tst or Nw Physics Unitarity: driv 6 rlations 6 triangls in complx plan with ara J/.g. ud * ub * * cd cb td tb * ud ub γ Unitarity Tst ovrconstrain triangl "masur sids and angls "nd triangl with qual sid lngth larg angls "only triangls qualiy "not ully accssibl to -Physics "1 ully accssibl to -Physics α * cd cb * td tb β -triangl unitarity triangl
4 -iolation and -Physics mallst CM lmnts ud cd * D, D,,... * ub * cb γ ρ,η α, ρ,..., 1, Wolnstin paramtrisation: λ sinθ C,.85 λ 3 1 λ λ ρ iη λ λ 1 λ 3 λ 1 ρ iη λ 1 ρ 1 λ / ρ, η 1 λ / η td cd β * tb * cb -Physics:, -systm, ± dtrmination o: " β sinβ, α, γ " ub, cb, td ook or various typs o J / ψ Constraints without sinβ, D *, D *,... allowd β
5 ssum Tis consrvd
6 iolation Thr typs o -iolation: " -iolation in Dcay Dirct iolation! Chargd and nutral dcays " -iolation in Mixing Indirct iolation!nutral dcays Γ Γ ystm:, particl antiparticl oscillations ' b W d b u, c, t d u, c, t u, c, t W W d W b d u, c, t b " -iolation in Intrrnc btwn Dcays with and without Mixing! nutral -mson-systm:.g. sinβ masurmnt with R Γ Γ
7 Not on th -ystm, Dcay amplituds dominatd by th dcay. i.. by th th I amplitud mixing dominatd by sam dcay mod violation in mixing, intrrnc mixing dcay Not: I and I amplitud hav dirnt phass dirct -violation << in -systm dscribd by two paramtrs, : komplx, arg 45 unitarity, I dominats T I T I,, ' η T T ' η T T R ν ν ν ν δ Γ Γ Γ Γ
8 Oscillations/Mixing Oscillations : mass ignstats: q p q p H 1 q p complx coicints H and with m and Γ m H > m, sign o Γ not dind 1 p q P P, T " " " " H q p q p up to hr, ormalism is idntical or and -systms: UT: Γ is ngligibl in th systm but signiicant in th -systm! aons: din ignstats by litim:,
9 iolation in Mixing q inc 1964 known: 1 p Mass ignstats: violation vry small ct m m 1 m m 1 with m p p q q, q p 1 1 m m Im m, q p : unobsrvabl -systm: violation: small ct R << 1 1 R R R m m q p obsrvabl m
10 -iolation in -Mixing R R m m m P P P P xp t t t t t t ν ν ν ν Γ Γ Γ Γ ER ± R m
11 -iolation in -Mixing Γ ν Γ Γ ν Γ ν ν δ R T 1 R m δ ±.74 1 Frmilab-Pub-/7
12 Dirct iolation Considr dcay amplituds or a dcays into inal stat.g. amplitud amplitud i 1 violation Prob Prob vral possibl contributions i to with magnitud i, wak phas iφ and Transormations undr : iφ -iφ and strong phas iδ and iδ iδ δi φi i j sin φi φ jsin δi δ j δ φ i i i i i i i i i, j wak & strong phass Dirct violation rquirs dirnt contributions with dirnt wak phass and dirnt strong phass For nutral mods, dirct compts with othr typs o violation
13 Dirct iolation Exampl: - Γ Γ Γ Γ sin φ φ sin δ δ Tough to calculat Pnguin Tr Expct signiicant intrrnc o tr and pnguin amplituds imilar diagrams or - tatus: in -ystm, dirkt -violation not yt obsrvd in -ystm, dirkt -violation obsrvd ' not, that dirnc btwn I and I amplituds is hr rsponsibl or dirct big challng!! N31, N48, T
14 Masurmnt o / ' η ' η Γ Γ Γ Γ ' R 6 1 R Masur N 48 Nw Rsult using 1998 and 1999 data Eur. Phys. J C, ' R ± ± ' R : N 48 ± > <
15 Masurmnts o / G. nzivino, N 48, hp-ph/ T 1: ranalysis o 1997 data R W : ' R.7 ' pton Photon 1 ± ± "ong standing discrpancy sttld "Dirct -violation stablishd Howvr: Furthr conclusions wrt to M hardly possibl.
16 in Intrrnc btwn Mixing and Dcay Considr dcays into -ignstats din λ : Obsrvabl in modulus and phas! Oscillation λ η q p q p Dcay -ignvalu o q p q p η iφ iφ iφ M iδ iφ M iδ λ η Mixing Phas q p i φ φ M Wak Dcay Phas
17 Din: λ λ λ t t t t t t mt mt mt N N N N t Γ Γ Γ Γ Γ Γ Γ Γ cos sin Im cos R φ in Intrrnc btwn Mixing and Dcay -anguag
18 in Intrrnc btwn Mixing and Dcay t η N N N N Γ Γ t Γ t η cos mt ϕ Γ t ER hr: -ystm with λ 1 η # η iϕ η T T PDG : η φ.76 ± ±.5 3
19 in Intrrnc btwn Mixing and Dcay -anguag Γ t / τ 1 λ 1 λ Im λ sin m t cos m t d 1 λ d Γ t / τ 1 λ 1 λ Im λ sin m t cos m t d 1 λ d t N N N N 1 λ cos mdt Im λ sin mdt 1 λ indicats dirct violation i q/p 1 Intrrnc
20 J/ψ λ η RR η 1 q p mods 1 i φ φ i φ φ M η t M 1 λ R 1 λ N J / ψ N J / ψ N J / ψ / N J ψ η sin φ φ J/ψ : β t<! β du to Υ4 proprtis! M sin mt arg * cd cb * tdtb
21 J/ψ J/ψ : goldn channl, mor channls availabl iolation λ 1: 3 possibl mchanisms 1. q/p 1 aons: small ct m dscribd by -Msons: small ct in M q/p 1. / 1 aons: vry small ct -Msons: diagrams or J/ψ hav sam phas 3. φ M -φ aons: small ct R R m R - dscribd by -Msons: M: larg phas dirnc φ M -φ β β aons: ll 3 cts: small but contribut dscribd by, -Msons: ranching ratio larg dominatd by intrrnc btwn mixing and dcay ranching ratio tiny R 4 1-4
22 production: bb Υ4 -Msons at th ϒ4 -rsonanc, m 1.58 G ϒ4 rstram: p approx. 34 M cohrnt systm with 1 bosons symmtric wavunction Ψ Ψ Flavour Ψ spac 5% 5% PEP-II R O E On thrshold M 4 M CM Υ 1 Ψ spac antisymmtric Ψ Flavour 1 cannot distinguish btwn and until a dcays into non ignstat! dcay dins t! t may b positiv or ngativ. With λ 1 dt-η sinβsin mtdt tim rsolvd asymmtry masurmnt ncssary! oost o ϒ4 systm! dtrmin t rom z in boost dirction PEP-II/R: βγ,55 βγc τ 6 µm < z> 6µm
23 Masurmnt o sinβ ~ ψ D sin β sin m t R ~ Γ J Γ J Δt ~ / / ψ Γ J / ψ Γ J / ψ t t d t : Flavour-dtrmination o othr mson tag µ D Κ D * ϒ4 ν µ J/ψ z! t - s 3: Dtrmination o mistag raction w Dilution D: D 1-w rducs visibl asymmtry 1: Rconstruction o ignstats 4: Dtrmination o t z/βγc 5: Dtrmination o z t rsolution unktion R 6: sinβ it to t distribution or and tags
24 -Factory PEP-II at C E [G] - / [cm - s -1 ] int [pb -1 /day] Dsign 9. / x Rachd # 4.6 x
25 R: uminosity and Data ampl Dsign Run 1 sinβ /day sinβ masurmnt: Pairs
26 R R collaboration: 9 countris, 73 instituts Grman instituts:: ochum Drsdn Rostock 1.5 T 516 physicists Calorimtr: 658 CsITl crystals photodiod radout pr crystal
27 E and EE EE 1 cm 33 max s : 8 G : 3.5 G Rsults basd on 4.8 b -1 on rsonanc
28 Rconstruction o Eignstats J/Ψ s s - R Prliminary χ c1 s R Prliminary Mod cc s J/Ψ N tag Purity 94% 57% 1 1 J/Ψ * %.68 J/Ψ s s R Prliminary Ψs s R Prliminary ll lav 1,85 17,634 79% 85% Flav. E J/Ψ * * s R Prliminary J/Ψ R Prliminary J/ψ,µ µ
29 Flavour ampl Nutral Msons Ths sampls ar usd to masur: ", litims " m mixing o nutral " z rsolution and tagging prormanc or th sinβ masurmnt ar paramtrs in combind it or sin β to, Flavour, and ackground sampls. Chargd Msons "-Flavour known by dcay Dtrmination o w Dtrmination o icincy via it to Flavour & Data
30 t distributions prct ralistic tag sin β.7 tag tag tag t / d ± t 1 ω β τ " " " " τ d tag tag 1 " η. sin sin m t R ω : mis-tagging probability Δt : tim-rsolution unction d R
31 Fit Combind unbinnd maximum liklihood it or:, Flavour and ackground sampls R Prliminary Mistag, rsolution dtrmination dominatd by larg F sampl ackground paramtrs rom m E sidband m: ixd to.47 # ps -1 litim: ixd to ps PDG valus
32 sinβ-fit to t Distributions Entris /.6 ps 1 tags η cp -1 Entris /.6 ps 5 tags J/Ψ 1 tags R Prliminary 5 tags R Prliminary Raw symmtry prliminary t ps sinβ.75 ±.9 stat ±.4 syst Raw symmtry t ps
33 sinβ and Unitarity Triangl Thr is outsid th -systm! Consistnt with th M : prcision tst rquirs mor data. i. bttr dtrmination o ub à la Höckr t al, Eur.Phys.J.C1:5-59,1 R sinβ Is thr dirct? Fit or λ too: λ.9 ±.6 ±.3 Consistnt with no dirct
34 Nw rsults sinβ - World Masurmnts
35 -iolation in Mixing Using Dilptons /T violation : M xpctation: t N! N!!! N! N!!! 4 R 1 βγ.56 ϒ4 l < z> 6 µm l.5 ± 1. ± 1.4% q p.998 ±.6 ±.7 R /1 1. ±.9 ±
36 symmtris in - γ ρ,η, ρ,... α * * td tb udub * * cdcb cdcb, 1, Tr and Pnguin: dirnt wak phass sinα only rom Tr diagram! masurs sinα nd to disntangl Pnguin pollution! β b d b d Diagrams W Tr t W g Pnguin d u u d u d u d
37 symmtris in -, Tim dpndnt asymmtry masurmnt: vry similar to sinβ masurmnt UT: R not ncssarily! s aon cas t 4τ / τ [ 1± sin m t " C cos m t ] ± C Im λ 1 λ 1 λ 1 λ R: masur h,h -, h, global max. hood it ±.7 ± ± 1.1 ± < % C.. Dirct violation: prliminary N N N N.5 ±.6 ±.1 C R Prliminary
38 sinα R Prliminary -.1 ±.37 ±.7 [-.66,.6] 9%C C -. ±.9 ±.7 [-.54,.48] 9%C prliminary sinα σα 1 background Dtrmination o sinα: Isospin analysis masur orusmodls?.g. M.nk, G.uchalla, M.Nubrt, and C.T.achrajda, Nucl.Phys.66:45-31,1 s talk by M. nk on Thursday, 1:15h
39 tagging sinα EE Moriond N 73.5±13.8 vnts C ±.9.31 prliminary tags tags Indication or dirct -violation in -ystm? R: similar rrors,, C, consistnt with!
40 Conclusion and Outlook " iolation in -ystm wll studid " ll thr typs o violation discovrd " Many T tsts prormd " tudy o -iolation in th -ystm and masurmnt o CMparamtr will provid snsitiv tsts on th origin o -violation " violation has bn obsrvd in th systm o irst obsrvation o violation outsid th -systm! o Providing a rlvant constraint in th ρ-η plan " Many mor masurmnts on violation in -systm: sinα, R, " lrady a rich varity o CM tsts and mor in th nar utur " -iolation masurmnts in th -ystm just startd " xpct productiv long trm utur vn atr R, EE compltion! HCb, T,... high prcision masurmnts on angls, sids, dirct violation
Homework #6. A circular cylinder of radius R rotates about the long axis with angular velocity
Homwork #6 1. (Kittl 5.1) Cntrifug. A circular cylindr of radius R rotats about th long axis with angular vlocity ω. Th cylindr contains an idal gas of atoms of mass m at tmpratur. Find an xprssion for
Hadronic Tau Decays at BaBar
Hadronic Tau Decays at BaBar Swagato Banerjee Joint Meeting of Pacific Region Particle Physics Communities (DPF006+JPS006 Honolulu, Hawaii 9 October - 3 November 006 (Page: 1 Hadronic τ decays Only lepton
Study of CP Violation at BABAR
Study of CP Violation at BABAR Roland Waldi, Univ. Rostock Introduction Direct CP Violation in B Decay The Easy Part: β Additional Information: β and α Summary and Outlook März 25 CP Violation = asymmetry
Solar Neutrinos: Fluxes
Solar Neutrinos: Fluxes pp chain Sun shines by : 4 p 4 He + e + + ν e + γ Solar Standard Model Fluxes CNO cycle e + N 13 =0.707MeV He 4 C 1 C 13 p p p p N 15 N 14 He 4 O 15 O 16 e + =0.997MeV O17
Antonio Pich. IFIC, CSIC Univ. Valencia.
Antonio Pich IFIC, CSIC Univ. Valncia Antonio.Pich@ific.uv.s Topical Sminar on Frontir of Particl Physics 005: Havy Flavor Physics Bijing, August 13-17 005 Quarks Lptons Bosons up down lctron nutrino photon
PULLEYS 1. GROOVE SPECIFICATIONS FOR V-BELT PULLEYS. Groove dimensions and tolerances for Hi-Power PowerBand according to RMA engineering standards
1. GROOVE SPECIFICATIONS FOR V-BELT PULLEYS Figur 3 - Groov dimnsion nomnclatur or V-blts α go lp b Ectiv diamtr Datum diamtr d Tabl No. 1 - Groov dimnsions and tolrancs or Hi-Powr PowrBand according to
Pairs of Random Variables
Pairs of Random Variabls Rading: Chaptr 4. 4. Homwork: (do at last 5 out of th following problms 4..4, 4..6, 4.., 4.3.4, 4.3.5, 4.4., 4.4.4, 4.5.3, 4.6.3, 4.6.7, 4.6., 4.7.9, 4.7., 4.8.3, 4.8.7, 4.9.,
Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α
Α Ρ Χ Α Ι Α Ι Σ Τ Ο Ρ Ι Α Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Σ η µ ε ί ω σ η : σ υ ν ά δ ε λ φ ο ι, ν α µ ο υ σ υ γ χ ω ρ ή σ ε τ ε τ ο γ ρ ή γ ο ρ ο κ α ι α τ η µ έ λ η τ ο ύ
α A G C T 國立交通大學生物資訊及系統生物研究所林勇欣老師
A G C T Juks and Cantor s (969) on-aramtr modl A T C G A G 0 0 0-3 C T A() A( t ) ( 3 ) ( ) A() A() ( 3 ) ( ) A( A( A( A( t ) A( 3 A( t ) ( ) A( A( Juks and Cantor s (969) on-aramtr modl A( A( t ) A( d
Physics of CP Violation (III)
Physics of CP Violation (III) Special Lecture at Tsinghua Univiersity, Beijing, China 21-25 March 2011 Tatsuya Nakada École Polytechnique Fédéale de Lausanne (EPFL) Experimental observation of CP violation
Relative Valuation. Relative Valuation. Relative Valuation. Υπολογισµός αξίας επιχείρησης µε βάση τρέχουσες αποτιµήσεις οµοειδών εταιρειών
Rlativ Valuatio Αρτίκης Γ. Παναγιώτης Rlativ Valuatio Rlativ Valuatio Υπολογισµός αξίας επιχείρησης µε βάση τρέχουσες αποτιµήσεις οµοειδών εταιρειών Ø Επιλογή οµοειδών επιχειρήσεων σε όρους κινδύνου, ανάπτυξης
Κύµατα παρουσία βαρύτητας
Κύµατα παουσία βαύτητας 8. Grait as in th ocan Sarantis Sofianos Dpt. of hsics, Unirsit of thns Was in th ocan Srfac grait as Short and long limit in grait as Wa charactristics Intrnal as Charactristic
General theorems of Optical Imaging systems
Gnral thorms of Optcal Imagng sstms Tratonal Optcal Imagng Topcs Imagng qualt harp: mags a pont sourc to a pont Dstorton fr: mags a shap to a smlar shap tgmatc Imagng Imags a pont sourc to a nfntl sharp
Three coupled amplitudes for the πη, K K and πη channels without data
Three coupled amplitudes for the πη, K K and πη channels without data Robert Kamiński IFJ PAN, Kraków and Łukasz Bibrzycki Pedagogical University, Kraków HaSpect meeting, Kraków, V/VI 216 Present status
Derivation of Optical-Bloch Equations
Appendix C Derivation of Optical-Bloch Equations In this appendix the optical-bloch equations that give the populations and coherences for an idealized three-level Λ system, Fig. 3. on page 47, will be
14.5mm 14.5mm
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 1.119/JETCAS.218.289582,
Dong Liu State Key Laboratory of Particle Detection and Electronics University of Science and Technology of China
Dong Liu State Key Laboratory of Particle Detection and Electronics University of Science and Technology of China ISSP, Erice, 7 Outline Introduction of BESIII experiment Motivation of the study Data sample
3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β
3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle
r r t r r t t r t P s r t r P s r s r r rs tr t r r t s ss r P s s t r t t tr r r t t r t r r t t s r t rr t Ü rs t 3 r r r 3 rträ 3 röÿ r t
r t t r t ts r3 s r r t r r t t r t P s r t r P s r s r P s r 1 s r rs tr t r r t s ss r P s s t r t t tr r 2s s r t t r t r r t t s r t rr t Ü rs t 3 r t r 3 s3 Ü rs t 3 r r r 3 rträ 3 röÿ r t r r r rs
Rethinking Connes' approach to the standard model of particle physics via non-commutative geometry.
Rethinking Connes' approach to the standard model of particle physics via non-commutative geometry. Shane Farnsworth, joint work with Latham Boyle. Perimeter Institute for Theoretical Physics arxiv:1408.5367,
Prblma dl smipian Cas i cs ω µ Cas sin cs i cs Cas fas [ ] [ ] ] [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ttal S S J L J J L A d I I A d I d I V d d V V d d V n J n J ˆ 0 ˆ ˆ ˆ 0 ˆ 0 ˆ ˆ ˆ 0 S S S S i i
Α Ρ Ι Θ Μ Ο Σ : 6.913
Α Ρ Ι Θ Μ Ο Σ : 6.913 ΠΡΑΞΗ ΚΑΤΑΘΕΣΗΣ ΟΡΩΝ ΔΙΑΓΩΝΙΣΜΟΥ Σ τ η ν Π ά τ ρ α σ ή μ ε ρ α σ τ ι ς δ ε κ α τ έ σ σ ε ρ ι ς ( 1 4 ) τ ο υ μ ή ν α Ο κ τ ω β ρ ί ο υ, η μ έ ρ α Τ ε τ ά ρ τ η, τ ο υ έ τ ο υ ς δ
Novel rotor position detection method of line back EMF for BLDCM
14 12 2010 12 ELECTRI C MACHINES AND CONTROL Vol. 14 No. 12 Dc. 2010 1 2 2 1. 430073 2. 430074 TM 351 A 1007-449X 2010 12-0096- 05 Novl rotor position dtction mthod of lin back EMF for BLDCM LI Zi-chng
CP VIOLATION in b system ΜΑΑΝΤΗΣ ΑΛΕΞΑΝΔΟΣ --ΣΑΒΒΙΔΗΣ ΓΙΩΓΟΣ
CP VIOLATION in b system ΜΑΑΝΤΗΣ ΑΛΕΞΑΝΔΟΣ --ΣΑΒΒΙΔΗΣ ΓΙΩΓΟΣ PARITY (ΟΜΟΤΙΜΙΑ) P & ΣΥΖΥΓΙΑ ΦΟΤΙΟΥ C Τι είναι θ parity; Τι είναι θ ςυηυγία φορτίου; Το C αντιςτρζφει και τον λεπτονικό και βαρυονικό αρικμό.
General 2 2 PT -Symmetric Matrices and Jordan Blocks 1
General 2 2 PT -Symmetric Matrices and Jordan Blocks 1 Qing-hai Wang National University of Singapore Quantum Physics with Non-Hermitian Operators Max-Planck-Institut für Physik komplexer Systeme Dresden,
The Standard Model. Antonio Pich. IFIC, CSIC Univ. Valencia
http://arxiv.org/pd/0705.464 The Standard Mode Antonio Pich IFIC, CSIC Univ. Vaencia Gauge Invariance: QED, QCD Eectroweak Uniication: SU() Symmetry Breaking: Higgs Mechanism Eectroweak Phenomenoogy Favour
Isospin breaking effects in B ππ, ρρ, ρπ
Isospin breaking effects in B ππ, ρρ, ρπ Jure Zupan Carnegie Mellon University based on M. Gronau, J.Z., hep-ph/0502139 J. Zupan Isospin breaking effects in B ππ,ρρ,ρπ CKM2005 p. 1 Outline Effect of isospin
2. Α ν ά λ υ σ η Π ε ρ ι ο χ ή ς. 3. Α π α ι τ ή σ ε ι ς Ε ρ γ ο δ ό τ η. 4. Τ υ π ο λ ο γ ί α κ τ ι ρ ί ω ν. 5. Π ρ ό τ α σ η. 6.
Π Ε Ρ Ι Ε Χ Ο Μ Ε Ν Α 1. Ε ι σ α γ ω γ ή 2. Α ν ά λ υ σ η Π ε ρ ι ο χ ή ς 3. Α π α ι τ ή σ ε ι ς Ε ρ γ ο δ ό τ η 4. Τ υ π ο λ ο γ ί α κ τ ι ρ ί ω ν 5. Π ρ ό τ α σ η 6. Τ ο γ ρ α φ ε ί ο 1. Ε ι σ α γ ω
상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님
상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님 Motivation Bremsstrahlung is a major rocess losing energies while jet articles get through the medium. BUT it should be quite different from low energy
19. ATOMS, MOLECULES AND NUCLEI HOMEWORK SOLUTIONS
. ATOMS, MOLECULES AND NUCLEI HOMEWORK SOLUTIONS. Givn :.53 Å 3?? n n ε πm n n Radius of n t Bo obit, n n ε πm n n 3 n 3 n 3 (3) () (.53).77Å n n ( ) () (.53) 53 Å. Givn : 3 7.7 x m? n n ε πm Radius of
CP-violation from Non-Unitary Leptonic Mixing
CP-volaton from Non-Untary Lptonc Mxng Jacobo Lópz Pavón IFT UAM/CSIC XLIIIrd Rncontrs d MORIOND Elctrowak Ssson La Thul, March 1-8, 008 S. Antusch, C. Bggo, E. Frnándz-Martínz and M.B. Gavla JHEP 0610:084,006
Faculdade de Engenharia. Transmission Lines ELECTROMAGNETIC ENGINEERING MAP TELE 2008/2009
Facudad d Ennharia Transmission ins EECTROMAGNETC ENGNEERNG MAP TEE 8/9 Transmission ins Facudad d Ennharia transmission ins wavuids supportin TEM wavs most common typs para-pat wavuids coaxia wavuids
Strain gauge and rosettes
Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified
ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s
P P P P ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s r t r 3 2 r r r 3 t r ér t r s s r t s r s r s ér t r r t t q s t s sã s s s ér t
Υπολογιστική Φυσική Στοιχειωδών Σωματιδίων
Υπολογιστική Φυσική Στοιχειωδών Σωματιδίων Όρια Πιστότητας (Confidence Limits) 2/4/2014 Υπολογ.Φυσική ΣΣ 1 Τα όρια πιστότητας -Confidence Limits (CL) Tα όρια πιστότητας μιας μέτρησης Μπορεί να αναφέρονται
Space-Time Symmetries
Chapter Space-Time Symmetries In classical fiel theory any continuous symmetry of the action generates a conserve current by Noether's proceure. If the Lagrangian is not invariant but only shifts by a
Assessment of otoacoustic emission probe fit at the workfloor
Assessment of otoacoustic emission probe fit at the workfloor t s st tt r st s s r r t rs t2 t P t rs str t t r 1 t s ér r tr st tr r2 t r r t s t t t r t s r ss r rr t 2 s r r 1 s r r t s s s r t s t
ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations
ECE 308 SIGNALS AND SYSTEMS FALL 07 Answers to selected problems on prior years examinations Answers to problems on Midterm Examination #, Spring 009. x(t) = r(t + ) r(t ) u(t ) r(t ) + r(t 3) + u(t +
RG analysis at higher orders in perturbativ QFTs in CMP
RG analysis at highr ordrs in prturbativ QFTs in CMP Nikolai Zrf Institut für Thortisch Physik Univrsity of Hidlbrg Humboldt Univrsity, Brlin 2017 [arxiv:1605.09423] & [arxiv:1703.08801] Nikolai Zrf (ITP
Ó³ Ÿ , º 1(130).. 7Ä ±μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê
Ó³ Ÿ. 006.. 3, º 1(130).. 7Ä16 Š 530.145 ˆ ƒ ˆ ˆŒ ˆŸ Š ƒ.. ±μ Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê É μ ² Ö Ó μ μ Ö μ μ²õ μ É μ ÌÉ ±ÊÎ É ² ³ É μ - Î ±μ μ ÊÌ ±μ Ëμ ³ μ- ±² μ ÒÌ ³μ ²ÖÌ Ê ±. ³ É ÔÉμ μ μ μ Ö, Ö ²ÖÖ Ó ±μ³
SPECIAL FUNCTIONS and POLYNOMIALS
SPECIAL FUNCTIONS and POLYNOMIALS Gerard t Hooft Stefan Nobbenhuis Institute for Theoretical Physics Utrecht University, Leuvenlaan 4 3584 CC Utrecht, the Netherlands and Spinoza Institute Postbox 8.195
Outline Analog Communications. Lecture 05 Angle Modulation. Instantaneous Frequency and Frequency Deviation. Angle Modulation. Pierluigi SALVO ROSSI
Outline Analog Communications Lecture 05 Angle Modulation 1 PM and FM Pierluigi SALVO ROSSI Department of Industrial and Information Engineering Second University of Naples Via Roma 9, 81031 Aversa (CE),
Solutions - Chapter 4
Solutions - Chapter Kevin S. Huang Problem.1 Unitary: Ût = 1 ī hĥt Û tût = 1 Neglect t term: 1 + hĥ ī t 1 īhĥt = 1 + hĥ ī t ī hĥt = 1 Ĥ = Ĥ Problem. Ût = lim 1 ī ] n hĥ1t 1 ī ] hĥt... 1 ī ] hĥnt 1 ī ]
4.- Littlest Higgs Model with T-parity. 5.- hhh at one loop in LHM with T-parity
1.- Introduction. 2.- Higgs physics 3.- hhh at one loop level in SM 4.- Littlest Higgs Model with T-parity 5.- hhh at one loop in LHM with T-parity 7.- Conclusions Higgs Decay modes at LHC Direct measurement
Section 8.3 Trigonometric Equations
99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.
Lifting Entry (continued)
ifting Entry (continued) Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion Planar state equations MARYAN 1 01 avid. Akin - All rights reserved http://spacecraft.ssl.umd.edu
Calculus and Differential Equations page 1 of 17 CALCULUS and DIFFERENTIAL EQUATIONS
alculus and Diffrnial Equaions pag of 7 ALULUS and DIFFERENTIAL EQUATIONS Th following 55 qusions concrn calculus and diffrnial quaions. In his vrsion of h am, h firs choic is always h corrc on. In h acual
Baryon Studies. Dongliang Zhang (University of Michigan) Hadron2015, Jefferson Lab September 13-18, on behalf of ATLAS Collaboration
Λ b Baryon Studies Dongliang Zhang (University of Michigan) on behalf of Collaboration Hadron215, Jefferson Lab September 13-18, 215 Introduction Λ b reconstruction Lifetime measurement Helicity study
Lifting Entry 2. Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYLAND U N I V E R S I T Y O F
ifting Entry Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYAN 1 010 avid. Akin - All rights reserved http://spacecraft.ssl.umd.edu ifting Atmospheric
Matrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
Coupling of a Jet-Slot Oscillator With the Flow-Supply Duct: Flow-Acoustic Interaction Modeling
1th AIAA/CEAS Aeroacoustics Conference, May 006 interactions Coupling of a Jet-Slot Oscillator With the Flow-Supply Duct: Interaction M. Glesser 1, A. Billon 1, V. Valeau, and A. Sakout 1 mglesser@univ-lr.fr
ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?
Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least
Reminders: linear functions
Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U
Approximation of distance between locations on earth given by latitude and longitude
Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth
Second Order RLC Filters
ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor
ΒΡΥΩΝΗΣ ΧΑΡΑΛΑΜΠΟΥΣ Α.Ε.Μ : Θεωρία Cabibbo CKM Matrix (Πίνακας) «εργασία στα πλαίσια του µαθήµατος ΦΥΣΙΚΗ ΣΤΟΙΧΕΙΟ ΩΝ ΣΩΜΑΤΙ ΙΩΝ ΙΙ»
ΒΡΥΩΝΗΣ ΧΑΡΑΛΑΜΠΟΥΣ Α.Ε.Μ :1781 Θεωρία Cabibbo CKM Matrix (Πίνακας) «εργασία στα πλαίσια του µαθήµατος ΦΥΣΙΚΗ ΣΤΟΙΧΕΙΟ ΩΝ ΣΩΜΑΤΙ ΙΩΝ ΙΙ» Αριστοτέλειο Πανεπιστήµιο Θεσσαλονίκης Μάιος 011 ΠΕΡΙΕΧΟΜΕΝΑ Θεωρία
derivation of the Laplacian from rectangular to spherical coordinates
derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used
Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté
Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté Alexis Nuttin To cite this version: Alexis Nuttin. Physique des réacteurs
Eight Examples of Linear and Nonlinear Least Squares
Eight Examples of Linear and Nonlinear Least Squares CEE 699.4, ME 99.4 Sstem Identification Fall, 21 c Henri P. Gavin, September 2, 21 1 Not polnomial, but linear in parameters. ŷ(t i ; a) = a 1 sin(t
P P Ó P. r r t r r r s 1. r r ó t t ó rr r rr r rí st s t s. Pr s t P r s rr. r t r s s s é 3 ñ
P P Ó P r r t r r r s 1 r r ó t t ó rr r rr r rí st s t s Pr s t P r s rr r t r s s s é 3 ñ í sé 3 ñ 3 é1 r P P Ó P str r r r t é t r r r s 1 t r P r s rr 1 1 s t r r ó s r s st rr t s r t s rr s r q s
Spherical Coordinates
Spherical Coordinates MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Spherical Coordinates Another means of locating points in three-dimensional space is known as the spherical
ϕ n n n n = 1,..., N n n {X I, Y I } {X r, Y r } (x c, y c ) q r = x a y a θ X r = [x r, y r, θ r ] X I = [x I, y I, θ I ] X I = R(θ)X r R(θ) R(θ) = cosθ sinθ 0 sinθ cosθ 0 0 0 1 Ẋ I = R(θ)Ẋr y r ẏa r
ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä616 Š ˆŒ CMS LHC
ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ 2017.. 48.. 5.. 604Ä616 œ ˆ Š ˆ ˆ ˆ Š ˆŒ CMS LHC ˆ.. ƒμ²êé 1,.. ³ Éμ 1,2, 1 Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê 2 ƒμ Ê É Ò Ê É É Ê, Ê, μ Ö É ² Ò Ê²ÓÉ ÉÒ Ô± ³ É CMS, μ²êî Ò μ μ ÒÌ - μ μ Í ±² μéò LHC
Spectrum Representation (5A) Young Won Lim 11/3/16
Spectrum (5A) Copyright (c) 2009-2016 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later
4.6 Autoregressive Moving Average Model ARMA(1,1)
84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this
Mean-Variance Analysis
Mean-Variance Analysis Jan Schneider McCombs School of Business University of Texas at Austin Jan Schneider Mean-Variance Analysis Beta Representation of the Risk Premium risk premium E t [Rt t+τ ] R1
ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä ³ Éμ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê ƒμ Ê É Ò Ê É É Ê, Ê, μ Ö
ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ 2018.. 49.. 4.. 1291Ä1301 Š œ Š ˆŒ CMS LHC ˆ Š ˆ ˆŠˆ ŒŠ Œˆ Œ ˆ.. ³ Éμ Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê ƒμ Ê É Ò Ê É É Ê, Ê, μ Ö μ É Ö ± ɱ μ μ ʲÓÉ Éμ Ô± ³ É CMS μ²óïμ³ μ μ³ ±μ²² μ μ ±Ê Ë ± ³± ³
Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)
Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts
ˆ CP-ˆ ˆ ˆ Œ. Œ Œ.. ̳ É Ö μ, Œ.. μ² μ μ²μ ³ ± μ Ê É Ò Ê É É, ³, μ Ö
ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ 006.. 37.. 5 Š 530. ˆ CP-ˆ ˆ ˆ Œ ˆƒƒ Š Œ Š Œ Œ.. ̳ É Ö μ, Œ.. μ² μ μ²μ ³ ± μ Ê É Ò Ê É É, ³, μ Ö Œ.. Ê ÊÎ μ- ² μ É ²Ó ± É ÉÊÉ Ö μ Ë ± Œƒ ³. Œ.. μ³μ μ μ, Œμ ± ˆ 85 ˆ CP-ˆ ˆ ˆ ˆŒ ˆ Š Š
16 Electromagnetic induction
Chatr : Elctromagntic Induction Elctromagntic induction Hint to Problm for Practic., 0 d φ or dφ 0 0.0 Wb. A cm cm 7 0 m, A 0 cm 0 cm 00 0 m B 0.8 Wb/m, B. Wb/m,, dφ d BA (B.A) BA 0.8 7 0. 00 0 80 0 8
r t t r t t à ré ér t é r t st é é t r s s2stè s t rs ts t s
r t r r é té tr q tr t q t t q t r t t rrêté stér ût Prés té r ré ér ès r é r r st P t ré r t érô t 2r ré ré s r t r tr q t s s r t t s t r tr q tr t q t t q t r t t r t t r t t à ré ér t é r t st é é
ΕΝΕΡΓΟΣ ΔΙΑΤΟΜΗ ΤΟΥ ΣΩΜΑΤΙΔΙΟΥ W
ΕΝΕΡΓΟΣ ΔΙΑΤΟΜΗ ΤΟΥ ΣΩΜΑΤΙΔΙΟΥ W ΧΡΥΣΑΝΘΗ ΜΟΝΗ Α.Ε.Μ. : 12679 ΗΜΕΡΟΜΗΝΙΑ: 17/05/11 Τι είναι και πότε ανακαλύφθηκε το μποζόνιο W Το μποζόνιο Wείναι ένα από τα στοιχειώδη σωμάτια που μεταδίδουν την ασθενή
Alterazioni del sistema cardiovascolare nel volo spaziale
POLITECNICO DI TORINO Corso di Laurea in Ingegneria Aerospaziale Alterazioni del sistema cardiovascolare nel volo spaziale Relatore Ing. Stefania Scarsoglio Studente Marco Enea Anno accademico 2015 2016
ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ
ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΕΛΕΝΑ ΦΛΟΚΑ Επίκουρος Καθηγήτρια Τµήµα Φυσικής, Τοµέας Φυσικής Περιβάλλοντος- Μετεωρολογίας ΓΕΝΙΚΟΙ ΟΡΙΣΜΟΙ Πληθυσµός Σύνολο ατόµων ή αντικειµένων στα οποία αναφέρονται
Other Test Constructions: Likelihood Ratio & Bayes Tests
Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :
MnZn. MnZn Ferrites with Low Loss and High Flux Density for Power Supply Transformer. Abstract:
MnZn JFE No. 8 5 6 p. 32 37 MnZn Ferrites with Low Loss and High Flux Density for Power Supply Transformer FUJITA Akira JFE Ph. D. FUKUDA Yutaka JFE NISHIZAWA Keitarou JFE TOGAWA Jirou MnZn Fe2O3 1 C NiO
Jeux d inondation dans les graphes
Jeux d inondation dans les graphes Aurélie Lagoutte To cite this version: Aurélie Lagoutte. Jeux d inondation dans les graphes. 2010. HAL Id: hal-00509488 https://hal.archives-ouvertes.fr/hal-00509488
Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET
Aquinas College Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET Pearson Edexcel Level 3 Advanced Subsidiary and Advanced GCE in Mathematics and Further Mathematics Mathematical
Galatia SIL Keyboard Information
Galatia SIL Keyboard Information Keyboard ssignments The main purpose of the keyboards is to provide a wide range of keying options, so many characters can be entered in multiple ways. If you are typing
Wb/ Μ. /Α Ua-, / / Βζ * / 3.3. Ηλεκτρομαγνητισμός Ι Μ. 1. Β = k. 3. α) Β = Κ μ Π 2. B-r, 2 10~ ~ 2 α => I = ~ } Α k M I = 20Α
ΛΥΣΗ ΠΡΟΒΛΗΜΑΤΩΝ 3.3 39 3.3. Ηλεκτρομαγνητισμός 1. Β = k 21 9 1Π 2 β = 10 " ίιτκ τ^β = 2 10 " τ 3. α) Β = Κ μ 21 B-r, 2 10~ 5 20 10~ 2 α => I = ~ } Α k M -2 2-10 I = 20Α ϊ)β 2 2Ι = Κ ψ- _ 10' 10^40 7 2
MICROMASTER Vector MIDIMASTER Vector
s MICROMASTER Vector MIDIMASTER Vector... 2 1.... 4 2. -MICROMASTER VECTOR... 5 3. -MIDIMASTER VECTOR... 16 4.... 24 5.... 28 6.... 32 7.... 54 8.... 56 9.... 61 Siemens plc 1998 G85139-H1751-U553B 1.
ITU-R P (2012/02) &' (
ITU-R P.530-4 (0/0) $ % " "#! &' ( P ITU-R P. 530-4 ii.. (IPR) (ITU-T/ITU-R/ISO/IEC).ITU-R http://www.itu.int/itu-r/go/patents/en. ITU-T/ITU-R/ISO/IEC (http://www.itu.int/publ/r-rec/en ) () ( ) BO BR BS
Vol. 38 No Journal of Jiangxi Normal University Natural Science Nov. 2014
38 6 Vol 38 No 6 204 Journal o Jiangxi Normal UniversityNatural Science Nov 204 000-586220406-055-06 2 * 330022 Nevanlinna 2 2 2 O 74 52 0 B j z 0j = 0 φz 0 0 λ - φ= C j z 0j = 0 ab 0 arg a arg b a = cb0
Statistical Inference I Locally most powerful tests
Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided
Magnetically Coupled Circuits
DR. GYURCSEK ISTVÁN Magnetically Coupled Circuits Sources and additional materials (recommended) Dr. Gyurcsek Dr. Elmer: Theories in Electric Circuits, GlobeEdit, 2016, ISBN:978-3-330-71341-3 Ch. Alexander,
PHOS π 0 analysis, for production, R AA, and Flow analysis, LHC11h
PHOS π, ask PHOS π analysis, for production, R AA, and Flow analysis, Henrik Qvigstad henrik.qvigstad@fys.uio.no University of Oslo --5 PHOS π, ask ask he task we use, AliaskPiFlow was written prior, for
Review Exercises for Chapter 7
8 Chapter 7 Integration Techniques, L Hôpital s Rule, and Improper Integrals 8. For n, I d b For n >, I n n u n, du n n d, dv (a) d b 6 b 6 (b) (c) n d 5 d b n n b n n n d, v d 6 5 5 6 d 5 5 b d 6. b 6
The ε-pseudospectrum of a Matrix
The ε-pseudospectrum of a Matrix Feb 16, 2015 () The ε-pseudospectrum of a Matrix Feb 16, 2015 1 / 18 1 Preliminaries 2 Definitions 3 Basic Properties 4 Computation of Pseudospectrum of 2 2 5 Problems
ΕΝΙΣΧΥΣΗ ΠΛΑΚΩΝ ΚΑΙ ΔΟΚΩΝ ΣΕ ΚΑΜΨΗ ΜΕ ΜΑΝΔΥΕΣ Η ΕΛΑΣΜΑΤΑ ΣΥΝΘΕΤΩΝ ΥΛΙΚΩΝ.
ΕΝΙΣΧΥΣΗ ΠΛΑΚΩΝ ΚΑΙ ΔΟΚΩΝ ΣΕ ΚΑΜΨΗ ΜΕ ΜΑΝΔΥΕΣ Η ΕΛΑΣΜΑΤΑ ΣΥΝΘΕΤΩΝ ΥΛΙΚΩΝ. Σύμφωνα με τον Κανονιμό Επεμβάεων, ο νέος οπλιμός υπολοίζεται έτι ώτε ε υνεραία με τον υφιτάμενο παλαιό οπλιμό να αναλαμβάνονται
Forced Pendulum Numerical approach
Numerical approach UiO April 8, 2014 Physical problem and equation We have a pendulum of length l, with mass m. The pendulum is subject to gravitation as well as both a forcing and linear resistance force.
The Finite Element Method
Th Finit Elmnt Mthod Plan (D) Truss and Fram Elmnts Rad: Sctions 4.6 and 5.4 CONTENTS Rviw of bar finit lmnt in th local coordinats Plan truss lmnt Rviw of bam finit lmnt in th local coordinats Plan fram
Consommation marchande et contraintes non monétaires au Canada ( )
Consommation marchande et contraintes non monétaires au Canada (1969-2008) Julien Boelaert, François Gardes To cite this version: Julien Boelaert, François Gardes. Consommation marchande et contraintes
DYNAMICAL BEHAVIORS OF A DELAYED REACTION-DIFFUSION EQUATION. Zhihao Ge
Mathmatical and Computational Applications, Vol. 5, No. 5, pp. 76-767, 00. Association for Scintific Rsarch DYNAMICAL BEHAVIORS OF A DELAYED REACTION-DIFFUSION EQUATION Zhihao G Institut of Applid Mathmatics
Πρότυπο Αδρονίων µε Στατικά κουάρκ Ι
Πρότυπο Αδρονίων µε Στατικά κουάρκ Ι I,S: SU() group I : SU() group ΠΡΟΤΥΠΟ ΤΩΝ ΑΔΡΟΝΙΩΝ ΜΕ ΣΤΑΤΙΚΑ QUARKS QUARK ATOMS Πλήθος Βαρυονίων & Μεσονίων ~ 96 - αρχικά οι κανονικότητες (patterns) των αδρονικών
Supplementary Information. Living Ring-Opening Polymerization of Lactones by N-Heterocyclic Olefin/Al(C 6 F 5 ) 3
Supplementary Information Living Ring-Opening Polymerization of Lactones by N-Heterocyclic Olefin/Al(C 6 F 5 ) 3 Lewis Pairs: Structures of Intermediates, Kinetics, and Mechanism Qianyi Wang, Wuchao Zhao,
Feasible Regions Defined by Stability Constraints Based on the Argument Principle
Feasible Regions Defined by Stability Constraints Based on the Argument Principle Ken KOUNO Masahide ABE Masayuki KAWAMATA Department of Electronic Engineering, Graduate School of Engineering, Tohoku University
Robust Segmentation of Focal Lesions on Multi-Sequence MRI in Multiple Sclerosis
Robust Segmentation of Focal Lesions on Multi-Sequence MRI in Multiple Sclerosis Daniel García-Lorenzo To cite this version: Daniel García-Lorenzo. Robust Segmentation of Focal Lesions on Multi-Sequence
ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο
Poroelastic modelling of the coupled mechanical moisture behaviour of wood
Ma terias Sci ence & Technoog y Poroeastic modeing of the couped mechanica moisture behaviour of wood M. Dresser, D. Derome, R. Guyer and J. Carmeiet poroeastic modeing of wood - COST meeting October 00.
Multifunctinality and Crystal Dynamics of Highly Stable Porous Metal-Organic Framework [Zn 4 O(NTB) 2 ]
Supporting Information Multifunctinality and Crystal Dynamics of Highly Stable Porous Metal-Organic Framework [Zn 4 O(NTB) 2 ] Eun Young Lee, Seung Yeon Jang, and Myunghyun Paik Suh* School of Chemistry,