MZ.GEV- THRU MZ.GEV-. MZ.GF SERIES MZ.GEV THRU MZ.GEV TECHHICAL SPECIFICATION FEATURES Silicon Planar Power Diodes Standard Voltage Tolerance is ±% DO- Glass Case High Reliability Weight: Approx..g DO- MIN.8 (.) MAX.(.8) MIN.8 (.) MAX φ.9 (.) Cathode band MAX φ. (.) Dimensions in inches and (millimeters) ABSOLUTE MAXIMUM RATINGE: (Ta= ) Parameter Symbols Limits Unit Power Dissipation at Tamb= Ptot () mw Maximum Junction Temperature Tj Storage Temperature Range Tstg -~+ Symbols Min Typ Max Unit Thermal Resistance Junction to Ambient Air RthJA - - () /W Forward Voltage at IF= VF - -. Volts Notes. Valid provided that leads at a distance of 8mm from case are kept at ambient temperature :. Tested with pulse tp=ms. Valid provided that leads are kept at ambient temperature at a distance of 8mm from case. Standard zener voltage tolerance is ±%. Add suffix A for ±% tolerance. Suffix B for±% tolerance.. At Iz =. 6. At Iz =..
MZ.GEV- THRU MZ.GEV-. MZ.GF SERIES MZ.GEV THRU MZ.GEV ELECTRICAL CHARACTERISTIC Ratings at ambient temperature unless otherwise specified Valtage () Dynamic Resistance Type Device Marking Code Vz(v) ( Vz<=±% ) () f=khz ZZT(Ω) At IZT f=khz IZK=.Ma ZZK(Ω) Temp coeff of Volotage αvz(%/k) Reverse leakage current IR(Μa) Admissible Current () at MAX MIN MA VR(V MAX MZO.GFV- V-. Izt() X A) 8. MZO.GFV- V-.. 9 MZO.GFV- V-.. 89 MZO.GFV- V-. -.8 -.6. 6 MZO.GFV- V-. 9 6 -.8 -.6 MZO.GFV- V-. 8 6 -.8 -. 8 MZO.GFV6- V6-.6 -.8 -. 6 MZO.GFV9- V9-.9 9 -. -. MZO.GFV- V-. -. -. 6 MZO.GFV- V-. 9 9 -. -. 9 MZO.GFV- V-. 6 -. -. 89 MZO.GFV6- V6-.6 6 -. -.6 8 MZO.GF6V- 6V- 6. 6 -. -.. 6 MZO.GF6V- 6V- 6. - -. MZO.GF6V8-6V8-6.8 +...+.8 6 MZO.GFV- V-. 6 +. +.9 6 6 MZO.GF8V- 8V- 8. 8 +. +.9 6. MZO.GF8V- 8V- 8. 8 6 +. +. 6. MZO.GF9V- 9V- 9. 6 +. +. MZO.GFV- V- 6 +. +. 8 MZO.GFV- V- 6 +. +. 8. MZO.GFV- V- 6 +. +. 9. 8 MZO.GFV-9. V-9. 9. 6 +. +.. 9.9 MZO.GFV-9. V-9. 9 6 +. +.. MZO.GFV-8. V-8. 8. 6 6 +. +.. MZO.GF6V-.8 6V-.8 6.8 6 +. +.. 8 MZO.GFV-. V-.. 9 6 +. +.. MZO.GF8V-. 8V-.. 8 6 +. +.. MZO.GF9V-6.6 9V-6.6 9 6.6 6 +. +.. MZO.GFV-6. V-6. 6. 6 +. +.. MZO.GFV-.6 V-.6.6 9 6 +. +.. MZO.GFV-. V-.. 6 +. +.. 8 9. MZO.GFV-. V-. 6 +. +.. 9 8. MZO.GFV-.6 V-.6.6 6 +. +.. 6.8 MZO.GF8V-. 8V-. 8. 6 +. +.. 6. MZO.GFV-. V-.. 9 6 +. +... MZO.GFV-.8 V-.8.8 8 +. +...8 MZO.GF6V-. 6V-. 6. +. +...6 MZO.GF9V-. 9V-. 9. 8 8 +. +...6 MZO.GFV- V- 9 9 +. +...6 MZO.GFV-. V-.. +. +.. 6 9. MZO.GFV-. V-.. +. +.. 9 8.9 MZO.GF6V-. 6V-. 6. +. +.. - MZO.GF6V-. 6V-. 6. +. +.. 6 - MZO.GF6V-. 6V-. 6 8 +. +.. - MZO.GF68V-.8 68V-.8 68.8 6 +. +.. - MZO.GFV-. V-.. +. +.. 6 - IZT(Ma)
MZ.GEV- THRU MZ.GEV-. MZ.GF SERIES MZ.GEV THRU MZ.GEV ELECTRICAL CHARACTERISTIC Ratings at ambient temperature unless otherwise specified Valtage () Dynamic Resistance Type Device Marking Code Vz(v) ( Vz<=±% ) () f=khz ZZT(Ω) At IZT f=khz IZK=.Ma ZZK(Ω) Temp coeff of Volotage αvz(%/k) Reverse leakage current IR(Μa) Admissible Current () MAX MIN M VR(V MAX MZ.GFV V. A A). MZ.GFV V.. MZ.GFV V. 8. MZ.GFV V. 9 -.8 -.6. MZ.GFV V. 9 -.8 -.6 MZ.GFV V. 9 -.8 -. MZ.GFV6 V6.6 9 -.8 -. MZ.GFV9 V9.9 9 -. -. 9 MZ.GFV V. 88 -. -. 9 MZ.GFV V. -. -.. 8 MZ.GFV V. -.. 8 MZ.GFV6 V6.6 8 -. -.6 MZ.GF6V 6V 6.. 6 MZ.GF6V8 6V8 6.8 8 +. +.8. 8 MZ.GFV V. 6 +. +.9. 6 MZ.GF8V 8V 8. 6 +. +..9. 6. MZ.GF9V 9V 9. 6 +. +.. MZ.GFV V 6 +. +.. 8 MZ.GFV V 8 6 +. +.. 8. 6 MZ.GFV V 6 +. +.. 9. MZ.GFV V 6 +. +.. 9.9 9 MZ.GFV V 6 +. +.. MZ.GF6V 6V 6 6 6 +. +.. MZ.GF8V 8V 8 6 +. +.. MZ.GFV V 8 6 +. +.. MZ.GFV V 6 +. +.. 8 MZ.GFV V 6 6 +. +.. 8 6 MZ.GFV V 6 +. +.. MZ.GFV V 8 6 +. +.. MZ.GFV V 88 +. +.. MZ.GF6V 6V 6 9 +. +.. MZ.GF9V 9V 9 8 +. +.. MZ.GFV V 9 +. +...6 MZ.GFV V +. +.. 6 9. MZ.GFV V +. +.. 9 8.9 MZ.GF6V 6V 6 6( ) (6) +. +. (). MZ.GF6V 6V 6 8 () (6) +. +. (). 6 MZ.GF6V 6V 6 () (6) +. +. (). MZ.GF68V 68V 68 () 6 (6) +. +. (). MZ.GFV V 8 () (6) +. +. (). 6 IZT(Ma)
MZ.GEV- THRU MZ.GEV-. MZ.GF SERIES MZ.GEV THRU MZ.GEV Breakdown characteristics Tj=constant(pulsed) Tj= V V9 V6 6V8 V V /Z 8V Test Current/z 6 8 9 V Vz V V Tj= V /Z 8V V V Test Current/z V V Vz
MZ.GEV- THRU MZ.GEV-. MZ.GF SERIES MZ.GEV THRU MZ.GEV mw Admissible power dissipation versus ambient temperature Valid provided that leads are kept ambient temperature at a distance of 8mm from case pf Capacitance voltage TJ= Ptot Ctot V R =V V R=V V R =V V R=V K/W rtha Tamb Pulse thermal resistance versus pulse duration Valid provided that leads are kept ambient temperature at a distance of 8mm from case -...... V= - - tp - tp V = T T - P s Z ZK Ω. Dynamic resistance versus current V Z AT I Z = TJ= Vz=. V.6...6 tp I Z
MZ.GEV- THRU MZ.GEV-. MZ.GF SERIES MZ.GEV THRU MZ.GEV Z ZK Ω Dynamic resistance versus current Vz= V TJ= r zth K/W Thermal differential resistance versus voltage Valid provided that leads are kept at ambient temperature at a distance of 8mm from case r Vz zth=rtha. Vz T j 8. I Z 6.8/8.. 6. negative positive V V Z at I Z = Ω Dynamic resistance versus current K/W Thermal resistance versus lead length Z ZK R tha Max. Typ. V T J= IZ= VZ at I Z= lead length / mm
MZ.GEV- THRU MZ.GEV-. MZ.GF SERIES MZ.GEV THRU MZ.GEV mv/k Temperature dependance of voltage versus voltage V.6 Change of voltage from turn-on up to the point of thermal equilibrium versus voltage. Vz=rzth. Iz Iz= Vz T j Iz= Vz..8.6.. -. - V.8. Vz at Iz= Change of voltage versus junction temperature Vz at Iz= V -. Vz at Iz= V.6 Vz.... 8 6..9..6. -..6. -. 6 8 T j